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1. Classical Banach Spaces

1.1. Normed spaces. Recall that a (real) vector space V is called a normed
space if there exists a function ‖ · ‖ : V → R such that

(1) ‖f‖ ≥ 0 for all f ∈ V and ‖f‖ = 0 if and only if f = 0.
(2) ‖af‖ = |a| ‖f‖ for all f ∈ V and all scalars a.
(3) (Triangle inequality) ‖f + g‖ ≤ ‖f ||+ ‖g‖ for all f, g ∈ V .

If V is a normed space, then d(f, g) = ‖f−g‖ defines a metric on V . Convergence
w.r.t this metric is called norm convergence. If V is a complete metric space w.r.t.
this metric, then V is called a Banach space.

Let (X,B, µ) be a measure space and 0 < p ≤ ∞. Then we shall first define
Lp(X,µ), where we will usually write Lp and omit X and µ. For 0 < p < ∞ we
define

Lp(X,µ) = {f : f : X → R ∪ {±∞} measurable ,

∫
X

|f |p dµ <∞},

and for p =∞ we define

L∞(X,µ) = {f : f : X → R ∪ {±∞} measurable, |f(x)| ≤M a.e. for some M}.
Functions in Lp with 0 < p < ∞ are called pth-integrable and functions in L∞
are called essentially bounded functions. Note that if f, g ∈ Lp for 0 < p ≤ ∞
implies that f and g are finite a.e.. so that f + g is well-defined except for set
of measure zero. Therefore we introduce the relation ∼ on Lp with 0 < p ≤ ∞
by defining f ∼ g if f(x) = g(x) a.e.. It is immediate that ∼ is an equivalence
relation on each Lp with 0 < p ≤ ∞. Now we define Lp(X,µ), or just Lp, as
the set of equivalence classes Lp/ ∼, i.e., elements of Lp are functions, where we
identify functions equal a.e.. Therefore we will continue to refer to elements of Lp

as functions and denote as before by f and g. Let now 0 < p < ∞ and f, g ∈ Lp.
Then as remarked above f + g is well-defined a.e. and is again a measurable
function and |f + g|p ≤ (2 max(|f |, |g|))p ≤ 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p)
implies that f + g ∈ Lp. This implies that if f, g ∈ Lp, then f + g ∈ Lp. In case
p = ∞ and f, g ∈ L∞, then |f(x)| ≤ M1 a.e. and |g(x)| ≤ M2 a.e implies that
|f(x) + g(x)| ≤ M1 + M2 a.e., so that f + g ∈ L∞. Hence f, g ∈ L∞ implies
that f + g ∈ L∞. It is also straightforward to show that if f ∈ Lp, 0 < p ≤ ∞,
then af ∈ Lp for all scalars a. As addition and scalar multiplication are defined
a.e. pointwise on Lp it immediate that they satisfy the axioms of a vector space
addition and scalar multiplication. Hence we have proved

Proposition 1. For 0 < p ≤ ∞ the set Lp is a vector space.
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2. The Banach space L∞

For f ∈ L∞ define

‖f‖∞ = inf{M : |f(x)| ≤M a.e.}.

Proposition 2. For f ∈ L∞ we have |f(x)| ≤ ‖f‖∞ a.e.

Proof. Let M1 ≥ M2 ≥ · · · ↓ ‖f‖∞ such that |f(x)| ≤ Mn a.e.. Then the set
En = {x : |f(x)| > Mn} has measure zero for all n. Hence µ(∪nEn) = 0. If
x /∈ ∪nEn, then |f(x)| ≤Mn for all n ≥ 1 and thus |f(x)| ≤ ‖f‖∞. It follows that
|f(x)| ≤ ‖f‖∞ a.e. �

Note that it follows from the definition of ‖f‖∞ and the above theorem that also

‖f‖ = inf{sup |g(x)| : f = g a.e.}.

For this reason ‖f‖∞ is called the essential supremum of f .

Theorem 3. The vector space L∞ is a Banach space w.r.t. to ‖f‖∞.

Proof. First we show that ‖f‖∞ is a norm on L∞. Clearly ‖f‖∞ ≥ 0 and from
the above proposition it follows that ‖f‖∞ = 0 if and only if f = 0 a.e.. From
|f(x)| ≤ M if and only |af(x)| ≤ |a|M it follows that ‖af‖∞ = |a|‖f‖∞. For the
triangle inequality we observe that |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞
a.e., so that ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞. Hence L∞ is a normed space. It remains
to show that L∞ is complete. Let {fn} be a norm Cauchy sequence in L∞. Then
we can find a measurable set E with µ(Ec) = 0 such that for all x ∈ E we have
|fn(x)−fm(x)| ≤ ‖fn−fm‖∞ for all m,n. This implies that {fn(x)} is a (uniform)
Cauchy sequence on E. Define f(x) = limn fn(x) for x ∈ E and define f(x) = 0
on Ec. Then f measurable and fn − f converges uniformly to zero on E. Hence
‖fn − f‖∞ → 0 as n → ∞. Remains to show that f ∈ L∞, but this follows
immediately from |f(x)| ≤ |fn(x)|+ |f(x)− fn(x)| ≤ ‖fn‖∞ + ‖f − fn‖∞ a.e. �

3. The Banach space Lp, 1 ≤ p <∞

For 1 ≤ p <∞ we define

‖f‖p =

(∫
|f |p dx

) 1
p

.

It is immediate that ‖f‖p ≥ 0 and ‖f‖p = 0 if and only if f = 0 a.e. Also clear
is that ‖af‖p = |a|‖f‖p for all scalars a and f ∈ Lp. For p = 1 it is obvious from∫
|f + g| dx ≤

∫
|f | dx+

∫
|g| dx that ‖f‖1 is a norm on L1. For p > 1 the triangle

inequality is less obvious and we will prove first another very useful inequality. First
we recall

Lemma 4. (Young’s inequality) Let 1 < p < ∞ and 1
p + 1

q = 1. Then for all

a, b ≥ 0 we have

ab ≤ ap

p
+
bq

q
.

Moreover, equality holds if and only if ap = bq.
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Theorem 5. (Hölders Inequality) Let 1 ≤ p ≤ ∞ and 1
p + 1

q = 1. If f ∈ Lp and

g ∈ Lq, then fg ∈ L1 and ∫
|fg| dx ≤ ‖f‖p‖g‖q.

For 1 < p < ∞ equality holds if and only if there exists (α, β) 6= (0, 0) such that
α|f |p = β|g|q.

Proof. If p = 1 and q = ∞, then |fg| ≤ ‖g‖∞|f | a.e. implies fg ∈ L1 and∫
|fg| dx ≤ ‖g‖∞

∫
|f | dx = ‖f‖1‖g‖∞. The proof is similar for p = ∞ and q = 1.

Assume therefore 1 < p <∞. Assume first that ‖f‖p = 1 and ‖g‖q = 1. Then take
a = |f(x)| and b = |g(x)| in Young’s inequality to get

(1) |f(x)g(x)| ≤ f(x)p

p
+
g(x)q

q
.

This implies that |fg| ∈ L1 and

(2)

∫
|fg| dx ≤ 1

p

∫
|f |p dx+

1

q

∫
|g|q dx = 1.

If ‖f‖p = 0 or ‖g‖q = 0, then f = 0 a.e. or g = 0 a.e. and thus fg = 0 a.e. In
this case the inequality is an equality. If ‖f‖p 6= 0 and ‖g‖q 6= 0, then (2) holds for
f
‖f‖p and g

‖g‖q so that we have ∫
|fg|

‖f‖p‖g‖q
dx ≤ 1,

or ∫
|fg| dx ≤ ‖f‖p‖g‖q.

Equality holds if and only if equality holds in (2) for f
‖f‖p and g

‖g‖q if and only

if equality holds in (1) for f
‖f‖p and g

‖g‖q which by the equality case of Young’s

inequality holds if and only if

|f(x)|p

‖f‖pp
=
|g(x)|q

‖g‖qq
a.e. �

Theorem 6. (Minkowski’s Inequality) Let 1 ≤ p < ∞ and f, g ∈ Lp. Then
f + g ∈ Lp and ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. If p = 1, then we have already proved the statement. Let 1 < p <∞. Then
q = p

p−1 , so (p− 1)q = p. We have already shown that f + g ∈ Lp. Now

|f + g|p = |f + g||f + g|p−1 ≤ |f ||f + g|p−1 + |g||f + g|p−1.

Observe that |f + g|p−1 ∈ Lq, since (p − 1)q = p, and ‖|f + g|p−1‖q = ‖f + g‖
p
q
p .

Now Hölder’s inequality implies

(3)

∫
|f + g| dx ≤ ‖f‖p‖f + g‖

p
q
p + ‖g‖p‖f + g‖

p
q
p = (‖f‖p + ‖g‖p)‖f + g‖

p
q
p
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If ‖f+g‖p = 0 then the triangle inequality is obvious, otherwise we can divide both

sides of (3) by ‖f + g‖
p
q
p to get

‖f + g‖p−
p
q

p ≤ ‖f‖p + ‖g‖p,
which is the desired inequality, since p− p

q = p(1− 1
q ) = 1. �

The above theorem shows that Lp for 1 ≤ p < ∞ is a normed space. Before
proving that Lp is a Banach space, we recall that if in a metric space a Cauchy
sequence has a convergent subsequence, then the Cauchy sequence converges.

Theorem 7. (Riesz-Fisher) The space Lp for 1 ≤ p <∞ is a Banach space.

Proof. Let {fn} be a norm Cauchy sequence in Lp. Then we can find a subsequence
{fnk
} such that ‖fnk

− fnk+1
‖p < 1

2k
. By the above remark it suffices to show that

{fnk
} converges in norm to a function f ∈ Lp. Define

gm(x) = |fn1
(x)|+

m∑
k=1

|fnk+1
(x)− fnk

(x)|.

Then gm is measurable, 0 ≤ g1 ≤ g2 ≤ · · · and

‖gm‖p ≤ ‖fn1‖p +

m∑
k=2

‖fnk+1
− fnk

‖p ≤ ‖fn1‖p + 1 = M.

Hence 0 ≤ gp1 ≤ gp2 ≤ · · · and
∫
gpm dx ≤Mp for all m. Let g(x) = limm→∞ gm(x).

Then g is measurable and by the Monotone Convergence Theorem
∫
gp dx =

limm→∞
∫
gpm dx ≤ Mp < ∞. Hence g ∈ Lp and in particular g(x) < ∞ a.e..

If g(x) < ∞, then the telescoping series fn1(x) +
∑∞
k=1(fnk+1

(x) − fnk
(x)) con-

verges absolutely, so limk→∞ fnk
(x) exists. Define therefore f(x) = limk→∞ fnk

(x)
when g(x) <∞ and f(x) = 0 elsewhere. Then fnk

(x)→ f(x) a.e., so f is measur-
able. Moreover |fnk

(x)| ≤ gk−1(x) ≤ g(x) implies that |f | ≤ g. This shows that∫
|f |p dx ≤

∫
gp dx <∞, so f ∈ Lp. It remains to show that fnk

converges in norm
to f . Observe first that |fnk

−f |p ≤ (|fnk
|+ |f |)p ≤ 2p|g|p and |fnk

(x)−f(x)|p → 0
a.e. Hence by the Dominated Convergence Theorem

∫
|fnk

− f |p dx → 0. i.e.,
‖fnk

− f‖p → 0. �

Corollary 8. If {fn} converges to f in Lp, 1 ≤ p < ∞, then there exists a
subsequence {fnk

} such that fnk
(x)→ f(x) a.e.

Proof. Every convergent sequence is a Cauchy sequence,and by the above proof
every Cauchy sequence contains an a.e. convergent subsequence with limit equal
to the norm limit of the Cauchy sequence.

�

Recall that a subset A of metric space is dense in X, if A = X. If X has a
countable dense subset, then X is called separable.

Theorem 9. The following sets of functions are dense in Lp(Rd) for 1 ≤ p < ∞
and µ equall the Lebesgue measure.

(i) The simple functions.
(ii) The step functions.
(iii) The continuous functions with compact support.
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Proof. It suffices to show that every non-negative f ∈ Lp is a norm limit of a
sequence of functions from each of the sets.

For (i) let {φn} be a sequence of simple functions such that 0 ≤ φ1 ≤ φ2 ≤ · · · ↑ f .
Then |f − φn|p ≤ 2p|f |p and |f(x)− φn(x)|p → 0. By the Dominated Convergence
Theorem we have

∫
|f − φn|p dx→ 0, i.e., ‖f − φn‖p → 0.

To prove (ii) it suffices by (i) to approximate a non-negative simple function and
thus it suffices to approximate χE for a measurable set E with m(E) <∞. Let ε >
0. Then there exist almost disjoint rectangles {Ri}ni=1 such that m(E4∪iRi) < εp.
Then we have that ‖χE −

∑n
i=1 χRi

‖p < ε.
To prove (iii) it suffices by (ii) to approximate the characteristic function of a

rectangle by continuous functions with compact support. In the one dimensional
case we have f = χ[a,b]. Then we can define g as the piecewise linear continuous

function such that g(x) = 0 for x ≤ a − εp

2 , x ≥ b + εp

2 , and g(x) = f(x) on [a, b].
Then ‖f − g‖p < ε. In the d-dimensional case we can take for g the product of d
such piecewise linear continuous functions. �

Corollary 10. The Banach space Lp(Rd) is separable for 1 ≤ p <∞.

Proof. It is straightforward to check that the step functions with rational values
and supported on rectangles with rational vertices is dense in the collection of all
step functions, and therefore by (ii) above dense in Lp.

�


