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1. Dini derivates

To define the Dini derivates (or Dini derivatives as Tao calls them) of a function
we first recall the definitions of a one-sided limit superior and limit inferior. Let
f : (a, b)→ R. Then

lim
y↓x

f(y) = inf
δ>0

sup{f(y) : 0 < y − x < δ} = lim
δ↓0

sup{f(y) : 0 < y − x < δ}.

Similarly

lim
y↓x

f(y) = sup
δ>0

inf{f(y) : 0 < y − x < δ} = lim
δ↓0

inf{f(y) : 0 < y − x < δ}.

It is clear that limy↓x f(y) ≤ limy↓x f(y). Analogously we can define limy↑x f(y)

and limy↑x f(y) and we also have limy↑x f(y) ≤ limy↑x f(y). One can verify as in
the sequential case that e.g.

(1) limy↓x f(y) ≤ A if and only if for all ε > 0 there exists a δ > 0 such that
f(y) < A+ ε for all y such that 0 < y − x < δ.

(2) limy↓x f(y) ≤ A if and only if for all ε > 0 and δ > 0 there exists an y with

0 < y − x < δ such that f(y) < A+ ε.

From these and other similar properties one sees that limy→x f(y) = A if and only if

limy↑x f(y) = limy↑x f(y) = limy↓x f(y) = limy↓x f(y) = A. Now let F : (a, b)→ R.
Then the Dini derivates of F at x are defined as

D+F (x) = lim
y↓x

F (y)− F (x)

y − x
= lim

h↓0

F (x+ h)− F (x)

h

D+F (x) = lim
y↓x

F (y)− F (x)

y − x
= lim

h↓0

F (x+ h)− F (x)

h

D−F (x) = lim
y↑x

F (y)− F (x)

y − x
= lim

h↓0

F (x)− F (x− h)

h

D−F (x) = lim
y↑x

F (y)− F (x)

y − x
= lim

h↓0

F (x)− F (x− h)

h

From the above we see that D+F (x) ≤ D+F (x) and D−F (x) ≤ D−F (x). We say

that F ′(x) exists if D+F (x) = D+F (x) = D−F (x) = D−F (x) and F is said to be
differentiable at x if F ′(x) exists and is finite.

Example 1. Define F on R as follows:

F (x) =

{
|x| if x ∈ Q
|2x| if x /∈ Q.
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On can check that D+F (0) = 2, D+F (0) = 1, D−F (0) = −1, and D−F (0) = −2,

while e.g. D+F (1) =∞, D+F (1) = 1, D−F (1) = 1, and D−F (1) = −∞.

Note that if D+F (x) > R, then for all δ > 0 there exists 0 < h < δ such that
F (x+h)−F (x)

h > R. Similarly D−F (x) < r implies that for all δ > 0 there exists

0 < h < δ such that F (x)−F (x−h)
h < r.

2. Vitali covering

Let E ⊂ R and J a collection of intervals. Then J is called a Vitali covering of
E if for all ε > 0 and x ∈ E, there exists an interval I ∈ J such that x ∈ I and
0 < |I| < ε.

Theorem 2. Let E ⊂ R with m∗(E) < ∞ and J a Vitali cover of E. Then for
every ε > 0 there exist a finite disjoint collection {I, · · · , IN} of intervals in J such
that

m∗(E \ ∪Nn=1In) < ε.

Proof. We can assume that each interval I ∈ J is closed, otherwise we can replace
it by its closure I and note that |I| = |I|. Let O ⊃ E be an open set of finite
measure. Then we can assume that I ⊂ O for all I ∈ J . Choose {In} inductively
as follows. Choose I1 ∈ J to be any interval, and suppose I1, · · · , In have already
been chosen. Let

kn = sup{|I| : I ∈ J , I ∩ Ik = ∅ for k = 1, · · · , n}.

Then I ⊂ O implies kn < ∞. Either E ⊂ ∪nk=1Ik, or kn > 0 and there exists
In+1 ∈ J with |In+1| > 1

2kn and In+1 ∩ Ik = ∅ for k = 1, · · · , n. If this process
does not stop, we get a disjoint sequence {In} in J with

∑∞
n=1 |In| ≤ m(O) <∞.

Hence there exists N such that

∞∑
n=N+1

|In| <
ε

5
.

Put R = E \ ∪Nn=1In. To show m∗(R) < ε. Let x ∈ R. Then x /∈ ∪Nk=1Ik, so there
exists I ∈ J with x ∈ I and I ∩ In = ∅ for j = 1, · · · , N . If I ∩ Ij = ∅ for j ≤ n,
then we have |I| ≤ kn < 2|In+1|. As |In| → 0, there is a smallest n such that n > N
and I ∩ In 6= ∅. In particular |I| ≤ kn−1 < 2|In|. Now x ∈ I and I ∩ In 6= ∅ implies
that the distance of x to midpoint of In is at most |I| + 1

2 |In| ≤
5
2 |In|. Hence x

is in the interval Jn with the same midpoint as In and |Jn| = 5|In|.This shows
R ⊂ ∪∞N+1Jn, from which we conclude that

m∗(R) ≤
∞∑
N+1

|Jn| = 5

∞∑
N+1

|In| < ε.

�
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3. The derivative of a monotone function

We start with the crucial lemma.

Lemma 3. Let F : [a, b] → R be an increasing function and let r < R. Then the

set E = {x ∈ (a, b) : D−F (x) < r < R < D+F (x)} has measure zero.

Proof. Assume m∗(E) = s. Let ε > 0. Then there exists an open set O ⊃ E such
that m(O) < s+ ε. Let x ∈ E. Then D−F (x) < r implies that for all δ > 0 there
exists 0 < h < δ such that

F (x)− F (x− h)

h
< r,

i.e., we can find arbitrary small h > 0 such that [x− h, x] ⊂ O and

F (x)− F (x− h)

h
< r.

The collection of all such intervals is a Vitali cover of E, so we can find disjoint
intervals I1 = [x1 − h1, x1], . . . , IN = [xN − hN , xN ] such that m∗(E \ ∪Nk I̊k) < ε.

Put A = E ∩ ∪Nk I̊k. Then m∗(A) > s− ε. Moreover, we have

N∑
k=1

F (xk)− F (xk − hk) < r

N∑
k=1

hk < rm(O) < r(s+ ε).

Let y ∈ A. Then D+F (y) > R, so there exist arbitrary small k > 0 such that
[y, y+k] ⊂ Ik for some k and for which F (y+k)−F (y) > Rk. The collection of such
intervals is now a Vitali cover of A, so there exist disjoint J1 = [y1, y1 + k1], . . . ,
JM = [yM , yM+kM ] of such intervals and m∗(A\∪M1 Jj) < ε. Then m∗(A\∪M1 Jj) <
ε implies that m∗(A ∩ ∪M1 Jj) > s− 2ε. Summing over the intervals Jj we get that

M∑
j=1

F (yj + kj)− F (yj) > R
∑

kj > R(s− 2ε).

Now each Jj is contained in some In, and summing only over those j’s for which
Jj ⊂ In we get, using the fact that F is increasing, that∑

j:Jj⊂In

F (yj + kj)− F (yj) ≤ F (xn)− F (xn − hn).

Now summing over all n we get

N∑
n=1

F (xn)− F (xn − hn) ≥
M∑
j=1

F (yj + kj)− F (yj) > R(s− 2ε).

It follows now that r(s+ ε) > R(s− 2ε). This implies rs ≥ Rs. Now r < R implies
that s = 0. �

The main theorem is now

Theorem 4. (Lebesgue) Let F : [a, b] → R be an increasing function. Then F is
differentiable a.e., F ′ is measurable, non-negative, and∫ b

a

F ′ dx ≤ F (b)− F (a).
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Proof. The set {x ∈ (a, b) : D−F (x) < D+F (x)} = ∪r,R∈Q{x ∈ (a, b) : D−F (x) <

r < R < D+F (x)}, which by the above Lemma is a countable union of sets of

measure zero. Hence D−F (x) ≥ D+F (x) a.e. Now applying this statement to the

increasing function −F (−x) instead of F (x), we obtain that D+F (x) ≥ D−F (x)
a.e. Therefore

D+F (x) ≤ D−F (x) ≤ D−F (x) ≤ D+F (x) ≤ D+F (x) for a.e. x.

Hence we conclude that

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

exists a.e. and that F is differentiable where F ′ is finite. Define F (x) = F (b) for
x > b and let

Gn(x) =
F (x+ 1/n)− F (x)

1/n
.

Then Gn(x) ≥ 0 and Gn(x)→ F ′(x) a.e., which shows that F ′ ≥ 0 and measurable.
By Fatou’s Lemma we have∫ b

a

F ′ dx ≤ lim
n→∞

∫ b

a

Gn(x) dx.

= lim
n→∞

n

∫ b

a

F (x+ 1/n)− F (x) dx

= lim
n→∞

n

(∫ b+1/n

a+1/n

F (x) dx−
∫ b

a

F (x) dx

)

= lim
n→∞

n

(∫ b+1/n

b

F (x) dx−
∫ a+1/n

a

F (x) dx

)

= F (b)− lim
n→∞

n

∫ a+1/n

a

F (x) dx

≤ F (b)− lim
n→∞

n

∫ a+1/n

a

F (a) dx = F (b)− F (a).

Hence F ′ is integrable over [a, b] and thus finite a.e., which shows that F is differ-
entiable a.e. on [a, b]. �

4. Functions of bounded variation

Let F : [a, b]→ R. Then F is of bounded variation over [a, b] if the total variation
of F

‖F‖TV [a,b] := sup{
n∑
k=1

|F (xi)− F (xi−1)| : a = x0 < x1 < · · · < xn = b} <∞.

Note that if F is a monotone function on [a, b], then F is of bounded variation and
‖F‖TV [a,b] = |F (b)− F (a)|. Similar to the total variation ‖F‖TV [a,b] we can define
the positive and negative variation of F :

‖F‖PV [a,b] := sup{
n∑
k=1

(F (xi)− F (xi−1))+ : a = x0 < x1 < · · · < xn = b},
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and

‖F‖NV [a,b] := sup{
n∑
k=1

(F (xi)− F (xi−1))− : a = x0 < x1 < · · · < xn = b}.

It is immediate from the definitions that |F‖PV [a,b] ≤ |F‖TV [a,b], |F‖NV [a,b] ≤
|F‖TV [a,b], and |F‖TV [a,b] ≤ |F‖PV [a,b] + |F‖NV [a,b]. It will follow from the next
proposition that we have in fact an equality in the last inequality.

Proposition 5. Let F : [a, b] → R be of bounded variation. Then the following
holds.

(1) The functions x 7→ ||F‖PV [a,x] and x 7→ ||F‖NV [a,x] are increasing on [a, b].
(2) For all x ∈ [a, b] we have |F‖TV [a,x] = |F‖PV [a,x] + |F‖NV [a,x].
(3) For all x ∈ [a, b] we have F (x)− F (a) = |F‖PV [a,x] − |F‖NV [a,x].

In particular F can be written as the difference of two increasing functions.

Proof. Let a = x0 < x1 < · · · < xn = x be a partition of [a, x]. Let x < y ≤ b.
Then consider the partition a = x0 < x1 < · · · < xn < xn+1 = y of [a, y]. It is clear
that

n∑
k=1

(F (xi)− F (xi−1))+ ≤
n+1∑
k=1

(F (xi)− F (xi−1))+,

so that ||F‖PV [a,x] ≤ ||F‖PV [a,y]. Similarly we have ||F‖NV [a,x] ≤ ||F‖NV [a,y] for

x < y. Now using the identity a+ = a− + a we have

n∑
k=1

(F (xi)− F (xi−1))+ =

n∑
k=1

(F (xi)− F (xi−1))− + F (x)− F (a),

which implies the inequality ‖F‖PV [a,x] ≤ |F‖NV [a,x] + F (x) − F (a). Similarly

using the inequality a− = a+ − a we have

n∑
k=1

(F (xi)− F (xi−1))− =

n∑
k=1

(F (xi)− F (xi−1))+ + F (a)− F (x),

so that ‖F‖NV [a,x] ≤ |F‖PV [a,x] + F (a)− F (x). Combining these two inequalities

we get that (3) holds. To prove (2) use the inequality |a| = 2a+ − a to get

n∑
k=1

|F (xi)− F (xi−1)| = 2

n∑
k=1

(F (xi)− F (xi−1))+ + F (a)− F (x),

which implies ‖F‖TV [a,x] ≥ 2‖F‖PV [a,b] + F (a) − F (x) = |F‖PV [a,x] + |F‖NV [a,x],
by (3). Putting x = b this completes the proof of (2), as we already observed the
reverse inequality. �

The following corollary is a consequence of the above proposition.

Corollary 6. Let F : [a, b]→ R be of bounded variation. Then F is differentiable
a.e., F ′ is integrable over [a, b] and∫ b

a

|F ′(x)| dx ≤ ‖F‖TV [a,b].
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Proof. Recall that if G is an increasing function on [a, b] then∫ b

a

G′(x) dx ≤ G(b)−G(a).

Applying this result to the increasing functions of part (1) of the above proposition
we get ∫ b

a

(
‖F‖PV [a,x]

)′
dx ≤ ‖F‖PV [a,b]

and ∫ b

a

(
‖F‖NV [a,x]

)′
dx ≤ ‖F‖NV [a,b].

Now part (3) of the proposition implies that

F ′(x) =
(
‖F‖PV [a,x]

)′ − (‖F‖NV [a,x]

)′
a.e., so by the above inequalities and (2) of the proposition we have∫ b

a

|F ′(x)| dx ≤ ‖F‖PV [a,b] + ‖F‖NV [a,b] = ‖F‖TV [a,b].

�

5. Absolute continuous functions

Let F : [a, b]→ R. Then F is called absolutely continuous on [a, b] if for all ε > 0
there exists δ > 0 such that if {(ai, bi) : i = 1, · · · , n} is a disjoint collection of open
intervals in [a, b] with

∑n
i=1(bi − ai) < δ, then

∑n
i=1 |F (bi)− F (ai)| < ε.

Note, that by taking n = 1 in the above definition, we see immediately that
absolute continuity implies uniform continuity.

Lemma 7. Let f be an integrable function on [a, b]. Then for all ε > 0 there exists
δ > 0 such that if m(E) < δ, then

∫
E
|f(t) dt < ε.

Proof. Let ε > 0. Let fn = min(|f |, n). Then by the Monotone Convergence
Theorem there exists N such that∫

|f(t)| − fN (t) dt <
ε

2
.

Then take δ = ε
2N . Then m(E) < δ implies∫

E

|f(t)| dt ≤
∫
|f(t)| − fN (t) dt+

∫
E

fN (t) dt <
ε

2
+Nm(E) < ε.

�

Corollary 8. Let f be an integrable function on [a, b] and let F (x) =
∫ x
a
f(t) dt.

Then F is absolutely continuous on [a, b].
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Proof. Let ε > 0. Then let δ > 0 as in the above lemma. Let {(ai, bi) : i = 1, · · · , n}
be a disjoint collection of open intervals in [a, b] with

∑n
i=1(bi − ai) < δ. Let

E = ∪ni=1(ai, bi). Then m(E) < δ, so
∫
E
|f(t)| dt < ε. This implies that

n∑
i=1

|F (bi)− F (ai)| =
n∑
i=1

∣∣∣∣∣
∫ bi

ai

f(t) dt

∣∣∣∣∣ ≤
n∑
i=1

∫ bi

ai

|f(t)| dt =

∫
E

|f(t) dt < ε.

�

Proposition 9. Let F : [a, b]→ R be absolutely continuous. Then F is of bounded
variation.

Proof. Let ε = 1. Then there exists δ > 0 such that if {(ai, bi) : i = 1, · · · , n}
is a disjoint collection of open intervals in [a, b] with

∑n
i=1(bi − ai) < δ, then∑n

i=1 |F (bi)− F (ai)| < 1. Let N ≥ 1 such that b−a
N < δ. Let a = x0 < x1 < · · · <

xn = b be a partition of [a, b] such that xi − xi−1 = b−a
N . Then ‖F‖TV [xi−1,xi] ≤ 1.

Hence ‖T‖TV [a,b] =
∑n
i=1 ‖F‖TV [xi−1,xi] ≤ N <∞.

�

The next lemma is the key to the Second Fundamental Theorem of Calculus for
the Lebesgue Integral.

Lemma 10. Let F : [a, b]→ R be absolutely continuous and assume F ′(x) = 0 a.e.
Then F (x) = F (a) for all x ∈ [a.b].

Proof. Let a < c ≤ b. Then there exists E ⊂ (a, c) with m(E) = c − a such
that F ′(x) = 0 for all x ∈ E. Let ε > 0. Then let δ > 0 be given as by the
definition of absolute continuity. Let x ∈ E. Then there exists hx > 0 such that
|F (x+h)−F (x)| < εh for all 0 < h < hx. Let J = {[x+h, x] : 0 < h < hx, x ∈ E}.
The J is a Vitali cover of E. Hence there disjoint intervals [x1, x1 + h1], · · · ,
[xn, xn + hn] in J such that

m(E \ ∪ni=1[xi, xi + hi]) < δ,

so also

m((a, c) \ ∪ni=1[xi, xi + hi]) < δ.

We can arrange the intervals [xi, xi + hi] so that xi + hi < xi+1. Then put a = x0
and b = xn+1. Then by absolute continuity

n∑
i=0

|F (xi+1)− F (xi + hi)| < ε.

By construction of the Vitali cover J we have
n∑
i=1

|F (xi + hi)− F (xi)| < ε

n∑
i=1

hi ≤ ε(c− a).

Combining these two estimates we get

|F (c)−F (a)| = |
n∑
i=0

(F (xi+1)−F (xi+hi))+

n∑
i=1

(F (xi+hi)−F (xi))| ≤ ε+ ε(c−a)

for all ε > 0. Hence F (c) = F (a). �
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Theorem 11. (Second Fundamental Theorem of Calculus) Let F : [a, b] → R.
Then F is absolutely continuous ⇐⇒ F is differentiable a.e. on [a, b], F ′ is
integrable, and F (x) = F (a) +

∫ x
a
F ′(t) dt.

Proof. ⇐ We have already seen earlier that in this case G(x) =
∫ x
a
F ′(t) dt is

absolutely continuous and thus F is absolutely continuous.
⇒ If F is absolutely continuous, the F is of bounded variation, so F is differentiable
and F ′(x) exists a.e. Let G(x) =

∫ x
a
F ′(t) dt. Then G is absolutely continuous and

by the First Fundamental Theorem of Calculus G′(x) = F ′(x) a.e. Let H = F −G.
Then H is absolutely continuous and H ′(x) = 0 a.e. Hence by the above Lemma
we have H(x) = H(a) for all x ∈ [a, b], i.e.,

F (x)−
∫ x

a

F ′(t) dt = F (a)− 0 = F (a).

�

Corollary 12. (Lebesgue Decomposition Theorem) Let F : [a, b]→ R be an increas-
ing function. Then there exist increasing G and H such that F = G+H, where G
is absolutely continuous and H ′(x) = 0 a.e. Moreover G and H are unique up to a
constant.

Proof. Homework. �


