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ADJOINT FUNCTORS AND BALANCING Tor AND Ext

KELLER VANDEBOGERT

1. Adjoint Functors

Definition 1.1 (Adjoint Functors). Let

L : A → B, R : B → A

The pair of functors L and R are called adjoint if there is a natural

isomorphism

Φ : HomB(L(−),−)→ HomA(−, R(−))

That is, given f : A → A′ and g : B → B′, we have the following

commutative diagram:

HomB(L(A′), B)

Φ
��

Lf∗
// HomB(L(A), B)

Φ
��

g∗
// HomB(L(A), B′)

Φ
��

HomA(A′, R(B))
f∗
// HomA(A,R(B))

Rg∗
// HomA(A,R(B′))

Theorem 1.2. Let

L : A → B, R : B → A

be an adjoint pair of additive functors. Then L is right exact and R is

left exact.

Proof. Choose an exact sequence

0 // B′ // B // B′′ // 0

1These notes were prepared for the Homological Algebra seminar at University
of South Carolina, and follow the book of Weibel. This particular set of notes also
contains results from Rotman’s book on Homological Algebra.
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of objects in B. The functor HomB(L(A),−) is covariant and left exact,

so that

0 // HomB(L(A), B′) // HomB(L(A), B) // HomB(L(A), B′′)

remains exact; using the natural isomorphism for our adoint pair,

0 // HomA(A,R(B′)) // HomA(A,R(B)) // HomA(A,R(B′′))

is exact. As A ∈ A is arbitrary, the Yoneda Lemma gives that

0 // R(B′) // R(B) // R(B′′)

is also exact, and we see that R is left exact. Applying the above

argument to Lop shows that Lop is also left exact, so that L is right

exact.

�

Proposition 1.3 (Hom-Tensor Adjointness/Adjunction). Let A be a

right R module, B an (R, S) bimodule, and C a right S module. Then

HomR(A,HomS(B,C)) ∼= HomS(A⊗R B,C)

naturally; that is, −⊗R B and HomS(B,−) are an adjoint pair.

Proof. Define τ : HomS(A ⊗R B,C) → HomR(A,HomS(B,C)) as the

map such that for f ∈ HomS(A⊗R B,C),

(τf)(a)(b) = f(a⊗ b)

Now the association (a, b) 7→ g(a)(b) for g ∈ HomR(A,HomS(B,C)) is

bilinear, hence induces a map f : A ⊗R B → C; we define τ−1g to be

this induced map, so that τ is an isomorphism (it is easy to see that

this is our actual inverse).
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It remains to show the naturality conditions. Given A, A′ ∈ A, B,

B′ ∈ B and f : A→ A′, g : C → C ′, let φ ∈ HomB(A′⊗RB,C). Then,

for a ∈ A, b ∈ B,

τ(f ⊗B)∗(φ)(a)(b) = (f ⊗B)∗φ(a⊗ b)

= φ(f ⊗B)(a⊗ b)

= φ(f(a)⊗ b)

Similarly,

f ∗(τφ)(a)(b) = (τφ)(f(a))(b)

= φ(f(a)⊗ b)

So the first square in the diagram of Definition 1.1 commutes. Now let

us consider the second square. Given ψ ∈ HomB(A ⊗R B,C), a ∈ A,

and b′ ∈ B′,

τ(g∗ψ)(a)(b′) = g(ψ(a⊗ b′))

and

(g∗)∗(τψ)(a)(b′) = g∗(φ(a⊗ b′)

= g(φ(a⊗ b′))

So the second square also commutes, and we get naturality. �

The above gives us a small corollary, although this can be proved by

more elementary means.

Corollary 1.4. Hom(A,−) is left exact and −⊗B is right exact.

Definition 1.5. If B is a left R module and A is a right R module,

define T (A) = A⊗R B. Then,

TorRi (A,B) := (LnT )(A)
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Similarly, if we define E(B) = Hom(A,B), then

ExtiR(A,B) := (RnE)(B)

Any diagram of objects in a category C can be viewed as a functor

F : I → C, where I can be interpreted as the indexing or diagram

category.

We have a functor ∆ : C → CI , where ∆(Q) = ∆Q, and ∆Q is the

trivial functor sending every object in I to Q and every morphism to

idQ.

Definition 1.6 (Limits). The limit of a functor F : I → C is an

object P ∈ C and a natural transformation ∆P → F with the following

universal property: given any other natural transformation ∆Q → F ,

there exists a unique map f : Q → P making the following diagram

commute

∆P

��

∆Q

∆f

==

// F

In typical fashion, we may dualize all of the above to find the defi-

nition of colimits.

Definition 1.7 (Colimits). A colimit of a diagram F : I → C is an

object P ∈ C and a morphism of diagrams F → ∆P that is initial

among all morphisms F → ∆Q for Q ∈ C. That is, given Q ∈ C also

satisfying the above, there exists f : P → Q such that the following

diagram commutes

∆P

∆f}}

∆Q F

OO

oo
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Proposition 1.8. Let A be an abelian category; the following are equiv-

alent:

(1) The direct sum
⊕

Ai exists for every set of object {Ai}, Ai ∈ A.

(2) A is cocomplete; that is colimi∈I Ai exists in A for each functor

A : I → A whose indexing category I has only a set of elements.

Proof. Note that (1) follows immediately from (2) since the direct sum

is itself a colimit.

If (1) holds, then we consider the cokernel of⊕
φ:i→j

Ai →
⊕
i∈I

Ai

ai(φ) 7→ φ(ai)− ai
is precisely colimi∈I Ai. �

Theorem 1.9 (Adjoints and Limits Theorem). Let L : A → B be

left adjoint to a functor R : B → A, where A and B are arbitrary

categories. Then,

(1) L preserves all colimits. That is, if A : I → A has a colimit,

then so does L(A) : I → B, and

L(colimi∈I Ai) = colimi∈I L(Ai)

(2) R preserves all limits. That is, if B : I → B has a limit, then

so does R(B) : I → A, and

R(lim
i∈I

Bi) = lim
i∈I

R(Bi)

Proof. Note that we only need prove the theorem for the left adjoint

L; applying the argument to Rop yields (2).

We start with the following observation: if {Ai, φij} is a directed

system in A over I, then {LAi, Lφij} is also a directed system. By
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the universal property of colimits, we have the existence of morphisms

making the following diagram commute

L(colimi∈I Ai) colimi∈I(LAi)

LAi

Lαi

ff
fi

88

Lφij
��

LAj

Lαj

^^

fj

@@

Now, we want to show that there exists a natural map L(colimi∈I Ai)→

colimi∈I(LAi) making the above commute. We are already guaranteed

a map backwards by the universal property of colimits. To this end,

consider applying R to the above diagram. The key here is to note that

there is a natural transformation η : 1A → RL (the unit of the adjoint

pair); this will translate the diagram back to a diagram in A, and the

universal property of colimits will guarantee our map. Applying R and

using naturality of the unit, we have the induced commutative diagram

(1.1) colimi∈I Ai R(colimi∈I(LAi))

Ai

αi

ee
Rfi

77

φij
��

Aj

αj

[[

Rfj

??

whence there exists a map β : colimi∈I Ai → R(colimi∈I(LAi)). Since

L and R are an adjoint pair, we have a natural isomorphism

τ : HomB(L(colimi∈I Ai), colimi∈I(LAi))→ HomA(colimi∈I Ai, R(colimi∈I(LAi))

Since β ∈ HomA(colimi∈I Ai, R(colimi∈I(LAi)), we may define τ−1β :=

γ ∈ HomB(L(colimi∈I Ai), colimi∈I(LAi)).
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It remains to show that γ makes the following diagram commute:

L(colimi∈I Ai)
γ

// colimi∈I(LAi)

LAi

Lαi

ff
fi

88

Lφij
��

LAj

Lαj

^^

fj

@@

That is, γ(Lαi) = fi for every i ∈ I. Rewriting, we see

γ(Lαi) = τ−1β)(Lαi)

= (Lαi)
∗(τ−1β)

= τ−1(αi)
∗β

(1.2)

Where the last equality follows by commutativity of the first square of

the diagram given in Definition 1.1. We consider the term τ−1(αi)
∗β =

τ−1(βαi). By commutativity of the diagram (1.1), βαi = Rfi, ; we may

now use commutativity of the second square in Definition 1.1 to see that

τ(fi)
∗ = (Rfi)

∗τ ; evaluating at the identity yields τ(fi)∗(1) = (Rfi)∗,

whence

γ(Lαi) = τ−1(βαi)

= τ−1(Rfi)∗

=τ−1(τ(fi)∗(1))

= fi

And we get commutativity. Uniqueness of γ also follows immediately

by the universal property of our colimits. Therefore we have con-

structed a natural map γ : HomB(L(colimi∈I Ai), colimi∈I(LAi)); the

inverse map is the induced map from the universal property of colim-

its, and we have a natural isomorphism

L(colimi∈I Ai) ∼= colimi∈I(LAi)
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�

The above immediately yields the following corollaries:

Corollary 1.10. If a cocomplete abelian category A has enough pro-

jectives and F : A → B is a left adjoint functor, then for every set

{Ai} of objects in A,

L∗F
(⊕

i∈I

Ai

)
=
⊕

L∗F (Ai)

Proof. Observe that if we have projective resolutions Pi → Ai, then⊕
i∈I is a projective resolution for

⊕
i∈I Ai. Then

L∗F (
⊕
i∈I

Ai) = H∗(F (
⊕
i∈I

Ai))

By the previous theorem, F preserves colimits; in particular, F (
⊕

i∈I Ai) =⊕
i∈I F (Ai), and

L∗

(⊕
i∈I

F (Ai)
)

= H∗
⊕
i∈I

F (Ai)

=
⊕
i∈I

H∗F (Ai)

=
⊕
i∈I

L∗F (Ai)

�

Corollary 1.11.

TorRi
(
A,
⊕
i∈I

Bi

)
=
⊕
i∈I

TorRi (A,Bi)

We shall now present some conditions for particular functors to have

a particular representation; first we will need the following

Definition 1.12. If M is a right R-module and m ∈ M , then φm :

R→M is defined by the map r 7→ mr.
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The above map takes advantage of the natural isomorphism M ∼=

HomR(R,M); this point of view will be useful in the following theo-

rems. In what follows, one can imagine these theorems of being the

homological analogues of the classical representation theorems of anal-

ysis such as the Riesz representation theorem and the Radon-Nikodym

theorem. Instead of considering integral representations of measures

and linear operators, we want representations of an arbitrary functor

in terms of the standard Hom and tensor functors.

Theorem 1.13. If F : ModR → Ab is a right exact additive functor

that preserves direct sums, then F is naturally isomorphic to −⊗R B,

where B = F (R), where F (R) is given the natural structure of a right

R-module.

Proof. Let us first give F (R) an R-module structure. As φm as above is

an element of mod R(R,M), we see that Fφm ∈ HomZ(F (R), F (M)).

For M = R, we have a natural action on R where, given r, x ∈ R,

rx := (Fφr)(x)

Let us check associativity first. Let r, s, x ∈ R:

(rs)x = (Fφrs)(x)

= (Fφrφs)(x)

= (FφrFφs)(x)

= r(sx)

The rest of the properties are trivial as the φr are homomorphisms of

abelian groups. Now define F (R) := B.

Consider the map

τM : M ×B → F (M)



10 KELLER VANDEBOGERT

defined by sending (m,x) 7→ (Fφm)(x). This is R-bilinear (additivity

is clear since F is additive) and

τM(mr, x) = (Fφmr)(x)

= (FφmFφr)(x)

= (Fφm)ux = τM(m, rx)

and we have an induced map

ψM : M ⊗R B → F (M)

It remains to show that ψ : − ⊗R B → F is a natural transformation

so that

M ⊗R B

f⊗B
��

ψM
// F (M)

Ff

��

N ⊗R B
ψN

// F (N)

whenever f ∈ HomR(M,N). Following the diagram along the top, we

see

m⊗ x 7→ (Fφm)(x)

7→ (Ff)(Fφm)(x)

= F (fφm)(x)

and, aong the bottom:

m⊗ x 7→ f(m)⊗ x

7→ (Fφf(m))(x)

From our definition of φ, given any r ∈ R we see that φf(m)(r) =

f(m)r = fφm(r), so that φf(m) = fφm. Comparing the above, we then

see that the diagram does commute, yielding naturality of ψ.

Now, as B = F (R) is an R-module, we deduce that ψR is an isomor-

phism. Since F preserves direct sums, ψA is an isomorphism for every

free right R-module A. Given any R-module M , there exists an exact



ADJOINT FUNCTORS AND BALANCING Tor AND Ext 11

sequence

F0
// F1

// M // 0

where F0, F1 are free (not necessarily finitely generated). By naturality

of ψ, we have the following induced commutative diagram with exact

rows:

F0 ⊗R B //

ψF0
��

F1 ⊗R B //

ψF1
��

M ⊗R B //

ψM

��

0

F (F0) // F (F1) // F (M) // 0

Since ψF0 and ψF1 are isomorphisms, the Five Lemma gives that ψM is

an isomorphism as well. Thus, ψ is a natural isomorphism. �

Theorem 1.14. If H : R −Mod → Ab is a contravariant left exact

additive functor that converts direct sums to direct products, then H is

naturally isomorphic to HomR(−, B), where H(R) := B is given the

natural structure of an R-module.

Proof. We again start by giving H(R) =: B the structure of a right

R-module. We define the action of R in an identical fashion as for the

previous proof, but as a right action:

xr := (Hφr)(x)

Then, we see

x(rs) = (Hφrs)(x)

= (H(φrφs))(x)

= (HφsHφr)(x) (contravariance)

= (Hφs)(xr)

= (xr)s
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So this is well defined as a right R-module. Consider now the map

ψ : H → HomR(−, B) where ψM(x) ∈ HomR(M,B) is such that

ψM(x)(m) := (Hφm)(x)

Let f ∈ HomR(M,N); to prove naturality, we must show commutativ-

ity of the following diagram:

H(N)

Hf

��

ψN
// HomR(N,B)

f∗

��

H(M)
ψM
// HomR(M,B)

That is, we want to show f ∗ψN = ψM(Hf). We have, for x ∈ H(N),

m ∈M :

f ∗ψN(x)(m) = ψN(x)(f(m))

= (Hφf(m))(x)

= (H(fφm))(x)

= (HφmHf)(x)

= Hφm(Hf(x))

= ψM(Hf(x))(m)

whence naturality follows. Now, in order to prove that this is an iso-

morphism, we proceed similarly as in the previous proof. Note that

ψR : H(R) → HomR(R,B) is an isomorphism as HomR(R,B) =

HomR(R,H(R)) ∼= H(R) by the natural map f 7→ f(1). Hence we

deduce that ψ is an isomorphism on free modules, so that given an

R-module M , we have the exact sequence

F0
// F1

// M // 0
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with F0, F1 free; we get the induced commutative diagram

0 // HomR(M,B) //

ψM

��

HomR(F1, B) //

ψF1

��

HomR(F0, B)

ψF0

��

0 // H(M) // H(F1) // H(F0)

Employing the Five Lemma, we see that ψM must be an isomorphism.

�

We’ve managed to characterize two of our favorite functors, −⊗RB

and HomR(−, B). One may ask about the case for HomR(B,−); at

first sight, it seems that merely dualizing some of the above argument

will do the trick. However, travelling along this path quickly leads to

difficulties. Indeed, characterizing the covariant Hom functor will need

some extra machinery.

Definition 1.15. A leftR-module C is called a cogenerator ofR−Mod

if, for every R-module M and every nonzero m ∈ M , there exists

g ∈ HomR(M,C) with g(m) 6= 0.

Lemma 1.16. There exists an injective cogenerator of R−Mod.

A proof of the above is not too difficult. The key, of course, is how

to define our cogenerator. To do this, consider⊕
I

R/I

where the direct sum runs over all ideals of R. We can embed the above

module into its injective hull, and call this C. Then, C is the desired

injective cogenerator. To see this, let M be any left R-module. Given

m ∈M , note that Rm ∼= R/Ann(m), so we have an inclusion

Rm ↪→ C
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which, by injectivity, induces a map f ∈ HomR(M,C). Since m 6= 0,

the image of m in C is nonzero. Since f is an extension, f(m) 6= 0 as

well, as desired.

Lemma 1.17. Let

D
α
//

β
��

C

g
��

B
f
// A

be a pullback diagram in Ab. If there is c ∈ C and b ∈ B with g(c) =

f(b), then there exists d ∈ D such that c = α(d) and b = β(d).

Proof. Define

p : Z→ C, q : Z→ B

by p(n) = nc and q(n) = nb. Then, this has the property that

f(q(n)) = nf(b), and g(p(n)) = ng(c), and by assumption f(b) = g(c).

By the universal property of pullbacks, there exists a map θ : Z → D

with p = αθ, q = βθ. Then, define d := θ(1); we see

α(θ(1)) = p(1) = c, β(θ(1)) = q(1) = b

so that θ(1) is the desired d. �

Lemma 1.18. Let M be a family of submodules. We may partially

orderM by reverse inclusion, where our transition maps are the natural

inclusions.

If M is closed under finite intersections (that is, M , N ∈ M =⇒

M ∩N ∈M), then ⋂
M∈M

M = lim←−
M∈M

M
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Proof. Define the inclusion

pM :
⋂

M∈M

M ↪→M

Suppose D, M , N ∈ M, and let D ⊂ M . Then, when iDM : D ↪→ M

denotes our inclusion, it is obvious that pD = iDMpM . As M is closed

under finite intersections, we deduce that D = M∩N , and in particular

pM(x) = pM∩N(x) = pN(x).

This gives that the map φ : lim←−M∈MM →
⋂
M∈MM with φ(x) =

pM(x) is well defined and does not depend on the choice of module M .

The universal property of limits gives us an inverse map, so we deduce

that φ is an isomorphism as asserted. �

Definition 1.19. For a module M and a set X, MX will denote the

set of all functions (not necessarily homomorphisms!) from X to M .

With this notation, px : MX →M is the map such that px(f) = f(x).

The notation MX comes from the point of view as viewing a function

f : X → M as an element of the direct product M
∏
X , where we

consider the direct product as being indexed by X. With this view,

the map px as above is merely the projection onto the ”xth” coordinate,

and, we also have a natural module structure induced by the module

structure given by the direct product.

We are now in a position to handle the covariant Hom case.

Theorem 1.20. If G : R −Mod → Ab is a covariant additive func-

tor that preserves inverse limits, then G is naturally isomorphic to

HomR(B,−) for some left R-module.

Proof. Choose an injective cogenerator C as above, and consider the

set Π := CG(C). G preserves inverse limits, so in particular, it preserves
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products; whence GΠ is a direct product with induced projection maps

Gpx. By the universal property of products, there exists a natural map

θ : G(C)G(C) making the following diagram commute:

GΠ

Gpx ""

G(C)G(C)θ
oo

πx
yy

G(C)

Set e := 1G(C) ∈ G(C)G(C), and define τ : HomR(Π, C)→ G(C) by

τ(f) = (Gf)(θe)

We see that τ is surjective, since given x ∈ G(C),

τ(px) = (Gpx)(θe)

= πx(e) = x

Now, if S is a submodule of Π, let iS : S ↪→ Π be the natural inclusion.

Define

S := {Submodules S ⊂ Π | θ(e) ⊂ Im
(
G(iS)

)
}

and set

B :=
⋂
S∈S

S

Under the inclusion maps λ and µ, S∩T is the pullback in the following

diagram

S ∩ T λ
//

µ
��

S

iS
��

T
iT

// Π

And, since G preserves colimits, it preserves pullbacks, so that G(S∩T )

is the pullback in

G(S ∩ T )
Gλ

//

Gµ

��

G(S)

GiS
��

G(T )
GiT

// G(Π)
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By our definition of the set S, for u ∈ G(S) and v ∈ G(T ), (GiS)(v) =

θe and (GiT )(v) = θe. Employing Lemma 1.17, we may find d ∈

G(S ∩ T ) with (GiS)(Gλ)(d) = θe.

By covariance, (GiS)(Gλ)(d) = G(iSλ)(d) = (GiS∩T )(d). But this

shows that θe ∈ Im
(
G(iS∩T )

)
, so that S is closed under finite intersec-

tions. By Lemma 1.18,

B = lim←−
S∈S

S

In which case B ∈ S. Let j : B ↪→ Π be our inclusion.

Claim: Ker τ = Ker j∗. Let f ∈ HomR(Π, C). Suppose first that

f ∈ Ker τ , so that (Gf)(θe) = 0. In particular, this means that θ(e) ∈

KerGf ; consider the exact sequence

0 // Ker f
ι
// Π

f
// C

Since G is left exact, we have the induced exact sequence

0 // G(Ker f)
Gι
// Π

Gf
// G(C)

From which we see that KerGf = ImGι, and by definition of S,

Ker f ∈ S. But this means that Ker f ⊃ B, in which case fj =

j∗(f) = 0, whence f ∈ Ker j∗.

For the reverse inclusion, suppose now that f ∈ Ker j∗. If j∗(f) = 0,

in particular we see that B must be contained in the kernel of f . Using

the above exact sequences, this implies

KerGj ⊂ KerGι = KerGf

Since θe ∈ KerGf , (Gf)(θe) = 0, and by definition of τ , this means

τ(f) = 0 =⇒ f ∈ Ker τ . This gives that Ker τ = Ker j∗.
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We have the following commutative diagram with exact rows:

0 // HomR(Π/B,C) // HomR(Π, C)
j∗
// HomR(B,C)

ψC

��

// 0

0 // HomR(Π/B,C) // HomR(Π, C)
τ

// G(C) // 0

To see why the top row is exact, recall that C is injective so that

HomR(−, C) is an exact functor. For the bottom row, recall that τ

is surjective, and the previous claim established that Ker τ = Ker j∗.

This immediately gives that Coker τ = Coker j∗, and,

ψC : HomR(B,C)→ G(C)

f 7→ (Gf)(θe)

is an isomorphism (this is a consequence of the Snake Lemma). Con-

sider the map

M → CHomR(M,C)

m 7→ (f(m))m∈M

As C is a cogenerator, the above is an injective map. Let N be the

cokernel of the above; there is an injection N ↪→ CY for some set Y .

We can construct the exact sequence

0 // M // CHomR(M,C)

&&

// CY

N

OO

and, applying the functors G and HomR(B,−), we have a commutative

diagram with exact rows:

0 // HomR(B,M) //

ψM

��

HomR(B,CHomR(B,C)) //

ψ
CHomR(M,C)

��

HomR(B,CY )

ψ
CY

��

0 // G(M) // G(CHomR(M,C)) // G(CY )
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Since G and HomR(B,−) preserve limits,

HomR(B,CHomR(B,C)) = HomR(B,C)HomR(B,C)

G(CHomR(M,C)) = G(C)HomR(M,C)

and likewise for HomR(B,CY ) and G(CY ). This implies that

ψCHomR(M,C) , ψCY

are isomorphisms. By the Five Lemma, ψM must also be an isomor-

phism. It remains only to prove naturality of the association ψ 7→ ψM ;

that is, the following diagram commutes for f ∈ HomR(M,N):

HomR(B,M)

f∗
��

ψM
// G(M)

Gf
��

HomR(B,N)
ψN
// G(N)

Let φ ∈ HomR(B,M):

(Gf)(ψM(φ)) = (Gf)(Gφ)(θe)

= (G(fφ))(θe)

= (G(f∗φ))(θe)

= ψN(f∗φ)

Whence naturality follows, and the theorem is proved. �

Using all of the above theorems, we get some quick corollaries:

Corollary 1.21. If F : R −Mod → Ab is an additive functor, then

the following are equivalent:

(1) F preserves direct limits.

(2) F is right exact and preserves direct sums.

(3) F ∼= −⊗R B for some left R-module B.

(4) F has a right adjoint; that is, there is a functor G : Ab→ModR

such that (F,G) is an adjoint pair.
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Corollary 1.22. If G : R −Mod → Ab is an additive functor, then

the following are equivalent:

(1) G preserves inverse limits.

(2) G is left exact and preserves direct products.

(3) G is representable; that is, G ∼= HomR(B,−) for some left R

module B.

(4) G has a left adjoint; that is, there is a functor F : Ab→ModR

such that (F,G) is an adjoint pair.

2. Balancing Ext and Tor

The idea of balancing Ext and Tor comes from the observation that

there are two possible ways to compute ExtiR(A,B) (and similarly for

TorRi (A,B).

Firstly, one may choose a projective resolution Fi → A → 0. Ap-

plying the functor HomR(−, B), the homology groups (modules) of the

resulting sequence yields ExtiR(A,B).

However, we may just as easily choose an injective resolution 0 →

B → Qi and apply the functor Hom−R(A,−). Again, the homology of

the resulting sequence yields ExtiR(A,B). If these definitions were well

defined, one should expect that these processes yield the same answer

in both cases.

We first need the following definition (in order to try to keep the notes

somewhat self contained, I’ve included this, but Rob’s notes covered

this material):

Definition 2.1. Let C be a double complex. We define the total com-

plexes

Tot
∏

(C) Tot⊕(C)
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such that

Tot
∏

(C)n =
∏

p+q=n

Cpq Tot⊕(C) =
⊕
p+q=n

Cpq

with differentials

d
∏
n =

∏
p+q=n

dhpq +
∏

p+q=n

dvpq

d⊕n =
⊕
p+q=n

dhpq +
⊕
p+q=n

dvpq

Definition 2.2. Let P and Q be chain complexes of right and left R-

modules, respectively. Form the double complex P ⊗RQ = {Pp⊗RQq}

with horizontal differentials d⊗ 1 and vertical differentials (−1)p ⊗ d.

We define the total tensor product complex to be

Tot⊕(P ⊗R Q)

Definition 2.3. Given a chain complex P and a cochain complex I,

we may form the double cochain complex Hom(P, I) = {Hom(Pp, I
q).

We have horizontal differentials dh such that (dhf)(p) = f(dp) for

f ∈ Hom(Pp, Iq, and vertical differentials

(dvf)(p) = (−1)p+q+1d(fp)

Then, Hom(P, I) is called the Hom double complex, and,

Tot
∏

(Hom(P, I))

is called the total Hom cochain complex.

We will need the following:

Lemma 2.4 (Acyclic Assembly Lemma). Let C be a double complex

in ModR. Then,

• Tot
∏

(C) is an acyclic chain complex, assuming either of the follow-

ing:
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(1) C is an upper half plane complex with exact columns.

(2) C is a right half plane complex with exact rows.

• Tot⊕(C) is an acyclic chain complex, assuming either one of the

following:

(1) C is an upper half plane complex with exact rows.

(2) C is a right half plane complex with exact columns.

Proof. We will prove (1), and then justify why (1) in fact implies every

other case. Recall that dv and dh will denote our vertical and horizontal

differentials, respectively. Let (. . . , c−pp, . . . , c−22, c−11) ∈ Tot
∏

(C); in

particular, it should be an element of the kernel of our total chain

complex diferentials.

We now describe an iterative process to find the preimage of the

above tuple.

Step 0: Choose b10 = 0. Since we are at the bottom of our double

complex, the vertical differentials are all surjective so that we way

choose b01 ∈ C01 such that dv(b01) = c00.

Step 1: By definition of our total complex differentials, we know

that since (. . . , c−pp, . . . , c−22, c−11) ∈ Ker d,

dh(c00) + dv(c−11) = 0

By step 0, dv(b01) = c00, and, recalling that double chain complexes

are anticommutative,

dh(c00) + dv(c−11) = dh(dv(b01)) + dv(c−11)

= dv(c−11)− dvdh(b01) = 0
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Whence c−11 − dh(b01) ∈ Ker dv, and by exactness of our columns we

may find b−12 such that dv(b−12) = c−11 − dh(b01), so

dv(b−12) + dh(b01) = c−11

Step k: Assume that we have successfully chosen our bij for the

previous iterations. Then, again since our tuple is in the kernel of our

total complex differential,

dv(c−kk) + dh(c−k+1,k−1) = 0

By assumption we have already chosen b−k+1,k, b−k+2,k−1 such that

dv(b−k+1,k) + dh(b−k+2,k−1) = c−k+1,k−1

so that

dv(c−kk) + dh(c−k+1,k−1) = dv(c−kk) + dh(dv(b−k+1,k) + dh(b−k+2,k−1))

= dv(c−kk)− dvdh(b−k+1,k) + dhdh(b−k+2,k−1)

= dv
(
c−kk − dh(b−k+1,k)

)
= 0

And by exactness of our columns, we find b−k,k+1 such that

dv(b−k,k+1) = c−kk − dh(b−k+1,k)

So c−kk = dv(b−k,k+1) + dh(b−k+1,k).

By induction, we iterate this process indefinitely; the resulting ele-

ment of Tot
∏

(C)1 is by construction the preimage of the given element

in Tot
∏

(C)0. Now, one will notice that the above algorithm is in no

way dependent upon the base point. Hence we may apply the above

to Tot
∏

(C)n for every n to deduce that Tot
∏

(C) is acyclic, as desired.

Now, to deduce (2) from (1), merely transpose the order of the indices

in the above process; this immediately gives acyclicity. Similarly, if we

assume (4) true, we again just transpose in order to deduce the case of

(3). It remains to show (1) =⇒ (4).
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To see this explicitly, recall that we are working with left R-modules.

Given a right half plane double complex C, we truncate (non-stupidly)

the vertical diferentials at the nth step. Then, in the resulting total

complex, the every component will only consist of a finite direct sum of

terms. In the finite case, of course, the direct sum and direct product

coincide so we may apply (1) to deduce that the truncated complex

Tot⊕(τnC) is acyclic. As n is arbitrary, we deduce that Tot⊕(C) re-

mains acyclic as well. This completes the proof.

�

Using the above, we may answer the questions posed at the beginning

of this section in the affirmative:

Theorem 2.5. For any right R-module A and left R-module B,

Ln(A⊗R)(B) = Rn(⊗RB)(A) = TorRi (A,B)

Proof. Observe first that if we consider A and B as chain complexes

concentrated in degree 0, then the total tensor product with any other

chain complex C is merely the chain complex with A ⊗R Cn (resp.

Cn ⊗R B) in the nth spot.

Choose projective resolutions ε : P → A, η : Q → B and consider

the 3 tensor product complexes P ⊗Q, A⊗Q, and P ⊗B.

We may augment P ⊗ Q along the left with A ⊗ Q, and along the

bottom with P ⊗B. Taking the total tensor product, we have

A⊗Q Tot(P ⊗Q)
ε⊗Q
oo

P⊗η
// P ⊗B

Translating the augmented double complex to the left and taking the

total complex induces the mapping cone of ε ⊗ Q; recall then that
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cone(f) is exact if and only if f is a quasi-isomorphism (cf. my previous

notes).

Note however that the functor⊗RQ is exact sinceQ is projective, and

every projective module is flat. Hence the translated double complex

has exact rows; employing the Acyclic Assembly Lemma, we deduce

that cone(ε⊗Q) is acylic, so that ε×Q is a quasi-isomorphism.

Augmenting along the bottom and taking the total complex, we

again merely get the mapping cone of P ⊗ η. By identical reasoning as

above, this is also a quasi-isomorphism. Whence

Ln(A⊗R)(B) = Hn

(
Tot(P ⊗Q)

)
= Rn(⊗RB)(A)

And by transitivity, the result is immediate.

�

Theorem 2.6. For every pair of R-modules A and B,

Rn HomR(A,−)(B) = Rn HomR(−, B)(A) = ExtiR(A,B)

The proof of the above is nearly identical to the Tor case; we consider

augmenting our double complex and shifting. The total complex of

this shifted double complex induces the mapping cone of the induced

morphisms and by projectivity/injectivity, our functors are exact. We

conclude by employing the Acyclic Assembly Lemma again.


