1. (#1 of the Extra problems)
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For the integral over the boundary curve we get

fﬁ-fds=fﬁdx+f§dy=fxdx+ydy
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2. The boundary curve C is traversed counterclockwise w.r.t. the y z -axis. By Stokes’s
theorem we have

[[(Vx F)-iids = § FTds = § Edy + Fdz.
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3. (Extra problem 3) The boundary curve C of § has equation x” + y’ =1and is oriented
counterclockwise (check this in a picture!). Thus
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Now [F-Tds = Fdx + F,dy = [ xzdx + yzdy = [0dx + Ody = 0.
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5. (Extra problem 5). The boundary curve C of § has equation x° + y* =1and is oriented
counterclockwise (check this in a picture!). Thus

ff(Vx ﬁ)~ﬁdS=fFldx+ Edy =f(zx+ 2y +x)dx +(z3yx+y)dy=fxdx+ydy =0.
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