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Abstract

In the present article, we establish new evidence in support of the Strong Factorial Conjecture
of Edo and van den Essen [5] by proving it in several special cases. In particular, we establish
in Theorem 3.3 that powers of linear forms satisfy the conjecture and in Theorem 3.10 we
also establish that sums of prime powers of variables also satisfy the conjecture. In addition,
Theorem 3.12 is a novel result which shows how to build new examples of polynomials
satisfying the conjecture from known examples. Finally, we we use the theory of resultants
and Newton polygons to study the case where F is the sum of two monomials and prove the
conjecture in some special cases and provide many partial results for others.
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1. Introduction

A problem of growing interest related to the famous Jacobian Conjecture (see [12] for
a detailed account of this problem) is the Factorial Conjecture introduced in [13]. If true,
the result would provide substantial evidence in support of Zhao’s Image Conjecture [14,
Conjecture 1.3] which is known to imply the Jacobian Conjecture [14, Theorem 3.7].

Recently, in [5], Edo and van den Essen discovered a connection between the Factorial
Conjecture [13] and the Rigidity Conjecture of Furter [6] which is known to imply the Length
2 Polydegree Conjecture [6, Theorem 3]. As a result, Edo and Essen formulated the Strong
Factorial Conjecture [5].

It is precisely because of its links to some of the most outstanding problems in the field
of Affine Algebraic Geometry (those mentioned above) that the Strong Factorial Conjecture
merits an investigation.

In Section 3 we prove that the Strong Factorial Conjecture holds in several special cases.
In particular, we establish the conjecture for powers of linear forms and sums of prime powers
of variables. In addition, we provide a novel result which shows how to build new examples
of polynomials satisfying the conjecture from old. Finally, using the theory of resultants
and Newton Polygons we study the conjecture for polynomials that are the sum of two
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monomials by first showing how the problem can be tackled by studying the solution sets of
certain systems of diophantine equations.

1.1. Notation

The following notation and conventions will be in effect throughout the rest of the article:

1. Given a positive integer m we denote by C[m] = C [Z1, . . . , Zm] the C-algebra of com-
plex polynomials in m variables. Unless otherwise specified, Z denotes the vector
(Z1, . . . , Zm).

2. Given α = (α1, . . . , αm) ∈ Nm we set |α| =
∑m

i=1 αi. We also denote by Zα and α! the

products
m∏
i=1

Zαi
i and

∏m
i=1 αi!, respectively.

3. Given α ∈ Nm we denote by
(|α|
α

)
the multinomial coefficient. That is,

(|α|
α

)
=
|α|!
α!

.

4. For any m-tuple H = (H1, . . . , Hm) of polynomials Hi ∈ C[m] and any α ∈ Nm we
write Hα to denote the product

∏m
i=1 H

αi
i .

5. If G = (G1, . . . , Gm) is another m-tuple of elements of C[m] then we write H ∗G to de-
note them-tuple obtained by componentwise multiplication, i.e., H∗G = (H1G1, . . . , HmGm).

6. Given F ∈ C[m] we denote by N (F ) the number of monomials that appear in F with
a nonzero coefficient.

7. Given a fieldK and a subset S ⊂∈ K [m] we set Z(S) = {λ ∈ Km : F (λ) = 0 for all F ∈ S}.

1.2. The Strong Factorial Conjecture

Let us recall the definition of the factorial map (see [13, Definition 1.2]):

Definition 1.1. We denote by L the C-linear functional on C[m] defined by L (Zα) = α!.

Remark 1.2. If we let Dm denote the non-negative m-tant Z1 ≥ 0, . . . , Zm ≥ 0 in Rm then
for F ∈ C[m] L(F ) can be realized as

L(F ) =

∫
Dm

Fe−|Z| dZ

where dZ = dZ1 · · · dZm and |Z| = Z1 + · · ·+ Zm.

Remark 1.3. Let 〈·, ·〉 denote the Hermitian inner product defined on C[m] by

〈F,G〉 =

∫
Dm

F (Z)G(Z)e−|Z|dZ

We note that this restricts to a positive definite form on R[m]. In particular, we have
L (F 2n) = 〈F n, F n〉 for all n ≥ 1 and for all F ∈ R[m]. Moreover, L (F 2n) > 0 for all
n ≥ 1 if F ∈ R[m] \ {0}.
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Remark 1.4. The map L is not compatible with multiplication. However, if F,G ∈ C[m]

are two polynomials such that there exists an I ⊂ {1, . . . ,m} such that F ∈ C [Zi : i ∈ I]
and G ∈ C [Zi : i /∈ I] then L(FG) = L(F )L(G).

We also recall the Factorial Conjecture [13, Conjecture 4.2].

Conjeture 1.5 (Factorial Conjecture). Let m be a positive integer and F ∈ C[m]. If L (F n) =
0 for all n ≥ 1 then F = 0.

The conjecture remains open in all dimensions greater than one. To give a stronger
version of this conjecture, the authors of [5] introduced the following subsets of C[m]:

Definition 1.6. For all positive integers n we set

Fmn =
{
F ∈ C[m] \ {0} | ∃n ≤ k ≤ n+N (F )− 1 with L

(
F k
)
6= 0
}
∪ {0} .

We define the strong factorial set as:

Fm =
⋂
n≥1

Fmn .

We now recall the Strong Factorial Conjecture:

Conjeture 1.7 (Strong Factorial Conjecture). Fm = C[m] for all positive integers m.

Remark 1.8. A non-zero F ∈ C[m] belongs to the strong factorial set if and only if for each
positive integer n there exists 0 ≤ i ≤ N (F )− 1 such that L (F n+i) 6= 0.

The conjecture remains open in all dimensions.

1.3. The Strong Factorial Conjecture and Diophantine Eqautions

In this section we fix an integer d ≥ 2 and monomials M1, . . . ,Md ∈ C[m]. In order
to study Conjecture 1.7 we ask whether there exists a non-zero polynomial of the form

F =
d∑
i=0

λiZi and a positive integer n such that one of L (F n+i), 0 ≤ i ≤ N (F ) − 1, is

non-zero. If we we think of λ1, . . . , λd as variables then for every positive integer n the image
L (F n) is a homogeneous integer polynomial in the variables λ1, . . . , λd of degree n.

Definition 1.9. Given a positive integers n ≥ 1, monomials M1, . . . ,Md ∈ C[m] and a

non-zero multi-variate complex polynomial of the form F = F =
d∑
i=0

λiZi we set

Sn,F =
{
L
(
F n+i

)
| 0 ≤ i ≤ n+N (F )− 1

}
⊂ Z [λi | λi 6= 0] .

It follows from the preceeding remarks that F ∈ Fmn if and only if Z (Sn,F ) = {~0}. By
the Nullstellensatz, Z (Sn,F ) = {~0} if and only if Sn,F generates a homogoeneous ideal of
Q [λi | λi 6= 0] whose radical is equal to the maximum homogeneous ideal.

The previous paragraph shows that Conjecture 1.7 can be viewed as an assertion about
the incompatibility of certain systems of diophantine equations arising from the factorial
map. It is this viewpoint that made it possible to obtain the main results of this article.
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2. Preliminaries

In this section we collect some basic facts and tools that will be used in the proofs of
our main results. Both the resultant and Newton polygon have been valuable tools for the
studying Conjecture 1.7 in the case F is a sum of two monomials.

2.1. Univarite Resultant

Throughout this section R will denote a UFD and f, g ∈ k[x] will denote polynomials of
degree t > 0 and s > 0, respectively. Write f and g as

f = asx
r + · · ·+ a0

g = btx
n + · · ·+ b0

(2.1)

For any l > 0 let Sl denote the R-module of polynomials of degree at most l. The
Sylvester matrix of f and g, denoted by Syl(f, g, x), is the matrix of the linear trans-
formation Ss−1

⊕
St−1 → Ss+t−1 defined by (A,B) → Af + Bg with respect to the or-

dered bases {(xn−1, 0) , . . . , (1, 0), (0, xm−1) , . . . , (0, 1)} and {xm+n−1, . . . , 1}. For example, if
f = 1 + 2x+ 3x2 and g = x+ 3x3 then

Syl(f, g, x) =


3 0 0 3 0
2 3 0 0 3
1 2 3 1 0
0 1 2 0 1
0 0 1 0 0

 .
Definition 2.1. Given f and g as in (2.1) the resultant of f and g with respect to x, denoted
by Res(f, g, x), is the determinant of Syl(f, g, x).

The following facts about the resultant are well known; see, for example, [3, 7].

Proposition 2.2. Let f, g be as in (2.1). Then:

(i) Res(f, g, x) = 0 if and only if f and g have no irreducible factors in common.

(ii) Denote by k the algebraic closure of the quotient field of R. If α1, . . . , αs ∈ k and
β1, . . . , βt ∈ k are the roots of f and g, respectively, then

Res(f, g, x) = asrb
r
s

∏
i,j

(αi − βj) .

(iii) Res(f, g, x) = (−1)st Res(g, f, x).

(iv) Suppose s ≥ t. Write f = qg + r for some polynomials q and r with deg(r) = u < t.
Then Res(f, g, x) = bs−ut Res(r, g, x).

(v) Res
(
xl, g, x

)
= g(0)l for all l ≥ 1.

(vi) If h ∈ R[x] then Res(fh, g, x) = Res(f, g, x) · Res(h, g).

(vii) If λ ∈ R∗ then Res(f(λx), g(λx), x) = λst Res(f, g, x).
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2.2. The Newton Polygon

Let f(x) =
∑n

i=0 aix
i ∈ Z[x] with a0an 6= 0. Let p be a prime. For an integer j 6= 0, we

denote by νp(j) the exponent in the largest power of p dividing j. We define νp(0) = +∞.
Let S denote the set of points (i, νp (ai)), for 0 ≤ i ≤ n, in the extended plane. The Newton
polygon of f with respect to the prime p is the polygonal path along the lower edges of the
convex hull of S from (0, νp (a0), and the right-most edge has (n, νp (a0). The endpoints of
every edge belong to S, and each edge has a distinct slope that increases as we move along
the polygonal path from left to right.

The following theorem, due to G. Dumas [4], connects the Newton polygon of f(x) to
the Newton polyogns of it’s factors.

Theorem 2.3. Let g(x), h(x) ∈ Z[x] with g(0)h(0) 6= 0, and let p be a prime. Let k =
νp(g(0)h(0). Then the edges of the Newton polygon for f(x) = g(x)h(x) with respect to p
can be formed by constructing a polygonal path beggining at (0, k) and using translates of the
edges in the Newton polygons for g(x) and h(x) with respect to the prime p, using exactly one
translate for each edge of the Newton polygons for g(x) and h(x). Necessarily, the translated
edges are translated in such a way as to form a polygonal path with the slopes of the edges
increasing as we move left to right.

The above theorem yields the following useful corrollaries that we will use later on (the
proofs of which can be found in [9]).

Corollary 2.4. Let f(x) =
∑n

i=0 aix
i ∈ Z[x] with a0an 6= 0, and let p be a prime. If the lat-

tice points along the edges of the Newton polygon of f(x) with respect to p are (a1, b1), . . . , (ar, br)
and di = ai− ai−1 for 1 ≤ i ≤ r, then the set {1, . . . , r} can be written as a disjoint union of
sets S1, . . . , St where t is the number of irreducible factors of f(x) (counted with multiplic-
ities) and the t numbers

∑
u∈Si

du, for 1 ≤ i ≤ t, are the degrees of the irreducible factors of

f(x).2

Corollary 2.5. Let f(x) =
∑n

i=0 aix
i ∈ Z[x] with a0an 6= 0, and let p be a prime. If d is a

positive integer that divides the denominator of each slope (in lowest terms) of the Newton
polygon of f with respect to p then d divides the degree of each irreducible factor of f .

Corollary 2.6. Let f(x) =
∑n

i=0 aix
i, g(x) =

∑l
i=0 bix

i with a0an, b0bl 6= 0, and let p be a
prime. If the slopes of the Newton polygon of f(x) with respect to p are distinct from the
slopes of the Newton polygon of g with respect to p then f(x) and g(x) are relatively prime.

Remark 2.7. The above theorem and its consequences hold in much more generality. For
example, the function np can be extended to Q and therefore Z[x] can be replaced with Q[x]
in the above results. Moreover, Z can also be replaced by any UFD.

2It is important to consider all lattice points along the edges and not just points of the form (i, νp (ai)).
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3. Main Results

In this section we present new evidence in support of the Strong Factorial Conjecture
by proving it in several special cases. First, we show that powers of linear forms satisfy the
conjecture. As a consequence, we extend this result to all linear polynomials. Secondly, we
show that sums of prime powers of the variables (each exponent involves the same prime)
also satisfy the conjecture. Thirdly, we prove a novel result which shows one instance of
how to uild new examples of poynomials satisfying the conjecture using known examples.
Finally, we study the conjecture for polynomials that are the sum of two monomials. Using
the theory of resultants and Newton polygons we obtain several partial results and indicate
how one might solve these cases completely.

3.1. Powers of Linear Forms

In this section we consider the following general polynomial:

G(Z) =
m∑
i=0

λiZi (3.1)

where λ = (λ1, . . . , λm) ∈ Cn. It was shown in [13] that Gr satisfies the Factorial Conjecture
for all positive integers r and m. In the present article, we extend this result by showing
that Gr satisfies the Strong Factorial Conjecture for all positive integers r and m.

Let x = (x1, . . . , xm) be m commuting variables. The following two families of polyno-
mials will be of use to us.

Definition 3.1. Let K be a field. The complete homogeneous symmetric polynomial
hn,m(x) of degree n ≥ 0 in m variables is defined by

hn,m(x) =
∑

α∈Nm, |α|=n

xα

When n = 0 it should be understood that h0,m(x) = 1.

Definition 3.2. Let m be a positive integer and let K be a field. For 1 ≤ k ≤ m the kth
elementary symmetric polynomial in m variables over K is given by

ek,m(x) =
∑

1≤i1<···<ik≤m

m∏
j=1

x
ij
j

When k = 0 we set e0,m(x) = 1.

The polynomials hn,m(x) and ek,m(x) are related to each other in the following way:

Let U be an indeterminate and set P (U) =
m∏
i=1

(1− xiU) ∈ (K[x])[U ]. Then P (U) has a

mulitplicative inverse belonging to K[x][[U ]] (since its constant coefficient is equal to 1).
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Furthermore, we have

P (U) =
m∑
k=0

(−1)kek,m(x)Uk (3.2)

P (U)−1 =
∞∑
n=0

hn,m(x)Un (3.3)

From the equality P (U)P (U)−1 = 1 one obtains the following relation which holds for all
n ≥ 1 (with the caveat hn,m = 0 for n < 0).

m∑
k=0

(−1)kek,mhn−k,m = 0 (3.4)

Theorem 3.3. Let G be given as in (3.1), and set F = Gr where r ≥ 1. If there exists
n ≥ 1 such that L (F n+i) = 0 for each i ∈ {0, 1, . . . ,m− 1} then F = 0.

Proof. For any n > 0 we have Gn =
∑
|α|=n

(
n
α

)
Zαλα. Thus

L (Gn) =
∑
|α|=n

(
n

α

)
α!λα

= n!
∑
|α|=n

λα

= n!hn,m(λ) (3.5)

Returning to F = Gr we see that if L
(
F l
)

= L
(
Glr
)

= 0 for some positive integer l then
hnr,m(λ) = 0. Therefore, to prove our claim, it suffices to show that the polynomials hnr,m(x),
h(n+1)r,m(x) . . . , h(n+m−1)r,m(x) have no nontrivial common zeroes (over C) for all n ≥ 1. This
is the content of Proposition 3.4.

Proposition 3.4. Let m ≥ 2 be a positive integer and let K be any field. For every n, r ≥ 1
the set of polynomials
{hir,m : n ≤ i ≤ n+m− 1} have no nontrivial common zeroes.

Proof. Fix integers n ≥ 1. Set A = K[x] and let P (U) be the polynomial defined in (3.2).
Additionally, given λ ∈ Km and H(U) ∈ A[[U ]] let Hλ(U) = evλ(H(U)), where evλ : A→ K
is the evaluation at λ extended to A[[U ]] in the obvious way.

Suppose r = 1, and fix n ≥ 1. Equation (3.4) implies the following: If λ is a common root
of hi,m for n ≤ i ≤ n + m− 1 then hi,m(λ) = 0 for all i ≥ n. Thus Pλ(U) ∈ (K[U ])∗ = K∗.
Therefore λi = 0 for 1 ≤ i ≤ m which is what we wanted to show.

Now suppose r > 1. First, we will show that the set {hkr,m : k ≥ 1} satisfies a recursive
formula similar to the one found in Equation (3.4). For each 0 ≤ i ≤ r − 1 let Bi =∑
k≥0

hkr+i,m(x)T nr ∈ A [[U r]]. It follows from Equation (3.3) that

P (U)−1 = B0 +B1U + · · ·+Br−1U
r−1.
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Next, we define Q(U) =
m∏
i=1

(1− xriU r) ∈ A [U r]. A straightforward calculation then shows

that

Q(U)/P (U) =
m∏
i=1

(
r−1∑
j=0

xjiU
j

)
∈ A[U ]

Furthermore deg(Q(U)/P (U) = mr −m.
Write Q(U)/P (U) = Q0 +Q1U + · · ·+Qr−1U

r−1 for some Q0, Q1, . . . , Qr−1 ∈ A[U r]. We
now have the following equality:

r−1∑
j=0

QBjU
j = Q(U)/P (U) =

r−1∑
j=0

QjU
j ∈ A[U ] (3.6)

Since QBj, Qj all lie in A[[U r]] for 0 ≤ j ≤ r − 1 there is neither cancellation amongst the
summands of the left hand side of (3.6) nor is there cancellation amongst the summands
of the right hand side, and therefore QBj = Qj ∈ A [U r] for each j. Expanding Q(U) we
obtain Q(U) =

∑m
j=0(−1)jej(x

r)U jr. Write Q0 = q0 + q1U
r + · · ·+ qlU

lr for some qj ∈ K[x],
and some l ∈ N. Note that lr ≤ deg(Q(U)/P (U)) = mr −m implies that l < m. Equating
Q0 to QB0 yields the following recursive relation which holds for all k ≥ 1:

hkr − e1 (xr)hkr−k + · · ·+ (−1)mem (xr)hkr−mr =

{
qk k ≤ l
0 k > l

(3.7)

Now suppose λ is a common root of {hir,m : n ≤ i ≤ n+m− 1}. Equation (3.7) implies
that hkr(λ) = 0 for all k ≥ n + m > l, and as a result (B0)λ ∈ K[U ]. Note that (B0)λ 6= 0
since it has constant coefficient equal to one. Finally, we consider the equality

Qλ = Qλ

(
P−1
λ Pλ

)
=
(
Qλ (B0)λ + · · ·+Qλ (Br−1)λ U

r−1
)
Pλ

Recall that there is no cancellation amongst the summands of

Qλ (B0)λ + · · ·+Qλ (Br−1)λ U
r−1

and hence the sum has degree at least the degree of Qλ (B0)λ. Since (B0)λ is a nonzero
polynomial it follows that the above sum has degree at least the degree of Qλ. This shows
that the degree of Pλ is equal to zero, i.e., Pλ = 1. So once again ek(λ) = 0 for 1 ≤ k ≤ m,
and hence λ = (0, . . . , 0).

Remark 3.5. The problem of describing the subsets A ⊂ N+ of size m such that the set of
polynomials ha,m(x) with a ∈ A has no common nontrivial zeroes was considered by Conca,
Krattenthaler, and Watanabe in [2]. Proposition 3.4 is a new example of such a subset A.

The following is an immediate consequence of the preceeding proposition.

Corollary 3.6. Let K be any field, P (U) ∈ K[U ] \ K a polynomial with constant term 1,
deg(P ) = m ≥ 1, and let P−1(U) = 1 + a1U + a2U

2 + · · · be its multiplicative inverse in the
power series ring K[[U ]]. For each n, r ≥ 1 there exists 0 ≤ i ≤ m− 1 such that a(n+i)r 6= 0.
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Proof. We write K for the algebraic closure of K. Since the constant term of P is equal to
1 there exists λ ∈ Km \ {(0, . . . , 0)} such that P (U) =

∏m
j=1 (1− λjU). It now follows that

P−1(U) =
∑∞

i=0 hi,m(λ)U i, and therefore ai = hi,m(λ). Now apply the previous proposition
to conclude that for all n ≥ 1 there is some integer i ∈ [n, n+m− 1] such that ai 6= 0.

We conclude this section with the following result.

Theorem 3.7. Let G be as in (3.1) and set F = λ0 +G where λ0 ∈ C. If there exists n ≥ 1
such that L (F n+i) = 0 for each i ∈ {0, 1, . . . ,m− 1} then F = 0.

Proof. If λ0 = 0 then we are done by Theorem 3.3. So we assume λ0 6= 0. Set fn = L (F n) /n!,
n ≥ 1, and let λ = (λ1, . . . , λm). Without loss of generality we may assume each λi 6= 0.
Using Equation (3.5) we calculate fn:

fn =
n∑
k=0

1

k!(n− k)!
L
(
Gn−k)λk0

=
n∑
k=0

(n− k)!

k!(n− k)!
hn−k,m(λ)λk0

=
n∑
k=0

1

k!
hn−k,m(λ)λk0

Note that N (F ) = m + 1, and so we must show that one of fn, . . . , fn+m is not zero for all
n ≥ 1. Fix n ≥ 1 and let g =

∑m
k=0(−1)kek,m(λ)fn+m−k and write g =

∑n+m
k=0 gkλ

k
0. Then

gk =
1

k!

m∑
j=0

(−1)jej,m(λ)hn+m−k−j,m(λ), 0 ≤ k ≤ n+m

Using Equation (3.4) we obtain gk = 0 for 0 ≤ k ≤ n + m − 1 and gn+m = 1. Thus
g = λn+m

0 /(n + m)! 6= 0. Since g is a C-linear combination of fn, . . . , fn+m it follows that
one of fn, . . . , fn+m is not zero.

3.2. Sums of Prime Powers

In this section we fix a prime p ∈ Z. Let λ = (λ1, . . . , λm) ∈ Cm, β = (β1, . . . , βm) ∈
(N+)m and consider the polynomial

G(Z) = λ1Z
pβ1
1 + λ2Z

pβ2
2 + · · ·+ λmZ

pβm
m (3.8)

Recall that given f ∈ Z[m] we denote by f the image of f in F[m]
p under the canonical map.

The following two lemmas will be important in the proofs that follow.

Lemma 3.8. If k and l are positive integers then
(
plk
)
!/
(
pkak!

)
∈ Z where

a = (pl − 1)/(p− 1). Moreover,
(
plk
)
!/
(
pkak!

)
≡ (−1)ka mod p.
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Proof. We first consider the case l = 1. Set Q(t) =
∏p−1

i=1 (pt− i). Then

(pk)! = pkQ(k)(pk − p)Q(k − 1) · · · pQ(1)

=
k∏
j=1

pj ·
k∏
j=1

Q(j)

= pkk!
k∏
j=1

Q(j) (3.9)

So (pk)!/
(
pkk!

)
=
∏k

j=1Q(j) ∈ Z. Clearly, Q(j) ≡ (−1)p−1(p− 1)! mod p for all integers j.

Noting (−1)p−1 ≡ 1 mod p for any prime and appealing to Wilson’s Theorem we see that
Q(j) ≡ −1 mod p for all integers j. Thus

∏k
j=1Q(j) ≡ (−1)k mod p which is what we

wanted to show.
For the general case we define P (n) =

∏n
j=1 Q(j) where n ∈ Z. We also set kj = pl−jk,

1 ≤ j ≤ l. Applying the l = 1 case we obtain

(kj)! = (pkj+1)! = pkj+1kj+1!P (kj+1) , 0 ≤ j ≤ l − 1 (3.10)

It follows from Equation (3.10) that

(
plk
)
! = p

∑l
j=1 kjkl!

l∏
j=1

P (kj)

Now kl = k and
∑l

j=1 kj = k
∑l

j=1 p
l−j = ka, and therefore

(
plk
)
!/
(
pkak!

)
=
∏l

j=1 P (kj)

is an integer. Finally, since P (kj) ≡ (−1)kj mod p it follows that
∏l

j=1 P (kj) ≡ (−1)ka

mod p.

Lemma 3.9. Suppose I is a proper homogeneous ideal of Z[m]. If ZFp(I) = {(0, . . . , 0)} then
ZQ(I) = {(0, . . . , 0)}.

Proof. By the Projective Nullstellensatz we must show that I
⊗

ZQ contains all monomials
of degree d for d >> 0. Let Vd ⊂ Z[m] be the Z-module of d-forms. Let Id be the Z-module
of d-forms belonging to I, i.e, Id = Vd ∩ I. Note that Id and Vd are finitely generated.

Furthermore, we have that Z[m] =
∞⊕
d=0

Vd and I =
∞⊕
d=0

Id. Since ZFp(I) = {(0, . . . , 0)} it

follows from the Nullstellensatz that

Vd = Id + pVd d >> 0 (3.11)

Now let S = Z \ (p), and denote by m the maximal ideal of the local ring S−1Z. Localizing
(3.11) at (p) yields S−1Vd = S−1Id + mS−1Vd for d >> 0. Thus, S−1Vd = S−1Id for
d >> 0 by Nakayamas Lemma. Since Vd

⊗
Q is a further localization of S−1Vd we obtain

Vd
⊗

Q = Id
⊗

Q for d >> 0.
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Theorem 3.10. Let G be as in (3.8) and set F = Gr, r ≥ 1. If there exists n ≥ 1 such that
L (F n+i) = 0 for 0 ≤ i ≤ m− 1 then F = 0.

Proof. Given γ = (γ1, . . . , γm) ∈ Zm set pγ = (pγ1 , . . . , pγm). For any n > 0 we have
Gn =

∑
|α|=n

(
n
α

)
T p

βαλα where pβα =
(
pβ1α1, . . . , p

βmαm
)
. Thus:

L (Gn)

n!
=
∑
|α|=n

(
pβα

)
!

α!
λα

Let x = (x1, . . . , xm) be m commuting variables. For each n > 0 define

fn(x) =
∑
|α|=n

(
pβα

)
!

α!
xα

Then the λ ∈ Cm for which L (Gn) = 0 are exactly the zeroes of fn(x). Let In be the
homogeneous ideal of Z[x] generated by

{
f(n+i)r(x) : 0 ≤ i ≤ n+m− 1

}
. Our claim will be

proven if we can show that ZC(In) = {(0, . . . , 0)} for each n > 0.
Using Lemma 3.8 we know that

(
pβjαj

)
! = pαjbjαj!Cαj where bj =

(
pβj − 1

)
/(p− 1) and

Cαj is an integer congruent modulo p to (−1)αjbj . So if we set γα = (α1b1, . . . , αmbm) then(
pβα

)
! = p|γα|α!Cα (3.12)

where Cα =
∏m

j=1 Cαj . Since each Cαj ≡ (−1)αjbj mod p it follows that Cα ≡ (−1)|γα|

mod p.
Let β̃ = (b1, . . . , bm), x̃ = (−p)−β̃x, and for each n > 0 define gn(x) = fn (x̃). If Jn is

the homogeneous ideal of Z[x] genearted by
{
g(n+i)r(x) : 0 ≤ i ≤ n+m− 1

}
then ZC (Jn) =

{(0, . . . , 0)} if and only if ZC (In) = {(0, . . . , 0)}. We will show the former. Let us first
simplify the expression for gn. Using Equation (3.12) we calculate

gn(x) =
∑
|α|=n

(
pβα

)
!

α!

(
(−p)−β̃x

)α
=
∑
|α|=n

(−1)|γα|
(
pβα

)
!

p|γα|α!
xα

=
∑
|α|=n

(−1)|γα|
p|γα|α!Cα
p|γα|α!

xα

=
∑
|α|=n

(−1)|γα|Cαx
α (3.13)

Since Cα ≡ (−1)|γα| mod p it follows that gn(x) ≡
∑
|α|=n x

α = hn(x). In particular, we

have Jn =
〈
hnr, . . . , h(n+m−1)r

〉
. It follows from Proposition 3.4 that ZF p

(
Jn
)

= {(0, . . . , 0)}
and hence ZC (Jn) = {(0, . . . , 0)} by Lemma 3.9.
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We end this section with the following partial result.

Proposition 3.11. Let p > m be a prime integer, and let F = λ0 + G where G is given in
3.8. If L (F n+j) = 0 for some n < p−m and 0 ≤ j ≤ m then F = 0.

Proof. Note N (F ) = m+ 1. For n > 0 we have

L (F n) =
n∑
k=0

(
n

k

)
L
(
Gn−k)λk0

Let y and x = (x1, . . . , xm) be indeterminates. For each l > 0 define

gl(x) =
∑
|α|=l

(
l

α

)(
pβα

)
!

α!
xα

fl(y, x) =
1

l!

l∑
k=0

(
l

k

)
gl−k

(
(−p)−β̃x

)
yk

where β̃ = (p − 1)−1
(
pβ1 − 1, . . . , pβm − 1

)
. Note that l!fl

(
λ0, (−p)β̃λ

)
= L

(
F l
)

for all

l ≥ 0. So our claim will be proven if we can show that fn, . . . , fn+m have no common
nontrivial solutions over C.

It follows from Lemma 3.8 and the proof of the previous theorem that gl

(
(−p)−β̃x

)
/l! ∈

Z[x] and gl

(
p−β̃x

)
/l! ≡ hl(x) mod p where hn(x) is defined in 3.1. Therefore

fn+j(y, x) ≡
n+j∑
k=0

1

k!
hn+j−k(x)yk mod p

for 0 ≤ j ≤ m (Note that 1/k! ∈ Fp since k < n + m < p). Appealing to the proof of
Theorem 3.7 we obtain the following:

fn+m(y, x)− e1(x)fn+m−1(y, x) + · · ·+ (−1)mem(x)fn(y, x) =
yn+m

(n+m)!

If (λ0, λ) ∈ Fm+1

p is a common root of fn, . . . , fn+m then λ0 = 0 by the above equal-

ity. So 0 = fn+j (λ0, λ) = hn+j (λ) and therefore λ = (0 . . . , 0) by Proposition 3.4. Thus

fn, . . . , fn+m have no nontrivial common zeroes in Fp and therefore fn, . . . , fn+m have no
common zeroes over C by Lemma 3.9.

3.3. New Examples from Old

In this setion we ask whether there is a way of building up new examples of polynomials
satisfying the conjecture from already known ones. We detail detail one such way. Remark
1.4 is used in the proof of the following theorem.

Theorem 3.12. Set U = U1. Suppose F ∈ C[m] satisfies the Strong Factorial Conjecture.
Then G = λU + F also satisfies the conjecture.
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Proof. Let N = N (F ). Then N (G) = N + 1. If we set fn = L (F j) /n! and gn = L (Gn) /n!,
n ≥ 1, then

gn = L

(
1

n!

n∑
k=0

(
n

k

)
F n−kUkλk

)

=
n∑
k=0

1

(n− k)!k!
L
(
F n−kUk

)
λk

=
n∑
k=0

1

(n− k)!k!
L
(
F n−k)L (Uk

)
λk

=
n∑
k=0

fn−kλ
k

It easily follows from above that
gn = fn + λgn−1 (3.14)

for each n ≥ 1. Now suppose that L (Gn+i) = 0 for some n ≥ 1 and 0 ≤ i ≤ n + N . Then
gn+i = 0 for 0 ≤ i ≤ N . It then follows from Equation (3.14) that fn+i = 0 for 1 ≤ i ≤ N ,
and therefore L (F j) = 0 for n + 1 ≤ j ≤ n + N . Since F satisfies the Strong Factorial
Conjecture it must be the case that F = 0. So G = λU and since L (Gn) = 0 we must have
λ = 0.

Corollary 3.13. Suppose L ∈ C[l] := C [U1, . . . , Ul] is a linear form and F ∈ C[m] satisfies
the Strong Factorial Conjecture. Then G = L+ F also satisfies the conjecture.

Proof. By induction on l and the previous Theorem.

3.4. Sum of Two Monomials

Throughout this section x will denote a single variable, rather than a vector of variables.
In this section we study Conjecture 1.7 in the case F is of the form λ1M1 + λ2M2 where
M1,M2 ∈ C[m] are monomials. In order to show that F satisfies the conjecture we must show
that one of L (F n) , L (F n) is nonzero for all n ≥ 2. Since the conjecture obviously holds for
monomials, we may assume that λ1, λ2 6= 0. Furthermore, since L (F n) is homogeneous in
λ1, λ2 we may assume, without loss of generality, that λ1 = 1. For each n ≥ 0 we define the
following polynomial:

fn(x) =
n∑
k=0

(
n

k

)
L
(
Mn−k

1 Mk
2

)
xk. (3.15)

Then fn (λ2) = L (F n). From this we see that F satisfies the conjecture if and only if
fn(x), fn−1(x) have no common zeroes (over C) for all n ≥ 2.

One way to attack the problem is to use Zeilberger’s algorithm (see [11]) to find a re-
currence relation between fn(x) and fn−1(x). The algorithm has been implemented in both
Mathematica and Maple. For example, after downloading the fastZeil package (cf. [10]) for
Mathematica, the command
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Zb [ Binomial [ n , k ] (2 k ) ! xˆk ,{ k , 0 , n} , n ] :
SumCert i f i ca te [%]

will produce a recurrence relation for the polynomials fn(x) =
n∑
k=0

(
n
k

)
(2k)!xk. In some special

cases, the relation obtained by Zeilberger’s algorithm can be used in a very straightforward
manner to show that fn and fn−1 have no common zeroes.

Proposition 3.14. For all n ≥ 2 the polynomials fn(x) and fn−1(x) have no common zeroes
in the following cases:

1. F = 1 + λZ1

2. F = Z2
1 + λZ1

3. F = Z3
1 + λZ2

1

4. F = Z2
1 + λZ1Z2

5. F = Z3
1 + λZ2

1Z2

Proof. We proceed case by case.

1. In this case we have F n =
n∑
k=0

(
n
k

)
Zk

1λ
k which gives fn(x) =

n∑
k=0

n!
(n−k)!

xk. Using Zeil-

berger’s lgorithm we obtain the relation: fn(x) = nxfn−1(x)+1. If λ ∈ C is a common
root of fn and fn−1 then 1 = 0 which is a contradiction.

2. In this case we have F n =
∑n

k=0

(
n
k

)
Z2n−k

1 λk which gives fn(x) =
n∑
k=0

(
n
k

)
(2n − k)!xk.

Using Zeilberger’s We have the following relation:

fn(x)− 2n(2n− 1)fn−1(x)− n(n− 1)x2fn−2(x) = 0

Suppose λ ∈ C is a common root of fn and fn−1. Since fl(0) 6= 0 for all l ∈ N
follows that fn−2(λ) = 0. Changing n to n− 1, . . . , 2 in the above recurrence relation
shows that λ is a root of fn, fn−1, . . . , f0. But f0 is a nonzero constant and we get a
contradiction.

3. In this case we have F n =
n∑
k=0

Z3n−k
1 λk which gives fn(x) =

n∑
k=0

(
n
k

)
(3n − k)!xk. Zeil-

berger’s algorithm produces the relation:

(x− 9n+ 12)fn(x)− pn(x)fn−1(x) + qn(x)fn−2(x) = 0

where

pn(x) = x3 − 3(3n− 2)x2 + (27n2 − 27n+ 6)x− (243n3 − 567n2 + 378n− 72)

and
qn(x) = 2(2n− 3)n(n− 1)x3(x− 3(3n− 1))

14



Suppose λ is a common root of fn and fn−1. Then qn(λ) = 0 or fn−2(λ) = 0. If
qn(λ) = 0 then λ = 0 or λ = 3(3n− 1). Since fl(0) 6= 0 for all l, λ cannot be equal to
zero. Since n or n− 1 is even it follows from Corollary ?? that λ ∈ C \R and therefore
λ 6= 3(3n−1). So fn−2(λ) = 0. Replacing n with n−1, . . . , 2 in the recurrence relation
and repeating the same argument as before shows that fl(λ) = 0 for 0 ≤ l ≤ n.
However, f0 is a nonzero constant and we get a contradiction.

4. In this case we have F n =
∑n

k=0

(
n
k

)
Z2n−k

1 Zk
2λ

k which gives fn(x) =
n∑
k=0

n!
(n−k)!

(2n −

k)!xk. Using Zeilberger’s algorithm we obtain the relation: (x− 1)fn(x)− n2x2fn−1 =
n(2n−1)!(x−2). If λ is a common root of fn and fn−1 then λ = 2. But this impossible
since fn(2) > 0 for all n.

5. In this case we have F n =
∑n

k=0

(
n
k

)
Z3n−k

1 Zk
2λ

k which gives fn(x) =
n∑
k=0

n!
(n−k)!

(3n −

k)!xk. Using Zeilberger’s algorithm we obtain the relation: (x − 1)2fn(x) − 2n2(2n −
1)x3fn−1 = (3n − 2)!npn(x) where pn(x) = (4n − 2)x2 − 5(3n − 1)x + 3(3n − 1). If λ
is a common root of fn and fn−1 then λ is also a root of pn. The discriminant of pn
is equal to 81n2 − 30n + 1 which is positive for all n > 0. Therefore λ ∈ R∗. Since n
or n− 1 is even this would contradict Corollary ??. So fn and fn−1 have no common
zeroes.

Let us now turn our attention to F = Zm
1 (λ1 + λ2Z1) where λ1, λ2 ∈ C∗. From the above

Proposition we know that F satisfies Conjecture 1.7 for m = 0, 1, 2. Once again assuming
λ1 = 1 we have the following partial result for the general case.

Proposition 3.15. Let F = Zm
1 (1 + λZ1) where m ≥ 3. If m - ((n− 1)!)n then L (F n) 6= 0

or L (F n−1) 6= 0.

Proof. We have F n =
∑n

k=0

(
n
k

)
Znm+k

1 λk and so L (F n) =
n∑
k=0

(
n
k

)
(nm + k)!λk. For each

n ≥ 0 define a polynomial fn(x) by setting fn(x) =
n∑
k=0

(
n
k

)(nm+ k)!

(nm)!
xk. We have fn(λ) =

L (F n) /(nm)!. Note that fn(x) ∈ Z[x]. Introduce a new variable t and for each k > 0 define

Qn,k(t) =
k∏
j=1

(nt + j). For each n > 0 we define a bivariate polynomial Fn(t, x) ∈ Z[t, x] by

setting

Fn(t, x) = 1 +
n∑
k=1

(
n

k

)
Qn,k(t)x

k.

Observe that Fn(m,x) = fn(x). For each n ≥ 2 we wish to compute the resultant of Fn(t, x)
and Fn−1(t, x) with respect to the variable x. It is for this reason we define, for each n ≥ 2,
the polynomial Rn(t) = Res (Fn(t, x), Fn−1(t, x), x). It follows from the definition of the
resultant that Rn(t) ∈ Z[t]. Also, since Fn(m,x) = fn(x) it follows from the determinant
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formula for the resultant that Rn(m) = Res (fn, fn−1). So using Proposition 2.2 we see that
F satisfies the SFC if and only if Rn(m) 6= 0 for all n ≥ 2.

Let pn(t) = (nt+ 1) and let R = Z[t]. Since pn is linear and primitive it is an irreducible
elmement of the ring R, which is a UFD. Observe that pn does not divide the constant
coefficient of Fn(t, x) when regarded as an element of R[x]. Also, pn(t) divides the coefficients
of Qn,k for 1 ≤ k ≤ n, but p2

n - Qn,n. Thus, by applying Eisensteins criteria to the reciprocal
polynomial F ∗n(t, x) = xnFn (t, 1/x) we see that Fn(t, x) is an irreducible element of R[t].
Therefore Fn(t, x) and Fn−1(t, x) have no common factor over Q(t) by Gauss’s Lemma. So
it follows from Proposition ?? that Rn(t) 6= 0.

Since Rn(t) ∈ Z[t] \ {0} we know that Rn(m) 6= 0 if m - Rn(0). Therefore we calculate
Rn(0). Since the determinant commutes with the evaluation map we have

Rn(0) = det (Syl (Fn(0, x), Fn−1(0, x))). Now Qn,k(0) = k! and so Fn(0, x) =
n∑
k=0

n!

(n− k)!
xk.

Since degx Fn(0, x) = n for each n ≥ 1 it follows that Rn(0) = Res (Fn(0, x), Fn−1(0, x)) for
each n ≥ 2. Next, a straightforward calculation shows that Fn(0, x) = nxFn−1(0, x) + 1. It
now follows from part (ii) of Proposition 2.2 that

Rn(0) = Res (Fn(0, x), Fn−1(0, x)) = ((n− 1)!)n Res (1, Fn−1(0, x)) = ((n− 1)!)n .

So Rn(0) 6= 0 if m - ((n− 1)!)n

The above method can also be applied to other polynomials to obtain similar results.

Proposition 3.16. Let F = Zm
1 (Z2 + λZ1Z3) where m > 0. If m - (n!)n−1 then L (F n) 6= 0

or L (F n−1) 6= 0.

Proof. Suppose n > 0. We have F n =
∑n

k=0

(
n
k

)
Znm+k

1 Zn−k
2 T k3 λ

k which gives

L (F n) =
n∑
k=0

(
n

k

)
(n− k)!k!(nm+ k)!λk

= n!
n∑
k=0

(nm+ k)!λk

We define fn(x) =
∑n

k=0(nm + k)!xk and Fn(t, x) = 1 +
∑n

k=1Qn,k(t)x
k where Qn,k was

defined in the proof of Proposition 3.15. Note fn(λ) = 0 if and only if L (F n) = 0. Also
Fn(m,x) = fn(x)/(nm)!. Now, like in the proof of the previous proposition, set Rn(t) =
Res (Fn, Fn−1, x). Then Rn(0) = Res (gn(x), gn−1(x), x) where gn(x) =

∑n
k=0 k!xk. Since

gn = gn−1 + n!xn it follows from Proposition 2.2 (iii) that

Rn(0) = Res (n!xn, gn−1, x) = (n!)n−1.

If m - (n!)n−1 then Rn(m) 6= 0 and therefore fn and fn−1 have no common zeroes.

Proposition 3.17. Let F = (Z1Z2)m (Z1 + λZ2) where m > 0. If l, n > 0 are such that
gcd(l + 1, n+ 1) = 1 and if m - (l!)n(n!)l then L (F n) 6= 0 or L

(
F l
)
6= 0.
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Proof. Suppose n, l > 0 satisfy the hypothesis. For any s ≥ 0 we have

F s =
s∑

k=0

(
s

k

)
Zsm+s−k

1 Zsm+k
2 λk

and therefore

L (F s) =
s∑

k=0

(
s

k

)
(sm+ k)!(sm+ s− k)!λk.

Let Qs,k(t) be the polynomial defined in the proof of Proposition 3.15 and for each s ≥ 0

define Fs(t, x) =
s∑

k=0

(
s
k

)
Qs,k(t)Qs,s−k(t)x

k (here we define Qs,0 = 1). Then Fs(m,λ) =

L (F s) /((nm)!)2. If we set R(t) = Res (Fn(t, x), Fl(t, x), x) then R(m) = Res (fn, fl, x).
Now R(0) = Res (gn(x), gl(x), x) where

gs(x) =
s∑

k=0

(
s

k

)
k!(s− k)!xk

= s!
s∑

k=0

xk

Using the definition of the resultant we see that R(0) = (n!)l(l!)n Res (gn(x)/n!, gl(x)/l!).
Denote each gs(x)/s! by hs(x). We claim that Res (ha(x), hb(x), x) = 1 whenever gcd(a +
1, b+1) = 1. Note that a or b is even since gcd(a+1, b+1) = 1, and therefore Res (ha, hb, x) =
Res (hb, ha, x).We proceed by induction on a + b. The base case a + b = 1 holds because
g0 = 1 and therefore Res (1, g1, x) = 1. Now suppose a+ b = d ≥ 2 and assume the claim is
true for all pairs (a′, b′) satisfying gcd((a′ + 1, b′ + 1) = 1 and n′ +m′ < d.

Without loss of generality we may assume a > b. Write a + 1 = q(b + 1) + r for some
positive integers q, r with r ≤ b+ 1. Now it is not too hard too see that

ha(x) =
(
1 + xb+1 + · · ·+ x(q−1)(b+1)

)
hb(x) + xq(b+1)hr−1(x)

Setting P = xq(m+1)hr−1(x) and appealing to Proposition 2.2 we conclude that

Res (ha, hb) = Res (P, hn)

= Res
(
xq(b+1, hb

)
Res (hr−1, hb)

= Res (hr−1, hb)

Since gcd(a + 1, b + 1) = 1 it follows that gcd(b + 1, r) = 1. Since a + r < d the result now
follows from by the inductive hypothesis.

Since gcd(n+ 1, l + 1) = 1 we can conclude that

R(0) = (n!)l(l!)n Res (gn(x)/n!, gl(x)/l!) = (n!)l(l!)n.

Since m - (n!)n−1 it follows that R(m) 6= 0 and therefore L (F n) 6= 0 or L
(
F l
)
6= 0.
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Remark 3.18. In each of the above proofs the idea was to express the resultant of fn and
fn−1 as a polynomial in m. While we haven’t succeeded in computing this polynomial in its
entirety, we do have computational evidence that suggests that the polynomials Rn(t) are
Hurwitz stable, i.e. has all of its roots in the left half-plane. If this were true then each
coefficient of Rn(t) is positive (since Rn(0)¿0), and therefore F satisfies the Strong Factorial
Conjecture.

Remark 3.19. Let us briefly return to the case F = Zm
1 (1 + λZ1). In order to show F

satisfies Conjecture 1.7 it is necessary and sufficient to show that fn(x) and fn−1 are relatively

prime over Q where fn(x) =
l∑

k=0

(
n
k

) (nm+k)!
(nm)!

xk. Fix a positive integer n. By Dirchlet’s prime

number theorem we know that nm + 1 is prime for infinitely many m. For such m we can
show, using Eisensteins criteria, that fn(x) is irreducible over Q and therefore fn(x) and
fn−1 are relatively prime. It is also straightforward to show that fn(x) - fn+1(x) which shows
that fn and fn+1 are relatively prime. By fixing m and applying the same analysis one also
concludes that fn is irreducible for infinitely many n yielding the same observations as those
preceeding. The same arguments can also be applied to F = Zm

1 (Z2 + λZ2Z3). There is
ample evidence that both these polynomials satisfy the conjecture.

For the rest of the chapter we will focus our efforts on the special case F = 1 + λZm
1

where m > 0. We have F n =
∑n

k=0

(
n
k

)
(mk)!λk, and so we are interested in determining

whether fn(x) and fn−1(x) have common zeroes, where

fn(x) =
n∑
k=0

(
n

k

)
(mk)!xk (3.16)

It is not hard to show that fn - fn+1 for all n ≥ 1.
By studying the Newton polygon of fn(x) we can determine values of m and n for

which fn and fn−1 have no common zeroes. When m = 2 we solve the case completely.
Given a prime p, we denote by νp the p-adic valuation. Given k ∈ N expand k in base p:
k = a0 + a1p+ . . .+ atp

t. Set sk = a0 + · · ·+ at. The following formulas are well known:

νp(k!) =
∞∑
j=1

⌊
k

pj

⌋
=
k − sk
p− 1

(3.17)

Proposition 3.20. Suppose n = apr where p is prime, r > 0 and ma < p. Then any
irreducible factor of fn(x) over Q has degree divisible by pr.

Proof. We will show that Np (fn(x)) consists of a single edge. We do this by showing that

νp
((
n
k

)
(mk)!

)
≥ k

n
νp((mn)!) for each 0 < k < n. Using (3.17) we compute νp ((mn)!) =
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ma(pr−1)
p−1

Next, if 0 < k < n then

νp((n− k)!) =
∞∑
j=1

⌊
apr − k
pj

⌋

=
r∑
j=1

⌊
apr − k
pj

⌋

= νp ((apr)!) +
r∑
j=1

⌊
−k
pj

⌋

In the second line, the sum stops at j = r because 0 < n− k < n < pr+1. Now

νp(k!) +
r∑
j=1

⌊
−k
pj

⌋
=

r∑
j=1

{⌊
k

pj

⌋
+

⌊
−k
pj

⌋}

If
k

pj
∈ Z then

⌊
k
pj

⌋
+
⌊
−k
pj

⌋
= 0. Otherwise

⌊
k
pj

⌋
+
⌊
−k
pj

⌋
= −1. It follows that

νp(k!) +
∑r

j=1

⌊
−k
pj

⌋
= νp(k)− r, and thus

νp

((
n

k

))
= νp(n!)− (νp((n− k)! + νp(k!))

= νp(n!)−

(
νp(n!) + νp(k!) +

r∑
j=1

⌊
−k
pj

⌋)
= r − νp(k)

We now consider the quantity
k

n
νp(mn!):

k

n
νp((mn)!) =

k

apr
ma (pr − 1)

p− 1

=
mk

pr
(
pr−1 + · · ·+ p+ 1

)
=
mk

p
+ · · ·+ mk

pr

For 1 ≤ j ≤ r write
mk

pi
=
⌊
mk
pi

⌋
+aj where 0 ≤ aj < 1. Observe that aj = 0 if and only if pj -

mk. But m < p and so pj - mk if and only if pj - k. Thus
∑r

j=1

mk

pj
<

r∑
j=1

⌊
mk

pj

⌊
+ r− νp(k).

Finally, mk < pr+1 since ma < p and therefore
r∑
j=1

⌊
mk

pj

⌋
= νp((mk)!).
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We have shown that the Newton polygon of fn consists of a single edge connecting (0, 0)
to (n,ma (pr−1 + · · ·+ 1)). The gcd of the height and width is equal to a and therefore any
nontrivial irreducible factor of fn(x) has degree equal to ipr for some 1 ≤ i ≤ a by Corollary
2.5.

Corollary 3.21. If m < p then fn is irreducible over Q[x] when n = pr for any positive r.
Moreover, fn and fn−1 have no common zeroes. The same is true for fn and fn+1.

Proof. That fn is irreducible follows from the previous proposition. Since Q[x] is a PID and
since fn is irreducible, fn and fn−1 have no common roots. Since fn does not divide fn+1

they do not have any common roots either.

Suppose m = pr and set b =
pr − 1

p− 1
. Then νp ((prk)!) = kb+ νp(k!) by 3.8. This leads us

to consider the polynomials gn(x) = fn
(
x/pb

)
for two reasons:

1. fn and fn−1 have a common zero if and only if gn and gn−1 have a common zero.

2. νp

((
n
k

) (prk)!
pkb

)
= νp

(
n!

(n−k)!

)
and so gn has the same Newton polygon as

∑n
k=0

n!
(n−k)!

xk

Reason two is important because we can calculate the Newton polygon of
∑n

k=0
n!

(n−k)!
xk, and

hence we can calculate the Newton polygon of gn.

Proposition 3.22. Let n ≥ 1 be given and write n = a1p
n1 + a2p

n2 + · · · + atp
nt where

0 < a1, a2, . . . , at ≤ p − 1 and 0 ≤ n1 < n2 < · · · < nt. Set x0 = 0 and for 1 ≤ s ≤ t
set xs = a1p

n1 + · · · + asp
ns. The x-coordinates of the vertices of Np (gn(x)) are located at

xs, 0 ≤ s ≤ t. If 1 ≤ s ≤ t then the slope of the sth edge is given by ms = pns−1
pns (p−1)

.

Proof. We write ν = νp. From the observations above we know that the coefficient of xk

has the same p-adic value as
n!

(n− k)!
. Since multiplying gn by a constant has the effect

of shifting the polygon up or down, we may assume that the coefficients are in fact 1
(n−k)!

.

Using Equation (3.17) we calculate that

ν ((n− xs)!) =
n− xs − (as+1 + · · ·+ at)

p− 1

and therefore the slope of the line segment connecting the (xs−1,−ν ((n− xs−1)!)) to
(xs,−ν ((n− xs)!)) is equal to

xs − xs1 − as
(xs − xs−1) (p− 1)

=
pns − 1

pns(p− 1)
.

Since n1 < n2 < · · · < nt it follows that m1 < m2 < · · · < mt. So all that remains to show
is that (x,−ν((n− x)!)) lies on or above the edges connecting these points for each integer
1 ≤ x ≤ n that is not equal to some xs. Choose 1 ≤ s ≤ t so that xs−1 < x < xs. It follows
that n−xs < n−x < n−xs−1. Set ∆x = xs−x, and observe that n−xs−1 = n−xs +asp

ns

implies ∆x < asp
ns , and therefore the base p expansion of ∆x has no nonzero digit past the
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pns-place. Since ns < ns+1 and since n − xs = as+1p
ns+1 + · · · + pntt it now follows that the

base p expansion of n− x is obtained by concatenating the base p expansions of n− xs and
∆x. Using Equation (3.17), one can obtain that ν((n− x)!) = ν ((n− xs)!) + ν((∆x)!)

Finally, the slope between the points (x,−ν((n − x)!)) and (xs,−ν ((n− xs)!)) is equal
to

−ν ((n− xs)!) + ν((n− x)!)

∆x
=
ν((∆x)!)

∆x

=
∆x− s∆x

∆x(p− 1)

We claim that
∆x− s∆x

∆x(p− 1)
< ms, or equivalently, pns (∆x− s∆x) < ∆x (pns − 1). To prove

this inequality, it suffices to show that ∆x < s∆xp
ns , and this follows easily from the fact

∆x = b0 + b1p + · · · + bnsp
ns for some 0 ≤ b0, b1, . . . , bns ≤ p − 1. From this, one can

conclude that (x,−ν((n − x)!)) lies above the line connecting (xs−1,−ν ((n− xs−1)!)) to
(xs,−ν ((n− xs)!)).

Corollary 3.23. Let n ≥ 1 and suppose m = pr for some prime p and r ≥ 1. Then:

1. If n is divisible by p then the degree of any irreducible factor of fn is divisible by pν(n).

2. If n = pl for some l > 0 then fn is irreducible. Thus fn has no roots in common with
fn−1 and it has no roots in common with fn+1

3. If n = plqk where l, k > 0 and q is a prime satisfying pr+l < q then fn is irreducible.
Thus fn has no roots in common with fn−1 and it has no roots in common with

Proof.

1. In Proposition 3.22 we computed the slopes of the Newton polygon of fn. The denom-
inator of each slope (in lowest terms) is equal to ps where s ≥ νp(n). If g(x) is an
irreducible factor of fn then pνp(n) | deg(g(x)) by 2.5

2. If n = pl then pl divides the degree of any irreducible factor is divisible by pr by part
1. Therefore fn is irreducible. The second statement follows from the fact that fn is
irreducible and fn - fn+1.

3. Let g(x) be an irreducible factor of fn(x). Then pr | deg (g(x)) by (1). Furthermore,
n satisfies the hypothesis of 3.20 and therefore ql | deg (g(x)). We conclude that
n | deg(g(x)) and so fn is irreducible. The second statement follows easily.

The main result of the section is the following.

Theorem 3.24. Let F (Z1) = λ1 + λ2Z
2
1 . Then F satisfies the Strong Factorial Conjecture.
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Proof. We may once again assume λ1 = 1. Let fn(x) be the polynomials given in (3.16)
where m = 2 and let gn(x) = fn(x/2). In order to prove our claim we must show that gn(x)
and gn−1(x) have no common roots for each n ≥ 1. Following the usual convention (cf. [8]
or [1]) we define for each non-negative integer k the double factorial (2k − 1)!! by setting

(2k − 1)!! =

{
1 k = 0∏k

j=1(2j − 1) k ≥ 1
(3.18)

We also set bn,k = n!/(n− k)! for 0 ≤ k ≤ n. We then have

gn(x) =
n∑
k=0

(2k − 1)!!bn,kx
k (3.19)

for each n ≥ 1. Note that g2 and g3 are irreducible by Corollary 3.23. So we assume n ≥ 5.
We will prove the following claim:

Claim 1. For each 1 ≤ j < n/2 there exists a rational polynomial

rj(x) = Aj(x) + 22jbn,2j+1x
jgn−(2j+1)(x)

belonging to (gn, gn−1) such that the following holds:

1. deg (Aj) = j − 1

2. The 2-adic values of the coefficient of xk in Aj(x) are positive if 0 ≤ k ≤ j − 2. The
2-adic value of the coefficient of xj−1 is equal to 0. In particular, Aj(x) 6= 0.

Asuming Claim 1 holds, let us prove the theorem. Suppose n is even and set j = (n/2)−1.
Then 2j = n− 2, 2j + 1 = n− 1 and n− (2j + 1) = 1 which yields

rj(x) = Aj(x) + 2n−2bn,n−1x
jg1(x)

= Aj(x) + 2n−2n!xj(1 + x)

= Aj(x) + 2n−2n!
(
xj + xj+1

)
(3.20)

where g1 was calculated using Equation (3.19). In order to show that gn and gn−1 have
no common roots it suffices to show that rj(x) has no roots in common with gn since rj ∈
(gn, gn−1). The fact that the 2-adic value of rj(0) is positive includes the possibility that
ν2 (rj(0)) = ∞, i.e. rj(0) = 0. So let us first assume rj(0) 6= 0. From the claim, we know
that the coefficient of xk in Aj(x) has positive 2-adic value if 0 ≤ k ≤ j − 2 while the
2-adic valuation of the coefficient of xj−1 is precisely zero. Since the 2-adic value of 2n−2n!
is clearly positive it follows that (j − 1, 0) is a vertex of Nν2 (rj). Moreover, any edge to the
left of the vertical line x = j − 1 has negative slope. Using Equation (3.20) we see that the
only edge of the Newton Polygon of rj having positive slope connects the point (j − 1, 0) to
(j + 1, n− 2 + ν2(n!), and it has slope equal to (n− 2 + ν2(n!))/2 > 1 (since n ≥ 5). On the
other hand the slopes of Nν2 (gn(x)) belong to the half open interval [0, 1) by Proposition
3.22. Therefore gn(x) and rj(x) have no common zeroes by Corollary ??.
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Now assume that rj(0) = 0. Choose 1 ≤ j ≤ j − 2 such that xk | rj(x) but xk+1 - rj(x).
Since gn(0) 6= 0 we need only show that gn(x) and sj(x) = rj(x)/xk have no common roots.
The argument used above also works for sj(x). This time, any edge of Nν2 (sj(x)) to left of
the vertical line x = j − 1 − k has non positive slope, while the only edge of postive slope
connecting (j − 1− k, 0) to (j + 1− k, n− 2 + ν2(n!)) has slope greater than one. Therefore
gn(x) and sj(x) have no common zeroes by Corollary ??

Now suppose n is odd, and set j = (n−1)/2. A similar calculation to the one done above
shows that

rj(x) = Aj(x) + 2n−1n!xj

Once again, in order to prove the theorem, it suffices to show that rj and gn have no roots in
common. Assume Aj(0 6= 0. Condition (2) from the claim shows that Nν2 (rj(x)) has only
one edge of positive slope. This edge, which connects (j − 1, 0) to (j, n − 1 + ν2(n!), has
slope greater than 1. So once again the Newton polygon of gn does not have any edges with
slopes in common with that of rj(x) and therefore the two polynomials have no common
zeroes by Corollary ??. If Aj(0) = 0 we consider sj(x) = rj(x)/xk where 1 ≤ k ≤ j − 2 is
chosen so that xk | rj(x) but xk+1 - rj(x). The same argument shows that Nν2 (sj(x)) has
only one edge of positive slope, and that this slope is greater than one. Therefore gn(x) and
sj(x) have no common zeroes.

Let us now prove the claim using induction on j. For the base case we will construct
r1(x) and r2(x). Then in the inductive step, we will show how rj+1(x) can be obtained from
rj(x) and rj−1(x) assuming those polynomials exist.

We first consider the case j = 1. The leading coefficient of gn(x) is (2n − 1)!!n! while
the leading coefficient of gn−1(x) is equal to (2n − 3)!!(n − 1)!. We therefore set r̃1(x) =
fn(x)− (2n− 1)nxfn−1(x). First of all, observe that

(2n− 1)nxfn−1(x) =
n−1∑
k=0

(2k − 1)!!(2n− 1)n
(n− 1)!

(n− 1− k)!
xk+1

=
n∑
k=1

(2k − 3)!!(2n− 1)n
(n− 1)!

(n− k)!
xk

=
n∑
k=1

(2k − 3)!!(2n− 1)bn,kx
k
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Now calculating r̃1(x) we have:

r̃1(x) = 1 +
n∑
k=1

((2k − 1)!!− (2n− 1)(2n− 3)!!) bn,kx
k

= 1 +
n∑
k=1

(2k − 3)!!((2k − 1)− (2n− 1))bn,kx
k

= 1 + 2
n−1∑
k=1

(2k − 3)!!(k − n)bn,kx
k

= 1− 2n
n−1∑
k=1

(2k − 3)!!bn−1,kx
k

Note that the leading coefficient of r̃1(x) is equal to −2n!(2n− 5)!!. Next, we reduce the
degree of r̃1(x) by computing (2n− 3)r̃1(x) + 2ngn−1(x):

(2n− 3)r̃1(x) + 2ngn−1(x) = (2n− 3) + 2n+ 2n
n−2∑
k=1

[(2k − 1)!− (2n− 3)(2k − 3)!] bn−1,kx
k

= 4n− 3 + 2n
n−2∑
k=1

(2k − 3)!! [(2k − 1)− (2n− 3)] bn−1,kx
k

= (4n− 3)− 4n(n− 1)
n−2∑
k=1

(2k − 3)!!bn−2,kx
k

= (4n− 3)− 4bn,2

n−2∑
k=1

(2k − 3)!!bn−2,kx
k

We set A1 = 3− 4n and r1(x) = −((2n− 3)r̃1(x) + 2ngn−1(x)) ∈ (gn, gn−1). Note that A1 is
an odd integer, and therefore has 2-adic value equal to zero. If we factor out an x from the
sum and reindex we find that

r1(x) = A1 + 4bn,2x
n−2∑
k=1

(2(k − 1)− 1)!!
(n− 2)!

(n− 3− (k + 1))!
xk−1

= A1 + 4bn,3x
n−3∑
k=0

(2k − 1)!bn−3,kx
k

= A1 + 4bn,3gn−3(x)

Next, we use r1(x) and gn−1(x) to construct r2(x). We first observe that the leading
coefficient of r2(x) is equal to 4n(2n− 7)!!. Therefore we set

r̃2(x) = 4ngn−1(x)− (2n− 3)(2n− 5)xr1(x)
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Note that r̃2(x) ≡ −A1x mod 2 ≡ x mod 2. It follows that

r̃2(x) = Ã2(x) + 4n
n−2∑
k=2

[(2k − 1)!!− (2n− 3)(2n− 5)(2k − 5)!!] bn−1,kx
k (3.21)

where Ã2(x) ∈ Z[x] and Ã2(x) ≡ x mod 2. The difference inside the brackets appearing
in Equation (3.21) can be simplified as (2n − 5)!! [(2k − 1)(2k − 3)− (2n− 3)(2n− 5)] and
simplifying further we find that

(2k − 1)(2k − 3)− (2n− 3)(2n− 5) = (2k − 1) [(2k − 3)− (2n− 5)]

+ (2n− 5)
[
(2k − 1)(2k − 3)

]
= (2k − 2n+ 2) [2k + 2n− 6]

= −4(n− 1− k)(k + n− 3)

Since (n− 1− k)bn−1,k = (n− 1)bn−2,k it follows that

r̃2(x) = Ã2(x)− 16bn,2

n−2∑
k=2

(2k − 5)!!(k + n− 3)bn−2,kx
k

Next we calculate ˜̃r2(x) = (2n − 7)r̃2(x) + 4(2n − 5)r1(x). Observe that the sum is
congruent modulo 2 to x. Setting C(k) = k + n− 3 we have

˜̃r2(x) = ˜̃A2(x) + 16bn,2

n−3∑
k=2

[(2k − 3)!!(2n− 5)− (2n− 7)(2k − 5)!!C(k)] bn−2,kx
k

= ˜̃A2(x) + 16bn,2

n−3∑
k=2

(2k − 5)!! [(2k − 3)(2n− 5)− (2n− 7)C(k)] bn−2,kx
k

where ˜̃A2(x) is a linear integer polynomial and ˜̃A2(x) ≡ x mod 2. Now setting D(k) =
(2k − 3)(2n− 5)− (2n− 7)C(k) we calculate D(k):

D(k) = (2n− 5) [(2k − 3)− (2n− 7)] + (2n− 7) [(2n− 5)− C(k)]

= (2n− 5)(2k − 2n+ 4) + (2n− 7)(n− 2− k)

= −(n− 2− k)(2n− 3)

Since (n− 2− k)bn−2,k = (n− 2)bn−3,k it follows that

(2n− 7)r̃2(x) + 4(2n− 5)r1(x) = ˜̃A2(x)− 16bn,3(2n− 3)
n−2∑
k=2

(2k − 5)!!bn−3,kx
k

Set A2(x) = − ˜̃A2(x)/(2n− 3) and r2(x) = A2(x) + 16bn,3
∑n−3

k=2(2k − 5)!!bn−3,kx
k. It follows

from above that r2(x) ∈ (gn, gn−1) and that A2(x) is a rational linear polynomial satisfying
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condition (2) of the claim above. Moreover, dividing out x2 from the sum and reindexing
gives r2(x) = A2(x) + 16bn,5gn−5(x).

Now assume that rj(x) and rj−1(x) have been constructed for some 2 ≤ j < n
2
− 1. We

have

rj−1(x) = Aj−1(x) + 4j−1bn,j

n−j∑
k=j−1

(2k − (2j − 1))!!bn−j,kx
k

rj(x) = Aj(x) + 4jbn,j+1

n−j−1∑
k=j

(2k − (2j + 1))!!bn−(j+1),kx
k

Observe that the leading coefficient of rj−1(x) is equal to 4j−1n!(2n− 4j + 1)!! and that the
leading coefficient of rj(x) is equal to 4jn!(2n−4j−3)!!. We set B = (2n−4j+1)(2n−4j−1)
and define r̃j+1(x) = 4rj−1(x)−Bxrj(x). If we let

Ãj+1(x) = 4Aj−1(x) + 4jbn,j
[
bn−j,j−1x

j−1 + bn−j,jx
j
]

+BxAj(x)

then

r̃j+1 = Ãj+1(x) + 4jbn,j

n−j−1∑
k=j+1

[(2k − (2j − 1))!!−B(2k − (2j + 3))!!] bn−j,kx
k

Since B is odd and since the 2-adic valuation of the leading coefficient of Aj(x) is zero
it follows that Ãj+1(x) has degree j and that the 2-adic valuation of its leading coefficient
is zero. Moreover, the other coefficients of Ãj+1(x) are sums of rational numbers having
positive 2-adic valuation, and therefore also have positive 2-adic valuation. Now set C =
(2k − 2j + 1)(2k − 2j − 1) and observe that

C −B = (2k − 2j + 1) [(2k − 2j − 1)− (2n− 4j − 1)]

+ (2n− 4j − 1) [2k − 2j + 1− (2n− 4j + 1)]

= 2(k − (n− j)) [(2k − 2j + 1) + (2n− 4j − 1)]

= −2(n− j − k)(2k + 2n− 6j)

= −4(n− j − k)(k + n− 3j)

If we set D(k) = k + n− 3j then it follows from above that

r̃j+1 = Ãj+1 + 4jbn,j

n−j−1∑
k=j+1

(2k − 2j − 3)!!(C −B)bn−j,kx
k

= Ãj+1 − 4j+1bn,j+1

n−j−1∑
k=j+1

(2k − 2j − 3)!!D(k)bn−(j+1),kx
k

Next, we set ˜̃rj+1(x) = (2n − 4j − 3)r̃j+1(x) + 4D(n − j − 1)rj(x). If we set ˜̃Aj+1(x) =
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(2n− 4j − 3)Ãj+1(x) + 4D(n− j − 1)(Aj(x) + 4jbn,j+1 · bn−j−1,jx
j then

˜̃rj+1 = ˜̃Aj+1(x) + 4j+1bn,j+1

n−j−2∑
k=j+1

(2k − 2j − 3)!!E(k)bn−j−1,kx
k

where E(k) = (2k−2j−1)D(n−j−1)−(2n−4j−3)D(k). Observer that since (2n−4j−3)
is odd and since every coefficient of 4D(n− j − 1)(Aj(x) + 4jbn,j+1 · bn−j−1,jx

j has positive

2-adic valuation the leading coefficient of ˜̃Aj+1(x) has 2 adic valuation equal to zero while
the other coefficients have positive 2-adic valuation. Let us now simplify E(k):

E(k) = D(n− j − 1) [(2k − 2j − 1)− (2n− 4j − 3)] + (2n− 4j − 3) [D(n− j − 1)−D(k)]

= 2(k − (n− (j + 1))D(n− j − 1) + (2n− 4j − 3) [(2n− 4j − 1)− (k + n− 3j)]

= 2(k − (n− (j + 1))D(n− j − 1) + (2n− 4j − 3)(n− (j + 1)− k)

= (k − (n− (j + 1))[2(2n− 4j − 1)− (2n− 4j − 3)]

= −(n− (j + 1)− k)(2n− 4j + 1)

It now follows that

˜̃rj+1 = ˜̃Aj+1(x)− 4j+1(2n− 4j + 1)bn,j+2

n−j−2∑
k=j+1

(2k − 2j − 3)!!bn−(j+2),kx
k

Finally, we set Aj+1(x) = − ˜̃Aj+1(x)/(2n − 4j + 1) and rj+1(x) = −˜̃rj+1/(2n − 4j + 1). It
follows from above that

rj+1(x) = Aj+1(x) + 4j+1bn,j+2

n−j−2∑
k=j+1

(2k − 2j − 3)!!bn−(j+2),kx
k

= Aj+1(x) + 4j+1bn,2j+3x
j+1

n−(2j+3∑
k=0

(2k − 1)!!bn−(2j+3),kx
k

= Aj+1(x) + 4j+1bn,2j+3x
j+1gn−(2j+3)(x)

Since 2n − 4j + 1 is an odd integer the 2-adic valuations of the coefficients of ˜̃Aj+1(x) are
unaffected when passing to Aj+1(x) and therefore Aj+1(x) satisfies the conditions of the
claim made at the beginning of the proof.
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