

Homework 4, Additional Problems.

- (1) Let $f : E \rightarrow \mathbb{R} \cup \{\pm\infty\}$ be measurable. Prove that $f^{-1}(B)$ is measurable for all Borel sets $B \subset \mathbb{R}$.
- (2) Let F be the Cantor-Lebesgue function from $[0, 1] \rightarrow [0, 1]$ and define $F_1(x) = x + F(x)$.
 - a. Show that F_1 is one-to-one and onto $[0, 2]$ and that its inverse is continuous (Hint: Use that F_1 is strictly increasing).
 - b. Show that $F_1(\mathcal{C})$ has measure one.
 - c. Let G be the function F_1^{-1} . Show that there is a measurable set E such that $G^{-1}(E)$ is not measurable. As a consequence show that this set E can't be a Borel set.
- (3)
 - a. Let $A \subset \mathcal{R}^d$. Prove there exists a measurable set $E \supset A$ such that $m^*(A) = m(E)$.
 - b. Let $A_1 \subset A_2 \subset \dots \uparrow A$. Prove that $m^*(A_n) \uparrow m^*(A)$.