HOMOLOGICAL ALGEBRA NOTES

KELLER VANDEBOGERT

1. CHAIN HOMOTOPIES

Consider a chain complex C of vector spaces

1

 $\cdots \longrightarrow C_{n+1} \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots$

At every point we may extract the short exact sequences

$$0 \longrightarrow Z_n \longrightarrow C_n \longrightarrow C_n / Z_n \longrightarrow 0$$
$$0 \longrightarrow d(C_{n+1}) \longrightarrow Z_n \longrightarrow Z_n / d(C_{n+1}) \longrightarrow 0$$

Since Z_n and $d(C_n)$ are vector subspaces, in particular they are injective modules, giving that

$$C_n = Z_n \oplus B'_n$$
$$Z_n = B_n \oplus H'_n$$

with $B'_n := C_n/Z_n$, $H'_n := H_n(C)$, and $B_n := d(C_{n+1})$. This decomposition allows for a way to move backward along our complex via a composition of projections and inclusions:

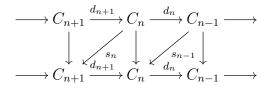
$$C_n \cong Z_n \oplus B'_n \to Z_n \cong B_n \oplus H'_n \to B_n \cong B'_{n+1} \hookrightarrow Z_{n+1} \oplus B'_{n+1} \cong C_{n+1}$$

If we denote by $s_n : C_n \to C_{n+l}$ the composition of the above, then one sees $d_n s_n d_n = d_n$ (more succinctly, dsd = d), and we have the

¹These notes were prepared for the Homological Algebra seminar at University of South Carolina, and follow the book of Weibel.

Date: September 29, 2017.

commutative diagram



Definition 1.1. A complex *C* is called *split* is there are maps s_n : $C_n \to C_{n+1}$ such that dsd = d. The s_n are called the splitting maps. If in addition *C* is acyclic, *C* is called *split exact*.

The map $d_{n+1}s_n + s_{n-1}d_n$ is particularly interesting. We have the following:

Proposition 1.2. If $id = d_{n+1}s_n + s_{n-1}d_n$, then the chain complex C is acyclic.

Proof. Let z be an n-cycle. Then, $id(z) = d_{n+1}s_n(z) \in B_n(C)$, so that the induced map

$$\operatorname{id}_*: H_p(C) \to H_p(C)$$

is equivalent to the 0 map. Since id_* must be an isomorphism, we conclude that $H_p(C) = 0$.

This motivates the following:

Definition 1.3. Let $f, g: C \to C'$ be two morphisms of complexes. f and g are called chain homotopic if $f_n - g_n = d'_{n+1}s_n + s_{n-1}d_n$. If $g \equiv 0$ in the above, then f is called *null-homotopic*.

Why do we care about such maps? If we follow the proof of the previous proposition with $f_n - g_n$ substituted for the identity, we see that the induced homology maps coincide. That is,

$$f_{n*} = g_{n*} : H_n(C) \to H_n(C')$$

 $\mathbf{2}$

In particular, f is null-homotopic when the induced homology maps are trivial. Additionally, we see that f must commute with our differentials in this case.

Proposition 1.4. Let $F : \mathcal{C} \to \mathcal{C}'$ be an additive functor. If $f, g : C \to C'$ are chain homotopic, then so are F(f) and F(g)

Proof. Note that additivity of our functors guarantees that F(d) remains a differential. Since functors preserve commutativity, we see

$$F(f) - F(g) = F(d)F(s) + F(s)F(d)$$

2. Mapping Cones

Let $f : \mathcal{B} \to \mathcal{C}$ be a morphism of chain complexes. We define a new complex, the mapping cone of f denoted $\operatorname{cone}(f)$ by complex whose degree n part is

$$B_{n-1} \oplus C_n$$

with differential

$$d = \begin{pmatrix} -d_B & 0 \\ -f & d_C \end{pmatrix}$$

It remains to show that this is actually a chain complex. We see:

$$d \circ d = \begin{pmatrix} -d_B & 0\\ -f & d_C \end{pmatrix} \begin{pmatrix} -d_B & 0\\ -f & d_C \end{pmatrix}$$
$$= \begin{pmatrix} -d_B^2 & 0\\ fd_B - d_C f & d_C^2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}$$

Where, by definition of a morphism of complexes, we have that $fd_B = d_C f$.

Exercise 2.1. Let cone(C) denote the mapping cone of the identity map on C. Show that cone(C) is split exact.

Proof. Define our splitting map $s_n : C_{n-1} \oplus C_n \to C_n \oplus C_{n-1}$ by $s_n(b,c) = (-c,0)$. Then, at every point of our complex, s is represented by the matrix

$$\begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$

We first show that d = dsd:

$$\begin{pmatrix} -d_C & 0\\ -\mathrm{id} & d_C \end{pmatrix} \begin{pmatrix} 0 & -1\\ 0 & 0 \end{pmatrix} \begin{pmatrix} -d_C & 0\\ -\mathrm{id} & d_C \end{pmatrix} = \begin{pmatrix} -d_C & 0\\ -\mathrm{id} & d_C \end{pmatrix} \begin{pmatrix} \mathrm{id} & -d_C\\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} -d_C \circ \mathrm{id} & d_C^2\\ -\mathrm{id}^2 & \mathrm{id} \circ d_C \end{pmatrix}$$
$$= \begin{pmatrix} -d_C & 0\\ -\mathrm{id} & d_C \end{pmatrix} = d$$

So this sequence is split. It remains to show exactness. Suppose that $(b, c) \in \text{Ker}(d)$, so that

$$d(b,c) = (-d_C(b), d_C(c) - b) = (0,0)$$

So that $b \in \text{Ker}(d_C) \cap \text{Im}(d_C) = \text{Im}(d_C)$. Then,

$$(b, c) = (d_C(c), c)$$

= $(-d_C(-c), d_C(0) - (-c))$
= $d(-c, 0) \in \text{Im}(d)$

So that $\operatorname{Ker}(d) = \operatorname{Im}(d)$, yielding exactness.

Exercise 2.2. Let $f: C \to D$ be a map of complexes. Show that f is null-homotopic if and only if f extends to a map $\overline{f}: \operatorname{cone}(f) \to D$.

Proof. Assume first that f is null-homotopic. We have mappings s_n : $C_n \to D_{n+1}$, and by definition of extension we should have that $\overline{f}(0, c) =$

f(c). For each n, define

f

$$\overline{f}_n(c',c) := f_n(c) - s_{n-1}(c')$$

For convenience, we may represent $\overline{f}_n = (-s_{n-1} f_n)$ as a row vector. Then, we only need show that fd - df = 0:

$$\begin{pmatrix} -s_{n-1} & f_n \end{pmatrix} \begin{pmatrix} -d_C & 0\\ -\mathrm{id} & d_C \end{pmatrix} = \begin{pmatrix} s_{n-1}d_C - f_n & f_nd_C \end{pmatrix}$$
$$= \begin{pmatrix} -d_Ds_{n-1} & d_Df_n \end{pmatrix}$$
$$= d_D \begin{pmatrix} -s_{n-1} & f_n \end{pmatrix}$$

Where the final steps used the assumption that f is null-homotopic and a chain map. Conversely, if such an extension \overline{f} exists, we may construct splitting maps $s_{n-1} : C_{n-1} \to D_n$ by defining $s_{n-1}(c) :=$ $-\overline{f}(c,0)$. It remains to show that f is null-homotopic with our s_n defined in this manner.

$$(c) = \overline{f}(0, c)$$

$$= \overline{f}(d_C(c), c) + \overline{f}(-d_C(c), 0)$$

$$= -\overline{f}\left(\begin{pmatrix} -d_C & 0\\ -\mathrm{id} & d_C \end{pmatrix} \begin{pmatrix} c\\ 0 \end{pmatrix} \right) + s_n \circ d_C(c)$$

$$= -\overline{f} \circ d(c) + s_n \circ d_C(c)$$

$$= d_D s_n(c) + s_n d_C(c)$$

Where the final equality follows from the assumption that \overline{f} is a chain map. The above of course shows that f is null-homotopic, completing the proof.

Proposition 2.3. We have a short exact sequence of chain complexes

$$0 \longrightarrow C \longrightarrow cone(f) \xrightarrow{\delta} B[-1] \longrightarrow 0$$

Where the left map takes $c \mapsto (0, c)$, and $\delta(b, c) = -b$

KELLER VANDEBOGERT

Proof. The inclusion $\iota(c) = (0, c)$ is clearly injective, so we have exactness at C. We also see that $\delta(0, c) = 0$, so $\operatorname{Im} \iota \subset \operatorname{Ker} \delta$. The reverse inclusion follows immediately by noting $\delta(b, c) = 0 \iff b = 0$. Finally, δ is certainly surjective, so our sequence is exact. \Box

Whenever we have a short exact sequence, one should imagine the induced long exact sequence of homology groups. In this case, the mapping cone induces a particularly nice property of the connecting morphism constructed in the Snake Lemma.

Lemma 2.4. Let

$$H_{n+1}(\operatorname{cone}(f)) \xrightarrow{\delta_*} H_n(B) \xrightarrow{\partial} H_n(C) \longrightarrow H_n(\operatorname{cone}(f))$$

be the induced long exact sequence of homology groups. Then, in the above, $\partial \equiv f_*$

Proof. Choose $b \in B_n$ to be some cycle. Then, $\delta(-b,0) = b$, and applying our cone differential to (-b,0) gives $(d_B(b), f(b)) = (0, f(b))$. By definition of the map ∂ , this implies that

$$\partial[b] = [fb] = f_*[b]$$

Corollary 2.5. $f : B \to C$ is a quasi-isomorphism if and only if Cone(f) is exact.

Example 2.6. Let X be a chain complex of R-modules (assume R is commutative/Noetherian). For any $r \in R$, the homothety map μ^r : $X \to X$ (which I'll denote by just r when context is clear) is a chain map, where $\mu_i^r(m) = rm$. We inductively define the Koszul complex

 $K(\underline{x})$ of a sequence $\underline{x} = x_1, \ldots, x_n$ by setting $K(x_1)$ to be the complex

$$0 \longrightarrow R \xrightarrow{x_1} R \longrightarrow 0$$

For $n \ge 2$, set $\underline{x}' = x_1, \ldots, x_{n-1}$. Then, $K(\underline{x}) = \operatorname{cone}(x_n)$, where we are viewing x_n as the homothety $x_n : K(\underline{x}') \to K(\underline{x}')$. We then have the exact sequence

$$0 \longrightarrow K(\underline{x}') \longrightarrow K(\underline{x}) \longrightarrow K(\underline{x}')[-1] \longrightarrow 0$$

The previous lemma then immediately tells us that the induced map $x_{n*}: H_p(K(\underline{x}')) \to H_n(K(\underline{x}'))$ is our connecting morphism. This definition of the Koszul complex has the advantage that certain properties are easily obtained. For instance, if the first element of \underline{x} is a unit, $K(\underline{x})$ is exact.

3. Mapping Cylinder

Definition 3.1. The mapping cylinder cyl(f) of a chain map $f : B \to C$ is the complex whose degree n part is $B_n \oplus B_{n-1} \oplus C_n$ with differential given by

$$d = \begin{pmatrix} d_B & \mathrm{id}_B & 0\\ 0 & -d_B & 0\\ 0 & -f & d_C \end{pmatrix}$$

One checks that

$$d^{2} = \begin{pmatrix} d_{B} & \mathrm{id}_{B} & 0\\ 0 & -d_{B} & 0\\ 0 & -f & d_{C} \end{pmatrix} \begin{pmatrix} d_{B} & \mathrm{id}_{B} & 0\\ 0 & -d_{B} & 0\\ 0 & -f & d_{C} \end{pmatrix}$$
$$= \begin{pmatrix} d_{B}^{2} & d_{B} - d_{B} & 0\\ 0 & d_{B}^{2} & 0\\ 0 & fd_{B} - d_{C}f & d_{C}^{2} \end{pmatrix} = 0$$

And we have the following exercise, similar to the previous exercise for the cone case. **Exercise 3.2.** Let $\operatorname{cyl}(C)$ denote the mapping cylinder of the identity. Show that two maps f, g are chain homotopic if and only if they extend to a map $f, s, g) : \operatorname{cyl}(C) \to D$.

Proof. Assume first that f and g are chain homotopic. There exist $s_n : C_n \to D_{n+1}$, and we may define an extension h of f and g by h(a, b, c) = f(a) + s(b) + g(c). As a row vector, we may say

$$h = \begin{pmatrix} f & s & g \end{pmatrix}$$

It remains to show that this extension is a chain map, that is, our differentials commute with it. We have:

$$hd_{\text{cyl}(C)} = \begin{pmatrix} f & s & g \end{pmatrix} \begin{pmatrix} d_C & \text{id} & 0 \\ 0 & -d_C & 0 \\ 0 & -\text{id} & d_C \end{pmatrix}$$
$$= \begin{pmatrix} fd_C & f - sd_C - g & g & gd_C \end{pmatrix}$$
$$= \begin{pmatrix} d_D f & d_D s & d_D g \end{pmatrix}$$
$$= d_D \begin{pmatrix} f & s & g \end{pmatrix}$$

Where the second to last step in the above used that f and g are both chain maps, and by assumption f - g = sd + ds. Hence this extension is indeed a chain map.

Conversely, suppose such an extension h exists. Then we may define splitting maps $s: C_n \to D_{n+1}$ by s(c) = h(0, c, 0). It remains to show that this implies f and g are chain homotopic. Since h is an extension, we see for any $c \in C_n$:

$$\begin{aligned} f(c) - g(c) &= h(c, 0, -c) \\ &= h(c, -d_C(c), -c) + h(0, d_C(c), 0) \\ &= h\left(\begin{pmatrix} d_C & \text{id} & 0 \\ 0 & -d_C & 0 \\ 0 & -\text{id} & d_C \end{pmatrix} \begin{pmatrix} 0 \\ c \\ 0 \end{pmatrix} \right) + s \circ d_C(c) \\ &= h(d_{\text{cyl}(C)}(0, c, 0)) + s d_C(c) \\ &= d_D h(0, c, 0) + s d_C(c) \\ &= d_D s(c) + s d_C(c) \end{aligned}$$

Where the third to fourth equality uses the assumption that h is a chain map. We then see that f and g are chain homotopic, as asserted.

Lemma 3.3. The inclusion $\alpha : C \to cyl(f)$ is a quasi-isomorphism.

Proof. This follows from observing that

$$0 \longrightarrow C \xrightarrow{\alpha} \operatorname{cyl}(f) \longrightarrow \operatorname{cone}(-\operatorname{id}_B) \longrightarrow 0$$

is exact, where the left map is our inclusion and the right map is a transposition and projection, that is, $(b, b', c) \mapsto (b', b)$ with induced differential

$$d = \begin{pmatrix} d_B & 0\\ \mathrm{id} & -d_B \end{pmatrix}$$

We also have the exact sequence

$$0 \longrightarrow B \longrightarrow \operatorname{cone}(-\operatorname{id}_B) \longrightarrow B[-1] \longrightarrow 0$$

Which induces the exact sequence

$$H_n(B) \xrightarrow{\operatorname{id}_*} H_n(B) \longrightarrow H_n(\operatorname{cone}(-\operatorname{id}_B)) \longrightarrow H_{n-1}(B) \longrightarrow \cdots$$

Since id_* is an isomorphism, exactness yields that $H_n(cone(-id_B)) = 0$ for every *n*. Looking at the induced long exact sequence of our first short exact sequence, we have

$$H_{n+1}(\operatorname{cone}(-\operatorname{id}_B)) \longrightarrow H_n(C) \xrightarrow{\alpha_*} H_n(\operatorname{cyl}(f)) \longrightarrow H_n(\operatorname{cone}(-\operatorname{id}_B))$$

Since our mapping cone homology groups vanish, we conclude that α_* is an isormorphism, that is, α is a quasi-isomorphism.

Exercise 3.4. Suppose $f : B \to C$ is a chain map. Define $\beta : \operatorname{cyl}(f) \to C$ by $\beta(b, b', c) = f(b) + c$. Show that β is a chain map and $\beta \alpha = \operatorname{id}$.

Additionally, show that s defined by s(b, b', c) defines a chain homotopy from the identity to $\alpha\beta$, and conclude that α is a chain homotopy equivalence between C and cyl(f).

Proof. Firstly, given $c \in C_n$,

$$\beta(\alpha(c)) = \beta(0, 0, c) = c$$

So that $\beta \alpha = id$. It remains to show that β is a chain map, that is, it commutes with our differentials. We see:

$$\beta \left(\begin{pmatrix} d_B & \text{id} & 0\\ 0 & -d_B & 0\\ 0 & -f & d_C \end{pmatrix} \begin{pmatrix} b\\ b'\\ c \end{pmatrix} \right) = \beta \left(\begin{pmatrix} d_B(b) + b'\\ -d_B(b')\\ -f(b') + d_C(c) \end{pmatrix} \\ = f(d_B(b)) + f(b') - f(b') + d_C(c) \\ = d_C(f(b)) + d_C(c) \\ = d_C\beta(b, b', c)$$

So that β is indeed a chain map. Let s be defined as in the problem statement. We wish to show that $id_{cyl(f)} - \alpha\beta = ds + sd$. To this end, compute:

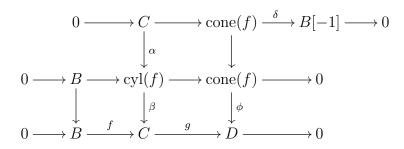
$$\begin{aligned} (b,b',c) &- \alpha \beta(b,b',c) = (b,b',c) - \alpha (f(b) + c) \\ &= (b,b',-f(b)) \\ &= (b,-d_B(b),-f(b)) + (0,d_B(b) + b',0) \\ &= d_{\text{cyl}(f)}(0,b,0) + s(d_B(b) + b',-d_B(b),-f(b) + d_C(c)) \\ &= d_{\text{cyl}(f)}s(b,b',c) + sd_{\text{cyl}(f)}(b,b',c) \end{aligned}$$

So that $1 - \alpha\beta = ds + sd$, as desired. By definition, α is a chain homotopy equivalence.

Given a short exact sequence

$$0 \longrightarrow B \xrightarrow{f} C \xrightarrow{g} D \longrightarrow 0$$

of complexes, we can form the following commutative diagram with exact rows



Where $\phi(b, c) := g(c)$ and α , β are the maps considered in the previous exercise. It is also clear by the definition of our mapping cylinder that cyl(f)/B = cone(f). We then have the following:

Lemma 3.5. In the following induced commutative diagram (with exact rows):

All vertical arrows are isomorphisms.

The proof of this is largely a collection of the previous results in these notes, and is left as an exercise to the reader.