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Abstract

In the present article, we establish new evidence in support of the Strong Factorial Conjecture
of Edo and van den Essen [5] by proving it in several special cases. In particular, we establish
in Theorem 3.3 that powers of linear forms satisfy the conjecture and in Theorem 3.10 we
also establish that sums of prime powers of variables also satisfy the conjecture. In addition,
Theorem 3.12 is a novel result which shows how to build new examples of polynomials
satisfying the conjecture from known examples. Finally, we we use the theory of resultants
and Newton polygons to study the case where F' is the sum of two monomials and prove the
conjecture in some special cases and provide many partial results for others.
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1. Introduction

A problem of growing interest related to the famous Jacobian Conjecture (see [12] for
a detailed account of this problem) is the Factorial Conjecture introduced in [13]. If true,
the result would provide substantial evidence in support of Zhao’s Image Conjecture [14,
Conjecture 1.3] which is known to imply the Jacobian Conjecture [14, Theorem 3.7].

Recently, in [5], Edo and van den Essen discovered a connection between the Factorial
Conjecture [13] and the Rigidity Conjecture of Furter [6] which is known to imply the Length
2 Polydegree Conjecture [6, Theorem 3|. As a result, Edo and Essen formulated the Strong
Factorial Conjecture [5].

It is precisely because of its links to some of the most outstanding problems in the field
of Affine Algebraic Geometry (those mentioned above) that the Strong Factorial Conjecture
merits an investigation.

In Section 3 we prove that the Strong Factorial Conjecture holds in several special cases.
In particular, we establish the conjecture for powers of linear forms and sums of prime powers
of variables. In addition, we provide a novel result which shows how to build new examples
of polynomials satisfying the conjecture from old. Finally, using the theory of resultants
and Newton Polygons we study the conjecture for polynomials that are the sum of two
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monomials by first showing how the problem can be tackled by studying the solution sets of
certain systems of diophantine equations.

1.1. Notation

The following notation and conventions will be in effect throughout the rest of the article:

1. Given a positive integer m we denote by C™! = C[Z1,..., Z,,] the C-algebra of com-
plex polynomials in m variables. Unless otherwise specified, Z denotes the vector
(Z1,. ooy Zm).

2. Given a = (o, ..., ) € N™ we set |a| =Y, a;. We also denote by Z* and a! the
m
products [ Z and ]}, a;!, respectively.
i=1

|
3. Given o € N™ we denote by (‘O‘l) the multinomial coefficient. That is, ('g‘) = M

o al

4. For any m-tuple H = (Hy,...,H,,) of polynomials H; € C" and any o € N™ we
write H* to denote the product [[", H/".

5. 1f G = (Gy,...,Gy) is another m-tuple of elements of C™ then we write H * G to de-
note the m-tuple obtained by componentwise multiplication, i.e., HxG = (H G4, . .., HpGp).

6. Given F' € CI" we denote by N(F) the number of monomials that appear in F with
a nonzero coefficient.

7. Given a field K and a subset S c€ K™ weset Z(S) = {\ € K™ : F(\) =0 for all F € S}.

1.2. The Strong Factorial Conjecture
Let us recall the definition of the factorial map (see [13, Definition 1.2]):

Definition 1.1. We denote by £ the C-linear functional on CI™ defined by £ (Z¢) = al.

Remark 1.2. If we let D,, denote the non-negative m-tant Z; > 0,...,Z,, > 0 in R™ then
for F € CI™ £(F) can be realized as

ﬁ@j:/ Fe ?ldz

where dZ = dZy -+ dZy, and |Z| = Zy + -+ + Zpy.

Remark 1.3. Let (-,-) denote the Hermitian inner product defined on CI™l by
(EG%3/<N@GMW”%Z

We note that this restricts to a positive definite form on RI™. In particular, we have
L(F*™) = (F* F") for all n > 1 and for all F € R™. Moreover, £(F?") > 0 for all
n > 1if F € R\ {0}.



Remark 1.4. The map £ is not compatible with multiplication. However, if F,G € CI™
are two polynomials such that there exists an I C {1,...,m} such that F' € C[Z; : i € ]
and G € C[Z;: i ¢ I] then L(FG) = L(F)L(G).

We also recall the Factorial Conjecture [13, Conjecture 4.2].

Conjeture 1.5 (Factorial Conjecture). Let m be a positive integer and F € C™. If £ (F™) =
0 for alln > 1 then F = 0.

The conjecture remains open in all dimensions greater than one. To give a stronger
version of this conjecture, the authors of [5] introduced the following subsets of CI"!:

Definition 1.6. For all positive integers n we set
Fr={FeCM™\{0}|3n<k<n+N(F)-1with £ (F¥) £0} u{0}.
We define the strong factorial set as:

Fr=Fr

n>1
We now recall the Strong Factorial Conjecture:
Conjeture 1.7 (Strong Factorial Conjecture). F™ = CI™ for all positive integers m.

Remark 1.8. A non-zero ' € CI™ belongs to the strong factorial set if and only if for each
positive integer n there exists 0 < i < N (F) — 1 such that £ (F") # 0.

The conjecture remains open in all dimensions.

1.3. The Strong Fuactorial Conjecture and Diophantine Eqautions
In this section we fix an integer d > 2 and monomials M, ..., M, € C™. In order
to study Conjecture 1.7 we ask whether there exists a non-zero polynomial of the form
d .
F = Y \Z; and a positive integer n such that one of L(F"™), 0 < i < N(F) —1, is
i=0
non-zero. If we we think of A\{, ..., \; as variables then for every positive integer n the image
L (F™) is a homogeneous integer polynomial in the variables A, ..., Ay of degree n.

Definition 1.9. Given a positive integers n > 1, monomials My,..., M, € Clm and a
d

non-zero multi-variate complex polynomial of the form F'= F = " \;Z; we set
i=0

Spp={L(F")|0<i<n+NF)—1} CZN| N\ #0].

It follows from the preceeding remarks that F € F,* if and only if Z (S, r) = {6} By
the Nullstellensatz, Z (S, ) = {0} if and only if S, » generates a homogoencous ideal of
Q[N | Ai # 0] whose radical is equal to the maximum homogeneous ideal.

The previous paragraph shows that Conjecture 1.7 can be viewed as an assertion about
the incompatibility of certain systems of diophantine equations arising from the factorial
map. It is this viewpoint that made it possible to obtain the main results of this article.
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2. Preliminaries

In this section we collect some basic facts and tools that will be used in the proofs of
our main results. Both the resultant and Newton polygon have been valuable tools for the
studying Conjecture 1.7 in the case F' is a sum of two monomials.

2.1. Univarite Resultant
Throughout this section R will denote a UFD and f, g € k[z] will denote polynomials of
degree t > 0 and s > 0, respectively. Write f and g as

f=aa"+ - +a

\ (2.1)
g =ba" + - +b

For any | > 0 let S; denote the R-module of polynomials of degree at most [. The
Sylvester matrix of f and g, denoted by Syl(f,g,x), is the matrix of the linear trans-
formation S;_1 € S;-1 — Ssy¢—1 defined by (A, B) — Af + Bg with respect to the or-
dered bases {(z"~1,0),...,(1,0),(0,z™'),...,(0,1)} and {z™*~1, ... 1}. For example, if
f=1+2z+32? and g = x + 323 then

Syl(f,g,z) =

O O = DN W
O = N WO
=N w o o
OO = O W
O = O WO

Definition 2.1. Given f and g as in (2.1) the resultant of f and g with respect to x, denoted
by Res(f,g,z), is the determinant of Syl(f, g, z).

The following facts about the resultant are well known; see, for example, [3, 7].
Proposition 2.2. Let f,g be as in (2.1). Then:
(1) Res(f,g,2) =0 if and only if f and g have no irreducible factors in common.

(i) Denote by k the algebraic closure of the quotient field of R. If cv,...,as € k and
B1,..., B € k are the roots of f and g, respectively, then

Res(f, g,x) = ab; H (i = Bj).-
2
(ZZZ) R,GS(f, 9, $) = (_1)St Res(g, f7 'I)

(iv) Suppose s > t. Write f = qg + r for some polynomials q and r with deg(r) = u < t.
Then Res(f, g,z) = b; “Res(r, g, ).

(v) Res (2!, g,2) = g(0)" for all 1 > 1.
(vi) If h € R|z| then Res(fh,g,x) = Res(f,g,x) - Res(h,g).
(vii) If X € R* then Res(f(A\x), g(Ax),x) = A Res(f, g, x).



2.2. The Newton Polygon

Let f(z) = Y i, ax’ € Z[x] with aga, # 0. Let p be a prime. For an integer j # 0, we
denote by v,(j) the exponent in the largest power of p dividing j. We define v,(0) = 4o0.
Let S denote the set of points (¢, 1, (a;)), for 0 <i < n, in the extended plane. The Newton
polygon of f with respect to the prime p is the polygonal path along the lower edges of the
convex hull of S from (0, v, (ag), and the right-most edge has (n,v, (ag). The endpoints of
every edge belong to S, and each edge has a distinct slope that increases as we move along
the polygonal path from left to right.

The following theorem, due to G. Dumas [4], connects the Newton polygon of f(z) to
the Newton polyogns of it’s factors.

Theorem 2.3. Let g(z),h(z) € Zlx] with g(0)h(0) # 0, and let p be a prime. Let k =
vp(g(0)h(0). Then the edges of the Newton polygon for f(x) = g(x)h(x) with respect to p
can be formed by constructing a polygonal path beggining at (0, k) and using translates of the
edges in the Newton polygons for g(x) and h(z) with respect to the prime p, using exactly one
translate for each edge of the Newton polygons for g(x) and h(x). Necessarily, the translated
edges are translated in such a way as to form a polygonal path with the slopes of the edges
increasing as we move left to right.

The above theorem yields the following useful corrollaries that we will use later on (the
proofs of which can be found in [9]).

Corollary 2.4. Let f(z) = Y1, ax’ € Z[z] with apa, # 0, and let p be a prime. If the lat-
tice points along the edges of the Newton polygon of f(x) with respect to p are (a1,by), ..., (a.,b;)
and d; = a; — a;_q for 1 <i <, then the set {1,...,r} can be written as a disjoint union of
sets Sy, ..., S; where t is the number of irreducible factors of f(x) (counted with multiplic-
ities) and the t numbers > d,, for 1 < i <'t, are the degrees of the irreducible factors of

u€eS;
f(x)2

Corollary 2.5. Let f(x) = > ja;x" € Z[z] with aga, # 0, and let p be a prime. If d is a
positive integer that divides the denominator of each slope (in lowest terms) of the Newton
polygon of f with respect to p then d divides the degree of each irreducible factor of f.

Corollary 2.6. Let f(z) = > ja;x’, g(z) = Zizo bix® with aga,, bob; # 0, and let p be a
prime. If the slopes of the Newton polygon of f(x) with respect to p are distinct from the
slopes of the Newton polygon of g with respect to p then f(x) and g(x) are relatively prime.

Remark 2.7. The above theorem and its consequences hold in much more generality. For
example, the function n, can be extended to Q and therefore Z[x] can be replaced with Q|x]
in the above results. Moreover, Z can also be replaced by any UF'D.

%It is important to consider all lattice points along the edges and not just points of the form (i, v, (a;)).



3. Main Results

In this section we present new evidence in support of the Strong Factorial Conjecture
by proving it in several special cases. First, we show that powers of linear forms satisfy the
conjecture. As a consequence, we extend this result to all linear polynomials. Secondly, we
show that sums of prime powers of the variables (each exponent involves the same prime)
also satisfy the conjecture. Thirdly, we prove a novel result which shows one instance of
how to uild new examples of poynomials satisfying the conjecture using known examples.
Finally, we study the conjecture for polynomials that are the sum of two monomials. Using
the theory of resultants and Newton polygons we obtain several partial results and indicate
how one might solve these cases completely.

3.1. Powers of Linear Forms

In this section we consider the following general polynomial:

G(Z)=) _NZ (3.1)

where A = (Aq,..., \,) € C". It was shown in [13] that G" satisfies the Factorial Conjecture
for all positive integers r and m. In the present article, we extend this result by showing
that G" satisfies the Strong Factorial Conjecture for all positive integers r and m.

Let x = (x1,...,2,) be m commuting variables. The following two families of polyno-
mials will be of use to us.

Definition 3.1. Let K be a field. The complete homogeneous symmetric polynomial
hpm(x) of degree n > 0 in m variables is defined by

P () = Z ¢

aeN™ |a|=n
When n = 0 it should be understood that hg,,(z) = 1.

Definition 3.2. Let m be a positive integer and let K be a field. For 1 < k < m the kth
elementary symmetric polynomial in m variables over K is given by

o= > I

1<t << <m j=1
When k = 0 we set g, (z) = 1.

The polynomials h,,,,(z) and eg,,(z) are related to each other in the following way:

Let U be an indeterminate and set P(U) = [[ (1 — 2;U) € (K[z])[U]. Then P(U) has a
=1
mulitplicative inverse belonging to K[z|[[U]] (since its constant coefficient is equal to 1).



Furthermore, we have

PU) = (~1fepm(x)U* (3.2)
PU)" =) hym(ax)U" (3.3)

From the equality P(U)P(U)~' = 1 one obtains the following relation which holds for all
n > 1 (with the caveat h,,,, = 0 for n < 0).

Z(_Dkek,mhn—k,m =0 (34)
k=0

Theorem 3.3. Let G be given as in (3.1), and set F' = G" where r > 1. If there exists
n > 1 such that L (F"™) =0 for each i € {0,1,...,m — 1} then F = 0.

Proof. For any n >0 we have G" = Y (1) Z*\*. Thus

|al=n

L(G") = |aZ:n (Z)@!Aa
=n! Z A
jod=n

= 0By (N) (3.5)

Returning to F' = G" we see that if £ (Fl) =L (G“’) = ( for some positive integer [ then
hyrm(A) = 0. Therefore, to prove our claim, it suffices to show that the polynomials Ay, (),
R(ns1)rm () - - - Rngm—1)r,m(2) have no nontrivial common zeroes (over C) for all n > 1. This
is the content of Proposition 3.4. O

Proposition 3.4. Let m > 2 be a positive integer and let K be any field. For everyn,r > 1
the set of polynomials
{hirm:n <i<n+m—1} have no nontrivial common zeroes.

Proof. Fix integers n > 1. Set A = KJz| and let P(U) be the polynomial defined in (3.2).
Additionally, given A € K™ and H(U) € A[[U]] let Hy(U) = ev (H(U)), where evy: A — K
is the evaluation at A extended to A[[U]] in the obvious way.

Suppose r = 1, and fix n > 1. Equation (3.4) implies the following: If A is a common root
of hjm for n < i <n+m—1 then h;,,(A) =0 for all i > n. Thus P\(U) € (K[U])" = K*.
Therefore \; = 0 for 1 < ¢ < m which is what we wanted to show.

Now suppose r > 1. First, we will show that the set {hj.m,: k > 1} satisfies a recursive
formula similar to the one found in Equation (3.4). For each 0 < i < r —1 let B; =

> higyim(x)T™ € A[[UT]]. Tt follows from Equation (3.3) that
k>0

PU)'=By+BU+---+B,_,U .
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m

Next, we define Q(U) = [[ (1 —z[U") € A[U"]. A straightforward calculation then shows
i=1
that B
QW)/PU)=]] (Z xi’Uj> € AlU]
i=1 \j=0
Furthermore deg(Q(U)/P(U) = mr — m.
Write Q(U)/P(U) = Qo+ QU + -+ -+ Q,—1U™* for some Qq, Q1,...,Qr—1 € A[U"]. We

now have the following equality:
r—1 r—1
Y QBU =QU)/PU) =) Q;U’ € AU] (3.6)
=0 j=0

Since QB;, Q; all lie in A[[U"]] for 0 < j < r — 1 there is neither cancellation amongst the
summands of the left hand side of (3.6) nor is there cancellation amongst the summands
of the right hand side, and therefore QB; = Q; € A[U"] for each j. Expanding Q(U) we
obtain Q(U) = Y1 ((=1)e;(a")U7". Write Qo = go + U" + - - - + qU" for some ¢; € K[z],
and some [ € N. Note that Ir < deg(Q(U)/P(U)) = mr —m implies that | < m. Equating
Qo to QB yields the following recursive relation which holds for all £ > 1:

) k<l
hi, — €1 (xr) Pgr—i + -+ + (_1)mem (I )hkr—mr = { gk Lk ; l (3'7)

Now suppose A is a common root of {h..,: n <i <n+m — 1}. Equation (3.7) implies
that hg.(A) = 0 for all k > n+m > [, and as a result (By), € K[U]. Note that (By), # 0
since it has constant coefficient equal to one. Finally, we consider the equality

Q)\ = Q)\ (P)\_lp)\) = (Q)\ (BO))\ 4+ 4 Q)\ (Brfl))\ Urfl) P)\

Recall that there is no cancellation amongst the summands of

Q)\ (BO))\ +-+ Q)\ (Brfl))\ Uril

and hence the sum has degree at least the degree of @ (By),. Since (By), is a nonzero
polynomial it follows that the above sum has degree at least the degree of . This shows
that the degree of P is equal to zero, i.e., Py = 1. So once again ex(A\) =0 for 1 < k < m,
and hence A = (0,...,0).

0

Remark 3.5. The problem of describing the subsets A C N, of size m such that the set of
polynomials h, ,(x) with a € A has no common nontrivial zeroes was considered by Conca,
Krattenthaler, and Watanabe in [2]. Proposition 3.4 is a new example of such a subset A.

The following is an immediate consequence of the preceeding proposition.

Corollary 3.6. Let K be any field, P(U) € K[U]\ K a polynomial with constant term 1,
deg(P) =m > 1, and let P~ (U) = 1+ a1U + ayU? + - - - be its multiplicative inverse in the
power series ring K[[U]]. For each n,r > 1 there exists 0 < i < m — 1 such that ag:), 7# 0.
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Proof. We write K for the algebraic closure of K. Since the constant term of P is equal to
1 there exists A € K\ {(0,...,0)} such that P(U) = [T, (1 = A\;U). It now follows that
P U) =322 him (MUY, and therefore a; = hj,(N). Now apply the previous proposition
to conclude that for all n > 1 there is some integer i € [n,n +m — 1] such that a; # 0. O

We conclude this section with the following result.

Theorem 3.7. Let G be as in (3.1) and set F' = \g+ G where Ny € C. If there exists n > 1
such that L (F™") =0 for each i € {0,1,...,m — 1} then F = 0.

Proof. 1f \g = 0 then we are done by Theorem 3.3. So we assume A\g # 0. Set f,, = L (F™) /n!,
n > 1, and let A = (Aq,..., ). Without loss of generality we may assume each \; # 0.
Using Equation (3.5) we calculate f,:

Zk'n_ Gn k)/\k

DI O

Note that N (F) = m + 1, and so we must show that one of f,,..., fnim is n0t zero for all
n>1 Fixn>Tlandlet g =" (=1 erm(N) furm—r and write g = > 270" gpAE. Then

1
= ]{_ Z ejm n+m—k—j,m()\)7 0<Ek<n+m
7=0

Using Equation (3.4) we obtain g = 0 for 0 < k < n+m — 1 and gpym = 1. Thus
g = A""/(n+m)! # 0. Since g is a C-linear combination of f,, ..., foim it follows that
one of f,,,..., fanrm is not zero. O]

3.2. Sums of Prime Powers

In this section we fix a prime p € Z. Let A = (Ay,...,A\n) € C™, 8 = (B1,...,0m) €
(N, )™ and consider the polynomial

G(Z) = M2 4 028 o A 2P (3.8)

Recall that given f € ZI™ we denote by f the image of f in F,[)m] under the canonical map.
The following two lemmas will be important in the proofs that follow.

Lemma 3.8. If k and | are positive integers then (p'k)!/ (p"*k!) € Z where
a=(p'—1)/(p—1). Moreover, (p'k)!/ (p**k!) = (—1)** mod p.



Proof. We first consider the case [ = 1. Set Q(t) = [['—, (pt — i). Then

(pk)! = pkQ(k)(pk —p)Q(k — 1) --- pQ(1)
k k
= Hpj : HQ(]’)
k
= p"k! HQ(J’) (3.9)

So (pk)!/ (p*k!) = H?:l Q(j) € Z. Clearly, Q(j) = (—1)*"}(p—1)! mod p for all integers j.
Noting (—1)?"! =1 mod p for any prime and appealing to Wilson’s Theorem we see that
Q(7) = —1 mod p for all integers j. Thus H§:1 Q(j) = (=1)* mod p which is what we
wanted to show.

For the general case we define P(n) = [[;_, Q(j) where n € Z. We also set k; = 'k,
1 <7 <. Applying the [ = 1 case we obtain

(k)! = (Pkjs1)! = PP kP (kjn), 0<j<i—1 (3.10)

It follows from Equation (3.10) that
l I
(P'k)! = p== Rk T P (k)
j=1

Now ky =k and Y k; = k>, p'™7 = ka, and therefore (p'k)!/ (p*k!) = [T._, P (k;)
is an integer. Finally, since P (k;) = (—1)® mod p it follows that Hé’:l P (kj) = (—1)k
mod p. O]

Lemma 3.9. Suppose I is a proper homogeneous ideal of ZI"™ . If Zg, (I) = {(0,...,0)} then
Z5(1) = {(0,....,0)}.

Proof. By the Projective Nullstellensatz we must show that I ), Q contains all monomials
of degree d for d >> 0. Let V; C ZI"™ be the Z-module of d-forms. Let I; be the Z-module
of d-forms belonging to I, i.e, I; = VN I. Note that I; and Vj; are finitely generated.

Furthermore, we have that Z™ = @V, and I = @ I;. Since ZF,,(D = {(0,...,0)} it
=0 d=0

d=
follows from the Nullstellensatz that
Va=1;+pVy d>>0 (3.11)

Now let S =Z\ (p), and denote by m the maximal ideal of the local ring S™'Z. Localizing
(3.11) at (p) yields S™'V; = S7'; + mS™V; for d >> 0. Thus, S~'V; = S, for
d >> 0 by Nakayamas Lemma. Since V;& Q is a further localization of S~V we obtain

Vd®Q:Id®QfOI"d>> 0.
O
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Theorem 3.10. Let G be as in (3.8) and set F' = G", r > 1. If there exists n > 1 such that
L(F") =0 for0<i<m—1 then F =0.

Proof. Given v = (71,...,9m) € Z™ set p* = (p",...,p"). For any n > 0 we have
G = Y ()77 2\ where p’a = (p™ay, ..., pP ). Thus:

|a|=n
L(Gn Pa)!
(G") _ 3 (r7a) \o
n! = al
Let © = (z1,...,%,) be m commuting variables. For each n > 0 define
Bo)!
(p Oé). «
|a|=n

Then the A € C™ for which £(G") = 0 are exactly the zeroes of f,(x). Let I, be the
homogeneous ideal of Z[z] generated by { f(ntir(z) : 0 <i <n+m—1}. Our claim will be
proven if we can show that Z¢(1,,) = {(0,...,0)} for each n > 0.

Using Lemma 3.8 we know that (pﬁjaj)! = po‘jbjaj!C’aj where b; = (pﬁf — 1) /(p—1) and
C,, is an integer congruent modulo p to (—1)%b%. So if we set 74 = (a1by, ..., Qmby,) then

(pﬁa)! = phelalC, (3.12)

where C, = [[J_, Co,;. Since each C,, = (—1)% mod p it follows that C, = (—1)he
mod p. i

Let f = (by,...,bm), # = (—p) Pz, and for each n > 0 define g,(z) = f, (&). If J, is
the homogeneous ideal of Z[xz] genearted by {gmra-(z) : 0 <i <n+m — 1} then Z¢ (J,) =
{(0,...,0)} if and only if Z¢ (Z,) = {(0,...,0)}. We will show the former. Let us first
simplify the expression for g,. Using Equation (3.12) we calculate

Far)! N
i) = LD ()
- Z (—1)|%|—(pﬂa)!:p°‘

o] p|’Ya|a!
al=n

el
_ _hell_*a o
o z_:( 1)7 p|'Ya|04! t
_ (—1)helcy 2 (3.13)

laj=n

Since C, = (—1)P=l mod p it follows that g,(z) = > lal=n T = hu(z). In particular, we
have J,, = <hm, ce h(n+m_1)r>. It follows from Proposition 3.4 that Z5 (7n) ={(0,...,0)}
and hence Z¢ (J,,) = {(0,...,0)} by Lemma 3.9.

0
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We end this section with the following partial result.

Proposition 3.11. Let p > m be a prime integer, and let F = \g + G where G is given in
8.8. If L(F"7) =0 for somen <p—m and 0 < j <m then F = 0.

Proof. Note N(F') =m+ 1. For n > 0 we have

n

n n n—
LFY) =) (k)E(G )
k=0

Let y and x = (z1,...,z,,) be indeterminates. For each | > 0 define

oo - ¥ (D) 0

|af=l

where § = (p — 1)7! (pﬂl —1,...,p — 1). Note that I!f; ()\0, (—p)fB/\> =L (Fl) for all
[ > 0. So our claim will be proven if we can show that f,,..., f,1, have no common
nontrivial solutions over C. i

It follows from Lemma 3.8 and the proof of the previous theorem that g, (( —p) _591;) JUl €

Z|z] and g, (p_5x> /' = hy(z) mod p where h,(x) is defined in 3.1. Therefore

n+j

n—}—] y7 Z k" 7Z+j k mOd p

for 0 < j < m (Note that 1/k! € F, since k < n+ m < p). Appealing to the proof of
Theorem 3.7 we obtain the following:

n-+m

Fuvanl @) = 1@ Fram (02) -+ () em(@Ful,0) =

If (Mo, A) € F;Hl is a common root of f,,..., f,.,, then A\g = 0 by the above equal-

ity. So 0 = ?nﬂ (Ao, A) = hpyj (A) and therefore A = (0...,0) by Proposition 3.4. Thus
Foseois +m have no nontrivial common zeroes in Fp and therefore f,,..., f,1m have no
common zeroes over C by Lemma 3.9. O]

3.3. New Examples from Old

In this setion we ask whether there is a way of building up new examples of polynomials
satisfying the conjecture from already known ones. We detail detail one such way. Remark
1.4 is used in the proof of the following theorem.

Theorem 3.12. Set U = U,. Suppose F € CI™ satisfies the Strong Factorial Conjecture.
Then G = AU + F also satisfies the conjecture.
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Proof. Let N = N(F). Then N(G) = N +1. If we set f, = L (F?) /n! and g, = L (G") /n!,
n > 1, then

1 < /n
n! prd k
— - 1 L F?‘L—k k Ak
B (n — k)!k! ( %)
k=0
n 1 .
=2 (=R - (F) £ U)X
k=0
= fn—k)\k
k=0
It easily follows from above that

for each n > 1. Now suppose that £ (G") = 0 for some n > 1 and 0 < ¢ < n+ N. Then
Gnti = 0 for 0 < i < N. It then follows from Equation (3.14) that f,.; =0for 1 <i < N,
and therefore £ (F?) = 0 for n+1 < j < n+ N. Since F satisfies the Strong Factorial
Conjecture it must be the case that F' = 0. So G = AU and since £ (G") = 0 we must have
A=0. ]

Corollary 3.13. Suppose L € Cll .= C[Uy,...,U)] is a linear form and F € CI™ satisfies
the Strong Factorial Conjecture. Then G = L + F' also satisfies the conjecture.

Proof. By induction on [ and the previous Theorem. O]

3.4. Sum of Two Monomials

Throughout this section x will denote a single variable, rather than a vector of variables.
In this section we study Conjecture 1.7 in the case F' is of the form A\ M; + Ay M, where
My, M, € C"™ are monomials. In order to show that F satisfies the conjecture we must show
that one of £ (F™), L (F™) is nonzero for all n > 2. Since the conjecture obviously holds for
monomials, we may assume that A\;, Ay # 0. Furthermore, since £ (F") is homogeneous in
A1, A2 we may assume, without loss of generality, that \; = 1. For each n > 0 we define the
following polynomial:

falz) =) (Z)c (M7k My o*. (3.15)
k=0

Then f,(X2) = L(F™). From this we see that F' satisfies the conjecture if and only if
fn(x), fn_1(z) have no common zeroes (over C) for all n > 2.

One way to attack the problem is to use Zeilberger’s algorithm (see [11]) to find a re-
currence relation between f,(x) and f,_1(z). The algorithm has been implemented in both
Mathematica and Maple. For example, after downloading the fastZeil package (cf. [10]) for
Mathematica, the command

13



Zb[Binomial [n,k] (2 k)! x"k,{k,0,n},n]:
SumCertificate [%]

will produce a recurrence relation for the polynomials f,(z) = Y- (7)(2k)!z*. In some special

cases, the relation obtained by Zeilberger’s algorithm can be used in a very straightforward
manner to show that f,, and f,_; have no common zeroes.

Proposition 3.14. For alln > 2 the polynomials f,(x) and f,_1(x) have no common zeroes
in the following cases:

1.

A N

F=1+)7

F =27+ )7
F =7} + \Z}
F=27+ )27,
F =27} + 237,

Proof. We proceed case by case.

1.

In this case we have F™ = > (1) ZfAF which gives f,(z) = > (n+'k),wk Using Zeil-
k=0 k=0

berger’s lgorithm we obtain the relation: f,(z) = nxf,—1(z)+ 1. If A € C is a common
root of f,, and f,_; then 1 = 0 which is a contradiction.

. In this case we have F" = Y} (¥)Z7"*AF which gives f,(z) = 3 (})(2n — k)!z*.
k=0

Using Zeilberger’s We have the following relation:
fo(@) —2n(2n — 1) f_1(2) — n(n — )2 fr_o(x) =0

Suppose A € C is a common root of f, and f, ;. Since f;(0) # 0 for all [ € N
follows that f,_o(\) = 0. Changing n to n — 1,...,2 in the above recurrence relation
shows that A is a root of f,, fn_1,..., fo. But fo is a nonzero constant and we get a
contradiction.

In this case we have F" = > Z{"*A* which gives f,(z) = 3 (})(3n — k)!z*. Zeil-
k=0 k=0
berger’s algorithm produces the relation:

(ZE —9n+ 12)fn(x) _pn(x)fn—1($> + Qn(x)fn—2<x) =0

where
pu(r) = 2% — 3(3n — 2)2* + (27Tn* — 27n + 6)x — (243n® — 567n* + 378n — 72)

and
¢n(7) = 2(2n — 3)n(n — D)a*(z — 3(3n — 1))

14



Suppose A is a common root of f, and f,—;. Then ¢,(A\) = 0 or f,_2(A) = 0. If
gn(A) =0 then A =0 or A = 3(3n —1). Since f;(0) # 0 for all I, A\ cannot be equal to
zero. Since n or n— 1 is even it follows from Corollary 7?7 that A € C\ R and therefore
A #3(3n—1). So f,—2(A\) = 0. Replacing n with n—1,...,2 in the recurrence relation
and repeating the same argument as before shows that fi(A\) = 0 for 0 < [ < n.
However, fy is a nonzero constant and we get a contradiction.

4. In this case we have F™ = >} (1) Z7" " ZEN* which gives fu(z) = Y o= k),(2n

k)!lz*. Using Zeilberger’s algorithm we obtain the relation: (z —1)f,(z) — n?z*f,_1 =
n(2n—1)!(x—2). If A is a common root of f,, and f,,_; then A = 2. But this impossible
since f,(2) > 0 for all n.

5. In this case we have F™ = Y} (1) ZP"FZENF which gives f,,(z) = Y. —%-(3n —

k)lz*. Using Zeilberger’s algorithm we obtain the relation: (z — 1)2f,(z) — 2n%(2n —
D3 fo1 = (3n — 2)Inp,(z) where p,(x) = (4n — 2)x? — 5(3n — 1)z + 3(3n — 1). If )
is a common root of f,, and f,_; then A is also a root of p,. The discriminant of p,
is equal to 81n? — 30n + 1 which is positive for all n > 0. Therefore A € R*. Since n
or n — 1 is even this would contradict Corollary ??. So f,, and f,_; have no common
Zeroes.

O

Let us now turn our attention to F' = Z7* (A + Ao Z1) where A\, Ay € C*. From the above
Proposition we know that F' satisfies Conjecture 1.7 for m = 0,1,2. Once again assuming
A1 = 1 we have the following partial result for the general case.

Proposition 3.15. Let F' = Z7* (1 + A\Z,) where m > 3. If m 1 ((n — 1)) then L (F™) #0
or L(F™ 1) £0.

Proof. We have F™ = Y7 (1) Z™*AF and so £(F") = Y (1) (nm + k)!IAF. For each
k=0

n m+ k)|
n > 0 define a polynomial f,(z) by setting f,(z) = > (Z)w
=0 (nm)!

z*. We have f,(\) =
L (F™) /(nm)!. Note that f,(z) € Z[z]. Introduce a new variable ¢ and for each k > 0 define

k
Qni(t) = [ (nt + j). For each n > 0 we define a bivariate polynomial F),(¢,x) € Z[t, x] by
j=1
setting

W(t, ) 1+Z( )an

Observe that F,,(m,z) = f,(x). For each n > 2 we wish to compute the resultant of F, (¢, z)
and F,,_1(t, ) with respect to the variable . It is for this reason we define, for each n > 2,
the polynomial R,(t) = Res(F,(t,z), F,_1(t,z),x). It follows from the definition of the
resultant that R, (t) € Z[t]. Also, since F,(m,x) = f,(x) it follows from the determinant
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formula for the resultant that R,,(m) = Res (f,, fn—1). So using Proposition 2.2 we see that
F satisfies the SFC if and only if R,(m) # 0 for all n > 2.

Let p,(t) = (nt + 1) and let R = Z[t]. Since p,, is linear and primitive it is an irreducible
elmement of the ring R, which is a UFD. Observe that p, does not divide the constant
coefficient of F,, (¢, z) when regarded as an element of R[x]. Also, p,(t) divides the coefficients
of Qn for 1 <k <n, but p? { Q. Thus, by applying Eisensteins criteria to the reciprocal
polynomial F¥(t,x) = 2"F, (t,1/x) we see that F,(t,z) is an irreducible element of R[t].
Therefore F,,(t,x) and F,_;(t,x) have no common factor over Q(¢) by Gauss’s Lemma. So
it follows from Proposition ?? that R, (t) # 0.

Since R, (t) € Z[t] \ {0} we know that R, (m) # 0 if m { R,(0). Therefore we calculate

R, (0). Since the determinant commutes with the evaluation map we have

n !
R, (0) = det (Syl (F.(0, ), Fl,—1(0,2))). Now @Q,x(0) = k! and so F,(0,z) = > ﬁx
k=0 (T — V)
Since deg, F},(0,2) = n for each n > 1 it follows that R, (0) = Res (F,,(0,z), F,,_1(0,x)) for
each n > 2. Next, a straightforward calculation shows that F),(0,z) = nzF,,_1(0,z) + 1. It

now follows from part (ii) of Proposition 2.2 that

k

R,(0) = Res (F,,(0,2), F,,_1(0,2)) = ((n — 1)!)" Res (1, F,,_1(0,2)) = ((n — 1))".
So R,(0) #0if m+t ((n—1)H" O
The above method can also be applied to other polynomials to obtain similar results.

Proposition 3.16. Let F = Z" (Zy + AZ1Z3) where m > 0. If m 4 (n!))"~! then L (F™) #0
or L(F™ 1) £ 0.

Proof. Suppose n > 0. We have F™ ="} (}) Zpmtk zu=k Tk Nk which gives

n

cFEy=3" (Z) (n — k)l (nm + k)INF

k=0

=n! Z(nm + k)N

k=0

We define f,,(z) = Y1 _o(nm + k)lz* and F,(t,2) = 1+ >}, Qui(t)z" where Q,; was
defined in the proof of Proposition 3.15. Note f,(A) = 0 if and only if £(F™) = 0. Also
F.(m,z) = fu.(x)/(nm)!. Now, like in the proof of the previous proposition, set R,(t) =
Res (F,, F—1,2). Then R,(0) = Res(gn(2), gn—1(x),x) where g,(z) = >__,klz*. Since
Gn = gn—1 + nlz™ it follows from Proposition 2.2 (7ii) that

R,(0) = Res (nlz", gp_1,2) = (n!))" .
If m 4 (n!)"! then R,(m) # 0 and therefore f, and f,_; have no common zeroes. O

Proposition 3.17. Let F = (Z125)" (Z1 + A\Zs) where m > 0. If l,n > 0 are such that
ged(l+1,n+1) =1 and if m 1t (I1)"(n!)! then L (F™) #0 or L (F') # 0.
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Proof. Suppose n,l > 0 satisfy the hypothesis. For any s > 0 we have

S

S S Sm-—rSs— sm
F :Z(k>zl ok gsmth \F

k=0

and therefore .

L(F)=Y" (Z) (sm + k)l(sm + s — k)INE.

k=0

Let Qsx(t) be the polynomial defined in the proof of Proposition 3.15 and for each s > 0

define Fy(t,z) = ];:)(Z)Qs,k(t)Qs,s—k(t)xk (here we define ;9 = 1). Then Fy(m,\) =
L (F*) /((nm)!)% If we set R(t) = Res(F,(t,x), Fi(t,z),x) then R(m) = Res(f,, fi, ).
Now R(0) = Res (gn(2), gi(z), z) where

g+() = Z <Z) Kl(s — k)la®

k=0
S
= sl E "
k=0

Using the definition of the resultant we see that R(0) = (n!)!(11)" Res (g, (z)/n!, gi(x) /1").
Denote each gq(x)/s! by hs(xz). We claim that Res (hy(z), hy(x),2) = 1 whenever ged(a +
1,b4+1) = 1. Note that a or b is even since ged(a+1,b+1) = 1, and therefore Res (h,, by, ) =
Res (hy, ha, ©).We proceed by induction on a + b. The base case a + b = 1 holds because
go = 1 and therefore Res (1, g1, ) = 1. Now suppose a + b = d > 2 and assume the claim is
true for all pairs (o, V') satisfying ged((a’ + 1,0/ +1) =1 and n’ +m' < d.

Without loss of generality we may assume a > b. Write a + 1 = ¢(b+ 1) + r for some
positive integers ¢, r with » < b+ 1. Now it is not too hard too see that

ho(z) = (142" + oo 4+ 2@DE) () 4 29O, (2)
Setting P = 290"tV h,_,(x) and appealing to Proposition 2.2 we conclude that

Res (hq, hy) = Res (P, hy,)
= Res (mqa’H, hy) Res (hy—1, hy)
= Res (hr_l, hb)

Since ged(a + 1,0+ 1) = 1 it follows that ged(b+ 1,7) = 1. Since a + r < d the result now
follows from by the inductive hypothesis.
Since ged(n + 1,1+ 1) = 1 we can conclude that

R(0) = (n1)!(1)" Res (ga(2)/nl, gi() /1) = (n)' ()"

Since m f (n!)"~! it follows that R(m) # 0 and therefore £ (F™) # 0 or L (F') # 0. O
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Remark 3.18. In each of the above proofs the idea was to express the resultant of f,, and
fn_1 as a polynomial in m. While we haven’t succeeded in computing this polynomial in its
entirety, we do have computational evidence that suggests that the polynomials R, (t) are
Hurwitz stable, i.e. has all of its roots in the left half-plane. If this were true then each
coefficient of R, () is positive (since R,,(0);0), and therefore F' satisfies the Strong Factorial
Conjecture.

Remark 3.19. Let us briefly return to the case F' = Z7" (1 + AZ;). In order to show F
satisfies Conjecture 1.7 it is necessary and sufficient to show that f,,(x) and f,,_; are relatively

I
prime over Q where f,(z) = Y (}) (?Z”T:ﬁ)!xk. Fix a positive integer n. By Dirchlet’s prime
k=0 '

number theorem we know that nm -+ 1 is prime for infinitely many m. For such m we can
show, using Eisensteins criteria, that f,(z) is irreducible over Q and therefore f,(z) and
fn_1 are relatively prime. It is also straightforward to show that f,,(x) {1 f.+1(z) which shows
that f,, and f,.1 are relatively prime. By fixing m and applying the same analysis one also
concludes that f,, is irreducible for infinitely many n yielding the same observations as those
preceeding. The same arguments can also be applied to F' = Z]" (Zs + A\Z3Z3). There is
ample evidence that both these polynomials satisfy the conjecture.

For the rest of the chapter we will focus our efforts on the special case F' = 1 4+ \Z]"
where m > 0. We have F" = 37 (1) (mk)!X*¥, and so we are interested in determining
whether f,(z) and f,_1(x) have common zeroes, where

fulz) = i (Z) (mk)z* (3.16)

k=0

It is not hard to show that f, 1 f,.1 for all n > 1.

By studying the Newton polygon of f,(z) we can determine values of m and n for
which f, and f,_; have no common zeroes. When m = 2 we solve the case completely.
Given a prime p, we denote by v, the p-adic valuation. Given k£ € N expand £ in base p:
k=ay+ap+...+ap'. Set s, =ay+---+ a;. The following formulas are well known:

-5

j=
_k—Sk
= p_l

(3.17)

Proposition 3.20. Suppose n = ap” where p is prime, v > 0 and ma < p. Then any
irreducible factor of fn(x) over Q has degree divisible by p".

Proof. We will show that N, (f,(x)) consists of a single edge. We do this by showing that

k
vy ((7)(mk)!) > ﬁyp((mn)!) for each 0 < k < n. Using (3.17) we compute v, ((mn)!) =
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—m“;p 1) Next, if 0 < k < n then

In the second line, the sum stops at j = r because 0 <n — k <n < p"+t'. Now

s 5] -2{ ] 5]}

7j=1
k k k - k —k
If — € Z then L;J L—JJ = 0. Otherwise LFJ + {—J = —1. It follows that

I P
vp(kD) + 370, b—fJ vp(k) — r, and thus

%<CD>:%mm—oﬂm—ky+%@m
= yy(nl) - (upm!) k) + 3

-
Jj=1

)

=1 —vy(k)

k
We now consider the quantity —u,(mnl!):
n

k k ma(p" —1)
— = — = 7
Sry((mn)) =
k
:2?@T“%“+p+ﬂ
_ mk mk
p P’

k .
For 1 < j < r write m_ = {m—f“J +a; where 0 < a; < 1. Observe that a; = 0 if and only if p? {

P

mk. But m < p and so p/ { mk if and only if p/ { k. Thus 7", — Z{ {+r—up(k)

r k
Finally, mk < p™*! since ma < p and therefore > VZ] J = z/p((mk)!).
7=1
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We have shown that the Newton polygon of f,, consists of a single edge connecting (0, 0)
to (n,ma (p"~t +---+1)). The ged of the height and width is equal to a and therefore any
nontrivial irreducible factor of f,,(z) has degree equal to ip" for some 1 < i < a by Corollary
2.5. ]

Corollary 3.21. If m < p then f,, is irreducible over Q[x] when n = p" for any positive r.
Moreover, f, and f,_1 have no common zeroes. The same is true for f, and fni1.

Proof. That f, is irreducible follows from the previous proposition. Since Q[z] is a PID and
since f, is irreducible, f, and f,_; have no common roots. Since f, does not divide f,
they do not have any common roots either. O]

P
P = Then v, ((p"k)1) = kb-+ v,(k!) by 3.8. This leads us

Suppose m = p" and set b =

to consider the polynomials g,(z) = f, (z/p’) for two reasons:

1. f, and f,_; have a common zero if and only if g, and g,_; have a common zero.

2. 1, ((Z) %) =1 (#’k),) and so g,, has the same Newton polygon as >, _, (nﬁ—'k),xk

Reason two is important because we can calculate the Newton polygon of > 7 _, (n%!k)!xk, and
hence we can calculate the Newton polygon of g,.

Proposition 3.22. Let n > 1 be given and write n = a1p™ + asp™ + - -+ + a;p™ where
0 < ap,ag,....,a;. < p—1and 0 < ny <ng < ---<mny. Setxg =0 and for1 < s <t
set x5 = a1p™ + -+ - + azp™. The x-coordinates of the vertices of N, (gn(x)) are located at
25,0 < s <t If1 < s <t then the slope of the sth edge is given by ms = %.

Proof. We write v = 1,. From the observations above we know that the coefficient of z*
n!

(n— k)

of shifting the polygon up or down, we may assume that the coefficients are in fact ﬁ

has the same p-adic value as Since multiplying g, by a constant has the effect

Using Equation (3.17) we calculate that

n—xs— (Qsp1+ - +a)
(0 — 2)!) = L

and therefore the slope of the line segment connecting the (z5_1, —v ((n — zs_1)!)) to
(s, —v ((n — x4)!)) is equal to

xs_xsl_as o pns_l
(s —25-1) (p—1)  p(p— 1).
Since ny < ng < --- < ny it follows that m; < mgy < --- < my. So all that remains to show

is that (x, —v((n — z)!)) lies on or above the edges connecting these points for each integer
1 <z < n that is not equal to some x,. Choose 1 < s <t so that x,_1 <z < x,. It follows
that n—z, <n—x <n-—x,1. Set Ax = xy,— x, and observe that n—z,_1 = n—x,+ ap™
implies Az < agp™, and therefore the base p expansion of Az has no nonzero digit past the
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p"s-place. Since ng < ngy1 and since n — x; = ag Pt 4 - -+ + pyt it now follows that the
base p expansion of n — z is obtained by concatenating the base p expansions of n — x, and
Ax. Using Equation (3.17), one can obtain that v((n — x)!) = v ((n — x,)!) + v((Az)!)

Finally, the slope between the points (z, —v((n — z)!)) and (zs, —v ((n — z4)!)) is equal
to

—v((n—2)) +r((n—2))  v((Ax))

Ax Az
B AT — Saz
Az(p—1)

Ax — Saq
Az(p—1)
this inequality, it suffices to show that Ax < sa.p"™, and this follows easily from the fact
Az = by + byp + -+ + b, p" for some 0 < by, by,...,b,, < p— 1. From this, one can
conclude that (z,—v((n — x)!)) lies above the line connecting (zs_1, —v ((n — xs-1)!)) to
(s, —v ((n — x4)1)). O

We claim that < my, or equivalently, p™ (Ax — sa,) < Az (p" —1). To prove

Corollary 3.23. Let n > 1 and suppose m = p" for some prime p and r > 1. Then:
1. If n is divisible by p then the degree of any irreducible factor of f, is divisible by p*™.

2. If n = p' for some l > 0 then f, is irreducible. Thus f, has no roots in common with
fn_1 and it has no roots in common with f, 1

3. If n = p'q* where I,k > 0 and q is a prime satisfying p" < q then f, is irreducible.
Thus f, has no roots in common with f,_1 and it has no roots in common with

Proof.

1. In Proposition 3.22 we computed the slopes of the Newton polygon of f,,. The denom-
inator of each slope (in lowest terms) is equal to p® where s > v,(n). If g(x) is an
irreducible factor of f, then p»™ | deg(g(z)) by 2.5

2. If n = p' then p' divides the degree of any irreducible factor is divisible by p" by part
1. Therefore f, is irreducible. The second statement follows from the fact that f, is

irreducible and f,, 1 fn11-

3. Let g(z) be an irreducible factor of f,(z). Then p” | deg(g(x)) by (1). Furthermore,
n satisfies the hypothesis of 3.20 and therefore ¢! | deg(g(z)). We conclude that
n | deg(g(z)) and so f, is irreducible. The second statement follows easily.

The main result of the section is the following.

Theorem 3.24. Let F(Z,) = M\ + \oZ2. Then F satisfies the Strong Factorial Conjecture.
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Proof. We may once again assume \; = 1. Let f,(z) be the polynomials given in (3.16)
where m = 2 and let g,,(x) = f.(x/2). In order to prove our claim we must show that g, ()
and g,_1(z) have no common roots for each n > 1. Following the usual convention (cf. [§]
or [1]) we define for each non-negative integer k the double factorial (2k — 1)!! by setting

1 k=0
(2k—1)!!:{ T (2-1) k>1

j=1

(3.18)

We also set b, = nl/(n —k)! for 0 < k <n. We then have

n

gn(x) =) (2k — 1)!lb,, 2" (3.19)

k=0

for each n > 1. Note that g and g3 are irreducible by Corollary 3.23. So we assume n > 5.
We will prove the following claim:

Claim 1. For each 1 < j < n/2 there exists a rational polynomial
rj(@) = Aj(@) + 27 by 2j1 27 G241y (@)
belonging to (g, gn—1) such that the following holds:
1. deg(A;)=j—1

2. The 2-adic values of the coefficient of z* in A;(x) are positive if 0
2-adic value of the coefficient of 277! is equal to 0. In particular, A;(x

Asuming Claim 1 holds, let us prove the theorem. Suppose n is even and set j = (n/2)—1.
Then 2j =n —2,2j+1=n—1and n— (25 + 1) = 1 which yields

rj(@) = Aj(2) + 2" b n-127 g1(2)
= Aj(z) + 2" ?nl2’ (1 + )
= Aj(z) + 2" *n! (27 + 27 (3.20)

where g; was calculated using Equation (3.19). In order to show that g, and g,_; have
no common roots it suffices to show that r;(z) has no roots in common with g, since r; €
(Gns gn—1). The fact that the 2-adic value of r;(0) is positive includes the possibility that
vy (1;(0)) = oo, i.e. 7;(0) = 0. So let us first assume 7;(0) # 0. From the claim, we know
that the coefficient of z* in A;(z) has positive 2-adic value if 0 < k < j — 2 while the
2-adic valuation of the coefficient of 2771 is precisely zero. Since the 2-adic value of 2" 2n!
is clearly positive it follows that (j — 1,0) is a vertex of N,, (r;). Moreover, any edge to the
left of the vertical line z = j — 1 has negative slope. Using Equation (3.20) we see that the
only edge of the Newton Polygon of r; having positive slope connects the point (j — 1,0) to
(7 +1,n—24 1»(n!), and it has slope equal to (n — 2 + 5(n!))/2 > 1 (since n > 5). On the
other hand the slopes of N,, (¢,(z)) belong to the half open interval [0,1) by Proposition
3.22. Therefore g,,(x) and r;(x) have no common zeroes by Corollary ?7?.
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Now assume that r;(0) = 0. Choose 1 < j < j — 2 such that z* | r;(x) but " { r;(z).
Since ¢,,(0) # 0 we need only show that g, (z) and s;(z) = r;(z)/x* have no common roots.
The argument used above also works for s;(x). This time, any edge of N,, (s;(x)) to left of
the vertical line x = j — 1 — k has non positive slope, while the only edge of postive slope
connecting (j —1 —k,0) to (j +1—k,n — 24 1»(n!)) has slope greater than one. Therefore
gn(x) and s;(z) have no common zeroes by Corollary 77

Now suppose n is odd, and set j = (n—1)/2. A similar calculation to the one done above
shows that

ri(z) = Aj(z) + 2" 'nla’

Once again, in order to prove the theorem, it suffices to show that r; and g,, have no roots in
common. Assume A;(0 # 0. Condition (2) from the claim shows that N,, (r;(x)) has only
one edge of positive slope. This edge, which connects (j — 1,0) to (j,n — 1 + v,(n!), has
slope greater than 1. So once again the Newton polygon of ¢, does not have any edges with
slopes in common with that of 7;(z) and therefore the two polynomials have no common
zeroes by Corollary ??. If A;(0) = 0 we consider s;(z) = rj(z)/x* where 1 < k < j — 2 is
chosen so that =¥ | r;(z) but 2" { r;(x). The same argument shows that N,, (s;(z)) has
only one edge of positive slope, and that this slope is greater than one. Therefore g, (x) and
s;(x) have no common zeroes.

Let us now prove the claim using induction on j. For the base case we will construct
r1(x) and ro(x). Then in the inductive step, we will show how r; 1 (x) can be obtained from
r;(z) and r;_;(x) assuming those polynomials exist.

We first consider the case j = 1. The leading coefficient of g,(x) is (2n — 1)!n! while
the leading coefficient of g, _1(z) is equal to (2n — 3)!!(n — 1)!. We therefore set 7 (z) =
fn(z) = (2n — D)naf,_1(x). First of all, observe that

— S (n=1' 1
(2n —naf,_1(z) = k:0(2k — )(2n — 1)nmx
= Z(Qk —3)1(2n — 1)n%xk

o

Sl

—

(2k — 3)1(2n — 1)by, p2*

e
Il
—
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Now calculating 71 (z) we have:
F(z) =1+ ((2k— DI — (2n — 1)(2n — 3)!1) b, 2

14+ ) (2k—3)((2k — 1) — (2n — 1))b,, p2"
k=1

142 (2k —3)(k — n)b, 2"

=1

[y

ol

1
=1-2n) (2k — 3)!1b,_y 2"
k=1

Note that the leading coefficient of 7 (z) is equal to —2n!(2n — 5)!l. Next, we reduce the
degree of 7 (x) by computing (2n — 3)7(x) + 2ng,—1(x):

(2n — 3)71(z) + 2ng,—1(z) = (2n — 3) + 2n + 2n ”i [(2k — 1)! — (2n — 3)(2k — 3)!] b1 p2”
k=1
=4n —3+42n nz_:(%: —3)[(2k — 1) — (2n — 3)] bp_1 2"
k=1

[\

=(4n—3)—dn(n—1)Y (2k —3)b, ox2"
1

3

B
Il

n—2
= (4n —3) —4b,s ¥ (2k —3)1b, o 2"
k=1

We set A; =3 —4n and ri(z) = —((2n — 3)71(x) + 2ng,—1(z)) € (gn, gn—1). Note that A; is
an odd integer, and therefore has 2-adic value equal to zero. If we factor out an = from the
sum and reindex we find that

n—2

ri(z) = Ay + bz » (2(k— 1) — I
k=1
n—3
= Ay +4bysz Yy (2k — 1)l _g 42"
k=0
= Al + 4bn,39n73(~r)

(n —2)! Rl
(n—3—(k+1))!

Next, we use 7 (z) and g,_1(x) to construct ro(x). We first observe that the leading
coefficient of ro(x) is equal to 4n(2n — 7)!l. Therefore we set

To(z) = dngn_1(z) — (2n — 3)(2n — 5)ar(x)
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Note that 79(z) = —Ajz mod 2 =2 mod 2. It follows that
n—2

o) = Ay(z) + 4nz [(2k — D! — (2n — 3)(2n — 5)(2k — 5)!1] b,y pa” (3.21)

k=2

where Ay(z) € Z[x] and Ay(z) = z mod 2. The difference inside the brackets appearing
in Equation (3.21) can be simplified as (2n — 5)!' [(2k — 1)(2k — 3) — (2n — 3)(2n — 5)] and
simplifying further we find that

(2k—=1)(2k—=3)—(2n—3)(2n —5) = 2k — 1) [(2k — 3) — (2n — b)]
+(2n—5) [(2k = )2k — 3)]
= (2k — 2n + 2) [2k + 2n — 6]
=—4(n—1-k)(k+n-3)

Since (n — 1 — k)by,—1 % = (n — 1)b,_o it follows that

n—2

Fo(x) = Ay(x) — 16by Y (2k — 5)1(k + n — 3)b, o p*
k=2

Next we calculate 75(z) = (2n — 7)7a(z) + 4(2n — 5)r1(z). Observe that the sum is
congruent modulo 2 to z. Setting C'(k) = k + n — 3 we have

Fo() = Ao(2) + 16y Y [(2k — 3)11(2n — 5) — (20 — 7)(2k — S)NC(K)] by_s pz”

k=2
n—3

Ag(2) +16b,2 S (2 — 5)1[(2k — 3)(2n — 5) — (2n — T)C(K)] b_s sz

where f:lg(x) is a linear integer polynomial and /L(x) = 2 mod 2. Now setting D(k) =
(2k —3)(2n — 5) — (2n — 7)C(k) we calculate D(k):

D(k)=(2n—-5)[(2k —3) — 2n—=T7)]+ (2n = 7) [(2n — 5) — C(k)]
=02n—-5)2k-2n+4)+2n—-T7T)(n—2—k)
—(n—2—k)(2n — 3)

Since (n — 2 — k)bp—ax = (n — 2)b,_3 it follows that

i
no

(2n — 7)Fa(x) + 4(2n — 5)ry(z) = /:12(x) — 16b,3(2n —3) Y (2k — 5)!1b,,_3 2"

B
||

Set Ay(z) = —leg(:p)/(Qn —3) and ry(x) = As(x) + 160y, 3 ZZ;;’(ZIC — 5)1b,, 32" Tt follows
from above that ro(z) € (gn, gn—1) and that Ay(z) is a rational linear polynomial satisfying
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condition (2) of the claim above. Moreover, dividing out z? from the sum and reindexing

gives ro(z) = As(z) + 160y, 5Gn—5().
Now assume that 7;(z) and r;_;(z) have been constructed for some 2 < j < 5 —1. We
have

n—j

ric(@) = Ajy (@) + 47 by Y (2k — (25 — 1),
k=j—1
n—j—1
ri(x) = Aj(x) + ¥bnjin Y (2k = (25 + 1D)Wbn 1)k
k=j

Observe that the leading coefficient of r;_;(z) is equal to 47~'n!(2n — 45 + 1)!! and that the
leading coefficient of 7;(z) is equal to 47n!(2n—4j—3)!1. Weset B = (2n—4j+1)(2n—4j—1)
and define 7,41 (x) = 4r;_1(x) — Bxr;(z). If we let

Aj+1<3§'> = 4Aj,1(l') + 4jbn7j [bn,jd',ll’jil + bn,jﬁ'l’j} + B.Z'A]<.T>

then

n—j—1

P = Ajea(2) + 9,5 3 [(2k = (2] — 1)1 = B2k — (2 + 3)1 by a*

k=j+1

Since B is odd and since the 2-adic valuation of the leading coefficient of A;(x) is zero
it follows that fljﬂ(az) has degree j and that the 2-adic valuation of its leading coefficient
is zero. Moreover, the other coefficients of /Nljﬂ(:v) are sums of rational numbers having
positive 2-adic valuation, and therefore also have positive 2-adic valuation. Now set C' =
(2k —2j + 1)(2k — 25 — 1) and observe that

C—B=(2k-2j+1)[(2k—2j— 1) — (2n — 4j — 1)]
b (2n—4j —1)[2k—2j +1— (2n— 45 + 1)]
=2(k—(n—7)[(2k —2j+1) + (2n — 45 — 1)]
=—2(n—7—k)(2k + 2n — 6))
=—4(n—j5—k)(k+n—3j)

If we set D(k) = k +n — 3j then it follows from above that

n—j—1
i = Aj + by Y (2k =25 = 3)(C — B)b,_j4a”
k=j+1
n—j—1
= A1 = b0 D (2k = 25 = 3D (k)b (a1t
k=j+1

Next, we set 7;,1() = (2n — 45 — 3)7;1(2) +4D(n — j — V)rj(x). If we set ZJH( ) =
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(2n — 45 — 3)A; 1 (z) +4D(n — j — 1)(A;(x) + 47,11 - by_j_1 27 then

n—j—2

7§j+1 = /Ij+1<95) + 4j+1bn,j+1 Z (2k —2j — 3)”E(k)bn—j—1,k9€k

k=j+1
where E(k) = (2k—2j—1)D(n—j—1)—(2n—4j—3)D(k). Observer that since (2n—4j —3)
is odd and since every coefficient of 4D(n — j — 1)(A;(x) + 47b,, j11 - bp—j—1,;27 has positive
2-adic valuation the leading coefficient of Aj+1(x) has 2 adic valuation equal to zero while
the other coefficients have positive 2-adic valuation. Let us now simplify E(k):

Ek)=Dn—7—-1)[(2k—2j—1)— (2n—4j = 3)]+ (2n—4j —3)[D(n — j — 1) — D(k)]
=2k =(n—-0G+1))Dn—j—-1)+2n—-4j=3)[2n—4j —1) = (k+n —3j)]
(k== +1))DMn—-j-1)+2n—-4j=3)(n-(G+1)—k)

(k— (n— (j 1)[2(20— 45— 1) — (20— 4 — 3)
=—n—-0G+1)—k)(2n—-4j+1)

2
2

It now follows that

~ n—j—2
i = Ajpa(z) = 9720 = 45 + Doy Y (2k — 25 — 3) by (jioy p2”
k=j+1

Finally, we set A, 1(v) = —A;11(2)/(2n — 45 + 1) and rj1(v) = —Fj41/(2n — 45 +1). Tt
follows from above that

n—j—2
rip(@) = Ajpr (@) + 4 by 4o Z (2k — 2§ — 3oy (42 p2”
k—jt1
n—(2j+3
= Aj(x) + 4 by g2’ Z (2k — Dby (245 02"
k=0

= Ajpa(2) + b 1377 g 213 (1)

Since 2n — 45 + 1 is an odd integer the 2-adic valuations of the coefficients of fljﬂ(x) are
unaffected when passing to A;ii(x) and therefore A;,;(x) satisfies the conditions of the

claim made at the beginning of the proof.
O
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