
ar
X

iv
:1

90
4.

12
19

5v
1 

 [
m

at
h.

A
G

] 
 2

7 
A

pr
 2

01
9

KERNELS FOR GRASSMANN FLOPS

MATTHEW R. BALLARD, NITIN K. CHIDAMBARAM, DAVID FAVERO, PATRICK K. MCFADDIN,
AND ROBERT R. VANDERMOLEN

Abstract. We develop a generalization of the Q-construction of the first author, Diemer,
and the third author for Grassmann flops over an arbitrary field of characteristic zero.
This generalization provides a canonical idempotent kernel on the derived category of
the associated global quotient stack. This idempotent kernel, after restriction, induces a
derived equivalence over any twisted form of a Grassmann flop. Furthermore its image,
after restriction to the geometric invariant theory semistable locus, “opens” a canonical
“window” in the derived category of the quotient stack. We check this window coincides
with the set of representations used by Kapranov to form a full exceptional collection
on Grassmannians. Even in the well-studied special case of standard Atiyah flops, the
arguments yield a new proof of the derived equivalence.
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Introduction

Derived categories, once viewed as a mere technical book-keeping device, have flour-
ished as a topic of investigation with volumes of literature exposing their geometric nature.
Derived categories of coherent sheaves on algebraic varieties bind algebraic geometry to
commutative algebra, representation theory, symplectic geometry, and theoretical physics
in deep and surprising ways. Viewing the derived category of a variety X as a primary
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invariant of X requires one to face a basic but highly non-trivial question: when are two
derived categories of coherent sheaves equivalent?

A central motivating conjecture of Bondal and Orlov [BO95] extended by Kawamata
[Kaw02], identifies a source for nontrivial derived equivalences.

Conjecture (Bondal-Orlov 1995). Assume that Z and Z ′ are smooth complex varieties.
If Z and Z ′ are related by a flop, then there is a C-linear triangulated equivalence of their
bounded derived categories of coherent sheaves

D
b(Z) ∼= D

b(Z ′).

Flops themselves figure importantly in the minimal model program and arise via phase
transitions in string theory. Consequently, this conjecture offers a precise meeting ground for
for three areas of research (birational geometry, derived categories and theoretical physics).
Like many enticing but challenging questions, the conjecture provides an interesting con-
clusion without suggesting a direct method of assault. This begs the question - how can
one cook up an equivalence from a flop in general?

The Bondal-Orlov Conjecture is known to hold in many specific examples, including
when Z and Z ′ are three-dimensional [Bri99]. One specific example of interest here is the
class of Grassmann flops studied by Donovan and Segal [DS14]. To construct the flop, one
begins with the GL(V ) action on Z := Hom(V,W ) ⊕ Hom(W,V ) and passes to the two
associated GIT quotients, which we denote by X− and X+. In [DS14], Donovan and Segal
show that Db(X−) ∼= D

b(X+) by using a particular set of representations of GL(V ) shown
by Kapranov [Kap88] to constitute a full strong exceptional collection on the Grassmannian
Gr(d,W ), where d = dimV and comparing their associated vector bundles on X+ and X−.

The first step seeking to cook up an equivalence from a flop is to recognize that one
should not be looking for a functor but rather a kernel. Given two smooth and projective
varieties X and Y and an object of the derived category of their product K ∈ D

b(X × Y ),
one gets an exact functor

ΦK := π2∗
(
K ⊗OX×Y

π∗1(−)
)
: Db(X) → D

b(Y ).

where

X Y

X × Y

π1 π2

are the two projections. The object K is called the kernel of the integral transform ΦK. If
ΦK is an equivalence, one calls K a Fourier-Mukai kernel. The main questions transforms
to - how can one cook up a Fourier-Mukai kernel from a flop in general?

Not all examples that satisfy the Bondal-Orlov Conjecture directly answer this question.
In particular, no explicit Fourier-Mukai kernel is given for Grassmann flops. While an
appeal can be made Orlov’s representability result [Orl97], this discards the geometry one
should focus on to make progress.

Even when an abstract equivalence is known to exist, having an explicit kernel built from
actual geometry is still vital for:

• studying the induced maps on invariants such as algebraic or topological K-theory,
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• looking for identities that multiple equivalences might satisfy, e.g. groupoid repre-
sentations in equivalences,

• and understanding how the equivalence behaves under base change, in particular
whether it descends.

In [BDF17], the first author, Diemer, and the third author gave a means of constructing
a kernel on Z × Z ′ for any D-flip (Z,Z ′). For flops of smooth projective varieties, the
associated integral transform is conjectured to be the desired equivalence of Bondal and
Orlov. This provides a single unified approach to constructing equivalences from flops.

As part of this “Q-construction” in [BDF17], one uses a functorial construction of Drinfeld
which yields partial compactifications of Gm-actions on schemes. Morally speaking, this is
given by a moduli space of specific types of orbit degenerations coming from an affine
monoidal partial compactification of Gm, i.e., A1 with multiplication.

One may generalize Drinfeld’s construction to the case of a linear algebraic monoid M
with unit group G. A natural place to begin investigating this generalization isM = End(V )
for a k-vector space V .

Here we give a thorough examination of the generalized Q-construction for twisted Grass-
mann flops. As a consequence, we give an explicit Fourier-Mukai kernel.

Theorem 1. Let k be an (arbitrary) field of characteristic zero. The structure sheaf of the
fiber product of a twisted Grassmann flop diagram

X+ X−

X0

induces an equivalence D
b(X+) ∼= D

b(X−), ie OX+×X0
X− is a Fourier-Mukai kernel.

In the case d = 1, the Grassmann flop reduces to a twisted form of a standard Atiyah flop.
If the flop is honestly twisted, then even the existence of a derived equivalence is new for
any honestly twisted form of a Grassmann, or even Atiyah, flop. One should note that the
results of [DS14] do not translate directly to non-algebraically closed k, see Remark 5.3.3.

In the untwisted d = 1 case, Theorem 1 recovers the well-known result of Bondal and
Orlov [BO95]. However, the proof is genuinely new. In general, the results for Grassmann
flops rely only on cohomology computations of vector bundles on Grassmannians via the
Borel-Bott-Weil Theorem.

Theorem 1 is proven by

(1) showing that Q induces an equivalence, Theorem 5.3.1, and
(2) checking that Q base changes to the fiber product of the flop, Theorem 3.1.22.

The next result demonstrates that Q provides a canonical window in the derived category
of the quotient stack [X/GL(V )], similar to situation studied in [BDF17].

Theorem 2. Let Q+ := Q|X+×X . Then

• The functor

ΦQ+ : Db(X+) → D
b ([Z/GL(V )])

is fully-faithful.
• The restriction map j∗ : Db ([Z/GL(V )]) → D

b(X+) is a left inverse to ΦQ+.
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• Kapranov’s representations form a set of generators for the essential image of ΦQ+.

Theorem 2, in particular, provides a completely geometric explanation for the appearance
of Kapranov’s representations. Our method of monoid compactification can therefore be
seen as part of a program to produce canonical windows for quotients via linearly reductive
groups.

All results naturally flow from the fact that Q is a idempotent functor on D
b[X/GL(V )].

This can be summarized as the following consequence of Lemmas 3.1.16 and 3.1.23.

Theorem 3. There exists a morphism of kernels Q → ∆ inducing an isomorphism of
Q ◦Q→ Q, where ◦ denotes convolution of kernels and ∆ is the kernel of the identity.

Acknowledgements. M. Ballard and R. Vandermolen were partially supported by NSF
DMS-1501813. D. Favero and N. Chidambaram were partially supported by NSERC RGPIN
04596 and CRC TIER2 229953. M. Ballard thanks W. Donovan for stimulating discussions
on Grassmann flops. D. Favero is greatly appreciative to B. Kim for useful discussions
related to this work.

Notation. Throughout, k denotes a field of characteristic zero. So that no confusion arises
we consider 0 ∈ N. Further, for ℓ ∈ N, ℓ 6= 0, we let [ℓ] := {1, ..., ℓ}. We let Veck denote
the category of finite-dimensional k-vector spaces and k-linear transformations, and for a k-
algebra S we denote AffS the category of affine Spec(S)-schemes and morphisms of schemes.
We utilize standard results in Geometric Invariant Theory and attempt to align our notation
with that of [Mum65]. All schemes considered here are k-schemes, and we denote the global
sections of the structure sheaf of a k-scheme Z as k[Z]. The word point will always mean
k-point.

2. Background

Throughout, fix a d-dimensional k-vector space V .

Definition 2.0.1. For any k-vector space W we can naturally associate a scheme over
Spec(k) defined as the spectrum of the symmetric algebra of the dual space W∨, that is

Spec
(
Sym

(
W∨

))

we will refer to this scheme as the geometric bundle of W over Spec(k). In general for a
k-scheme X and a locally free OX -module M we will refer to the relative spectrum of the
symmetric sheaf of algebras of M∨ as the corresponding geometric bundle over X.

With the above definition in mind we will denote by GL(V ) the linear algebraic group

GL(V ) := Spec
(
k

[
C, (det (C))−1

])
,

where C = (cij)i,j∈[d] is a collection of indeterminates. We use det (C) to denote the

polynomial

det (C) :=
∑

δ∈Sn

(−1)sgn(δ)


∏

i∈[d]

ciδ(i)


 .

Next, recall that for a k-scheme Z, an action of GL(V ) on Z is defined by a morphism
of schemes

σZ : GL(V )×k Z → Z.



KERNELS FOR GRASSMANN FLOPS 5

If Z and Y are k-schemes with GL(V )-action given by σZ and σY , we say that a morphism
f : Z → Y is GL(V )-equivariant whenever the following diagram commutes:

GL(V )×k Z GL(V )×k Y

Z Y

1GL(V )×kf

σZ σY

f

Most of this work deals with categories whose objects carry a GL(V )-action and GL(V )-
equivariant morphisms. To denote such a restriction, we simply use the superscript GL(V ).
For example, let R be a commutative ring with a GL(V )-action. We denote the cat-
egory of modules with an inherited GL(V )-action and GL(V )-equivariant morphisms as

ModGL(V )(R).
Next we will establish further notational conventions. Given a collection A = {aij}i∈[m],j∈[d]

of indeterminates, for any subsets J ⊆ [d], I ⊆ [m], we let AI,J denote the collection of
variables

AI,J := (aij)i∈I, j∈J .

For I ⊆ [m] with |I| = d, we may list this set in increasing order, and denote the corre-
sponding ordered set by I := {ℓ1, .., ℓd}. We then write

det
(
AI,[d]

)
:=

∑

σ∈Sd

sgn(σ)


 ∏

1≤i≤d

Aℓi,σ(i)


 .

Given two collections A = {aij}i∈[m],j∈[d] and B = {bij}i∈[d],j∈[m], we use BA to denote the
collection of polynomials {

m∑

ℓ=1

biℓaℓj

}

i∈[d],j∈[d]

.

Lastly, given two k-algebras R and S and elements r ∈ R and s ∈ S, we let rL and sR

denote the elements r ⊗ 1 and 1⊗ s in R⊗k S.

3. The kernel

Recall that in [BDF17] the authors exhibit a kernel using a partial compactification of
a certain Gm-action. We follow a similar line of reasoning, and begin by defining our main
categories of interest. Let W and W ′ be arbitrary finite dimensional k-vector spaces. Next,
consider the vector spaces

HomVeck
(V,W )⊕HomVeck

(W ′, V ),

which carry a natural action, for ς ∈ GL(V ) (a point), ϕ ∈ HomVeck
(V,W ), and

ϑ ∈ HomVeck
(W ′, V ) as ς · (ϕ ◦ ς, ς−1 ◦ϑ). The category of all such geometric bundles of the

above type will be denoted as AM
GL(V )
k

, whose morphisms are morphisms of schemes which
are GL(V )-equivariant relative to the above action. Let us provide a few more specifics

concerning the action of GL(V ) on arbitrary objects of AM
GL(V )
k

. For such an object Z,
the induced action

σZ : GL(V )×k Z → Z
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is equivalent to the co-action as Hopf algebra modules. Choosing bases for V , W and W ′,
we may write

Z = Spec
(
k
[
{aij}i∈[d],j∈[m0], {bij}i∈[m1],j∈[d]

])
,

where m1 = dimW and m0 = dimW ′. Letting B := (bij) and A := (aij), we have

(3.1) Z = Spec (k [A,B]) .

The co-action on the global sections

σ♯Z : k[Z] → k [GL(V )]⊗k k[Z],

is defined on the generators as

bij 7→ (det(C))−1
d∑

r=1

Adj(C)rj ⊗k bir

aij 7→

d∑

r=1

cir ⊗k arj,

where Adj(C) is the adjoint matrix of C.
To build the readers intuition further let ϕ ∈ Hom(V,W ), and choose a basis of V and

W such that ϕ = (ϕij) with i ∈ [m0] and j ∈ [d], and ς ∈ GL(V ) such that under the chose
of basis for V then ς = (ςsℓ) for s, ℓ ∈ [d]. Therefore the action of GL(V ) on Hom(V,W )
can be defined as

(ς, ϕ) 7→ ϕ ◦ ς

ϕij 7→

d∑

ℓ=1

ϕiℓςℓj

Thus we can define a co-action on the dual (Hom(V,W ))∨ by:

ϕji = (ϕij)
∨ 7→

(
d∑

ℓ=1

ϕiℓςℓj

)∨

=
d∑

ℓ=1

ςjℓϕℓi

Therefore if we identify (Hom(V,W ))∨ with Sym1
(
(Hom(V,W )∨

)
we get an action on

Spec
(
Sym

(
(Hom(V,W ))∨

))
, i.e. the geometric bundle of Hom(V,W ) over Spec(k). With

a similar calculation on the regular functions of Hom(W ′, V ) we derive part of the action
on Z described above.

Furthermore, the projection

πZ : GL(V )×k Z → Z

induces the map

π♯Z : k[Z] → k [GL(V )]⊗k k[Z].

Further, let HP
GL(V )
k

denote the full subcategory of AM
GL(V )
k

consisting of objects of the
form

Hom(V,W )⊕Hom(W ′, V )

such that dim(W ),dim(W ′) ≥ dim(V ).
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3.1. The functor. Before turning attention to our functor Q, we introduce the functor ∆,
which gives the kernel of the identity functor.

Notation 3.1.1. If Z = Spec(R) is an element of AM
GL(V )
k

, we define the following scheme

∆Z := Z ×k GL(V ).

The assignment Z 7→ ∆Z defines a functor ∆ : AM
GL(V )
k

→ Aff
GL(V )×kGL(V )
k

.

We aim to use ∆Z to produce the Fourier-Mukai kernel for the identity functor on the
bounded GL(V )-equivariant derived category D

b(QcohGL(V )Z) by associating to it an object

of Db(QcohGL(V )×kGL(V )Z ×k Z). To achieve this, consider the morphism

πZ ×k σZ : Z ×k GL(V ) → Z ×k Z.

We define a sheaf of modules over Z ×k Z associated to ∆Z as

∆̃Z := (πZ ×k σZ)∗O∆Z
,

where O∆Z
denotes the structure sheaf of the affine scheme ∆Z . It remains to define an

action that realizes this sheaf as a (GL(V )×kGL(V ))-equivariant sheaf over Z×kZ, which
is provided in the next lemma.

Lemma 3.1.2. For Z = Spec(R) an object of AM
GL(V )
k

, the scheme GL(V ) ×k Z = ∆Z

has a natural (GL(V )×k GL(V ))-action

σ∆Z
: GL(V )×k GL(V )×k ∆Z → ∆Z

uniquely determined by the co-action

σ♯∆Z
: k[∆Z ] → k [GL(V )]⊗k k [GL(V )]⊗k k[∆Z ]

defined by

σ♯∆Z
(1⊗ r) =

(
ι1 ⊗ 1∆Z

)
◦ σ♯Z(r)

σ♯∆Z
(t⊗ 1) =

((
1⊗ µ♯

)
◦
(
β♯ ⊗ 1

)
◦ s♯ ◦ µ♯(t)

)
⊗ 1R.

Here r ∈ R, t ∈ k[GL(V )] and ι1 : k [GL(V )] → k [GL(V )] ⊗k k [GL(V )] is the natural
inclusion into the first component; β♯ : k [GL(V )] → k [GL(V )] is the co-inverse,
µ♯ : k [GL(V )] → k [GL(V )]⊗ k [GL(V )] is the group co-multiplication and
s♯ : k [GL(V )] ⊗ k [GL(V )] → k [GL(V )] ⊗ k [GL(V )] switches the factors in the tensor
product.

Moreover, the map πZ ×k σZ : GL(V )×k Z → Z ×k Z is equivariant with respect to this
GL(V )×k GL(V ) action.

The proof is a straight-forward diagram chase and is left to the reader.

Lemma 3.1.3. Let Z = Spec(R) be an object of AM
GL(V )
k

andM an object of ModGL(V )(R).
Then there is a k[GL(V )]-co-module isomorphism

(
k[GL(V )]⊗k M

)GL(V )
∼=M,

where k[GL(V )]⊗k M is given the left k[GL(V )]-co-action as a k[∆Z ]-module.
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Proof. Note that there is a natural morphism

M →
(
k[GL(V )]⊗k M

)GL(V )

given by the equivariant structure of M . Since the extension k/k is faithfully-flat, it suffices
to show that this map is an isomorphism over k. Assume that k = k.

By the Peter-Weyl Theorem, there is a decomposition k[GL(V )] =
⊕
Si ⊗ S∨

i , where Si
runs over every irreducible representation of GL(V ). Furthermore, since GL(V ) is linearly
reductive, we have a decompositionM =

⊕
Mi into irreducible components. Thus, we have

(
k[GL(V )]⊗k M

)GL(V )
∼=
⊕

Si ⊗ (S∨
i ⊗Mi)

GL(V ) ∼=
⊕

Si ⊗Hom
GL(V )
k

(Si,Mi),

and our result follows from Schur’s Lemma. �

Lemma 3.1.4. For any object Z of AM
GL(V )
k

, the object

∆̃Z ∈ D
b(QcohGL(V )×kGL(V )(Z ×k Z))

is the Fourier-Mukai kernel of the identity functor on D
b(QcohGL(V ) Z).

Proof. First note that since ∆Z is flat via either module structure and the Reynolds operator
is flat, it is sufficient to prove this on the level of R-modules. For an R-module M , the

integral transform associated to ∆̃Z is given by

Φ∆̃Z
(M̃ ) :=

[
Rπ2∗

(
∆̃Z ⊗L Lπ∗1M̃

)]GL(V )
,

where πi are the natural GL(V )-equivariant projections Z ×k Z → Z (see [BFK14, Section
2] for background). Our desired result is a consequence of the following calculation:

Φ
∆̃Z

(M̃) =
[
Rπ2∗

[
((πZ ×k σZ)∗O∆Z

)⊗L
OZ×

k
Z
(Lπ∗1M̃)

]]GL(V )

∼=
[
π2∗(πZ ×k σZ)∗

[
O∆Z

⊗O∆Z

(
(π ×k σZ)

∗π∗1M̃
)]]GL(V )

∼=
[
σZ∗π

∗
ZM̃

]GL(V )

∼=
[
O∆Z

⊗OZ
M̃
]GL(V )

∼=
[(
OGL(V ) ⊗k OZ

)
⊗OZ

M̃
]GL(V )

∼=
[
OGL(V ) ⊗k M̃

]GL(V )

∼= M̃,

where the first isomorphism follows from the projection formula, and the last follows from
Lemma 3.1.3. Furthermore, on the second isomorphism we may forego the process of
deriving these functors as they are either exact or remain an adapted class (as discussed
above). �

We now define the natural generalization of the functor Q from [BDF17, Defn 2.1.6].
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Definition 3.1.5. Given an object Z = Spec(R) of AM
GL(V )
k

, define

QZ :=
(
π♯Y (R), σ

♯
Y (R), C

)
⊆ k [GL(V )×k Z] .

that is the k-subalgebra of k[GL(V )×Z] generated by the images of σ♯Z , π
♯
Z and the image of

the inclusion k[End(V )] →֒ k[GL(V )×kZ]. For ease of notation we denote QZ := Spec(QZ).

Remark 3.1.6. Similar to the functor Q in [BDF17, Def 2.1.6] our definition provides a
partial compactification of the action of GL(V ) on Z. For ease of reference we recall the
definition of a partial compactification next.

Definition 3.1.7. Let G be an algebraic group and Z a k-scheme with G-action. Let Z̃
be a k-scheme together an action of G×kG which is equipped with a (G×kG)-equivariant
open immersion

i : G×k Z →֒ Z̃,

as well as a (G×k G)-equivariant morphism

(p, s) : Z̃ → Z ×k Z

such that the following diagram commutes

Z̃

G×k Z Z

p s
i

π

σ

where σ is the action of G on Z and π is the projection to Z. In this case, we refer to Z̃,
with the maps p, s, i, as a partial compactification of the action of G on Z.

Example 3.1.8. If dimV = 1, the category AM
GL(V )
k

= AM
Gm
k

is a subcategory of CRGm
k

as studied in [BDF17]. In this case, the definition of Q given here recovers that found in
loc. cit.

Lemma 3.1.9. Let Z = Spec(R) be an object of AM
GL(V )
k

. Then there are morphisms

QZ Z.
p

s

which precompose with the open immersion ∆Z → QZ to give the morphisms πZ and σZ .

Proof. By definition, the maps π♯Z and σ♯Z both have images which lie in QZ . �

Lemma 3.1.10. For any object Z of AM
GL(V )
k

, we have an isomorphism

(3.2) QZ
∼= k

[
AL, BL, AR, BR, C

]
/
(
BL −BRC,AR − CAL

)
∼= k[AL, BR, C].

Proof. We provide the reader with an easily verifiable isomorphism defined on the generators
by

cij 7→ cij , π♯Z(aij) 7→ aLij , π♯Z(bij) 7→ bLij,

σ♯Z(aij) 7→ aRij, σ♯Z(bij) 7→ bRij .

�
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Remark 3.1.11. It follows from Equation (3.2) that QZ is equivalent to the closed subva-
riety of (Z ×k Z)×k End(V ), consisting of the following points

{(ψ1, ψ2, ψ3, ψ4, ϕ)|ψ1 = ψ3 ◦ ϕ, ψ4 = ϕ ◦ ψ2}

Lemma 3.1.12. For any object Z of AM
GL(V )
k

, the scheme QZ admits a (GL(V )×kGL(V ))-
action, denoted σQZ

, which is uniquely defined by the co-action

σ♯QZ
: k[AL, BR, C] → k[DL, (detDL)−1]⊗ k[DR, (detDR)−1]⊗ k[AL, BR, C],

which maps the generators

bRij 7→
(
det(DR)

)−1
n∑

r=1

Adj(DR)rj ⊗k b
R
ir,

aLij 7→

n∑

r=1

dLir ⊗k a
L
rj,

cij 7→
(
det(DL)

)−1
n∑

r=1

Adj(DL)sj ⊗k d
R
ir ⊗k crs,

where Adj(D) is the adjoint of the matrix D.

Proof. This follows by restricting the action of (GL(V )×k GL(V )) on ∆Z that was defined
in Lemma 3.1.2. �

The next lemma gives explicit descriptions of the two module structures that QZ pos-
sesses.

Lemma 3.1.13. For Z = Spec(k[A,B]) an object of AM
GL(V )
k

, we have the following two

k[A,B]-module structures on QZ given by p♯ and s♯, respectively:

p♯ : k[A,B] → k[AL, BR, C]

B 7→ BRC

A 7→ AL

s♯ : k[A,B] → k[AL, BR, C]

B 7→ BR

A 7→ CAL

Proof. These are just the maps induced by the description of QZ from Lemma 3.1.10 under
the identification

QZ = k[AL, BR, C].

�

Proposition 3.1.14. For any object Z of AM
GL(V )
k

the assignment Z 7→ QZ defines a

functor Q : AM
GL(V )
k

→ Aff
GL(V )×GL(V )
k[End(V )] .

Proof. LetX = Spec(R) and Y = Spec(S) be objects of AM
GL(V )
k

with f ∈ Hom
AM

GL(V )
k

(X,Y ).

Note that Qf : QX → QY is defined as the restriction of f⊗1 : X×kGL(V ) → Y ×kGL(V ),
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which is well defined since f is assumed to be GL(V )-equivariant. With this description it
is readily verified that indeed Q is functorial. �

Remark 3.1.15. It follows immediately from the definition that ∆ is a subfunctor of Q.
Furthermore, this definition easily extends to any affine variety with a GL(V )-action; yet
this level of generalization is outside the scope of this paper. We note that our choice

of subcategory AM
GL(V )
k

⊂ Aff
GL(V )
k

, is intended to give an appropriate generalization of
the varieties considered in [DS14] while not having to encounter any unnecessary technical
difficulties in the statements of this preliminary section.

Now, we prove some properties of Q that will be used in Section 3.3 to prove the fullness
of a Fourier-Mukai transform constructed using Q.

Lemma 3.1.16. For an object Z = Spec(R) of AM
GL(V )
k

, we have

Tori(pQZ , sQZ) = 0

for all i > 0, where the subscripts preceding QZ denote the R-module structures given by p♯

or s♯, respectively.

Proof. Let R := k[A,B] as in Equation (3.1). By Lemma 3.1.13, we have

pQZ
∼= k[A,B,B′, C]

/(
B −B′C

)

sQZ
∼= k[A,B,A′, C]

/(
A− CA′

)

Let us compute QZ s⊗
L
p QZ using the above expressions:

QZ s⊗
L
p QZ = k[A,B,A′, C]

/(
A− CA′

)
⊗L

k[A,B] k[A,B,B
′, C]

/(
B −B′C

)

∼= k[A,B,A′, C]
/(
A− CA′

)
⊗k[A,B] Kk[A,B,B′,C](B −B′C)

∼= Kk[A,B,A′,B′,C1,C2]/(A−C2A′) (B −B′C1)

∼= Kk[B,A′,B′,C1,C2](B −B′C1),

where we resolved the regular sequence (B −B′C) by the Kozsul complex, denoted by K,
on the second line.

Finally, we see that the sequence (B−B′C1) is still regular in the ring k[B,A′, B′, C1, C2]
and hence all the higher homologies vanish. �

Notation 3.1.17. Similar to an observation of k[∆Z ], the ring QZ is naturally associated
to a sheaf of modules over Z, with its module structure defined via s or p. We may thus
realize QZ as a sheaf of modules over Z ×k Z, and we denote this module by

Q̂Z := (p ×k s)∗OQZ
.

We will use the same notation in the derived setting (see Section 3.2, particularly Re-
mark 3.2.4). Furthermore, as ∆Z is an open subset of QZ we will denote the natural open
immersion as

η : GL(V )×k Z → QZ .

We now specialize to the case where Z = Hom(V,W ) ⊕ Hom(W ′, V ) is an arbitrary

object of HP
GL(V )
k

, so that dimW,dimW ′ ≥ dimV = d. We also recall that we denote
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dimW = m0 and dimW ′ = m1. Now consider the two open sets

U+ :=
(
Hom(V,W ) \ {ϕ : rank(ϕ) ≤ (d− 1)}

)
⊕Hom(W ′, V )

U− := Hom(V,W )⊕
(
Hom(W ′, V ) \ {ϑ : rank(ϑ) ≤ (d− 1)}

)
.

It will be useful to denote the following open covers of these quasi-affine sets. Let

U+ =
⋃

J⊆[m0], |J |=d

U+
J ,(3.3)

U− =
⋃

I⊆[m1], |I|=d

U−
I ,(3.4)

where

U+
I := Spec

(
k

[
A,B,

(
det(A[d],I

)−1
])

U−
J := Spec

(
k

[
A,B,

(
det(BJ,[d]

)−1
])

and (for example) det
(
A[d],I

)
denotes the (d× d) minor of A consisting of the rows indexed

by I. Therefore, we have the following affine open covers:

(3.5) U+ ×Z//0 U
− =

⋃

I⊆[m0], J⊆[m1], |I|=|J |=d

U+
I ×Z//0 U

−
J ,

(3.6) U+ ×k U
− =

⋃

I⊆[m0], J⊂[m1], |I|=|J |=d

U+
I ×k U

−
J ,

where Z//0 := Spec(k[A,B]GL(V )) denotes the invariant theoretic quotient of Z.

Lemma 3.1.18. Let Z be an object of AM
GL(V )
k

. There is an isomorphism

k
[
Z ×Z//0 Z

]
∼= k

[
AL, BL, AR, BR

]
/
(
BLAL −BRAR

)
,

where the generators and relations are as in Definition 3.1.5.

Proof. From Weyl’s fundamental theorems for the action of GL(V ) (for example see [KP96,
Chapter 2.1] or the original text [Wey46]) we have

Z//0 = {D ∈ Homk(W,W ) | rankD ≤ dimV }.

The map Z → Z//0 is thus given by the homomorphism

k[Z//0] → k[A,B]

D 7→ BA.

Hence,

k
[
Z ×Z//0 Z

]
= k[AL, BL]⊗k[Z//0] k[A

R, BR] ∼= k[AL, BL, AR, BR]/(BLAL −BRAR).

�

Lemma 3.1.19. There exists a morphism

κ := p# ⊗ s# : k[AL, BL]⊗k[Z//0] k[A
R, BR] → QZ .
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Proof. This follows since p# and s# are equal on k[Z//0], by definition. �

Lemma 3.1.20. With the conventions above we have the following containment of ideals
in the ring k[AL, BL, AR, BR, C]:

(
BLAL −BRAR

)
⊂
(
BL −BRC,AR − CAL

)
.

Proof. This follows from

(BL −BRC)AL +BR(CAL −AR) = BLAL −BRAR.

�

Proposition 3.1.21. Let Z = Spec(k[A,B]) be an object of HP
GL(V )
k

and QZ as in Equa-

tion (3.2). Let Q̂Z |U+×kU− be the restriction of Q̂Z to the open subset U+×kU
− ⊂ Z×kZ.

Then κ restricts to an isomorphism

κ|U+×kU− : Q̂Z

∣∣∣
U+×kU−

∼
−→ OU+×Z//0U− .

Proof. We look affine-locally using the covers of Equations 3.5 and 3.6. We need only show
that under the above localization the map κ : k[Z ×Z//0 Z] → QZ becomes an isomorphism.
For surjectivity, it suffices to show that there is an element (we find two such) which map
to C. Indeed, we have

(
(BR)J [d]

)−1
AL 7→ C

BR
(
(AL)[d]I

)−1
7→ C,

easily verified by the relations BL −BRC and AR −CAL in Q(k[A,B]) given in Definition
3.1.5.

For injectivity, it suffices to check that under this localization we have the containment
(
BL −BRC,AR −CAL

)
⊂
(
BLAL −BRAR

)
,

since the opposite containment is Lemma 3.1.21. To see this, simply note that by multiplying
by the appropriate elements in the above identification, we have

(BL)J [d] = (BR)J [d]C and (AR)[d]I = C(AL)[d]I .

Hence, multiplying by the appropriate units in our localization, we have
(
BL −BRC,AR − CAL

)
=
(
(BR)J [d]

(
AR − CAL

)
,
(
BL −BRC

)
(AL)[d]I

)
.

For example, by Equation (3.1), we have

(BR)J [d]
(
AR − CAL

)
=
(
(BR)J [d]A

R − (BL)J [d]A
L
)
∈
(
BLAL −BRAR

)
,

while the other relation follows similarly. This gives our desired isomorphism. �

Consider the restriction Q|U+×U− . By descent, we have a corresponding object P on the
quotient Z+ × Z−.

Theorem 3.1.22. For an object Z of HP
GL(V )
k

we have an isomorphism

P ∼= OZ+×Z0
Z−

Proof. This follows immediately by passing to the quotient in Proposition 3.1.21. �
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We now examine a useful invariant when studying kernels in the next subsection. Note

that for Z, an object of AM
GL(V )
k

, the tensor product QZ s⊗p QZ is equipped with a natural

GL(V )×4-action. This induces a GL(V )×3-action, which we denote

σ3 : GL(V )×3 ×k Q
×2
Z → Q×2

Z

and is defined as the product of the following compositions

GL(V )×3 ×k Q
×2
Z

GL(V )×2 ×k QZ GL(V )×2 ×k QZ

QZ QZ

π1,2,4 π2,3,5

σQZ
σQZ

Here πi,j,k : GL(V )×3 ×k Q×2
Z → GL(V )×2 ×k QZ is the projection onto the ith, jth and

kth components. For any ring T with GL(V )×3-action, we will denote the invariant subring
associated to the action corresponding to the middle component of GL(V )×3 by T ⊲⊳. The
notation (−)⊲⊳ is suggestive of pinching a module in the middle. Since taking invariants is
functorial for equivariant morphisms, we obtain the following:

Lemma 3.1.23. The following diagram commutes

(QZ p⊗σ ∆Z)
⊲⊳

(QZ p⊗s QZ)
⊲⊳ QZ

(∆Z π⊗s QZ)
⊲⊳

∼(1⊗η)⊲⊳

(η⊗1)⊲⊳
∼

Furthermore, the morphism ρZ : (QZ p⊗s QZ)
⊲⊳ → QZ is an isomorphism.

Proof. First recall that we have a presentation from Lemma 3.1.13 of sQZ and pQZ , which
for ease of calculation we set the following simplified notation, with the hope that no
confusion arises:

pQZ
∼= k[A,BL, BR, C]/

(
BL −BRC

)
∼= k[A,BR, C]

:= k[A,B,C]

sQZ
∼= k[AL, AR, B,C]/

(
AR − CAL

)
∼= k[AL, B,C]

:= k[A,B,C]

Further we recall the notational preference that for k-algebras R,S and r ∈ R, s ∈ S that
the following pure tensors will be denoted: r ⊗ 1 := rL and 1 ⊗ s := sR. With these
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conventions we have the following presentations of rings:

QZ p⊗s QZ
∼= k[AL, AR, BL, BR, CL, CR]

/(
BLCL −BR, AL − CRAR

)

∼= k[AR, BL, CL, CR]

k[∆Z ] π⊗s QZ
∼= k[AL, AR, BL, BR, CL, CR,det(CL)−1]

/(
BL −BR, AL − CRAR

)

∼= k[AR, BL, CL, CR,det(CL)−1]

QZ p⊗σ k[∆Z ] ∼= k[AL, AR, BL, BR, CL, CR,det(CR)−1]
/(

BL −BR
(
CR
)−1

, AL − CRAR
)

∼= k[AR, BL, CL, CR,det(CR)−1]

Hence, commutativity of the above diagram is clear. Furthermore, one verifies that we have
an isomorphism k[∆Z ] π⊗s QZ

∼= QZ p⊗σ k[∆Z ], and thus

(k[∆Z ] π⊗s QZ)
⊲⊳ ∼= (QZ p⊗σ k[∆Z ])

⊲⊳ .

It is clear that the maps on the right-hand side of the diagram are isomorphisms since k[∆Z ]
is the kernel of the identity by Lemma 3.1.4. We claim that

(QZ p⊗s QZ)
⊲⊳ = k[AR, BL, CL · CR]

(QZ p⊗σ k[∆Z ])
⊲⊳ = k[AR, BL, CL · CR]

from which it follows that these rings are isomorphic. This claim is simply Weyl’s Theorem
for the invariants of k[V ⊗ V ∨].

�

3.2. The integral kernel. We now use Q to construct Fourier-Mukai kernels. We begin
by recalling the following from [BDF17, Definition 3.1.4].

Definition 3.2.1. Let Z̃ be a partial compactification of an action σ : G×k Z → Z, with

maps p, s, and i as above. We define the boundary of Z̃ to be

∂s
Z̃
:= Z̃ \ i (G×k Z) ,

the s-unstable locus to be
Zus
s := s

(
∂Z̃
)
,

and the s-semistable locus to be
Zss
s := Z \ Zus.

One similarly defines the p-unstable and p-semistable loci.

Remark 3.2.2. It follows from [BDF17, Example 3.1.10] that for an object Z of HP
GL(V )
k

,
the s-semistable locus Zss

s coincides with U+ from Equation (3.3). Similarly, the p-semistable
locus Zss

p coincides with U− from Equation (3.4).

Definition 3.2.3. For an object Z of HP
GL(V )
k

, we let

Q̂Z := (p × s)∗OQZ
∈ D

b

(
QcohGL(V )×kGL(V ) Z ×k Z

)
,

where the pushforward is understood to be derived. We denote by Q̂+
Z the quasi-coherent

sheaf on Zss
s ×k Z realized by restricting Q̂Z from Z ×k Z. That is,

Q̂+
Z = (j × 1Z)

∗Q̂Z ,
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where j : Zss
s → Z is the inclusion. Finally, taking Q̂+

Z as the Fourier-Mukai kernel, we have
the functor

(3.7) ΦQ̂+
Z
: Db

(
QcohGL(V ) Zss

s

)
→ D

b

(
QcohGL(V )Z

)
.

Remark 3.2.4. Since the functor (p × s)∗ is exact, Q̂Z is just the GL(V )-linearized sheaf
associated to QZ with its (p, s)-bimodule structure given in Lemma 3.1.2. This justifies our

use of Q̂Z in Notation 3.1.17.

Lemma 3.2.5. Let Z be an object of HP
GL(V )
k

. Then Φ
Q̂+

Z
is faithful.

Proof. Our proof follows from the fact that the functor

i∗ : Db(QcohGL(V )(Z
ss
s )) → D

b(QcohGL(V )(Z))

is the left inverse of ΦQ̂+
Z
. To see this, note that for any maximal minor m of B, we have

Rm ⊗s QZ
∼= k[GL(V )] ⊗k R = k[∆Z ]. Indeed, inverting a minor on the left amounts to

inverting the determinant of C. Since ∆Z is the kernel of the identity, we obtain the desired
result. �

The fullness of this functor depends on certain localization properties, which are the focus
of the next section.

3.3. Bousfield localizations. This section recalls Bousfield (co)-localizations which will
be used to establish fullness of the functor Φ

Q̂+ from Equation (3.7). We recall that the

existence of a Bousfield triangle produces a semi-orthogonal decomposition, and we show
that the essential image of our functor is an inclusion into one of these pieces. We refer the
reader to [Kra10] for a more detailed treatment of these concepts. While the proofs of the
statements refer to [BDF17] we recall all of the statements here for ease of reference.

Definition 3.3.1. Let T be a triangulated category. A Bousfield localization is an exact
endofunctor L : T → T equipped with a natural transformation δ : 1T → L such that:

a) Lδ = δL and
b) Lδ : L→ L2 is invertible.

A Bousfield co-localization is given by an endofunctor C : T → T equipped with a natural
transformation ǫ : C → 1T such that:

a) Cǫ = ǫC and
b) Cǫ : C2 → C is invertible.

Definition 3.3.2. Assume there are natural transformations of endofunctors

C
ǫ
→ 1T

δ
→ L

of a triangulated category T such that

Cx
ǫCx−→ x

δx−→ Lx

is an exact triangle for any object x of T . Then we refer to C → 1T → L as a Bousfield
triangle for T when any of the following equivalent conditions are satisfied:

1) L is a Bousfield localization and C(ǫx) = ǫCx

2) C is a Bousfield co-localization and L(δx) = δLx

3) L is a Bousfield localization and C is a Bousfield co-localization.
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For a proof that the above properties are indeed equivalent, we refer the reader to [BDF17,
Definition 3.33]. Denoting S := k[∆Z ]/QZ , we have morphisms

QZ
η♯
→ k[∆Z ] → S → QZ [1]

in D
b(ModGL(V )

k[Z]), where η♯ is the morphism induced by η as in Equation 3.1.17. This
yields an exact triangle. Furthermore, if we let η̂ : ΦQ̂Z

→ 1 denote the morphism induced

by η♯, we see that for any x in D
b(QcohGL(V ) Z) the following is also exact:

ΦQ̂Z
(x) → x→ ΦS̃(x)

With these observations in mind, we present one of the main results of this section.

Proposition 3.3.3. Let Z be an object of AM
GL(V )
k

. Then the triangle of functors

Φ
Q̂Z

η̂
→ 1 → Φ

S̃
.

is a Bousfield triangle.

Proof. This follows identically as in [BDF17, Lemma 3.3.6], by Lemma 3.1.16 and Lemma
3.1.23. �

We are now ready to prove that Φ
Q̂+ is full. Let J+ := j∗ ◦ j

∗, where j : Zss
s → Z is the

natural inclusion, and let Γ+ be the local cohomology.

Proposition 3.3.4. Let Z be an object of HP
GL(V )
k

. There is a semi-orthogonal decompo-
sition

D(QcohGL(V ) Z) = 〈ImΦS̃ , ImΦQ ◦ Γ+, ImΦQ̂+〉,

where Im denotes the essential image. Furthermore, ΦQ̂+ is fully-faithful.

Proof. This follows identically to the proof of Proposition 3.3.9 in [BDF17] �

Letting j′ : Zss
p → Z be the inclusion and Γ+ its local cohomology, we have the following

dual statement.

Proposition 3.3.5. Let Z be an object of HP
GL(V )
k

. There is a semi-orthogonal decompo-
sition

D(QcohGL(V ) Z) = 〈ImΦ
S̃
, ImΦQ ◦ Γ−, ImΦ

Q̂−〉,

where Im denotes the essential image. Furthermore, Φ
Q̂− is fully-faithful.

4. A geometric resolution

For this section, we will denote Z as the scheme

Hom(V,W )⊕Hom(W ′, V ).

Having established that Φ
Q̂+ is fully faithful, the remaining objective of this work is to

examine the essential image of the functor ΦQ̂+. We will show that this image is generated

by an exceptional collection first discovered by Kapranov in [Kap88]. The method which
we use is based on the underlying techniques of the well known ‘geometric technique’ of
Kempf (see e.g. [Wey03]).
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4.1. A sketch of Kempf. The objective of the method of Kempf is to provide a free
resolution of special modules by pulling back to a trivial geometric bundle over a projective
variety.

Consider an algebraic variety Y . The total space of the sheaf O⊕n
Y is the scheme Y ×An.

Now let X be the total space of a locally free sheaf F ⊂ O⊕n
Y on Y . Let π denote the

projection Y × An → Y .
We have the exact sequence of locally free sheaves on Y × An

0 π∗F π∗O⊕n
Y π∗T 0,

f

where T is the quotient sheaf.
Consider the section s := f ◦ taut : OY×An → π∗T , where taut denotes the tautological

section of π∗O⊕n
Y on Y × An. Then, we have the following statement.

Proposition 4.1.1. With the above notation, a locally free resolution of the sheaf OX as a
OY×An-module is given by the Koszul complex

K (s)• : 0 →

rnk(T )∧ (
π∗T ∨

)
→ . . .→

2∧(
π∗T ∨

)
→ π∗T ∨ → OY×An

Proof. On the vanishing locus Z(s), the tautolgical section taut factors through π∗F . Hence,
the vanishing locus is the total space of the sheaf F , which is X. We see that the section
is regular as the codimension of Z(s) equals the rank of the sheaf π∗T ; and the Kozsul
complex resolves OX . For more details, see [Wey03, Proposition 3.3.2]. �

4.2. The resolution. Now we are ready to present a resolution which will open a window
to view Im(ΦQ̂+). First recall that we set dim(V ) := d. We define Q+

Z as the base change:

Q+
Z QZ

Zss
s × Z Z × Z

p×s

Let S be the tautological bundle on Gr(d,W ) i.e. the locally free sheaf on Gr(d,W ) =
[Hom(V,W )sss /GL(V )L] corresponding to the GL(V )L-representation V . Then, we have
the Euler sequence for the Grassmannian Gr(d,W ):

0 → S →W → Q → 0.

Consider the pullback of the above sequence to Gr(d,W ) × Hom(W ′, V ) along q and ap-
ply H om(t∗V,−), where q : Gr(d,W ) × Hom(W ′, V ) → Gr(d,W ) and t : Gr(d,W ) ×
Hom(W ′, V ) → Hom(W ′, V ) are projections

(4.1) 0 → H om(t∗V, q∗S)
ρ
−→ H om(t∗V, q∗W )

Ξ
−→ H om(t∗V, q∗Q) → 0.

Let us denote T := H om(t∗V, q∗Q). We denote the total space of the locally free sheaf
H om(A,B) as Hom(A,B). From the discussion in the previous subsection, we get the
following result:
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Lemma 4.2.1. The following Koszul complex is a free resolution for OHom(t∗V,q∗S) as an
OGr(d,W )×Z-module.

(4.2) K (s)• :

d(m−d)∧
π∗T ∨ → . . . →

2∧
π∗T ∨ → π∗T ∨ → OGr(d,W )×Z

where π : Gr(d,W )×Hom(V,W )×Hom(W ′, V ) → Gr(d,W )×Hom(W ′, V ) is the projection
morphism.

Proof. We choose Y = Gr(d,W ) × Hom(W ′, V ), and F = H om(t∗V, q∗S), and apply
Proposition 4.1.1. Notice that the total space of H om(t∗V, q∗W ) on Gr(d,W )×Hom(W ′, V )
is Gr(d,W )× Z. �

Now, we can identify [Q+
Z/GL(V )L] as the total space Hom(t∗V, q∗S).

Lemma 4.2.2. The quotient space [Q+
Z/GL(V )L] is GL(V )R-equivariantly isomorphic to

the total space Hom(t∗V, q∗S) as schemes over Gr(d,W )×Hom(W ′, V ).

Proof. Recall from Equation (3.2), that QZ is associated to the module

k[AL, BR, C]

Geometrically, we may view QZ as the total space of the locally free sheaf End(V ) over
Speck[AL, BR]. Once we base change to the semistable locus and take the quotient with
respect to the GL(V )L action, we get that [Q+

Z/GL(V )L] is isomorphic to the total space

Hom(t∗V, q∗S) → Gr(d,W )×Hom(W ′, V ).

Moreover, the inclusion, H om(t∗V, q∗S) → H om(t∗V, q∗W ) realizes it as a subspace of
the total space Hom(t∗V, q∗W ) over Gr(d,W )×Hom(W ′, V ) which is Z ×Gr(d,W ).

This inclusion H om(t∗V, q∗S) → H om(t∗V, q∗W ) is induced by the ring homomorphisn

k[AL, AR, BR] → k[AL, BR, C]

AL 7→ AL

AR 7→ CAL

BR 7→ BR.

which is equivariant with respect to the remaining GL(V )R-action. �

We denote π1 : [Zss
s /GL(V )L] → [Hom(V,W )sss /GL(V )L] as the projection. Putting

Lemma 4.2.1 and Lemma 4.2.2 together, we get a resolution of the sheaf (π1 × IdZ)∗Q̂
+
Z .

Corollary 4.2.3. The Koszul complex (4.2) is a locally free resolution of the sheaf (π1 ×

IdZ)∗Q̂
+
Z of OGr(d,W )×Z-modules.

Remark 4.2.4. We note that we could also have constructed a locally free resolution of

Q̂+
Z on Zss × Z by the same method, and this will also lead to a similar proof as in the

remainder of this paper.
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5. Analyzing the integral transform

In this section, we show that the kernel Q̂+
Z induces a derived equivalence for a Grassmann

flop. We begin by showing that the essential image of this functor coincides with the
‘window’ description studied by Donovan and Segal in [DS14, Section 3.1]. Recall that Z
is scheme

Hom(V,W )⊕Hom(W ′, V )

with dim(W ) =: m,dim(W ′) =: m′ ≥ d := dim(V ). Specifically, we will show that the
image of Φ

Q̂+
Z
is generated by a collection of vector bundles corresponding to representations

identified by Kapranov [Kap88].
Let us recall Kapranov’s collection. Consider the standard GL(V ) representation V ,

where GL(V ) acts by left multiplication. Consider the Schur modules of V associated to
a Young diagram (or equivalently, partition) α, and denote them by LαV . Kapranov’s
collection is defined by

--K--d,m :=
{
LαV

∣∣∣ α ∈ Young diagrams of height ≤ m− d and width ≤ d
}
.

We also consider pull backs of these representations to Gr(d,W ) along the structure
morphism. As V pulls back to the tautological bundle S, the Schur functors LαV pull back
to LαS and these are the locally free sheaves considered by Kapranov. By abuse of notation,
we will consider --K--d,m as a collection of locally free sheaves on Hom(V,W ) ⊕ Hom(W ′, V )
or Hom(W ′, V ) (again, by pulling back along the structure morphism). Note that when
k = C, this is exactly the dual of the zeroth window W0 from [DS14, Section 3.1].

It is the objective of this section to show that the thick triangulated subcategory gener-

ated by elements of --K--d,m is equivalent to Im
(
ΦQ̂+

Z

)
. We show one containment in Propo-

sition 5.1.1, which relies on the work of Section 4.

5.1. Windows from a resolution. Consider the projection π1 : Z
ss
s → Hom(V,W )sss . To

demonstrate that the image of Φ
Q̂+

Z
is contained in 〈--K--d,m〉, we exhibit a particular

GL(V )L×GL(V )R-equivariant resolution K• of (IdZ ×π1)∗Q̂
+
Z over Hom(V,W )sss ×Z. Equiv-

alently, this is a GL(V )R-equivariant resolution of (IdZ ×π1)∗Q̂
+
Z over Gr(d,W ) × Z. The

resolution obtained in equation (4.2.1) in Section 4.2 is the one we are looking for and
resolves the functor Φ

Q̂+
Z
◦ π∗1.

In this subsection, we will show that the components Ki of the resolution have a filtration
whose associated graded pieces are of the form J ⊠K with K ∈ --K--d,m. This decomposition
of the Fourier-Mukai transform ΦQ̂+

Z
◦ π∗1 yields a functorial way to describe ΦQ̂+

Z
◦ π∗1(M)

using objects of --K--d,m for all objects π∗1(M) ∈ D
b([Zss

s /GL(V )]). As such objects generate

D
b([Zss

s /GL(V )]) this is enough to conclude the goal of this section, Im
(
Φ
Q̂+

Z

)
⊆ --K--d,m.

Proposition 5.1.1. With notation as above, we have

Im
(
ΦQ̂+

Z

)
⊆
〈--K--d,m

〉
,

where
〈--K--d,m

〉
is the thick triangulated subcategory generated by elements in --K--d,m.
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Proof. By Corollary 4.2.3, we have a quasi-isomorphism with the Koszul complex

K•
∼= (IdZ ×π1)∗Q̂

+
Z

The components of the Koszul complex are
∧l π∗H om(t∗V, q∗Q)∨ for 0 ≤ l ≤ d. We

can appeal to the Cauchy Formula, e.g. [Wey03, Theorem 2.3.2(a)], to get a filtration on∧i t∗π∗H om(t∗V, q∗Q)∨ whose associated graded pieces are

π∗


⊕

|λ|=i

LλV ⊠ Lλ′Q∨


 .

Thus, each term in the Koszul complex can be generated using iterated exact sequences
from the locally free sheaves

π∗
(
LλV ⊠ Lλ′Q∨

)
.

These components, in turn, generate Q̂+
Z . Hence, for all M , Φ

Q̂+
Z
(π∗1M) is generated by

objects of the form

Φπ∗(LλV ⊠LλQ∨)(π
∗
1M) = RΓ(M ⊗ LλQ

∨)⊗k LλV

all of which lie in --K--d,m. Now, since π1 is an affine map, Db([Zss/GL(V )]) is generated by
the essential image of π∗1. The result follows. �

5.2. Truncation operator. In this section we will see that Φ
Q̂+

Z
has a useful description

on GL(V )-representations. Yet before we go deeper into the representation theory we define
a truncation operator over our field k of characteristic zero.

Definition 5.2.1. Let M ∈ ModGL(V )(k[Hom(V,W )]), we define the truncation operator
as follows

M≥0 :=
(
M ⊗ k[End(V )]

)GL(V )

Recall, further that there is a GL(V )×k GL(V )-module decomposition

(5.1) k[End(V )] ∼=
⊕

N∨
i ⊗k Ni,

where we sum over all irreducible representations of GL(V ) with all positive weights [Pro07],
these representations are also referred to as polynomial representations. Since GL(V ) is
linearly reductive over a field of characteristic zero, we may decompose any GL(V )-module
M as M ∼=

⊕
Mi, where Mi is irreducible and we have the following description of the

truncation operator 5.2.1:

Lemma 5.2.2. Let M ∈ ModGL(V )(k[Hom(V,W )]); then decompose M over k into irre-
ducibles as

(5.2) M =
⊕

Mi irreducible

Mi.

Then the truncation operator may be described as follows

M≥0 =
⊕

Mi irreducible

and polynomial

Mi

�
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Lemma 5.2.3. For anyM ∈ ModGL(V )(k[Hom(V,W )]), M≥0 is a k[Hom(V,W )]-submodule
of M and ( )≥0 is exact.

Proof. The exactness of the functor follows since GL(V ) is linearly reductive and thus
our operator is just a projection. That M≥0 is a k[Hom(V,W )]-submodule follows since
k[Hom(V,W )]≥0 = k[Hom(V,W )] since k[Hom(V,W )] is a polynomial representation. �

To deliver a cleaner picture we define some more notation Y ′ := Hom(V,W ). For the
remainder of this subsection we will exploit the commutativity of the following diagram.

U+
Z Hom(V,W )⊕Hom(W ′, V )

U+
Y ′ Hom(V,W )

j

q1|U+
Z

q1

i

Lemma 5.2.4. Let M ∈ ModGL(V )(k[Hom(V,W )]) then

ΦQY ′
(M) =M≥0

Proof. The coaction map defines a morphism

M≥0 → (k[End(V )]⊗M≥0)
GL(V ) →֒ (k[End(V )]⊗M)GL(V ),

which we claim is an isomorphism. Notice that the coaction map lands in
k[End(V )] ⊂ k[GL(V )] as M≥0 is a polynomial representation. To check that this map is

an isomorphism, we may base change to k (which is faithfully flat over k). Hence, assume
that k = k.

Using equation (5.1) and Lemma 5.2.2, we get

(k[End(V )]⊗M)GL(V ) ∼=
⊕

Nj ⊗ (N∨
j ⊗Mi)

GL(V )

∼=M≥0

where we are considering the left GL(V ) invariant submodule and the second line follows
from Schur’s Lemma.

Finally, by Lemma 3.1.10 we have QY ′
∼= k[A]⊗ k[End(V )], and we get

(QY ′ ⊗M)GL(V ) ∼= k[A]⊗ (k[End(V )]⊗M)GL(V )

∼=M≥0.

�

Lemma 5.2.5. We have an isomorphism

(q1 × Id)∗ s(QZ)p
∼= (Id×q1)

∗
s(QY ′)p

as objects of ModGL(V )×GL(V )(Y ′ × Z).

Proof. This follows from the following calculation.

sQZ
∼= k[AL, BR, C]

∼= k[AR, BR]⊗k[A] k[A
L, C]

∼= Z ⊗k[Y ′] QY ′ ,
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where the first isomorphism follows from Lemma 3.1.13 and in the second line, k[A] acts on
the left by going to AR and on the right by going CAL. �

Corollary 5.2.6. Let M ∈ ModGL(V )(k[Y ′]), then

ΦQZ
(q∗1M) ∼= q∗1ΦQY ′

(M)

Proof. This follows from Lemma 5.2.5 which says that it is true at the level of the Fourier-
Mukai kernels. �

Lemma 5.2.7. For LαV ∈ --K--d,m we have that

(Ri∗Li
∗LαV )≥0

∼= LαV

Proof. To see this we will denote the irreducible components as ( )β where β is the highest
weight corresponding to the isotypical piece, and by β ≥ 0 we denote weights correspond
to polynomial representations.

(Ri∗Li
∗LαV )≥0 =

⊕

β≥0

(Ri∗Li
∗LαV )β

∼=
⊕

β≥0

(Ri∗Li
∗LαV ⊗ LβV

∨)GL(V )

∼=
⊕

β≥0

(Ri∗Li
∗(LαV ⊗ LβV

∨))GL(V )

∼=
⊕

β≥0

RΓ(Gr(d,W ), LαS ⊗ LβS
∨)

∼=
⊕

β≥0

Γ(Gr(d,W ), LαS ⊗ LβS
∨)(5.3)

∼=
⊕

β≥0

Γ(Hom(V,W ), LαV ⊗ LβV
∨)GL(V )(5.4)

∼=
⊕

β≥0

(Sym(Hom(W,V ))⊗ LαV ⊗ LβV
∨)GL(V )

∼= Sym(Hom(W,V ))⊗ LαV(5.5)
∼= OHom(V,W ) ⊗ LαV

Equation (5.3) follows from [Kap88, Lemma 3.2.a] (this uses the assumption that LαV ∈
--K--d,m and the fact that the weights of the irreducible summands of LαV ⊗ LβV

∨ are all
strictly larger than −(m−d).) Equation (5.4) follows as Gr(d,W ) has co-dimension greater
than 2 in the global quotient stack [Hom(V,W )/GL(V )]. Equation (5.5) follows from
Schur’s Lemma and the fact that all representations in Sym(Hom(W,V )) ⊗ LαV are poly-
nomial (this uses the fact that LαV is polynomial). �

Proposition 5.2.8. If LαV ∈ --K--d,m then

ΦQ+
Z
(LαV ) ∼= LαV
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Proof. This result follows from another calculation,

ΦQ+
Z
(LαV ) ∼= ΦQ(Rj∗Lj

∗LαV )

∼= π∗ΦQY ′
(Ri∗Li

∗LαV )

∼= π∗
(
Ri∗Li

∗LαV
)
≥0
,

where the second line follows from Corollary 5.2.6 and the last line by Lemma 5.2.4. Hence
our result follows from Lemma 5.2.7. �

Corollary 5.2.9. ImΦ
Q̂+

Z
= 〈--K--d,m〉.

Proof. This is an immediate consequence of Proposition 5.1.1 and Lemma 5.2.8. �

Note that we have a similar equality for Φ
Q̂− .

Corollary 5.2.10. ImΦ
Q̂−

Z
= 〈
(--K--d,m′

)∨
〉 = 〈--K--d,m′ ⊗ det(V ∗)m

′−d〉.

Proof. We can switch the roles of W and W ′ by taking transposes. This is anti-equivariant,
ie equivariant up to inversion in GL(V ). Consequently, we replace all representations with
their duals which gives the first equality. The second is a standard identity. �

5.3. The equivalence. Finally, we combine things to provide Fourier-Mukai equivalences
for (twisted) Grassmann flops. As usual, let k be an (arbitrary) field of characteristic zero.

We recall that P is the object obtained by the restriction of Q+
Z to Z+ × Z−.

Theorem 5.3.1. Assume dimW ′ ≥ dimW . The wall crossing functor

ΦP : Db(Z+) → D
b(Z−)

is fully-faithful. If dimW ′ = dimW , it is an equivalence.

Proof. Proposition 3.3.4 tells us that Φ
Q̂+

Z
is fully-faithful. Thus, we reduce to checking

that j∗− is fully-faithful on the image of Φ
Q̂+

Z
. Also, from Proposition 3.3.5, we know that

j∗− is fully-faithful on the image of ΦQ̂−

Z
.

From Corollaries 5.2.9 and 5.2.10, we see that

ImΦ
Q̂+

Z
⊆ ImΦ

Q̂−

Z
⊗ det(V ∗)d−m′

.

Since restriction commutes with tensoring with a line bundle, if j∗− is fully-faithful on a
full subcategory C then it is also on C ⊗ L for any line bundle L. Now Corollaries 5.2.9
and 5.2.10 show j∗− must be fully-faithful on the image of ΦQ̂+

Z
.

If dimW ′ = dimW , then both varieties are Calabi-Yau. As Calabi-Yau’s can have no
nontrivial admissible subcategories our fully-faithful functor must be an equivalence. �

Remark 5.3.2. If k = k, once one knows that

ImΦQ̂+
Z
= 〈--K--d,m〉

one can conclude Theorem 5.3.1 using [DS14, Proposition 3.6]. But, the technology pre-
sented here makes for a simple direct proof.
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Remark 5.3.3. In general, if we have two smooth projective varieties X and Y over k,
then the existence of an equivalence

D
b(X

k
) ∼= D

b(Y
k
)

does not guarantee the existence of an equivalence

D
b(X) ∼= D

b(Y ).

A simple class of counter-examples is Severi-Brauer varieties.
One needs, at least, a kernel over k which base changes to furnish the equivalence to

appeal to [Orl02, Lemma 2.12]. Without providing a kernel for general k for the equivalence
in [DS14], the results in loc.cit. cannot be used to deduce equivalences over arbitrary fields
of characteristic zero.

One can go even further. We give the following defintion.

Definition 5.3.4. We say

Y + Y −

Y0

is a twisted Grassmann flop if the base change to the separable closure of k

Y +
ksep Y −

ksep

(Y0)ksep

is isomorphic to a Grassmann flop.

Example 5.3.5. Let A be a central simple k-algebra of degree n. For 0 < l < n, the l-th
generalized Severi-Brauer variety of A SBl(A) is the variety parameterizing right ideals of
dimension ln in A. Such a variety is a twisted form of Gr(l, n), ie

SBl(A)ksep ∼= Gr(l, n)ksep .

On SBl(A), the tautological vector bundle T , whose fibers are the ideals, base changes to
Hom(W,S). Let T denote the associate geometric vector bundle. The map

SBl(A) → SpecΓ(T,OT )

contracts the zero section and base changes to X+ → X0. One can then take two copies of
SpecΓ(T,OT ) and identify them with the involution that base changes to transposition the
linear maps. The resulting diagram is a(n honestly) twisted Grassmann flop.

We also have equivalences for twisted Grassmann flops in characteristic zero.

Corollary 5.3.6. Assume char k = 0. If we have a twisted Grassmann flop, then there is
an equivalence

D
b(Y +) → D

b(Y −).



26 BALLARD, CHIDAMBARAM, FAVERO, MCFADDIN, AND VANDERMOLEN

Proof. Theorem 3.1.22 says that the structure sheaf of the fiber product Y +
ksep ×(Y0)ksep Y

−
ksep

is a Fourier-Mukai kernel. Applying [Orl02, Lemma 2.12] shows that the Y +×Y0 Y
− is also

a Fourier-Mukai kernel. �
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