

Homework 6.

(1) Let $f : [0, 1] \rightarrow \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \{\frac{1}{n} : n \in \mathbb{N}\} \\ 0 & \text{for all } x \neq \frac{1}{n}. \end{cases}$$

- a. Prove that f is Riemann integrable on $[c, 1]$ for all $0 < c < 1$ and that $\int_c^1 f(x) dx = 0$.
- b. Prove that f is Riemann integrable on $[0, 1]$ and that $\int_0^1 f(x) dx = 0$.

(2) Let $f : [a, b] \rightarrow \mathbb{R}$ be Riemann integrable.

- a. Prove that if f is continuous at $c \in [a, b]$ and $f(c) \neq 0$, then

$$\int_a^b |f(x)| dx > 0.$$

- b. Prove that if f is continuous on $[a, b]$, then $\int_a^b |f(x)| dx = 0$ if and only if $f(x) = 0$ for all $x \in [a, b]$.
- c. Does b. hold if the absolute value is removed? Prove or give a counterexample.

(3) Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous such that $\int_a^c f(x) dx = 0$ for all $a < c \leq b$. Prove that $f(x) = 0$ for all $x \in [a, b]$.

(4) Let $f : [0, 1] \rightarrow \mathbb{R}$ be Riemann integrable. Prove that

$$\lim_{n \rightarrow \infty} \int_0^1 x^n f(x) dx = 0.$$

(5) Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous and set $M = \max\{|f(x)| : x \in [a, b]\}$. Assume $M \neq 0$.

- a. Prove that for every $\epsilon > 0$ there exists an interval $[c, d] \subset [a, b]$ such that

$$(M - \epsilon)^n (d - c) \leq \int_a^b |f(x)|^n dx \leq M^n (b - a).$$

- b. Prove that

$$\lim_{n \rightarrow \infty} \left(\int_a^b |f(x)|^n dx \right)^{\frac{1}{n}} = M.$$