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1 Introduction
The Strong Factorial Conjecture of E. Edo and A. van den Essen [3] is concerned with the linear
functional L on the space of complex polynomials defined by sending a monomial generator
za1
1 · · · zan

n to (a1!) · · · (an!). The conjecture asserts that for a non-zero multi-variable complex
polynomial F , the maximum number of consecutive zeroes that may appear in the sequence
{L(F n) : n ≥ 1} is N(F ) − 1, where N(F ) is the number of monomials appearing in F with
nonzero coefficient.

In the second author’s dissertation [12], he considered the irreducibility in Z[x] of the polyno-
mials

fn,m(x) =
n∑

j=0

(
n

j

)
(mj)!xj

in connection with his studies on the Strong Factorial Conjecture, specifically in the case F =
1 + λzm where λ ∈ C. Among other results, fn,m(x) was established in [12] to be irreducible
when n = pr where p is a prime > m and r is a positive integer.

In this paper, we prove the following.

Theorem 1. Fix a positive integer m. Then

lim inf
X→∞

|{n ≤ X : fn,m(x) is irreducible}|
X

≥ log 2.

As log 2 = 0.693147 . . . , we deduce that more than 2/3 of the polynomials fn,m(x) are irre-
ducible in Z[x] for a fixed positive integer m. We do not know of an instance where fn,m(x) is
reducible, so presumably a much stronger result than Theorem 1 holds.

2 Preliminaries on Newton polygons
Let f(x) =

∑n
j=0 ajx

j ∈ Z[x] with a0an 6= 0. Let p be a prime. For an integer m 6= 0, we denote
by νp(m) the exponent in the largest power of p dividing m. We define νp(0) = +∞. Let S be
the set of lattice points

(
j, νp(an−j)

)
, for 0 ≤ j ≤ n, in the extended plane. We consider the lower

edges along the convex hull of these points. The left-most edge has an endpoint
(
0, νp(an)

)
and

the right-most edge has
(
n, νp(a0)

)
as an endpoint. The polygonal path along the lower edges of

the convex hull from
(
0, νp(an)

)
to
(
n, νp(a0)

)
is called the Newton polygon of f(x) with respect

to the prime p. The endpoints of every edge belong to the set S, and each edge has a distinct slope
that increases as we move along the Newton polygon from left to right.



The following important theorem due to G. Dumas [2] connects the Newton polygon of f(x)
with respect to a prime p with the Newton polygon of its factors with respect to the same prime.

Theorem 2. Let g(x) and h(x) be in Z[x] with g(0)h(0) 6= 0, and let p be a prime. Let k be a non-
negative integer such that pk divides the leading coefficient of g(x)h(x) but pk+1 does not. Then
the edges of the Newton polygon for g(x)h(x) with respect to p can be formed by constructing a
polygonal path beginning at (0, k) and using translates of the edges in the Newton polygons for
g(x) and h(x) with respect to the prime p, using exactly one translate for each edge of the Newton
polygons for g(x) and h(x). Necessarily, the translated edges are translated in such a way as to
form a polygonal path with the slopes of the edges increasing.

As a particular consequence of Theorem 2, we have that if the lattice points along the edges
of the Newton polygon are (x1, y1), . . . , (xr, yr) and dj = xj − xj−1 for 1 ≤ j ≤ r, then the
set {1, 2, . . . , r} can be written as a disjoint union of sets S1, S2, . . . , St where t is the number of
irreducible factors of f(x) (counted with multiplicities) and the t numbers

∑
u∈Sj

du, for 1 ≤ j ≤ t,
are the degrees of the irreducible factors of f(x). Note that it is important here to consider all lattice
points along the edges of the Newton polygon and not just lattice points of the form

(
j, νp(an−j)

)
used in the construction of the Newton polygon of f(x).

Before applying Theorem 2 to obtain information about the factorization of fn,m(x), we first
obtain information on Newton polygons of fn,m(x). We begin with a classical result on the
largest power of a prime dividing a binomial coefficient that we use to compute νp(aj) where
aj =

(
n
j

)
(mj)! is the coefficient of xj in fn,m(x).

Lemma 1. Let n and j be nonnegative integers with n > 0, and let p be a prime. If b is the number
of borrows needed when j is subtracted from n in base p, then

νp

((
n

j

))
= b.

Lemma 1 is due to E. E. Kummer [8] but originally stated in the form of carries when adding
j and n − j in base p. Kummer uses another classical result connecting the largest power of p
dividing n! with the sum of the base p digits of n due to A. M. Legendre [9].

The next lemma can be found in [12]. The proof given here is based on a somewhat different
analysis.

Lemma 2. Let k, m and r be positive integers, and let q be a prime > mk. Let n = kqr.
Then the Newton polygon of fn,m(x) with respect to q consists of a single edge which has slope
−m(qr − 1)/

(
qr(q − 1)

)
.

Proof. For 0 ≤ j ≤ n, we set aj =
(

n
j

)
(mj)! so that fn,m(x) =

∑n
j=0 ajx

j . In particular,

νq(a0) = νq(1) = 0.

Since q > mk, we have

νq(an) = νq

(
(mn)!

)
=
∞∑

u=1

⌊
mn

qu

⌋
=

r∑
u=1

⌊
mkqr

qu

⌋
=

r∑
u=1

mkqr

qu
=
mk(qr − 1)

q − 1
.



We deduce that the line through
(
0, νq(an)

)
and

(
n, νq(a0)

)
has slope −m(qr − 1)/

(
qr(q − 1)

)
and equation

y =
−m(qr − 1)

qr(q − 1)
· x+

mk(qr − 1)

q − 1
.

We want to prove that, for 0 < j < n, the point
(
n− j, νq(aj)

)
is above this line, that is

νq(aj) ≥
−m(qr − 1)

qr(q − 1)
· (n− j) +

mk(qr − 1)

q − 1
=
mj(qr − 1)

qr(q − 1)
.

Note that n in base q consists of the single digit mk followed by r zeroes. Fix j ∈ (0, n), and let
t = νq(j). Then j < n implies t ∈ [0, r] and j in base q ends with exactly t digits that are zero. It
follows that when j is subtracted from n in base q, exactly r − t borrows are required. Hence,

νq

((
n

j

))
= r − t.

Using that qt | j, we now deduce that

νq(aj) ≥ νq

((
n

j

)
(mj)!

)
= νq

((
n

j

))
+ νq

(
(mj)!

)
= r − t+

∞∑
u=1

⌊
mj

qu

⌋
= r − t+

t∑
u=1

⌊
mj

qu

⌋
+

r∑
u=t+1

⌊
mj

qu

⌋

= r − t+
t∑

u=1

mj

qu
+

r∑
u=t+1

⌊
mj

qu

⌋
≥ r − t+

t∑
u=1

mj

qu
+

r∑
u=t+1

(
mj

qu
− 1

)

=
r∑

u=1

mj

qu
=
mj(qr − 1)

qr(q − 1)
.

The lemma follows.

Lemma 3. Let k and m be positive integers, and let q be a prime ≥ (m + 1)2/(km). Let p be a
prime in the interval (kqm/(m + 1), kq], and let n = kq. Then the Newton polygon of fn,m(x)
with respect to p has an edge with slope −m/p.

Comment: Though not needed for this paper, the statement of Lemma 3 seemingly holds for a
larger range of primes p.

Proof. Again, we set fn,m(x) =
∑n

j=0 ajx
j where aj =

(
n
j

)
(mj)! for 0 ≤ j ≤ n. Observe that

2p >
2kqm

m+ 1
≥ kq ≥ n,

so νp(n!) = 1. One checks that

νp

((
n

j

))
=

{
1 if n− p < j < p

0 otherwise.
(1)



If the expression (mj)! is divisible by p, then j ≥ p/m. On the other hand, the condition p >
kqm/(m+ 1) is equivalent to p/m > n− p. Thus,

νp

((
n

j

)
(mj)!

)
= 0 for 0 ≤ j ≤ n− p.

The inequality q ≥ (m+ 1)2/(km) implies

p2 >

(
mn

m+ 1

)2

≥ mn.

From p ∈
(
kqm/(m+ 1), kq

]
, we have

m ≤ mn

p
< m+ 1.

Hence,

νp

(
an

)
= νp

(
(mn)!

)
=

⌊
mn

p

⌋
+

⌊
mn

p2

⌋
+ · · · =

⌊
mn

p

⌋
= m.

We justify that the Newton polygon of fn,m(x) with respect to p consists of the segment s from
(0,m) to (p, 0) together with the segment from (p, 0) to (n, 0). What is left to establish is that the
points

(
n − j, νp(aj)

)
, for n − p < j < n, lie on or above the segment s. Since the line through

(0,m) and (p, 0) has equation y = (−m/p)x+m, we want to prove

νp

(
aj

)
≥ −m(n− j)

p
+m. (2)

As p ≤ n, we have

−m(n− j)
p

+m =
−mn
p

+
mj

p
+m ≤ −m+

mj

p
+m =

mj

p
.

Thus, for j ∈ (n− p, n), it suffices to show that either (2) holds or

νp

(
aj

)
≥ mj

p
. (3)

For n− p < j < p, using (1), we see that

νp

(
aj

)
= νp

((
n

j

)
(mj)!

)
= 1 + νp

(
(mj)!

)
≥ 1 +

⌊
mj

p

⌋
>
mj

p
,

so that (3) holds for such j. For p ≤ j < n, we have

νp

(
aj

)
= νp

(
(mj)!

)
≥
⌊
mj

p

⌋
≥
⌊
mp

p

⌋
= m,

implying (2) for these j. The lemma follows.



3 Proof of Theorem 1
H. Cramér [1] showed that if the Riemann Hypothesis holds and pn is the nth prime number, then
pn+1 − pn = O

(√
pn log pn

)
. According to C. J. Moreno [10], P. Erdős posed the related problem

of establishing that, for every ε > 0, almost all numbers n are a distance ≤ n(1/2)+ε from a prime.
More specifically, Erdős asked whether there is a constant c < 1 such that∑

pn+1−pn>x(1/2)+ε

pn+1≤x

(
pn+1 − pn

)
� xc.

Moreno establishes this asymptotic in a weaker form with xc replaced nevertheless by a function
which tends to 0 as x tends to infinity. D. Wolke [13] resolved the problem of Erdős in the affir-
mative, and a number of other authors (cf., [5, 6, 7, 11]) have since improved on the value of c in
the asymptotic. In particular, K. Matomäki’s work [7] implies that∑

pn+1−pn>
√

pn

pn≤x

(
pn+1 − pn

)
� x2/3. (4)

For our purposes, the weaker result of Moreno would suffice, but we use (4).
Fix a positive integer m. Let M = (m+ 1)2/m. Note that M ≥ 4. LetA be the set of positive

integers n that have a prime factor q >
√
Mn. Let B be the set of positive integers n for which

there exists a prime p satsifying n−
√
n < p ≤ n. Set C = A ∩ B. We obtain next the asymptotic

densities of the sets A and B in the set of integers, that is the values of

lim
x→∞

∣∣{n ≤ x : n ∈ A}
∣∣

x
and lim

x→∞

∣∣{n ≤ x : n ∈ B}
∣∣

x
.

The asymptotic density ofA is connected to the distribution of smooth numbers (numbers with
only small prime factors) and is easily explained. Using the notation π(x) for the number of primes
≤ x and p to represent a prime, observe that∣∣{x < n ≤ 2x : n ∈ A}

∣∣ =
∑

√
Mx<p≤2x

(⌊
2x

p

⌋
−
⌊
x

p

⌋)
+O

( ∑
√

Mx<p≤
√

2Mx

(⌊
2x

p

⌋
−
⌊
x

p

⌋))

=

( ∑
√

Mx<p≤2x

x

p

)
+O

(
π(2x)

)
+O

( ∑
√

Mx<p≤
√

2Mx

x

p

)
.

Using Merten’s estimate for the sum of the reciprocals of the primes (cf. Theorem 427 in [4]) and
a Chebyshev estimate (cf. Theorem 7 in [4]), we can deduce from the above that

lim
x→∞

∣∣{n ≤ x : n ∈ A}
∣∣

x
= log 2. (5)

For the asymptotic density of B, we consider first the asymptotic density of the complement of
B in the set of positive integers. Fix a positive integer n in the complement of B. Let p′ and p′′ be
the consecutive primes for which p′ ≤ n < p′′. Since n 6∈ B, we have p′ ≤ n−

√
n. Thus,

p′′ − p′ > n−
(
n−
√
n
)

=
√
n ≥

√
p′.



Therefore, such n lie in an interval [p′, p′′) where p′ and p′′ are consecutive primes for which
p′′ − p′ >

√
p′. By (4), the n in the complement of B have asymptotic density 0. Therefore,

lim
x→∞

∣∣{n ≤ x : n ∈ B}
∣∣

x
= 1. (6)

Combining (5) and (6), we deduce that

lim
x→∞

∣∣{n ≤ x : n ∈ C}
∣∣

x
= log 2.

Thus, to establish Theorem 1, it suffices to show that if n is a sufficiently large element of C, then
fn,m(x) is irreducible.

Consider such an n. Then n ∈ A implies that we can write n = kq where q is a prime satisfying

q >
√
Mn =

√
Mkq =⇒ q > Mk > mk.

By Lemma 2, we deduce that the Newton polygon of fn,m(x) with respect to the prime q consists
of a single edge with slope −m/q. Since q is a prime > m, the fraction −m/q is reduced. As
a consequence of Theorem 2, we can deduce that each irreducible factor of fn,m(x) has degree
divisible by q (as noted in [12]).

Next, we apply Lemma 3. Since q > Mk where M = (m+ 1)2/m, we see that

q >
(m+ 1)2k

m
≥ (m+ 1)2

km
.

We set p to be the largest prime ≤ n. To apply Lemma 3, we want to show that

p >
nm

m+ 1
.

Since n is sufficiently large and m is fixed, this inequality is an easy consequence of the Prime
Number Theorem (i.e., that there is a prime in the interval

(
(1 − ε)n, n

]
, where ε = 1/(m + 1)).

Lemma 3 implies that the Newton polygon of fn,m(x) with respect to the prime p has an edge with
slope −m/p. Theorem 2 now implies that fn,m(x) has an irreducible factor of degree ≥ p.

To establish that fn,m(x) is irreducible, it is sufficient now to show that the smallest multiple of
q that is ≥ p is n = kq. This is equivalent to establish that n− q < p. Since q >

√
Mn >

√
n, we

need only show that n−
√
n < p. The latter inequality follows from n ∈ B, completing the proof

of Theorem 1.
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