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In this note we shall present a proof that in a metric space (X, d)
a subset A is compact if and only if it is sequentially compact, i.e.,
if every sequence in A has a convergent subsequence with limit in A.
The usual proofs either use the Lebesgue number of an open cover or
reduces an open cover first to a countable cover. For compact sub-
sets of the real line with respect to the Euclidean topology this result
has an easier proof that one can easily derive from the equivalence of
compactness to being closed and bounded. This theorem is called the
Heine-Borel theorem and is usually derived from the theorem that a
closed bounded interval is compact. This latter theorem has at least
two different proofs. The first one uses the ordering of the real line by
considering the supremum of the set of x ∈ [a, b] such that [a, x] has a
finite subcover and showing that this supremum equals b. The other
proof is by contradiction. One assumes that one has an open cover
without finite subcover and splits the interval into closed subintervals,
at least one of which has no finite subcover. Repeating this one gets
a sequence of nested closed interval without finite subcovers whose di-
ameters tend to zero, so by the so-called Nested Interval theorem this
sequence has an intersection consisting exactly of one point. As this
point is covered by an open set of the covering, we can also capture the
closed intervals from the nested sequence from some point on, which
gives the desired contradiction. Our approach here uses the ideas of
this second proof to prove the above mentioned equivalence of com-
pactness to sequential compactness in a metric space. First we recall
some standard results.

Lemma 1. Let (X, d) be a metric space and assume A ⊂ X is a
compact set. Then A is a closed subset of X.

Proof. We will show that Ac is open. Let x0 ∈ Ac. Then for all a ∈ A
let ra = 1

2
d(x0, a). Then B(ra, x0) ∩ B(ra, a) = ∅. Now {B(ra, a)} :

a ∈ A is an open covering of A, so there exist a1, · · · , an ∈ A such that
A ⊂ ∪nk=1B(rak , ak). Let r = min{rak : k = 1, · · · , n}. Then r > 0 and
Ur(x0) ∩ B(rak , ak) = ∅ for all k = 1, · · · , n. Hence Ur(x0) ∩ A = ∅, x0
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is an interior point of Ac. As this holds for all x0 ∈ Ac it follows that
Ac is open, and thus A is closed. �

Now A is called totally bounded if for every ε > 0 there exist a
finite covering of A consisting of open balls of radius ε with centers in
A. Clearly a totally bounded set is bounded, but the converse is not
true in general.

Proposition 2. Let (X, d) be a metric space and assume A ⊂ X is a
sequentially compact set. Then A is complete and totally bounded. In
particular A is also closed.

Proof. Let A be sequentially compact. Then every Cauchy sequence in
A has a convergent subsequence with limit in A. This implies that such
a Cauchy sequence converges to a limit in A, i.e., A is complete and thus
also closed. Next let ε > 0 and let x1 ∈ A. If B(ε, x1) ⊃ A, then we are
done. Otherwise let x2 ∈ A \B(ε, x1). If B(ε, x1) ∪B(ε, x2) ⊃ A, then
we are done. Otherwise let x3 ∈ A \ (B(ε, x1) ∪ B(ε, x2). Continuing
this way we get either a finite cover of A by balls of radius ε, or we a
get a sequence (xn) in A with d(xn, xm) ≥ ε. As such a sequence can’t
have a convergent subsequence this second possibility does not occur.
Thus A is totally bounded. �

Theorem 2.1. Let (X, d) be a metric space and assume A ⊂ X. Then
A is compact if and only if A is a sequentially compact.

Proof. Assume first that A is compact and let (an) be a sequence in
A. Let S = {an : n = 1, 2, · · · }. If the set S is finite, there exists a
constant subsequence of (an). Assume therefore that S is infinite. Note
first that S ⊂ A by the above lemma. We claim there exists a ∈ S such
that for every ε ball around a there are infinitely many elements of S,
which implies directly that there is a subsequence (ank

) which converges
to a. If the claim fails, then for each a ∈ S there exists ra > 0 such
that B(ra, a) ∩ S = {a}. Then C = {B(ra, a) : a ∈ S} ∪ (S)c is an
open cover of A without finite subcover (as S is infinite and each a ∈ S
is covered by exactly one set of C). Thus A is sequentially compact.
Assume now that A is sequentially compact and let C be an open cover
of A. Assume that C has no finite subcover of A. Let α = diam (A) be
the diameter of A. Then by the above proposition A can be covered
by finitely many closed balls of radius α

4
and with centers in A. At

least one of these balls intersected with A can’t be finitely covered by
C. Call A1 the intersection of this ball with A. Then A1 is a closed
subset of A with diam (A1) ≤ α

2
. Repeating now the argument we

get a nested sequence of closed sets An inside A with diam (An) ≤ α
2n
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such that each An can’t be finitely covered by C. Let an ∈ An. Then
(an) is a Cauchy sequence and by assumption the sequence (an) has a
convergent subsequence. Hence (an) is convergent with limit a ∈ A. As
each An is closed it follows that a ∈ ∩∞

k=1An and from diam (An)→ 0
it actually follows that {a} = ∩∞n=1An. Let U ∈ C such that a ∈ U . As
U is open there exists r > 0 such that B(r, a) ⊂ U . Take now n such
that d(a, an) < r

2
and diam (An) < r

2
. Then An ⊂ B(r, a) ⊂ U , which

contradicts that An can’t be finitely covered by C. �

The above proof was organized in such a way that with only minor
modifications it also proves the following theorem.

Theorem 2.2. Let (X, d) be a metric space and assume A ⊂ X. Then
A is compact if and only if A is a complete and totally bounded.

Proof. Assume first that A is compact. Then by the above theorem
A is sequentially compact and thus complete and totally bounded by
the proposition preceding that theorem. Alternatively it is easy to
prove directly that A is totally bounded and closed. Then one can
use the above proof of the implication that A is compact implies A
is sequentially compact to produce for given Cauchy sequence in A a
convergent subsequence with limit in A, which shows that the Cauchy
sequence converges to a limit in A. Assume now that A is complete
and totally bounded. Then for a given open cover C of A without finite
subcover, we can construct as above the same sets An and Cauchy
sequence (an), which now converges to a limit in A as A is complete.
The rest of the argument is then the same as in the above proof. �

Corollary 1. Let X be a complete metric space. Then A ⊂ X is
compact if and only if A is closed and totally bounded.

Proof. This immediate from the above theorem, when we observe that
a closed subset of a complete space is complete and that a complete
subset of a metric space is closed. �
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