

Homework 11, due April 18

1. Evaluate $\int_{\gamma} f(z) dz$ when

- a. $f(z) = |z|^2$ and γ is the line segment $[-1+i, 1+i]$ starting at $-1+i$ and ending at $1+i$.
- b. $f(z) = \operatorname{Re} z$ and $\gamma(t) = t + it^2$ for $0 \leq t \leq 1$
- c. $f(z) = \frac{1}{z}$ and γ is the join of the line segments $[1-i, 1+i]$, $[1+i, -1+i]$, and $[-1+i, -1-i]$, starting at $1-i$ and traversing the curve once (see figure 1).

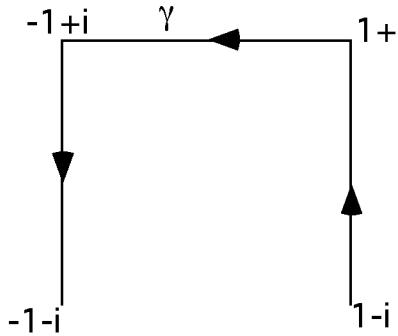


FIGURE 1. γ

2. Compute

$$\int_0^{2\pi} e^{\cos t} [\cos(\sin t + t)] dt$$

and

$$\int_0^{2\pi} e^{\cos t} [\sin(\sin t + t)] dt$$

by computing $\int_{\gamma} e^z dz$ by using Theorem 2.6 of chapter 2 and where $\gamma(t) = e^{it}$ with $0 \leq t \leq 2\pi$.

3. Let $\gamma(t) = e^{it}$ with $0 \leq t \leq 2\pi$. Compute (with justification, but without expressing the integral as an integral from 0 to 2π) the following integrals:

- a. $\int_{\gamma} \frac{1}{z-2} dz$
- b. $\int_{\gamma} \frac{\sin z}{z} dz$.

4. Let $\alpha \in \mathbb{C}$ with $|\alpha| \neq 1$. Compute

$$\int_0^{2\pi} \frac{d\theta}{1 - 2\alpha \cos \theta + \alpha^2}$$

by integrating $(z - \alpha)^{-1}(z - \frac{1}{\alpha})^{-1}$ over the unit circle.