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From the author’s website:

Here are some remarks about how to do algebra problems.
1. Never assume a group is Abelian. Some people begin their argument for
Exercise 16 of Chapter 2 by saying ”Assume that the group is Abelian.” This
is incorrect for you have no reason to assume a group is Abelian. Many groups
are not Abelian.
2. Never divide group elements. Instead, use cancellation or inverses.
3. Never assume a group is finite when that condition was not stated.
4. After you finish a proof look to see if you have used all the hypotheses. For
example, if you were given that the group is Abelian check to see if you used
that condition in your argument. If the group is finite check to see where you
used finiteness. Occasionally, it may be the case that a given condition is not
really needed but was there just to make the problem easier but usually all the
given conditions are needed for the you to be able to give a valid proof with
what you know at this point in the book.
5. Many exercises in the book involve a parameter n and ask you to prove
something. (For example, Exercises 15, 19, and 20 in Chapter 2). You should
look at the cases for small values of n such as 2 and 3 to gain insight and look
for a pattern. This often tells you how to do the general case but keep in mind
that doing specific values for n does not do the general case. The problem must
be done for all n, not a few examples. In general, you cannot prove a statement
is true by using specific examples.
6. When ask to provide an example to illustrate something, D4 is often a good
group to try. For example, Exercises 6 and 16 of Chapter 2.
7. On problems such as Exercise 20 of Chapter 2 or Exercise 14 of Chapter 4 do
not just give an answer. Show that your answer is valid. You must give reasons
or an explanation of why your answer is correct.
8. In many cases problems can be solved by simply writing out the expressions.
For example in Exercise 26 of Chapter 2 write out (ab)2 = a2 b2 as abab =
aabb. Exercise 19 in Chapter 2 works the same way. Just write the expression
out.
9. When you are asked to prove a statement you must not assume that the
statement is true.
10. Many theorems in the book about groups and elements of groups involve
divisibility conditions and greatest common divisors of two integers. Divisibility
only applies to integers. Infinity is not an integer. Do not talk about an integer
dividing infinity or an integer being relatively prime to infinity.
11. Whenever you say ”Assume ...” you must have a reason why you may
assume what it is you are assuming. For example, if you are given that H



is a subgroup of G you may make the statement: Assume x is an element of
H because subgroups are not empty. You cannot say ”Assume G is Abelian”
without providing some reason why you may assume that G is Abelian. As
another example, if you are given that a group is finite and a is an element of
the group you may say ”Assume —a— = n” because all elements of a finite
group have finite order. However, if you do not know that the group is finite
you can’t assume that an arbitrary element from the group has finite order.
Instead, you should take two cases. Case 1: —a— is finite and Case 2: —a—
is infinite.
12. When asked for an example of something, use a specific example. For
instance, in response to Exercise 6 of Chapter 2 some people say that matrices
have the property that a-1ba is not equal to b. But you must actually give the
specific matrices since some matrices have the desired property and some do not
have the property.
13. In general, you cannot take roots (square roots, cube roots, etc.) in groups.
Only integer powers of group elements are permissible.
14. When doing a problem about the order of an element, such as proving
that an element and its inverse have the same order, you will usually have to
deal with the finite case and infinite case separately. That is, —a— = n is one
argument and —a— is infinity is a different case. This is usually true as well
when dealing with the order of a group. The cases of a finite group and an
infinite group may require different arguments.
15. When an exercise says prove something is true for an integer do not assume
the integer is positive. In general, the cases that an integer is positive and an
integer is negative require slightly different arguments. Usually, you can use
the positive integer case to prove the negative integer case by using the Law
of Exponents. To illustrate the technique consider Exercise 19 in Chapter 2.
To prove (a-1ba)n = a-1bna for all n , first prove it for positive n by writing
out the expression a-1ba n times and canceling all the inner a and a-1 terms.
(Alternatively, you could use induction.) Now to prove the statement when n
is negative observe that a-1bna = ((a-1ba)-n) -1 and that -n is positive. So,
since you have already done the case when the exponent is positive you have
(a-1 ba)n = ((a-1ba)-n)-1 = (a-1b-n a)-1. Then using the socks-shoes property
you have (a-1b-na)-1 = a-1 bna. Finally, the case that n = 0 follows because
any element to the 0th power is the identity by definition.
16. When dealing with an abstract group (that is, one in which the elements and
operation are not specified) use e to denote the identity and use multiplication
as the operation (that is, ab). If you are told the operation is addition use a +
b .
17. If you argue by contradiction, don’t end it by saying ”a contradiction.” You



must indicate what you are contradicting (usually this will be the hypothesis or
a theorem).
18. The negation ”for all” is ”there exist some.” For example, in an Abelian
group ab = ba for all a and b. So, in a non-Abelian group there exist SOME
elements a and b such that ab is not ba. To remember this think of a common
statement such as ”The team won every game.” The negation is ”There exist
some game the team did not win.”
19. In the text it is usually the case that elements of a group are denoted by
letters from the beginning of the alphabet a,b, c or end of the alphabet x,y,z.
Integers such as exponents and orders of elements or groups are usually denoted
with letters from the middle of the alphabet i,j,k,m,n,s,t. For example, let —a—
= n. You should use the same conventions.
20. NEVER use ”if and only if” arguments when the statement is not an ”if and
only if” statement. Your argument is likely to be wrong since most statements
are not ”if and only if” and even when they are most of the time ”if and only
if” arguments are more difficult to make.
21. When you are given an ”if and only if” statement to prove it is highly
recommended that you do not use an ”if and only if” argument. They are
tricky to get correct for beginners. Instead, if you are asked to prove the A is
true if and only if B is true. Assume that A is true and use this assumption to
prove B is true. Then begin all over by assuming that B is true and use that to
prove A is true. So, in the end you will have two independent proofs.
22. Please keep in mind that if you are given condition A and asked to prove
condition B, you will start your proof with condition A and the last line of your
proof will be condition B. If you use a proof by contradiction you can assume
that A is true and that B is false to lead to a contradiction. Be sure to say what
you are contradicting.
23. When asked to find the inverse of an element, always check your answer by
multiplying the element and its purported inverse to see if you get the identity.
For example, to check that (ab)-1 = b-1a-1 all you need do is observe that
abb-1a-1 = e.
24. When you are asked to prove an ”or” statement such as ”Prove condition
A or condition B” you begin by assuming one of them is false and use that to
prove the other condition is true. It does not matter which of the two conditions
you assume to be false. If you assume A is false and are not able to prove B is
true, then assume B is false and try to prove that A is true. (If you assumed
that condition A is false and proved condition B is true there is no need to then
assume that condition B is false and prove condition A is true.) An example of
this is given for Part 3 of the Lemma in Chapter 7. Exercise 11 of Chapter 7 is
another example. Here we may assume that H is not R (if H = R+ we are done)



and use this assumption to prove that H = R*. Another way to prove an ”or”
statement is to assume both conditions are false and obtain a contradiction.
25. Whenever you are asked to prove a set A is equal to a set B, proceed
by assuming some element x belongs to A and show that x belongs to B. Then
assume some element x belongs to B and prove that x belongs to A. For example,
Exercise 16 of Chapter 3 says ”Prove C(a) = C(a-1).” So, begin by assuming
that x belongs to C(a) and use this assumption to prove that x belongs to C(a-
1). Then assume that x belongs to C(a-1) and use this assumption to prove
that x belongs to C(a).
26. Proving a mapping is ”onto” causes confusion among many students. If you
wish to prove that some function f from A to B is onto, let b denote any element
of B. You must find some x in A such that f(x) = b (think of b as given and
x as an unknown). To do this replace f(x) by the actual formula for f(x) and
then solve for x in terms of b. You must check to see whether the solution you
obtained is in set A. Here is an example. Say you are asked to prove that f(x) =
x2 from the positive reals to the positive reals is onto. We let b be any positive
real. Then we must solve the equation x2 = b for x. Note that x = square root
of b and x is a positive real so we have proved that f is onto. In contrast, if we
have the same function from the positive rationals to the positive rationals the
function is not onto since the square root of a positive rational need not be a
positive rational.
27. When ask to prove two groups are not isomorphic students often show
that some specific mapping does not satisfy the definition of isomorphism. This
merely proves that specific mapping is not an isomorphism. It does not preclude
that some other mapping may be an isomorphism. Instead, one must show that
NO mapping satisfies the definition. This can be done by assuming there is
some generic isomorphism and using only properties of isomorphisms derive a
contradiction. Examples 5 and 6 of Chapter 6 illustrate how this can be done.
Notice that no specific mapping was assumed. Usually the easiest way to prove
that two groups are not isomorphic is to show that they do not share some
group property. For example, the group of nonzero complex numbers under
multiplication has an element of order 4 (the square root of -1) but the group of
nonzero real numbers do not have an element of order 4. As another example,
we see that S4 is not isomorphic to D12 because D12 has an element of order
12 whereas S4 has elements of orders only 1, 2, 3 and 4. Often it is easiest to
proceed by checking if the largest order of any element in each of the groups
agree. When the orders of the elements in two groups match you can prove they
are not isomorphic by showing that they have a different number of elements of
some specific order. Exercise 35 of the Supplemental Exercises for Chapters 5-8
is such a case. When comparing the number of elements of some specific order,



elements of order 2 is often a good choice.


