DIFFERENTIATION OF MONOTONE FUNCTIONS

ANTON R. SCHEP

1. DINI DERIVATES

To define the Dini derivates (or Dini derivatives as Tao calls them) of a function

we first recall the definitions of a one-sided limit superior and limit inferior. Let
f:(a,b) = R. Then

ggf(y) = inf sup{f(y) : 0 <y -2 <0} = gigsup{f(y) 10 <y-—x<d}

Similarly
lim f(y) = supinf{f(y) : 0 <y —x < 6} =liminf{f(y) : 0 <y — x < 6}.
ylx 6>0 510

It is clear that lim,, f(y) < limy . f(y). Analogously we can define limy, f(y)
and lim, ;. f(y) and we also have lim ., f(y) < limy1, f(y). One can verify as in
the sequential case that e.g.
(1) limy, f(y) < A if and only if for all € > 0 there exists a § > 0 such that
f(y) < A+ e for all y such that 0 <y —x < 4.
(2) lim,|, f(y) < Aif and only if for all e > 0 and § > 0 there exists an y with
0 <y—x < such that f(y) < A+e.
From these and other similar properties one sees that lim,_,, f(y) = A if and only if

lim,,, f(y) = limyp, f(y) = lim,\, f(y) = limy,, f(y) = A. Now let F': (a,b) = R
Then the Dini derivates of I’ at x are defined as
_ — Fy)—-F I - F
D F(x) = m LW = F@) g Fleth) - Fla)
ylz y—x hl0 h

vtz y—x )

From the above we see that Dt F(2) < D¥F(x) and D~ F(z) < D= F(z). We say
that F'(z) exists if DY F(x) = D¥F(z) = D-F(x) = D= F(x) and F is said to be
differentiable at = if F'(x) exists and is finite.

@H

Ezample 1. Define F' on R as follows:

zlifzeQ
F@) = {|2x| if z ¢ Q.
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On can check that DT F(0) = 2, DYF(0) = 1, D~ F(0) = —1, and D=F(0) = —2,
while e.g. DTF(1) =00, DTF(1) =1, D-F(1) =1, and D"F(1) = —oo0.

Note that if D¥F(x) > R, then for all § > 0 there exists 0 < h < § such that
w > R. Similarly D~ F(z) < r implies that for all 6 > 0 there exists
0 < h < § such that w<r.

2. VITALI COVERING

Let £ C R and J a collection of intervals. Then J is called a Vitali covering of
FE if for all € > 0 and = € FE, there exists an interval I € J such that x € I and
0<|I|<e.

Theorem 2. Let £ C R with m*(E) < oo and J a Vitali cover of E. Then for
every € > 0 there exist a finite disjoint collection {I,--- ,In} of intervals in J such
that

m*(E\UY_1,) < e

Proof. We can assume that each interval I € J is closed, otherwise we can replace
it by its closure I and note that |I| = |I|. Let O D E be an open set of finite
measure. Then we can assume that I C O for all I € J. Choose {I,,} inductively
as follows. Choose I; € J to be any interval, and suppose I3, - , I, have already
been chosen. Let

kn=sup{|I|: e T, IN[=0for k=1,--- n}.

Then I C O implies k, < oco. Either E C U}_,1Ij, or k, > 0 and there exists
Iy1 € J with |1, 41] > %kn and I, 1 NI =0 for k = 1,---  n. If this process
does not stop, we get a disjoint sequence {I,} in J with > >°  |I,,| < m(O) < cc.
Hence there exists N such that

o

> Ml < ¢

n=N+1

Put R = E\ UY_,I,. To show m*(R) <e. Let € R. Then x ¢ U}_, I, so there
exists I € J withz e T and INI, =0for j=1,--- ,N. If INI; =0 for j <n,
then we have |I| < k,, < 2|I,41|. As|I,,| — 0, there is a smallest n such that n > N
and I NI, # 0. In particular |I| < k,_1 < 2|I,,|. Now z € I and I NI, # () implies
that the distance of = to midpoint of I, is at most |I| + 1|I,| < 2|I,|. Hence
is in the interval J,, with the same midpoint as I,, and |J,| = 5|I,|. This shows
R C U, 1Jn, from which we conclude that

m*(R) <> |[u| =5 || <e

N+1 N+1
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3. THE DERIVATIVE OF A MONOTONE FUNCTION
We start with the crucial lemma.
Lemma 3. Let F : [a,b] — R be an increasing function and let r < R. Then the
set E={x € (a,b): D_F(x) <r < R< DtF(z)} has measure zero.

Proof. Assume m*(E) = s. Let € > 0. Then there exists an open set O D F such
that m(O) < s+e. Let © € E. Then D~ F(x) < r implies that for all § > 0 there
exists 0 < h < § such that

i.e., we can find arbitrary small A > 0 such that [z — h, 2] C O and
F(z)—F(x—h
(1)~ Fa—h) _,

h
The collection of all such intervals is a Vitali cover of E, so we can find disjoint
intervals I1 = [x1 — h1, 1], ..., IN = [#n — hn, xn] such that m*(E\ UYI}) < e.

Put A=FEnN Ué\'lok. Then m*(A) > s — e. Moreover, we have

N N
ZF(xk) — Flzp — hg) < rth <rm(0) < r(s+e).
k=1 k=1

Let y € A. Then DFF(y) > R, so there exist arbitrary small k¥ > 0 such that
[y, y+k] C I) for some k and for which F(y+k)—F(y) > Rk. The collection of such
intervals is now a Vitali cover of A, so there exist disjoint J; = [y1,y1 + k1], ...,
Jn = [y, yar+kar) of such intervals and m*(A\UM J;) < e. Then m*(A\UM J;) <
¢ implies that m*(ANUM.J;) > s — 2e. Summing over the intervals .J; we get that

M
> F(y; +kj) — Fly;) > R> k; > R(s — 2€).
j=1

Now each J; is contained in some I,, and summing only over those j’s for which
J;j C I, we get, using the fact that I is increasing, that

Y Fly+k) = F(y)) < Flan) = Flan = ).
3 J;Cly
Now summing over all n we get
M

N
S F(wn) = Flon—ha) 2 3 Fly; + k) — Fly;) > R(s — 2¢).
n=1

j=1

It follows now that r(s+ €) > R(s — 2¢). This implies rs > Rs. Now r < R implies
that s = 0. O

The main theorem is now

Theorem 4. (Lebesgue) Let F : [a,b] — R be an increasing function. Then F is
differentiable a.e., F' is measurable, non-negative, and

/b F'dx < F(b) — F(a).
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Proof. The set {z € (a,b) : D_F(z) < DYF(2)} = U, peg{z € (a,b) : D_F(z) <
r < R < DYF(x)}, which by the above Lemma is a countable union of sets of
measure zero. Hence D~ F(z) > DT F(x) a.e. Now applying this statement to the
increasing function —F(—2) instead of F(x), we obtain that Dt F(z) > D~ F(x)
a.e. Therefore

DYF(x) < D"F(x) < D-F(z) < D"F(z) < DY F(x) for a.e. x.

Hence we conclude that

exists a.e. and that F' is differentiable where F” is finite. Define F(z) = F(b) for
x > b and let
F 1 —F
Gy Flat1m) = Fla)
1/n
Then G, (z) > 0 and G, (x) — F’'(x) a.e., which shows that F’ > 0 and measurable.
By Fatou’s Lemma we have

b b
/ F'dz < lim [ Gp(x)dz.

n—oo Ja

~ lim n/bF(x—l—l/n)—F(x)dx

n—oo

b+1/n b
:hmn</ F(x)dx—/F(x)dx)
n—00 a+1l/n a
b+1/n at+1l/n
= lim n (/ F(z)dx —/ F(x) dac)
n— 00 b a

. a+1l/n
= F(b) — lim n/ F(z)dx

n— oo

- a+1l/n
< F(b) — lim n/ F(a)dx = F(b) — F(a).

n—oo

Hence F” is integrable over [a, b] and thus finite a.e., which shows that F is differ-
entiable a.e. on [a, b]. O

4. FUNCTIONS OF BOUNDED VARIATION

Let F': [a,b] — R. Then F is of bounded variation over [a, b] if the total variation
of F

Il rviay = sup{ > _ |F(z;) = F(zi1)| ta =30 <21 < -+ < @, = b} < 0.
k=1
Note that if F' is a monotone function on [a, b], then F' is of bounded variation and
| Fll7viap = |F(b) — F(a)|. Similar to the total variation ||F ||y, we can define
the positive and negative variation of F’:

||F||PV[a,b] = Sup{Z(F(l‘i) — F(l‘i_l))+ ra=r0< 1 << Ty = b},
k=1
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and

1P| nvvias = sup{> (F(z;) = F(xi—1))” sa =2 <21 <+ < 2y, = b}.
k=1

|Fll7viae, and [Fllrvies < [Fllpvias + [Fllnvies- It will follow from the next
proposition that we have in fact an equality in the last inequality.

It is immediate from the definitions that [F||pyiay < [Flloviae, [Fllvvies <

Proposition 5. Let F : [a,b] — R be of bounded variation. Then the following
holds.
(1) The functions x +— ||F||pyia,z) and x = [|F||Nv(a,z) are increasing on [a, b].
(2) For all x € [a,b] we have |F||rvia,qz = |Fllpvia,a + [FlINvias]-
(3) For all x € [a,b] we have F(x) — F(a) = |F|lpvias] — [ FlINV]aa]-

In particular F can be written as the difference of two increasing functions.

Proof. Let a = 29 < 21 < -+ < , = x be a partition of [a,z]. Let z <y < b.
Then consider the partition a = z¢g < 1 < -+ < &y, < Tpy1 = y of [a,y]. It is clear

that
n n+1

> (F(xi) = F(wioa)™ <) (Fa) — Flai)*,
k=1 k=1

so that [|F||pvia,q < [|Fllpvia,y- Similarly we have ||F||nyviae < [|FllNviay for
x < y. Now using the identity a* = a~ + a we have

n

> (F(x:) = F(zia))" =Y (F(a:) — F(zi-1))” + F(z) — F(a),

k=1 k=1
which implies the inequality || F|pyia,q. < |Flnviae + F(z) — F(a). Similarly
using the inequality a~ = a™ — a we have
n n
D (F(@:) = F(wi1))” = Y (F(x:) = F(x-1))* + F(a) = F(w),
k=1 k=1

so that [|F||nvie,2] < [Fllpvies + F(a) — F(z). Combining these two inequalities
we get that (3) holds. To prove (2) use the inequality |a| = 2a™ — a to get

S () = Fzi)| =2 (F(x;) = F(xio1))* + F(a) - F(x),
k=1 =

k=1

which implies || F||rv(a,e] 2 2| pviasn + F(a) — F(2) = [Fllpviee + [Fllnviaa,
by (3). Putting z = b this completes the proof of (2), as we already observed the
reverse inequality. [

The following corollary is a consequence of the above proposition.

Corollary 6. Let F : [a,b] — R be of bounded variation. Then F is differentiable
a.e., F' is integrable over [a,b] and

b
/ F'(2)|dz < | Fllrvias.
a
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Proof. Recall that if G is an increasing function on [a, b] then

/b G'(z) dz < G(b) — G(a).

a

Applying this result to the increasing functions of part (1) of the above proposition
we get

b
/
[ UFleviaa)’ a5 < |Plpvie
and
b li
| UPIviam)’ do < 1Flvvion:
a
Now part (3) of the proposition implies that

F/(.'L‘) = (”FHPV[a,:c]), - (HF”NV[a,x])I

a.e., so by the above inequalities and (2) of the proposition we have

b
/ |F'(x)| dz < ||F|l pvias + 1 Fllnvies = IFll7vias-
a

5. ABSOLUTE CONTINUOUS FUNCTIONS

Let F : [a,b] — R. Then F is called absolutely continuous on [a, b] if for all € > 0
there exists 0 > 0 such that if {(a;,b;) : 4 =1,--- ,n} is a disjoint collection of open
intervals in [a,b] with Y1 (b — a;) < &, then Y1 | |F(b;) — F(a;)| < e.

Note, that by taking n» = 1 in the above definition, we see immediately that
absolute continuity implies uniform continuity.

Lemma 7. Let f be an integrable function on [a,b]. Then for all € > 0 there exists

6 > 0 such that if m(E) < 0, then [, |f(t)dt <e.

Proof. Let € > 0. Let f, = min(|f|,n). Then by the Monotone Convergence
Theorem there exists N such that

J1s01-sxyan < 5.

Then take § = 55. Then m(E) < ¢ implies

/E\f(t)|dt§/|f(t)\ffN(t)dt+/EfN(t)dt< §+Nm(E)<e.

O

Corollary 8. Let f be an integrable function on [a,b] and let F(x) = [ f(t)dt.
Then F is absolutely continuous on [a,b].
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Proof. Let € > 0. Then let § > 0 as in the above lemma. Let {(a;,b;) :i=1,--- ,n}
be a disjoint collection of open intervals in [a,b] with Y7 (b — a;) < 4. Let
E =U"(ai,b;). Then m(E) < 5, so [ |f(t)|dt < e. This implies that

Z|F al\f <Z/ () dt = /|f t)dt < e.

fdt

O

Proposition 9. Let F': [a,b] — R be absolutely continuous. Then F is of bounded
variation.

Proof. Let € = 1. Then there exists 6 > 0 such that if {(a;,b;) : 4 = 1,--- ,n}
is a disjoint collection of open intervals in [a,b] with Y. ,(b; — a;) < 6, then
S |F(b) — F(a;)| < 1. Let N > 1 such that 5% < 6. Let a=2p <21 < -+ <
z, = b be a partition of [a,b] such that z; — ;1 = 2%, Then || F|lry (s, 0 <1
Hence [ Tllrvias = Sy [Flrvie, o eq < N < oo. )

The next lemma is the key to the Second Fundamental Theorem of Calculus for
the Lebesgue Integral.

Lemma 10. Let F : [a,b] — R be absolutely continuous and assume F'(z) =0 a.e.
Then F(z) = F(a) for all z € [a.b].

Proof. Let a < ¢ < b. Then there exists E C (a,c¢) with m(F) = ¢ — a such
that F'(x) = 0 for all z € E. Let € > 0. Then let 6 > 0 be given as by the
definition of absolute continuity. Let x € E. Then there exists h; > 0 such that
|F(x+h)—F(z)] <ehforall0 < h < hy. Let 7 ={[z+h,z] : 0 < h < hy,x € E}.
The J is a Vitali cover of E. Hence there disjoint intervals [x1,21 + hq], -,
[Zn, Tn + hy] in J such that

m(E\ Ui [2i, 5 + hi]) <6,
so also
m((a,c) \ Uy [zi, x; + hy]) < 6.
We can arrange the intervals [z;, x; + h;] so that x; + h; < z;41. Then put a = zg
and b = x,41. Then by absolute continuity

Z|sz+1 F(z; + h)| <e.

By construction of the Vltah cover J we have

Z\F(Iﬂrhi)*F(Iiﬂ <€Zhi <e(c—a).

Combining these two estimates we get
|F(c) \—\Z (@is1) = F(zi+hi)+ > (F(zi+hi)—F(z:))| < e+ e(c—a)
i=1

for all € > 0. Hence F(c) = F(a). O
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Theorem 11. (Second Fundamental Theorem of Calculus) Let F : [a,b] — R.
Then F is absolutely continuous <= F is differentiable a.e. on [a,b], F' is
integrable, and F(z) = F(a) + [ F'(t)dt.

Proof. <= We have already seen earlier that in this case G(z) = [ F'(t)dt is
absolutely continuous and thus F' is absolutely continuous.

= If F'is absolutely continuous, the F'is of bounded variation, so F' is differentiable
and F’(z) exists a.e. Let G(z) = [ F'(t)dt. Then G is absolutely continuous and
by the First Fundamental Theorem of Calculus G’ (z) = F'(z) a.e. Let H = F —G.
Then H is absolutely continuous and H'(xz) = 0 a.e. Hence by the above Lemma
we have H(z) = H(a) for all z € [a, ], i.e.,

Fla) - / F/(#)dt = F(a)— 0 = F(a).
O

Corollary 12. (Lebesgue Decomposition Theorem) Let F' : [a,b] — R be an increas-
ing function. Then there exist increasing G and H such that F = G+ H, where G
is absolutely continuous and H'(x) = 0 a.e. Moreover G and H are unique up to a
constant.

Proof. Homework. O



