

Homework 11.

- (1) Let $F : [0, 1] \rightarrow \mathbb{R}$ such that $F'(x)$ exists a.e. and satisfies $F' \in L^1([0, 1])$. Assume F is continuous at 0 and absolutely continuous on $[\epsilon, 1]$ for all $\epsilon > 0$. Prove that F is absolutely continuous on $[0, 1]$ and thus of bounded variation on $[0, 1]$.
- (2) Let $a > b > 0$ and define $F(0) = 0$, $F(x) = x^a \sin \frac{1}{x^b}$ for $0 < x \leq 1$. Prove that F is of bounded variation on $[0, 1]$ (Hint: Use Problem 2 to prove that F is absolutely continuous).
- (3) (Quals January 2007) Let $f : [0, 1] \rightarrow \mathbb{R}$. Prove that the following are equivalent.
 - a. f is absolutely continuous, $f'(x) \in \{0, 1\}$ a.e., and $f(0) = 0$.
 - b. There exists a measurable set $A \subset [0, 1]$ such that $f(x) = m(A \cap (0, x))$.
- (4) (Quals January 2004) Let f_n be absolutely continuous on $[0, 1]$ and let $f_n(0) = 0$. Assume that

$$\int_0^1 |f'_n(x) - f'_m(x)| dx \rightarrow 0$$

as $m, n \rightarrow \infty$. Prove that f_n converges uniformly to a function f on $[0, 1]$ and that f is absolutely continuous on $[0, 1]$.

- (5) (Quals August 2002) Let $f : [a, b] \rightarrow [c, d]$ be an increasing absolutely continuous function and let $g : [c, d] \rightarrow \mathbb{R}$ be an absolutely continuous function. Prove that the composition $g \circ f : [a, b] \rightarrow \mathbb{R}$ is absolutely continuous.