Homework 12

- (1) If G is a region and $f, g \in H(G)$ are such that f(z)g(z) = 0 for all $z \in G$, then either f(z) = 0 for all $z \in G$ or g(z) = 0 for all $z \in G$.
- (2) (Quals '02) Let $f, g: \{z: |z| < 1\} \to \mathbb{C}$ be holomorphic functions such that |f(z)| = |g(z)| for all |z| < 1. Prove that every zero of g is also a zero of f of the same multiplicity and that thus $f = \lambda g$ for some λ with modulus one.
- (3) (Schwarz's lemma) Let f be a holomorphic function on D(0;1) with $|f(z)| \le 1$ for all |z| < 1 and f(0) = 0.
 - **a.** Define $f_1(z) = \frac{f(z)}{z}$ for $z \neq 0$ in D(0;1). Prove that z = 0 is a removable singularity of f_1 .
 - **b.** Prove that $|f_1(z)| \leq \frac{1}{r}$ on D(0;r) for all 0 < r < 1. (Hint: use the maximum modulus principle.)
 - **c.** Conclude that $|f(z)| \leq |z|$ for all $z \in D(0; 1)$. Moreover if equality holds for some $z_0 \neq 0$, then there exists c with |c| = 1 such that f(z) = cz for all $z \in D(0; 1)$.