1. Let (a_n) be a sequence of real numbers such that for some $\alpha \neq 0$ we have

$$\lim_{n \to \infty} \frac{a_n - \alpha}{a_n + \alpha} = 0.$$

What can you say about (a_n) .

2. Let $\alpha, \beta > 0$. Prove that

$$\lim_{n \to \infty} \sqrt[n]{\alpha^n + \beta^n} = \max\{\alpha, \beta\}.$$

- 3. Assume $a_n \to a$ in \mathbb{R} . Put $s_n = \frac{a_1 + \dots + a_n}{n}$. Prove that also $s_n \to a$. Conversely give an example such that (s_n) converges for some divergent sequence (a_n) .
- 4. Let $f:[0,\infty)\to\mathbb{R}$ such that $f(x)=\sqrt{x}$. Prove that f is uniformly continuous.