Homework 11

- (1) (Quals '04) Let $G \subset \mathbb{C}$ be a region (i.e. an open and connected set) and let $f : G \to \mathbb{C}$ be a holomorphic function such that |f(z)| = C for all $z \in G$. Prove that f is constant on G.
- (2) (Quals '95) Let f be an entire function on \mathbb{C} and assume that $|f(z)| \leq A|z|^k + B$ for some constants A, B, integer k and all $z \in \mathbb{C}$. Prove that f is a polynomial.
- (3) (Quals '98) Let $G \subset \mathbb{C}$ be an open set containing the closed disk $\overline{D(a;r)} = \{z : |z-a| \leq r\}$. Let $\langle f_n \rangle$ be a sequence of holomorphic functions on G such that $f_n(z) \to 0$ uniformly on $\{z : |z-a| = r\}$. Prove that $f_n(z) \to 0$ for all z in the open disk D(a;r).
- (4) (Quals '95) Let $G \subset \mathbb{C}$ be a region and let $\langle f_n \rangle$ be a sequence of holomorphic functions on G, which converges uniformly on every compact subset of G to a function f. Prove that f is holomorphic on G.