Homework 12 problems.

- 1. Let $E \subset [0,1] \times [0,1]$ be a measurable set. Assume that $m(E_x) \leq \frac{1}{2}$ for almost every $x \in [0,1]$. Prove that $m(\{y \in [0,1] : m(E^y) = 1\}) \leq \frac{1}{2}$.
- 2. **a.** For $\mu(X) < \infty$, show that

$$L^{\infty}(X,\mu) \subset L^{r}(X,\mu) \subset L^{p}(X,\mu) \subset L^{1}(X,\mu),$$

where 1 . Show, for <math>X = (0, 1], by example that all the inclusions can be strict.

b. Show that in general (i.e., if $\mu(X) = \infty$)

$$L^{\infty} \cap L^1 \subset L^p \subset L^{\infty} + L^1 = \{f : f = g + h, g \in L^{\infty}, h \in L^1\}.$$

3. Let $f \in L^2([0,1])$. Prove that

$$\left(\int_{[0,1]} x f(x) \, dx\right)^2 \le \frac{1}{3} \int_{[0,1]} |f(x)|^2 \, dx.$$

4. **a.** Let $f \in L^r \cap L^\infty$ for some $r < \infty$. Prove that

$$||f||_p \le ||f||_r^{\frac{r}{p}} ||f||_{\infty}^{1-\frac{r}{p}}$$

for all r .

b. Asume $f \in L^r \cap L^\infty$ for some $r < \infty$. Prove

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

(Hint: Use **a**. to get an upper bound for $\limsup_{p\to\infty} \|f\|_p$ and then use that for $0 \le t < \|f\|_\infty$ the set $A = \{x : |f(x)| \ge t\}$ has positive measure)

- 5. Let (X, μ) be a finite measure space and let $1 . Assume <math>f_n \in L^p(X, \mu)$ such that $||f_n||_p \le 1$ and $f_n(x) \to 0$ a.e. Prove that $||f_n||_1 \to 0$.
- 6. Let $f_n \to f$ in L^p , $1 \le p < \infty$, and let $\{g_n\}$ be a sequence of measurable functions such that $|g_n| \le M$ for all n, and $g_n \to g$ a.e.

1

- **a.** Prove $||(g_n g)f||_p \to 0$.
- **b.** Prove $g_n f_n \to fg$ in L^p .