

Homework 3.

- (1) Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous functions. Assume that both f and g are bounded. Prove that the product fg is uniformly continuous.
- (2) A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is periodic, if there exists a $c \in \mathbb{R}$ such that $f(x+c) = f(x)$ for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous.
- (3) Problem 28-1.
- (4) Problem 28-3.
- (5) If f is differentiable at $a \in (0, 1)$, prove that

$$f'(a) = \lim_{n \rightarrow \infty} n \left[f\left(a + \frac{1}{n}\right) - f(a) \right].$$

Show by means of an example that the existence of the above limit does not imply the existence of $f'(a)$.