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CHAPTER 1

Holomorphic (or Analytic) Functions

1. Definitions and elementary properties

In complex analysis we study functions f : S — C, where S C C. When
referring to open sets in C and continuity of functions f we will always consider C
(and its subsets) as a metric space with respect to the metric d(z1,22) = |21 — 22|,
where | - | denotes the complex modulus, i.e., |z| = /22 + y? whenever z = x + iy
with z,y € R. An open ball with respect this metric will be also referred to as an
open disc and denoted by

D(a;r)={z€C:|z—a| <r},

where a is the center and r > 0 is the radius of the open ball. The closed disc with
center a and radius r is denoted by D(a;r), so

D(a;r)={2€C:|z—a|<r}.
Recall that G C C is called open if for all a € G there exists r > 0 such that

D(a;r) C G.

If 2 = 2 +iy, then the conjugate Z of z is defined by Z = x —iy. Now 2z = |z|?,
so that % = % for z # 0. Elementary properties of complex numbers are given
by:

(1) The real part Re z of z satisfies Rez = %(z +Z), while the imaginary part
Im z of z is given by Imz = 2-(z — 2).

(2) For all 21, 20 € C we have z1 + 22 = Z1 + Zz3 and Z123 = Z7 Z3.

(3) For all z1, 25 € C we have |z122| = |z1] |22|-

2. Elementary transcendental functions

Recall also that if z = x+iy # 0, then, using polar coordinates, we can write z =
rcosf + irsinf. In this case we write arg z = {0 + 2knw : k € Z}. By Arg z we will
denote the principal value of the argument of z £ 0, i.e. § = Arg z € arg z if —7w <
0 < 7. Note that if z; = |z1|(cos € + isinf;) and zo = |22|(cosf2 + isin ), then
we have 2129 = |21]|22](cos 01 cos Oz — sin 6y sin by + i(sin 6y cos b3 + cos b1 sinby)) =
|z122|(cos(01 + 02) + i(sin(fy + 02)). Hence we have arg (z122) = arg z1 + arg zo.
Define now e* = e*(cosy + isiny). Then |e*| = € and arg ¢* = y + 2kw. In
particular €™ = 1 and the function e* is 2mi-periodic, i.e., €127 = e#e2™ = ¢?
for all z € C. We want now to define logw such that w = e* where z = logw,
but we can not define it as just the inverse of e* as e* is not one-to-one. Consider
therefore the equation w = e* for a given w. We must assume that w # 0 as e* # 0
(and thus log 0 is not defined). Then |w| = |e¢*| = ¢* and y = Arg w+ 2k7 (k € Z).
Hence {log |w| + i(Arg w+ 2km) : k € Z} is the set of all solutions z of w = e*. We
write logw for any w in the set {log|w| + i(Arg w + 2k7) : k € Z}.
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4 1. HOLOMORPHIC (OR ANALYTIC) FUNCTIONS

DEFINITION 2.1. Let G C C be an open connected set and f : G — C a
continuous function such that z = ef(®) for all z € G. Then f is called a branch of
the logarithm on G.

It is clear that if f is a branch of the logarithm on G, then 0 ¢ G and f(z) =
log |z] + i(Arg z 4+ 2kr) for some k € Z, where k can depend on z. Also, if f is a
branch of the logarithm on G, then for fixed k also ¢g(z) = f(z) + 2kmi is a branch
of the logarithm on G. The converse also holds.

PROPOSITION 2.2. Let G C C be an open connected set and f : G — C a
branch of the logarithm on G. Then every other branch of the logarithm on G is of
the form f + 2kwi for some fived k € Z.

PROOF. Suppose g is another branch of the logarithm on G. Then define
h = 7—(f = g). Then h is continuous on G, h(G) C Z, and G connected implies
that h(G) = {k} for some k € Z. O

To find a branch of log z for a given open and connected set GG requires finding
(as log |z| is continuous on C\ {0}) a continuous selection of arg z in {Arg z+2kn}.
As @ is connected, the range of this continuous selection has to be an interval of
length at most 27, but such a selection does not always exist! This happens e.g.
in case G = C\ {0}, then G is open and connected, but there does not exist a
branch of log z on G, i.e., Arg z is discontinuous on the negative z-axis. in the next
examples we construct some branches of log z.

EXAMPLE 2.3. (i) Let G = C\{z € R: z < 0}. Then Arg z is continuous
on G, so f(z) =log|z| + iArg z is a branch of log z on G. This branch is
called the principal branch of log z and denoted by Log z.

(ii) Let G = C\{z € R: z > 0}. Let #(z) denote the unique value of arg z
such that 0 < §(z) < 27. Then f(z) = log|z| + i0(z) is a branch of log z
on G.

3. Differentiable functions

DEFINITION 3.1. Let G C C be an open set and f : G — C. Then f is
differentiable at z € G if
lim
h—0
exists. When this limit exists we denote it by f’(z) and call it the (complex)
derivative of f at z. If f/(z) exists at every point of G, then we call f analytic or
holomorphic on G.

flz+h) - f(2)
h

NotaTION. H(G) = {f : g — C; f holomorphic in G}.

If S C C is any set, then we say that f is holomorphic in S if f € H(G) for
some open set G O S.

REMARKS 3.2.
1. The function f is differentiable at z € G, if for |h| small enough we can write
f(z4+h) = f(2) + f'(2)h + e(h)h, where €(h) — 0 as h — 0. From this it follows
directly that if f is differentiable at z, then f is continuous at z.
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2. Note that f is differentiable at zy € G with derivative equal to f'(zp) is equivalent
to saying that for all € > 0 there exists a d > 0 such that

B —
MEENZIE) gy o
for all h € C with 0 < |h| < ¢. In particular we can take h = z with x real and
0 < |z| < d or h =iy with y real and 0 < |y| < 0. This fact will be exploited in the
proof of the next theorem.

THEOREM 3.3. (Cauchy—Riemann equations) Let G C C be an open set and
f: G — C be differentiable at z = = + iy € G. Let f(z) = u(z,y) + iv(z,y), where

. . Ju Jdu Ov
u and v are real valued functions on G. Then the first order partials 5, oy or

and %Z exist at (z,y) and satisfy the Cauchy—Riemann equations

ou_ov 0w o
or Oy oy Oz

at the point (x,vy).

PROOF. In the definition of the derivative we can restrict ourselves first to real
valued h — 0. We get then that

) + hyy) —u(z,y) v+ hy) —o(z,y) du  Ov

/ — 1 U(l’ ) 9 ) ) _ 22 il
1) m%ﬁlena{ h o h oz "oz
exists at z = x + 4y and similarly by restricting to h = ¢k with k real valued and
k — 0, we get

f(z)= lim {

" k—0,keR

u(@,y+k) —u(z,y)  v(y+k) —v(zy) Ou v
- +1 - =
ik ik
Equating the two expressions for f'(z) we get that
ou  Ov ou v

or oy "oy 0w
at the point (z,y). O

EXAMPLE 3.4.
(i) Let f(z) = zz = 22 + y2. Then 2* = 2z, g—Z =0, g—;‘ =2y and 2 = 0.
Hence the Cauchy—Riemann equations hold if and only if (z,y) = (0,0).
At z = 0 we have
f(O+h) - f(0)
h
as h — 0. Hence f is differentiable only at z = 0 and thus nowhere
holomorphic as there exists no open set G containing 0 on which f is
differentiable.
(ii) Let f(z) = ¢, where ¢ € C is a constant. Then f’(z) = 0 for all z € C, so
f € H(C). Similarly if g(z) = z, then ¢’(z) = 1 for all z € C, so g € H(C)
(iii) Let f(2) =1/z on C\ {0}. Then
h)— -1 —1
Feth)—1G) _ e

h z(z+h) 22
for all z # 0, so that f is holomorphic on C \ {0}.

=h—0
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DEeFINITION 3.5. A function f : C — C is called entire if f is holomorphic on
C.

The above example shows that f(z) = ¢ and f(z) = z are entire functions. To
get additional examples of holomorphic and entire functions we first observe that
analogously to the rules of differentiation of real valued functions one can prove the
following proposition.

PROPOSITION 3.6. Let G be a nonempty open subset of C. Then the following
holds.

(1) If f,g holomorphic on G and A € C, then so are f + g, Af, and fg.
(2) If f(G) C Gy, where Gy is open and g € H(G1), then h = go f is
holomorphic on G and h'(z) = ¢'(f(2))f'(2) for all z € G.

ProoOF. We will only prove ??7. Let z € G and put w = f(z). Then f being
holomorphic at z implies that we can write

fz+h) = f(2) = [f'(z) + ex(R)]h,

where €1(h) — 0 as h — 0. Similarly
g(w+k) = g(w) = [¢'(w) + e2(K)]E,
where €3(k) — 0 as k — 0. Putting k = f(z + h) — f(z) we get

9D Z9UCD _ ((52) 4 ealf (= + ) — SN () + aa(B)

h
=g (f()f'(2)
as h — 0. (]
COROLLARY 3.7. (1) Any polynomial p(z) = ag+a1+...+an2" is entire.
(2) Any rational function f(z) = 552, where p and q are polynomials, is

holomorphic on C\ {z € C: ¢(z) = 0}.

We will now compare complex differentiability of f = u 4+ iv with the real
differentiability of the map (u,v) : R? — R2. Recall first the definition of real
differentiability of a vector valued mapping.

DEFINITION 3.8. Let G C R™ an open set and F : G — R™. Then F is real
differentiable at ¢ € G if there exist a linear mapping DF(c) : R™ — R™ such that
. |IF(c+h)—F(c) — DF(c)h|| _ 0

1
R0 1]

Writing F = (F1,---, F,), where F; : R™ — R, then real differentiability of
F at ¢ € G is equivalent with the real differentiability of each F; and DF;(c)h =
VF;(c) - h, where VF; denotes the gradient of F; and thus DF(c) is the linear map
given by the Jacobian matrix of F. We now take m = n = 2 to compare complex
differentiability of f = u+iv at zg = z¢+iyo with real differentiability of F' = (u,v)
at ¢ = (zo,yo). We first deal with the special case of a linear map.

LEMMA 3.9. Let A: R? — R? be a real linear map, given by the matriz [a; ;].
Then A = (u,v) where f = u—+iv is a complez linear map from C to C if and only
if a1y = a2 and a1 2 = —az ;.
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PROOF. Assume first that f(z) = Cz for some C = ¢; +ice. Then u(z,y) =
(c1z — coy) and v(z,y) = (cox + c1y), which implies immediately that A = (u,v)

is a linear map with matrix [a; ;|, where a11 = a2 = ¢; and a12 = —az;1 = —ca.
Conversely, if a11 = a22 = ¢1 and a2 = —ag,1 = —cp, then it is straightforward
to check that f(z) = Cz with C = ¢1 + ico. O

REMARK 3.10. Note that the condition on the matrix A are the ones imposed
by the Cauchy-Riemann equations for f(z) = Cz = u + iv. As the real derivative
DF(c) of alinear map F : C — C is F(c) this says that a linear map from R? — R?
corresponds to a complex differntiable map from C to C if and only if it is complex
linear.

An immediate consequence of of the Lemma is the following theorem.

THEOREM 3.11. Let G C C be an open set and f : G — C, where f(z) =
u(z,y) +iv(z,y). Let zo = xp + iyo € G. then the following are equivalent.
(1) f is complex differentiable at z.
(2) F = (u,v) is real differentiable at (xo,y0) and the derivative DF (xq, yo)
1s complex linear.
(3) F = (u,v) is real differentiable at (xo,y0) and the Cauchy-Riemann equa-
tions hold at (zg,yo).

To prove a theorem about complex differentiability when the Cauchy-Riemann
equations hold, we need first a result from vector calculus.

LEMMA 3.12. Let G be an open subset of R? and u : G — R? a function which
has partial derivatives on G, which are continuous at (zo,yo) € G. Then there
exist €1(h), and ea(h) in a neighborhood of (0,0) with €1(h) — 0 and e3(h) — 0 as
h = (h1,ha) — (0,0) such that

ou ou
u(zo + h1,yo + ha) = u(wo, yo) + %(Io, Yo)h1 + @(Io,yo)hz +e1(h)hy + ea(h)ha.

PROOF. Let r > 0 such that for h = (hy,hs) with |h|| < r we have that
(xo + h1,yo + ha) € G. Let |h|| < r. Then by the Mean Value theorem there exist
k1 between xy and xg + h; and kg between yg and yo + ho such that

u(xo + hi,y0 + he) — u(xo, yo) = u(xo + hi1,y0 + ha) — u(xo, yo + ha)
+u(xo,yo + h2) — u(zo,yo)

(3?0, k‘g)hg.

ou ou
= —(k ha)h —
5‘:5( 1,Y0 + ha) 1+8y

The proof now follows if we put € (h) = %(k17y0 + h2) — g—;(xo, yo) and ea(h) =
Gu(wo, k2) — G (0, yo)- 0

THEOREM 3.13. Let G C C be an open set and f : G — C. Let f(z) =
u(z,y) + v(x,y), where u and v are real valued functions on G. Assume that the
first order partials %, g—;‘, % and %Z exist on G, are continuous at (z,y) and

satisfy the Cauchy—Riemann equations
ou  Ov ou v
=— and — = ——

or  dy oy  Ox
at the point (x,y). Then f is complex differentiable at z = x + iy.
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PrOOF. Identifying C with R? we can find by the above lemma €;(h) with
€j(h) = 0as h=hy +ihy - 0for j =1,---,4 such that

f(z4+h) = f(z) Ou hi  Ou ho hy hso
. aU hl 81} hl hl h2
v o ov n By B2
ri (G + e+ amE +am?’?)

_ Ou Qv hy ha
= %(x,y) + Z%(ﬂf,y) + 61(h)f + EQ(h)F

b h
+ Zeg(h)ﬁl + m(h)f
ou

.Ov
%%(x,y)an%(w,y)
as h — 0, since |42 < 1 and |22| < 1. O

COROLLARY 3.14. Let f(z) = e*. Then f is entire and f'(z) = e* for all z € C.

PRrROOF. If f = w + iv, then u(x,y) = e”cosy and v(z,y) = e*siny. Now
Se(x,y) = e"cosy, gi(z,y) = e"siny, Fi(z,y) = —e"siny, and F¥(z,y) =
e® cosy. Hence the Cauchy-Riemann equations hold for all (z,y) and, as the par-
tial are continuous, it follows from the above theorem that f is holomorphic at all

z € C. Moreover f'(z) = 9%(z,y) +i%%(z,y) = e*. O

ProprosiTION 3.15. Let G1,Go C C be open sets and let f : G1 — Ga, g :
Go — Gy be continuous mappings such that g(f(z)) = z for all z € Gy. If g is
holomorphic on Gy and ¢'(z) # 0 for all z € Go, then f is holomorphic on G1 and

f'(z) = m for all z € Gy.

PrROOF. Let z € Gy. Then for h # 0 but small enough we have z+ h € G and
f(z+h) # f(z), since g(f(2)) = z # (z + h) = g(f (2 + h)). Now
9(f(z+h) —g(f(2) f(z+h) = f(2)
flz+h) = f(2) h
implies that f is differentiable at z and 1 = ¢'(f(2))f'(2). O

1:

COROLLARY 3.16. Let G C C be an open connected set and f : G — C a branch
of the logarithm on G. Then f is holomorphic on G and f'(z) = 1 for all z € G.

PROOF. Take g(z) = e* in the above proposition. O

We conclude this section with some remarks about harmonic functions. Recall
that if G C R? is open and u : G — R satisfies the Laplace equation Au =
%(x,y) + ggy’; (z,y) =0 0n G. Let now f € H(G), let w = Re f and v = Im f.
Assume that u and v have continuous second order partials (an assumption which

we will show later on to be always true). Then Au = gi’; (z,y) + gf;; (x,y) =
8‘125; (x,y) + 55;;’ (z,y) = 0. Hence u is harmonic on G. Similarly v is harmonic

on GG. Two harmonic functions u, and v are called conjugate harmonic functions,
when f = u+1iv is holomorphic on G. Another consequence of the Cauchy-Riemann
equations is that the inner product of the gradients Vu and Vv satisfy Vu-Vov = 0,
i.e, the level curves u(x,y) = ¢; and v(z,y) = co intersect orthogonally.
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4. Power series

In this section we will see how one can use power series to get a large class of
examples of holomorphic functions. In fact, in a later chapter we will see that locally
every holomorphic function can be so obtained. We start by recalling some basic
facts concerning series. Recall that if (a,)n>0 is a sequence of complex numbers,
then the series Y.~ a, converges to s € C if |s — s,| — 0 as n — oo, where
Sy = ag + ...+ a,. The number s is then called the sum of the series. The series
is said to diverge, if it does not converge to any s € C. As in the real variable case
we have:

(1) If 3>, an converges, then a,, — 0 as n — oco.

(2) If 37 |a,| converges, then > °°  a, converges.
A power series is a series of the form > 7" (¢,(z — a)”. Usually we will treat z as
a variable and the c¢,,’s and a as constants in this expression.

ExAMPLE 4.1. Consider the geometric series ZZOZO z"™. The partial sums s,
1’12_":1 for all 2z # 1. Hence for |2| < 1

the series Y o” ;2™ converges and has sum equal to 1, while if [z| > 1 the series
diverges, since in that case it is not true that 2™ — 0 as n — co.

are in this case given by s,, = 1+... 42" =

The following simple result turns out to be a useful tool in studying the con-
vergence of power series.

THEOREM 4.2. (Weierstrass M-test) Let G C C and u,, : G — C such that
lun(2)| < My, on G, where > 0" M, < 0o. Then > un(2) converges uniformly on
G.

PRrROOF. For fixed z € G we have that > |un(2)| < 5" M, < co. Hence the
series Yo" un(z) converges for all z € G. Let f(z) = Y, un(2) for z € G denote
the sum of the series and let € > 0. Then there exists N such that Y~ . My <e.
Then we have for all z € G and all n > N that

FE =D u@)| = Y w)| < D ) € Y Mp<e
k=0 k=n-+1 k=n+1 k=n+1

for all n > N and all z € G and thus the series Y ° u,(z) converges uniformly to

f(z) on G. O

For a given power series > >~ c,(z — a)™ we define the radius of convergence
R, 0 < R < 00, by £ = lim {/|c,|. The circle {z € C: [z — a| = R} is called the
circle of convergence of the power series.

THEOREM 4.3. (Cauchy Root test) Let Y " ¢,(z —a)™ be a power series with
radius of convergence R. Then the following holds.

(1) >0 yen(z — a)™ converges absolutely for |z — a| < R.
(2) S0 ycn(z —a)™ diverges for |z —a| > R.
(3) If0 <r <R, then Yo" cn(z — @)™ converges uniformly on |z —al <r.

PROOF. Let |z —al <r < R. Then 1 > & implies that there exists N such
that |c,|= < 1 for all n > N. It follows that |, (z — a)"| < (‘Z_—C”) foralln > N.

r




10 1. HOLOMORPHIC (OR ANALYTIC) FUNCTIONS

Since @ < 1, it follows that Y ¢, (2 —a)™ converges absolutely for [z —a| < r

for any » < R and thus 1. holds. Let now |z —a| > r > R. Then there exist
n

> 1. Hence [c,(z —a)"| > (@) > 1 for

infinitely many n, i.e., the series Y ¢, (z — a)™ diverges for |z — a| > r for any

r > R and thus 2. holds. To prove 3. let 0 < r < s < R. Then as above there

exists N such that |e,|" < 1 for all n > N. It follows that [c,(z —a)"| < ()"

S

for all n > N and all |z —a| < r. Since £ < 1, it follows that Y " cn(z —a)”

converges uniformly on |z — a| < r by the Weierstrass M—test. g

infinitely many n such that |c, =

In dealing with power series with coefficients involving factorials, it is often
easier to use the following result.

THEOREM 4.4. (Ratio test) Let Y .-, cn(z — a)™ be a power series with radius
of convergence R. Assume ¢, # 0 for all n. Then

. C 1 — | C
lim | < = < Tjm | 2
Cp, R Cn,
In particular, if lim,,_ c”:l exists, then % = lim, o0 C’;:l )
PRrOOF. Exercise O

A power series can converge or diverge at any point of its circle of convergence
as can be seen from the following examples.
EXAMPLE 4.5.
(i) The series Y. o (’;fiﬂ has R = 2, as lim {/ 5=+ = 3. Note that the sum

of series equals 1 for all |z + 1| < 2, since {1~ = A~ =1L+ =

1—2 2—(z+1) 21241
1y +1\7 [z+1]
2 Lono (B) " for B2 <1
(ii) The series > ", 25 has R = 1 (e.g. by the Ratio test), and the series
converges absolutely for any z on the circle of convergence as Y o, # <

00.
(iii) The series Y, Z% has R =1 (e.g. by the Ratio test), but it does not
converge absolutely for any z on the circle of convergence as ZZO=1 % = 00.

In particular it diverges for z = 1. One can show however (but this is not
completely trivial) that it converges for any z # 1 with |z| =1 (for z = —1
this follows e.g. from the so-called alternating series test).

(iv) The series > 7 2—, has R = oo (e.g. by the Ratio test). We will see after
the next theorem that e* equals the sum of this series.

(v) The series Y 2 nlz™ has R = 0 (e.g. by the Ratio test). Hence it
converges only for z = 0.

PROPOSITION 4.6. Let R be the radius of convergence of Y .. cn(z — a)™
Then R is also the radius of convergence of the power series Y .- ncy(z—a)" ™~ =

Ynzo(n+1)enia(z —a)".

PROOF. From calculus we know that lim,, ., ¥/n = 1. Hence
n+1
e 1

i 3/ + 1) fe] = T (/4 Dlearal) © = 5.
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Note, if we apply the above proposition twice, we get that Y, n(n —1)z"2
converges absolutely for |z — a| < R.

The following theorem says that inside the circle of convergence the sum of the
power series is a holomorphic function.

THEOREM 4.7. Let Y " ¢n(z — a)™ have radius of convergence R # 0 and
define f(z) =3, gca(z —a)" for |z—a| < R. Then f € H(D(a; R)) and f'(z) =
Yoo nep(z—a)" ! for |z —al < R.

PROOF. It follows from the above corollary that g(z) = > oo nc,(z —a)™ !
also converges in D(a; R). Remains to show that f'(z) = g(z) on |z —a|] < R.
W.lo.g. we can assume that ¢« = 0. In the argument below we will use that
(z+h)" =z =h>,_(z+h)*12""% Let 2,2 +h € D(0;r), where 0 < r < R.

Then we have
Z Cp{ ——————— —nz

flz+h)—f(z2)
Z Z{Z+hk1nk nfl}

h
o0
n=2 k=1
|cn|

n

Z|z"k ((z+ h)* sl

<2
< ‘h| Z |Cn| (Z |zn7k| <Z_: |Z 4 h|ll|zkll>>
n=2 k=2 =1
< |h| Z |enl Z(kz 1)k

\h|Z|cn| n(n—1)r""2 =0

as h — 0, since, by the above proposition, Y°", [¢,| 4n(n—1)r""2 < co as r < R.
Hence f'(z) = g(z) on |z| < r for any r < R and the proof is complete. O

COROLLARY 4.8. Let f(z) = Y.~ s cn(z—a)™ have radius of convergence R # 0.
Then f*)(2) exists on D(a; R) for all k > 1 and thus f*) € H(D(a; R)) and

®)(2) = icnn(n—1)...(n—k+1)(z—a)"‘k

for all k > 1 and all |z — a| < R. In particular klcj, = f*)(a) and thus the
coefficients c of the power series are unique.

EXAMPLE 4.9. Let f(z) = Y_", 7. Then by the above theorem
0 nz—1 e o1
e = e =Y g = 1)
n=1 : n=1 ’
+e ( ) = 0 for all

for all z € C. Let h(z) = e *f(2). Then h'(2) = 2f(z
z € C. From the next proposition it follows that h( ) =
f(z) =e* for all z.

)
h(O) 1 for all z, i.e.,
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ProrosITION 4.10. Let G C C be an open and connected set. Assume f €
H(G) such that f'(z) =0 for all z € G. Then f is constant on G.

PROOF. Let zp € G and put A ={z € G: f(2) = f(20)}. Then the continuity
of f implies that A is closed. Let now a € A. Then there exists ¢ > 0 such that
D(a;e) C G. Let z € D(a;e) and put g(t) = f(tz+ (1 —t)a) for 0 < ¢ < 1. Then
by the chain rule ¢’(t) = f'(tz+ (1 —t)a)(z —a) = 0 for 0 < ¢ < 1, so g is constant
on 0 <t < 1. Hence f(z) = ¢g(0) = g(1) = f(20), and thus D(a;e) C A. It follows
that A is nonempty open and closed subset of G, thus A = G. (]



CHAPTER 2

Integration over contours

1. Curves and Contours

A curve is a continuous map 7 : [a,b] — C. We call v(a) the initial point and
~(b) the end point of the curve v, and [a,b] is called the parameter interval of ~.
If v(a) = ~(b), then ~ is called a closed curve. Denote by v* the range of v. The
curve v induces an orientation of 4*, namely the direction in which ~(¢) traces v* as
t increases from a to b. Often we will specify a curve by its range together with an
orientation indicating how (and possibly how often) the range is traversed. Given
a curve v we can find an oriented curve —v, with identical range, but with opposite
orientation, e.g.,

(=y)(t) =~v(a+b—t) where a < t < b

as a parametrization of the curve —v. If yyand 7, are two curves with with param-
eter intervals [aq,b1], [az, ba] respectively such that v1(b1) = ~2(az), then we can
join the two curves to get the curve v = 1 U~s by taking

() = (1) ap <t < by
Yot +az —b1) by <t <by+by—as.

A curve 7 is called smooth, if v/ (t) exists and is continuous for all @ < ¢t < b ( with
one-sided derivatives at a and b). Note if we write v(¢) = z(¢) + iy(t), then ~/(¢)
exists if and only if 2/(¢) and 3/ (¢) exist. From multi-variable calculus we know that
v/ (t) represents a tangent vector to the curve ~.

A path or contour +y is a piecewise smooth curve, i.e., v : [a,b] — C such that
there exist a = tg < t1 < ... < t, = b where ~ restricted to [t;_1,%;] is smooth for
i =1,...,n. Note that v can have corners at the points v(¢;), i.e., the right and
left hand derivatives of v(t) at ¢; can differ.

A path v is called simple if v : [a,b] — C is such that y(s) # ~(t) for all
a < s <t < b, except possibly for s = a and t = b. The path v is closed if
2 (a) = ().

ExaMmpPLE 1.1.

(i) The directed line segment C from z; to 23 is the range of a smooth curve. A
parametrization of C'is given 7 : [0,1] — C defined by () = (1—t)2z1+t22.
We will denote this curve by [z1, 22].

(ii) A circular arc oriented counterclockwise is the range of an curve. Suppose
the arc is part of the circle with center zg and radius r, then v(t) = zo+re
with 6; <t < 0, will trace a circular arc counterclockwise. If 65 — 6; = 27
the curve will be the complete circle. Note the curve is simple if and only
if 92 - 91 S 2.

13
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1.1. Conformal mappings. Let f be a holomorphic function on an open set
G C C. Let zp € G be a fixed point and let 7 : [a,b] — C be a smooth curve in
G passing through zo with non-zero tangent, i.e., v(ty) = 2o for some ¢y, € (a,b)
and v'(tg) # 0. Then v; = f o~ is a curve passing through f(zg) and v} (tg) =
f'(20)7/(to). If now f'(20) # 0, we see that arg v;(to) = arg f'(z0) + arg v'(to)
and |y (to)] = |f'(20)||7 (to)|]. Thus the tangent vector 4'(tg) to the curve v at
2o is under the mapping f rotated over an angle 6 € arg f’(z¢) and stretched
by a factor |f’(z0)|. Applying this to two curves passing through zy we see that
under the mapping f the angle between the two curves is preserved (including
the direction they are measured), while their tangent vectors are stretched by the
same amount. Mappings which preserve angles (including the direction they are
measured) between smooth curves are called conformal. Thus we have proved:

THEOREM 1.2. Let f be a holomorphic function on an open set G C C.Assume
f'(2) #0 for all z € G. Then f is conformal on G.

We will now see that in fact the converse is true too, To do so we will introduce
some additional notation. Let f = u 4 iv as usual. Then we define % = % — i%
and % = % + i%. It is now a routine calculation to show that u and v satisfy

. . . e Of
the Cauchy-Riemann equations if and only if 5z =

THEOREM 1.3. Let f = u 4+ iv be a function on an open set G C C with
continuous partials. Assume f is conformal on G. Then f is holomorphic on G

and f'(z) #0 for all z € G.

PROOF. Let v be a smooth curve with non-zero tangent passing through zy €
G. Let v1(t) = f(v(t)). Write ’y(t)iz z(t)+iy(t). Then v = 4o’ + %Zy’—ki%v’—!—
jOuy — 0L g 4 g—iy’ = %”y’ + %7’. Let v(tg) = 29. Then

Zaiyy — Oz
71(to) _ Of | Of o/ (to)

Y (to) 0z 9z9'(to)’

Now f conformal implies that the argument of the left hand side of this equation is
constant modulo 27. This implies that %(zo) = 0, since the argument of jnggg
not constant modulo 27, when we take e.g. v(t) = 2o + te'®. Hence u and v satisfy
the Cauchy-Riemann equations at zp and thus f’(zo) exists and f/(zg) = %(zo) =

71 (to)
iy 7 O

is

]

2. Contour integrals

DEFINITION 2.1. A curve v : [a,b] — C is called rectifiable if 7 is of bounded
variation, i.e., if

£(7y) = sup {Z [v(t:) —v(tic1)| ra=ty < ... < t, = b} < 00.

In this case the length of «y is defined to be £(y). Given a continuous 7 : [a, b] —
C we define fj y(t)dt = f; Re v(¢) dt + zf; Im ~(t)dt. In case v is (piecewise)
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smooth we have by the Fundamental Theorem of Calculus for real integrals that
b
Jo (@) dt = ~y(b) = ~(a).

LEMMA 2.2. Let f: [a,b] — C be a continuous function. Then

/ab £(8) dt

b
g/Nﬂmw

PrOOF. Let a = f; f(t)dt. If o = 0, then the inequality is trivial. Assume

a # 0. Then we can write a = re??, where r = | ff f(t) dt|. Now we have

b b
r=Re (¢ ?a) = / Re (e~ f (1)) dt < / ()] dt.
O

THEOREM 2.3. Let v : [a,b] — C be a piecewise smooth curve. Then 7 is
rectifiable and

b
awzfrﬂmw

PRrROOF. Without loss of generality we can assume that - is smooth. Let a =
to < ... < t, = b be a partition of [a,b]. Then by the Fundamental Theorem of
Calculus and the above lemma we have

t;
<[ Wl

t;
/ v (t) dt
ti—1 ti—1

This implies that ~ is rectifiable and £(y) < f: |7/ (t)| dt. For the reverse inequality,
let € > 0. Then 4 is uniformly continuous on [a, b], so there exists § > 0 such that
|7 (t) —+'(s)| < € whenever |t — s| < . Now there exists a partition a = tg < ... <
t, = b with At; =t; — t;_1 < § such that

b n
JACECIEED DL

For 1 < i < n we have now that

Iv(ti) — y(tic1)| =

< €.

[v(t:) = y(tim)| = 17 (t) AL < [y(t:) — y(tio1) — ' (t) At

/ivw—vat

ti—1

ti
S/ Y (1) — 7/ (t:)| dt < eAt;.
ti—1
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Combining the last two estimates we get

b n
[ rla = >t +

<Z|V ti—1)| + €At;) +
_é() e(b—a)+e
for all € > 0. Hencef |/ (8)| dt < £(v). O

Let 7 : [a,b] — C be a piecewise smooth curve and let f : v* — C be continuous.
Then we define [ f(2)dz = [, f(y(t))y'(t) dt.

EXAMPLE 2.4. Let v : [a,b] — C be a piecewise smooth curve. Then fv ldz =
v(b) — v(a). This is immediate from the definition and the Fundamental Theorem
of Calculus.

PROPOSITION 2.5. Let v : [a,b] — C be a piecewise smooth curve and let
f 7" = C be a continuous function. Then the following hold.
i) [ f(z)dz=— [ f(z)dz, where —(t) =~(a+b—1).
(ii) If v = v1 U e, then

Lf(z)dz:[ﬂ f(z)dz—&—/w f(2) d=.

(i) IF1/(2)] < M on~°, then | [ f(z)dz| < Me(3).
(iv) (“Independence of parametrization”) Let T : [a1,b1] — [a,b] be a smooth
onto function with v’ > 0. Then for y1 = v o1 we have

/M f(z)dZZLf(z)dz.

(v) If also g : v* — C continuous and o, 8 € C, then fv af(z) + Bg(z)dz =
of f(z)dz+ B [, g(2) dz

PrOOF. Let —y(t) = y(a + b —t). Then —v : [a,b] — C is piecewise smooth
and (—v)'(t) = —y'(a + b — t) except possibly finitely many points, from which (i)
follows directly. Part (ii) is an immediate consequence of the definition. Part (iii)
follows from

z)dz

/\f |dt<M/ Iy (8] dt = Me().

Part (1v) follows from the chain rule ~{(¢t) = +'(7(¢))7'(¢t) and the change of
variable rules for real integrals

by b1
fR)dz= [ fn®)n@)dt= [ fOr(r@)y (r(t)7'(t) dt

7 ai ay

7(b1)
= sV (s) ds = 2)dz.
/T IO / £(2)
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Part (v) is immediate from the definition and the corresponding property of real
integrals.
[l

COROLLARY 2.6. Let v : [a,b] — C be a piecewise smooth curve and let f,, :
v* — C be continuous functions which converge uniformly to f on v*. Then

/y ful2)dz — / f(2)dz

ProOF. Note first that f is also continuous on v* as it is the uniform limit
of a sequence of continuous functions. Let M, = sup,c.« [fn(2) — f(2)|. Then by
assumption M, — 0 as n — co. From (iii) and (v) above we have now

/7 fulz)dz — / f(2)dz

as n — 0o. O

as n — oQ.

2| < Mpl(y) =0

The following example is important for the development of the theory.

EXAMPLE 2.7. Let 7 : [0,27] — C be given by v(t) = a + re®t, i.e., v is the
circle with center a and radius r traversed counterclockwise. We will show that

(2.1) /(z—a)"dz:{o . %anZ\{fl}

2 ifn=-1

Since v is smooth we can write

2m
/(z —a)"dz = / (ret)iret dt
¥ 0

2w
_ iTnJrl / ei(n+1)t dt
0
= qrntt (z‘(nlJrl)ei(nH)t'gw) =0 ifmeZi -1

which proves the formula. Note that this integral does not depend on 7.

The following Theorem will allow us to extend this example, in case n # —1,
to arbitrary closed contours v with a ¢ v*.

THEOREM 2.8. Let v : [a,b] = C be a piecewise smooth curve and assume F is
holomorphic on (an open set containing) v* with F' continuous on v*. Then

[ F@)dz = FQe) - Fota),

In particular, if v is a closed contour, then f7 F'(z)dz = 0.

PROOF. Assume first that v is smooth. Then by the chainrule (F o v)'(t) =
F'(y(t))/(t) for all a <t < b. Hence [ F'(z dz—f F'(y(t)y'(t)dt = [ (F o
v) (t)dz = F(v(b)) — F(v(a)), which proves the theorem for the special case of a
smooth curve. In the general case, choose a = sy < s1 < -+ < s, = b such that
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Yi = Yis;_1,s;] i smooth. Then f“/ Fl(z)dz= >, f%_ Fl(z)dz=3" F(v(s;)) —
F(y(si-1)) = F(v(b)) — F(y(a)). O

COROLLARY 2.9. Let v be any closed contour. Then f,y(z —a)"dz =0 for all
n > 0 and if in addition a ¢ v*, then also fy(z —a)"dz=0 for alln < —2.

PrOOF. Take F(z) = n%_l(z —a)™™! in the above theorem. O

Let now {a, b, c} be an ordered triple of complex numbers. Then A = A(a, b, ¢)
denotes the triangle with vertices a, b, and ¢. By OA we denote curve obtained
by joining the line segments [a, b], [b, c] and [c, a], i.e., A denotes the boundary of
A(a, b, c) traversed counterclockwise. Hence

(2)dz = (z)dz + (z)dz + f(z)dz
OA [a,b] [b,c] [c,a]

for any continuous f on OA*.

THEOREM 2.10. (Cauchy’s Theorem for a Triangle) Let G C C be an open
set and assume A = A(a,b,c) C G. Letp € G and f : G — C such that f is
continuous on G and holomorphic on G\ {p}. Then

/aAf(z)dz:O.

REMARK. If f satisfies the above hypotheses, then we shall see later that f is
actually holomorphic on G.

PROOF. Assume first that p ¢ A = A(a,b,c). Let {a1,b1,c1} be the midpoints
of [b,¢], [c,al], and [a, b] respectively. Consider the four triangles Ay, Ag, Az, and
A, formed by the triples {a, ¢1,b1}, {c1,b,a1}, {a1,b1,c1} and {a1, ¢, b1} (see Figure
??). Put I = [,, f(z)dz. Then

4
I = dz.
>, e

Now | faAj f(z)dz| > %l for at least one j. By relabeling we can assume that

FIGURE 1. A=A UAUA3UA,
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f(z) dz’ > %

0,

Dividing similarly A; into four triangles by means of the midpoints of the edges
and repeating this process, we get a sequence of triangles A D A; D Ay D -+ such
that £(0A,) = 5L, where L = ((dA), and such that

I

(2.2 =4

£(2) dz’

oA,

Since A is compact and {A,} has the finite intersection property, it follows that
there exists z9 € N, A,. As p ¢ A, we have that zg # p and thus f is differentiable
at zg. Let € > 0. Then there exists » > 0 such that

£(2) = f(20) = f'(20)(z = 20)| < €z — 2
for all z with |z — 29| < r. Now £(0A,,) — 0 implies that there exists N such that

AN C D(zp;r). This implies that |z — zo| < £(OAN) = 5% L for all z € Ay. By
Corollary 7?7 we know that

(2)dz = F(2) = f(z0) = f'(20)(2 — 20) dz.

This implies that

< (27NL) (27VL) = e (27V) 2.

f(z)dz

OAN

From the inequality ?? it follows that |I| < eL? for all ¢ > 0 and thus I = 0.
This completes the proof in case p ¢ A. Assume next that p is a vertex of the

FIGURE 2. The case a = p

triangle A(a, b, ¢), say p = a. Then pick = € [a,b] and y € [a, c]. Then by the above
fA(m,b,y) f(z)dz = fA(y,b,c) f(2)dz =0 and thus

(z)dz=/ f(z)dz—0
0A OA(a,z,y)

as x,y — a, since ¢(0A(a,z,y)) — 0 and f is bounded on A(a,z,y). Hence
Joa f(2)dz = 0 also in the case that p is a vertex of A. It remains the case that
p € A\ {a,b,c}. In that case apply the above to the triangles A(a, b, p), A(b, ¢, p)
and A(c,a,p) to get the desired result. (]
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DEFINITION 2.11. A set S C C is called starlike if the exists a € S such that
the line segment [a, z] C S for all z € S. The point a is called a star center of S in
this case.

Recall that a set S C C is called convez if for z1, 29 € S we have that [21, 23] C
S, i.e., a convex set is a starlike set such that every point of S is a star center of S.

THEOREM 2.12. (Cauchy’s Theorem for starlike sets) Let G C C be an open
starlike set. Let p € G and f : G — C such that f is continuous on G and
holomorphic on G\ {p}. Then f = F' for some holomorphic F on G. In particular

(2.3) / F(2)dz =0

for every closed contour v in G.

PROOF. Let a € G be a star center of G. Then the line segment [a, 2] C G for
all z € G. Now define

F(z)= fw) dw.

[a,2]

Let z9p € G. Then there exists r > 0 such that D(zp,7) C G. Now for any
z € D(zp,r) the triangle A(a, 29, 2) C G, so by Theorem ?? we have

/ f(w)dw =0,
0A(a,z0,2)

and thus
FG) - Flao)= [ f@ydo- [ fdu= [ fw)de,
la,2] [a,z0] [20,2]
Fixing zg we get for all 2z # 2 in G, since f[ZU g ldw =z — 2, that

1
zZ— 20

F(z) = F(=)
zZ— 20

f(Zo)‘

/[ ) = o) d

1 ( sup |f(w) —f(zo)> 12—

= |z = 2

wE[z0,z2]
= sup |f(w)— f(z0)| = 0
wE[20,2]

as z — zp, by the continuity of f at zy. This proves that f(z9) = F'(20)
for all zg € G and thus F is holomorphic on G. Now equation ?? follows from
Theorem ?7. O

DEFINITION 2.13. Let v be a closed piecewise smooth curve in C and let a €

G =C\ v*. Then
Ind, (a) L / dz
2l

21 zZ—a

is called the index of v with respect to a or winding number of v around a.
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THEOREM 2.14. (Cauchy’s Integral Formula for starlike sets) Let G C C be an
open starlike set and let v be a closed contour in G. Let f be holomorphic on G
and zg € G\ ~*. Then

RIORS

21 z—zo

f(z0) - Ind,(20) =

PROOF. Let z € G\ v* and define
f&=F0) i, e G\ {z
9(2) = { o Viod

1'(20) if z =2z
Then g satisfies the hypotheses of Theorem 77, so
1
— dz = 0.
2 J, 9(z)dz =0
Hence
1
RNy C I Ny 1
2mi Jy 2z — 20 211 7z—zo

1
= d
f(z0)2m [Y Z— 2 ¥
= f(20) - Ind4(20),
and thus the proof of the theorem is complete. O

REMARK 2.15. The above theorem is used most often for the case that Ind (a) =
1. We will see e.g. that Ind,(z9) = 1, when + is a circle containing zo, traversed
counter clockwise once.

THEOREM 2.16. (Fundamental Theorem of Algebra) Let p(z) be a polynomial
of degree m > 1. Then p has exactly m zeros in C, counting each zero according to
its multiplicity.

PROOF. Assume p(z) # 0 for all z € C. Then f(z) = p(lz) is an entire function.
We can assume that p(z) = 2™ 4+ -+ + a1z + ap. Now

a1
mel om

[p()] = [al™ |1+ +
PSR 1 I 711 [ VR
- 2

for |z| > R for R large enough. Now applying Cauchy’s Integral formula to f(z)
and yg = Re' with 0 < ¢ < 27, we get

> |z[™

K 1

f(z )dzf2mf( 0) = 2mi

v % p(0)
2
/ f()dz <27rmax| | < 2m — 0,
r z |z|=R ( ) Rm
as R — oo, which is a contradiction. Hence there exists z; € C such that p(z1) = 0.
Now factor p(z) = (z — z1)p1(2) and repeat the above argument.

# 0,

while

O
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To apply the Cauchy’s Integral formula, we need to be able to compute the
index of a curve. We will derive a number of properties of the index, which will
facilitate this.

PROPOSITION 2.17. Let 7y be a closed contour and let G = C\~v*. Then Ind,(a)

is an integer for all a € G.

PROOF. Let 7 : [b,c] — C be piecewise smooth such that v(b) = v(¢). Then

L e,
2mi ) z—a 2w J, y(s)—a

g(t):/tmds.

b V(s)—a
Then g(b) =0 and ¢'(t) = %, except possibly on the finite set S where v is not

Let

differentiable. Now e~ 9()(v(t) — a) is a continuous function such that
d

& e900(0) — @) = Oy (1) — g (DO (2(1) )

= O (1) — g (D60 - @)} =0,

except on the finite set S. This implies that e=9()(v(t) — a) is constant on [b, c].
Evaluating this function at ¢ = b and t = ¢ gives then

eI (3(6) @) = 1() — 0 = e~ (3(0) — a),
which implies e=9(¢) = 1, since y(b) = v(c). Hence g(c) = 2wim for some integer

m, and thus ﬁ 5 dea = m which completes the proof of the theorem. (I

By the above proposition the index of a closed contour is an integer m. In-
tuitively this integer measures how many times the contour 7 winds around the
point a and in what direction. From the properties of contour integrals we have
immediately that the following properties hold.

(1) Ind_,(a) = —Ind,(a).
(2) If 7y is obtained by joining the closed contours ; and 79, then

Ind, (a) = Ind,, (a) + Ind,, (a).

‘We shall prove that the index of a closed contour depends continuously on the point
a and that therefore the index is constant on each connected component of C\ v*.
We recall first the relevant definitions. Let S C C. Then S; is called a (connected)
component of S, if S is a maximal connected subset of S. One can show that if Sy
is a connected subset of S, then so is the relative closure of S;. Hence connected
components of a set S are always relatively closed.

PropPOSITION 2.18. Let G be an open set in C. Then every connected com-
ponent of G is also open and thus G is a countable disjoint union of open and
relatively closed components.

PROOF. Let C denote a component of G and let zo € C. Let ¢ > 0 such
that D(zp;¢) C G. Then C U D(zp;€) is a connected subset of G and thus C' =
C U D(zo;¢€), i.e., D(zp;¢) C C. Hence C is open. In each component we can pick
a different a + bi with a,b € Q, so there are countably many components. g



2. CONTOUR INTEGRALS 23

REMARK 2.19. If G = C\ K, where K is a compact set, then G has exactly
one unbounded component. In particular, when G = C\ v* for a closed contour ~,
then G has one unbounded component.

THEOREM 2.20. Let v be a closed contour and let G = C\ ~*. Then Ind,
is constant on each component of G and Ind,(a) = 0 for all a in the unbounded
component of G.

PrROOF. Define f(w) = Ind,(w) for w € G. We first show that f : G — C is
continuous. Let w € G. Then r = dist(w,~v*) > 0, since v* is compact. Let ¢ > 0

2

and then take 0 < § < min{}, “*~.}, where L = /(7). Then for |w; —w| < 6 we
1
[f(w) = flwi)] = o

have . ( )
w — Wy
2m /7 (z —w)(z —w) dz

For z € v* we have |z —w| > r and [z — wi| > |z — w| — |[w — w1 | > §. Hence

F(w) = flwy)| < %L “e

It follows that f is continuous. If now C' C G is a component, then f(C) is a
connected subset of C. On the other hand f(C) C Z and thus f(C) consists of a
single point. To see that Ind,(a) = 0 for all a in the unbounded component of G,
let R > 0 such that {z : |z| > R} is contained in the unbounded component of G.
Then find a € C with |a| > R such that [z — a| > £ for all z € v*. Then

1n 1

I < ——L=-

| nd'y(a’)‘ — 27TL 2’
and thus Ind,(a) = 0. As Ind,(a) is constant on the unbounded component it
follows that this holds for all ¢ in the unbounded component of G. (]

EXAMPLE 2.21.

(i) Let v : [0,27] — C be defined by «(t) = 2o + Re’. Then v traces the
circle |z — z9| = R once counterclockwise. In this case Ind,(a) = 1 for
la — 20| < R and Ind,(a) = 0 for |a — 29| > R, since Ind,(29) = 0 and the
component of G \ v containing zy equals |z — zp| < R.

(i) Let v : [0,47] — C be defined by ~(t) = z9 + Re~". Then v traces
the circle |z — zg| = R twice clockwise. In this case Ind,(a) = —2 for
la — zo| < R and Ind(a) = 0 for |a — 29| > R.

The following proposition provides the index for practically every curve en-
countered in applications.

PROPOSITION 2.22. Let 7 : [a,b] — C a closed curve. Assume there exists
z0 € C\v*, to € (a,b) and € > 0 so that the rays Ry = {zo + s(y(t) — z0) : s > 0}
have the following properties.
(1) Ren~* ={y()} for allt € (tog —€,to + ¢€)
(2) The part of Ry with s > 1 lies in the unbounded component of C\ v* and
the part with 0 < s < 1 lies in a bounded component of C\ ~*.
(3) ~v traces v* N{~(t) : t € (to — €,t0 + €)} once counter clockwise.

Then Ind,(zy) = 1.
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PROOF. Let f(z) =log|z — zo| + i arg*(z — z0) be a branch of log(z — z¢) with
domain C\ R;,. Denote by . the part of the curve v in C\ R, with initial point
v(to + €) and terminal point y(tg — €). Then

/ L s = f(a(to — ) — f((to + €)) — 2ri

Z— 20

€

as € — 0. On the other hand

1 1
/ dz—>/ dz
WeZ*ZQ ,YZ*ZO

as € — 0 and thus Ind,(2) = 1.

O

THEOREM 2.23. (Power series expansion of holomorphic functions) Let G C C
and let f be holomorphic on G. Then for all a € G and all R > 0 such that
D(a; R) C G there exists (unique) ¢, such that

o0

F) =) ealz —a)"

n=0

for all z € D(a; R).

PROOF. Let 0 < r < R and define 7 : [0,27] — D(a; R) by v(t) = a + re'.
Then Ind,(z) = 1 for all z € D(a;r). Hence by the Cauchy’s Integral formula
(applied to the open set D(a; R)) we have

16 =5 [ 2

Now |2=2| = ‘z;al < 1for all z € D(a;r) and all { € v*. Hence the geometric
series

i (z—a)" 1 1 1

L= a1 (s

converges uniformly in ¢ on v* for each z € D(a;r). Hence

(z—a)"

1 oo
f(Z):mLf(C)T;)@_WdC
— (1

n=0

= Z cn(z—a)"
n=0

B A (Y
= QWi/Y(Ca)"+1 dc.

The uniqueness follows from Corollary ?? in Chapter??, where it was shown that
£ (a) 0
R

n

where

Cp =
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COROLLARY 2.24. Let G C C be an open set and assume f : G — C 1is
holomorphic. Then f' is holomorphic on G and thus f) ezists for alln > 1 on
G. Moreover, if D(a; R) C G and |f(z)| < M on D(a;R), then

\M
1F™(a)| < %(Cauchy FEstimates).

PROOF. The fact that f’ is holomorphic on G follows immediately from the
above theorem and Theorem ??. From Corollary 7?7 we get

1) = g |

T 2w

where y(t) = a +re,0 <t < 27,0 < r < R and thus

! M n!M

(n) i -

|7 (a)] < 2ﬂ_27rr7m+1 =

As this holds for all 0 < 7 < R the proof is complete. (]

THEOREM 2.25. (Morera’s Theorem) Let G C C be an open set and f : G — C
a continuous function such that
/ f(z)dz=0
OA

for all triangles A C G. Then f is holomorphic on G.

PRrROOF. Let D(a; R) C G for a € G. Then as in the proof of Theorem ?? we
can find F' holomorphic on D(a; R) such that F’ = f on D(a; R). From the above
corollary we now conclude that f is holomorphic on D(a; R). As this holds for all
D(a; R) C G we conclude that f is holomorphic on G. O

THEOREM 2.26. (Liouville’s Theorem) Let f be an entire function. Assume
that f is bounded on C. Then f is constant.

PROOF. Let f(z) = >.," ,anz" be the power series expansion around z = 0.
Since f is entire, this series has radius of convergence equal to co. Let M be
such that |f(z)] < M for all 2 € C. Then for all R > 0 we have for n > 1 that
f™(0)] < M — 0 as R — oo. Hence f(™(0) = 0 for all n > 1, and thus also

an =0 for all n > 1. Therefore f(z) = ag for all z € C. O



