Homework 3, Additional Problems.

- (1) Let (X, d) be a metric space.
 - **a.** Let $E_i \subset X$ $(i \in \{1, \dots, n\})$ be a finite collection of subsets of X. Prove that $\overline{\bigcup_{i=1}^n E_i} = \bigcup_{i=1}^n \overline{E_i}.$

b. Let $E_i (i \in I)$ now be an arbitrary collection of subsets of X. Prove that

$$\overline{\bigcap_{i\in I} E_i} \subset \bigcap_{i\in I} \overline{E_i}$$

and give an example that in general (even for two sets) that the inclusion is proper.

(2) Let (X, d) be a metric space and let $A \subset X$ be a non-empty subset. Define

$$d(x, A) = \inf\{d(x, y) : y \in A\}.$$

- **a.** Prove d(x, A) = 0 if and only if $x \in \overline{A}$.
- **b.** Show that

$$|d(x,A) - d(y,A)| \le d(x,y),$$

for all $x, y \in X$.

c. Let now $A, B \subset X$ be disjoint closed subsets. Prove there exists a continuous $f: X \to [0, 1]$ such that f(x) = 0 for all $x \in A$ and f(x) = 1 for all $x \in B$. (Hint: Show that $f(x) = \frac{d(x,A)}{d(x,A)+d(x,B)}$ works.)