Homework 10 additional problems.

- 1. Let $a \leq b$ and define F(0) = 0, $F(x) = x^a \sin \frac{1}{x^b}$ for $0 < x \leq 1$. Prove that F is not of bounded variation on [0, 1].
- 2. Let $F : [a, b] \to \mathbb{R}$ be a continuous function and assume that one of its derivates, say $\overline{D^+}F$, is everywhere ≥ 0 on [a, b]. Prove that F is increasing on [a, b]. Hint: First show this for a continuous G with $\overline{D^+}G(x) \geq \epsilon > 0$ for all x. Then apply this to $G(x) = F(x) + \epsilon x$.