Homework 6 additional problems.

- 1. (a) Prove that if $A \subset E$ is a measurable subset of the non-measurable set E constructed in class (or book), then m(A) = 0.
 - (b) Assume $A \subset \mathbb{R}$ is with $m^*(A) > 0$. Prove that A contains a non-measurable subset. (Assume first $A \subset [0, 1]$.)
- 2. (a) Prove that if A, B are closed subsets of \mathbb{R} , then A + B is Lebesgue measurable, by showing that A + B is a countable union of compact sets.
 - (b) Show that there exist closed A and B with m(A) = m(B) = 0, but with m(A + B) > 0. (Show that A = C, $B = \frac{1}{2}C$ work, where C is the Cantor set)
- 3. (Cantor like sets of positive measure) Let $0 < \epsilon < 1$. Construct a closed set \tilde{C} as the countable intersection of the closed intervals remaining at the k-th stage of the construction after removing the 2^{k-1} middle open intervals of length $\frac{\epsilon}{2^{k-1}}$.
 - (a) Prove $m(\tilde{C}) = 1 \epsilon$.
 - (b) Prove that for all $x \in \tilde{C}$ there exists $x_n \in [0,1] \setminus \tilde{C}$ such that $x_n \to x$. Hence \tilde{C} is perfect, and contains no open interval.
 - (c) Prove \tilde{C} is uncountable.