

Homework 10.

- (1) (Quals '95) Let f be an entire function on \mathbb{C} and assume that $|f(z)| \leq A|z|^k + B$ for some constants A, B , natural number k and all $z \in \mathbb{C}$. Prove that f is a polynomial. (Hint: Prove that the derivative $f^{(k+1)}(z) = 0$ for all z , using the Cauchy integral formula for $f^{(k+1)}$.)
- (2) (Quals '98) Let $G \subset \mathbb{C}$ be an open set containing the closed disk $\overline{B(a; r)} = \{z : |z - a| \leq r\}$. Let $\langle f_n \rangle$ be a sequence of analytic functions on G such that $f_n(z) \rightarrow 0$ uniformly on $\{z : |z - a| = r\}$. Prove that $f_n(z) \rightarrow 0$ for all z in the open disk $B(a; r)$.
- (3) (Quals '95) Let $G \subset \mathbb{C}$ be a region and let $\langle f_n \rangle$ be a sequence of analytic functions on G , which converges uniformly on every compact subset of G to a function f . Prove that f is analytic on G .
- (4) (Quals '02) Let $\Omega \subset \mathbb{C}$ be an open set containing the unit disk $\{z : |z| \leq 1\}$ and let $f : \Omega \rightarrow \mathbb{C}$ be a analytic function such that $|f(z)| > |f(0)|$ for all $|z| = 1$. Prove that f has a zero in $|z| < 1$.