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1. Introduction

The space of functions of bounded mean oscillation (BMO) is a natural
replacement of L∞ in many problems in Analysis and, in particular, in Ap-
proximation theory. Here we consider nonlinear approximation from regular
splines generated by a nested hierarchy of B-spines in BMO on R.

As usual the space BMO is defined as the set of all functions f ∈ L1
loc(R)

such that

‖f‖BMO := sup
I

1

|I|

∫
I

|f(x)−AvgIf | dx <∞, AvgIf :=
1

|I|

∫
I

f(x) dx,

where the sup is over all intervals I ⊂ R. As is well known the set C0(R) of all
continuous functions with compact support is not dense in BMO. Therefore, it
is natural to approximate in the BMO-norm functions that belong to the space
VMO, the closure of the space C0(R) in the BMO-norm, see [2].

In this article we consider nonlinear n-term approximation from B-splines
generated by multilevel nested partitions of R. More specifically, let {Im}m∈Z
be a sequence of families of intervals such that each level Im is a partition
of R into compact intervals with disjoint interiors and a refinement of the
previous level Im−1. We consider regular partitions of this sort, i.e. we require
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that the intervals from each level Im be of comparable length. Define I :=
∪m∈ZIm. Each such multilevel partition I generates a ladder of spline spaces
· · · ⊂ Sk−1 ⊂ Sk0 ⊂ Sk1 ⊂ · · · of degree k − 1, where Skm is spanned by B-splines
{ϕQ}. We denote by Qm the supports of the mth level B-splines ϕQ and set
Q := ∪m∈ZQm.

We are interested in approximating from the nonlinear set Σn of all splines
of the form

g =
∑
Q∈Λn

cQϕQ, Λn ⊂ Q, #Λn ≤ n.

Here the index set Λn is allowed to vary with g. The approximation error is
defined by

σn(f)BMO := inf
g∈Σn

‖f − g‖BMO.

The Besov spaces Ḃα,kτ with α > 0, τ := 1/α, and k ∈ N, play a crucial
role here. In the case when τ ≥ 1 the space Ḃα,kτ consists of all functions
f ∈ Lτloc(R) such that ∆k

hf ∈ Lτ (R), ∀h ∈ R, and

‖f‖Ḃα,kτ
:=
(∫ ∞

0

[t−αωk(f, t)τ ]τ
dt

t

)1/τ

<∞, ωk(f, t)τ := sup
|h|≤t

‖∆k
hf(·)‖Lτ (R).

In the case when τ < 1 the above definition the Besov space Ḃα,kτ is not quite
satisfactory to us. We believe that in principle the use of ωk(f, t)τ with τ < 1,
as well as polynomial approximation in Lτ , τ < 1, should be avoided when
possible. For this reason we define the Besov space Ḃα,kτ when τ < 1 via local
polynomial approximation in Lq, q ≥ 1, (see Definition 3.2).

Clearly, ‖f + P‖Ḃα,kτ
= ‖f‖Ḃα,kτ

for all P ∈ Πk, the set of all algebraic

polynomials of degree k−1. Hence, Ḃα,kτ consists of equivalence classes modulo
Πk. As will be shown (Theorem 3.1) for any function f ∈ Ḃα,kτ there exists a
polynomial P ∈ Πk such that f − P ∈ VMO. We shall be assuming that each
f ∈ Ḃα,kτ is the canonical representative f −P ∈ VMO of the equivalence class
modulo Πk generated by f .

Our primary goal in the article is to prove the following Jackson and Bern-
stein estimates (Theorems 4.1 and 4.2): Let α > 0, τ := 1/α, k ≥ 2. If
f ∈ Ḃα,kτ , then f ∈ VMO and

σn(f)BMO ≤ cn−α‖f‖Ḃα,kτ
, n ≥ 1,

and for any g ∈ Σn
‖g‖Ḃα,kτ

≤ cnα‖g‖BMO.

As is well known these two estimates imply a complete characterzation of the
approximation spaces associated to this sort of approximation (see Theorem 4.3
below).

To achieve our objectives we first develop in sufficient detail the theory
of the Besov spaces Ḃα,kτ . In particular we derive representations of these
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spaces in terms of B-splines, local polynomial approximation, and spline quasi-
interpolants.

We also compare the nonlinear spline approximation in BMO with the spline
approximation in the uniform norm and in Lp, 1 ≤ p <∞.

There is a considerable difference between nonlinear spline approximation
in BMO in dimension d = 1 and in dimension d > 1. A detailed discussion and
clarification of this phenomenon will be given in a followup article.

Observe that nonlinear approximation in BMO(Rd) from dyadic piecewise
polynomial functions has been studied by I. Irodova, see [12] and the references
therein. In this case dyadic Besov spaces are used for characterization of the
rates of approximation.

There is a close relationship between nonlinear approximation from splines
and wavelets in BMO. We develop the nonlinear n-term wavelet approximation
in BMO in [14].

Outline. This article is organized as follows. In Section 2 we introduce
our setting and collect all facts we need concerning splines, local polynomial
approximation, spline quasi-interpolants. The Besov spaces involved in non-
linear spline approximation in BMO are studied in Section 3. In Section 4 we
state our main results on spline approximation in BMO and we compare them
in Section 5 with the existing results on spline approximation in the uniform
norm and in Lp, 1 ≤ p <∞. Sections 6 and 7 contain the proofs of our Jackson
and Bernstein estimates. Section 8 is an appendix, where we place the proofs
of some statements from previous sections.

Notation. We shall use the notation ‖ · ‖p := ‖ · ‖Lp(R). C0(R) will stand
for the set of all continuous and compactly supported functions on R. Given
a measurable set A ⊂ R we denote by |A| its Lebesgue measure and by 1A

its characteristic function. For an interval J and λ > 0 we denote by λJ the
interval of length λ|J | which is co-centric with J . As usual Z will denote the
set of all integers, N will be the set of all positive integers, and N0 := N ∪ {0}.
Also, Πk will stand for the set of all univariate algebraic polynomials of degree
k − 1. Unless specified otherwise, all functions are complex-valued. Positive
constant will be denoted by c, c′, c1, . . . and they may vary at every occurrence;
a ∼ b will stand for c1 ≤ a/b ≤ c2.

2. Preliminaries

In this section we collect all facts regarding the BMO space, B-splines, local
approximation, quasi-interpolants, and other results that will be needed in the
sequel.
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2.1. BMO and VMO Spaces

As usual the space BMO on R is defined as the set of all locally integrable
functions on R such that

‖f‖BMO := sup
J

1

|J |

∫
J

|f(x)−AvgJf | dx <∞, AvgJf :=
1

|J |

∫
J

f(x) dx,

(2.1)
where the sup is over all compact intervals J and |J | is the length of J . Note
that ‖ · ‖BMO is not a norm because ‖g‖BMO = 0 if g = constant (g ∈ Π1).
For this reason we identify each f ∈ BMO with f + a, a = constant, and view
BMO as a subset of L1

loc(R)/Π1. Then ‖ · ‖BMO is a norm on BMO.
From the well known John-Nirenberg inequality [15] it follows that any

function f ∈ BMO is in Lploc(R), 1 < p <∞, and

sup
J

( 1

|J |

∫
J

|f(x)−AvgJf |p dx
)1/p

∼ sup
J

1

|J |

∫
J

|f(x)−AvgJf |dx = ‖f‖BMO

(2.2)
with constants of equivalence depending only on p.

As is well known BMO is not a separable space. However, the space VMO,
defined as the closure of C0(R) in the BMO norm (see Section 4 in [2]), is a
separable Banach space. As in BMO the elements of VMO are classes of equiv-
alence modulo constants. We shall consider spline approximation of functions
in VMO.

2.2. Nested Partitions of R

We say that

I = ∪m∈ZIm

is a regular multilevel partition of R into subintervals with levels {Im} if the
following three conditions are obeyed:

(a) Each level Im is a partition of R, i.e. R = ∪I∈ImI, and Im consists of
compact intervals with disjoint interiors.

(b) The levels {Im} of I are nested, i.e. Im+1 is a refinement of Im, and
each I ∈ Im has at least two and at most M0 children in Im+1, where M0 ≥ 2
is a constant independent of m.

(c) There exists a constant λ ≥ 1 such that

|I ′| ≤ λ|I ′′|, ∀I ′, I ′′ ∈ Im, ∀m ∈ Z. (2.3)

The dyadic intervals D = ∪m∈ZDm, Dm = {[2−mk, 2−m(k + 1)] : k ∈ Z},
are an example of a regular multilevel partition of R with λ = 1 and M0 = 2.

Other scenarios. Another version of the above setting is when the multi-
level partition I of R is of the form I = ∪∞m=0Im, where the levels Im satisfy
conditions (a)–(c) from above.
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Yet a third version of this setting is when we have a regular multilevel
partition I = ∪m≥0Im of a fixed compact interval J obeying conditions similar
to (a)–(c) above and J is the only element of I0.

Our theory can readily be adjusted to each of these settings. We shall stick
to the first setting on R from above.

A couple of remarks are in order.
(1) There is a natural tree structure in I induced by the inclusion relation.

(2) Conditions (a)–(c) imply that there exist constants 0 < r < ρ < 1 such
that if I ∈ Im, I ′ ∈ Im+1, and I ′ ⊂ I, then

r ≤ |I ′|/|I| ≤ ρ. (2.4)

In fact, inequality (2.4) is derived with bounds 1/(M0λ − λ + 1) ≤ r ≤ 1/2,
ρ ≤ λ/(λ + 1). Note that the upper bound for ρ and the lower bound for r
cannot be simultaneously achieved provided M0 ≥ 3.

We denote by xm,j , j ∈ Z, the knots of Im, i.e. Im={[xm,j , xm,j+1] : j∈Z},
where

· · · < xm,−1 < xm,0 < xm,1 < · · · .

With this notation the nested condition (b) can be described as

{xm,j : j ∈ Z} ⊂ {xm+1,j : j ∈ Z}, m ∈ Z.

Observe that inequality (2.4) implies that every regular multilevel partition I
may have either zero or one common knot for all levels Im. Dyadic intervals
D are example with one common knot – the origin.

For a fixed integer k ≥ 2 we denote by Qm the collection of all unions of k
consecutive intervals from Im, i.e.

Qm = {Q = [xm,j , xm,j+k] : j ∈ Z}, m ∈ Z. (2.5)

Further, set Q(I) = Q := ∪m∈ZQm. The intervals from Q are the supports of
the B-splines of degree k − 1 defined below in §2.3. We shall use both I and
Q as index sets of the objects discussed in this article.

To every I ∈ I we associate the set

ΩI := ∪{Q : Q ∈ Qm, Q ⊃ I}, I ∈ Im. (2.6)

In other words, if I = [xm,j , xm,j+1] then ΩI = [xm,j+1−k, xm,j+k]. In view of
condition (c) of the regular multilevel partition I we always have

|I| ∼ |Q| ∼ |ΩI |, ∀I ∈ Im, Q ∈ Qm, m ∈ Z.

Given a regular multilevel partition I, we define the level of a compact
interval J as the largest ν ∈ Z such that Iν has no more than one knot in
the interior of J . Observing that Iν+1 has at least two knots in the interior of
J we infer from (2.4) that |J | ∼ |I| for every I ∈ Iν . Also for every m ≤ ν
we have two adjacent intervals I1 and I2 in Im such that J ⊂ I1 ∪ I2 and
|I1| ∼ |I1| ≥ c|J |.



78 Nonlinear Spline Approximation in BMO(R)

2.3. Splines over Nested Partitions of R

Piecewise polynomials and splines. Assuming that I is a regular mul-
tilevel partition of R, we denote by S̃km := S̃k(Im), m ∈ Z, k ≥ 1, the set of
all piecewise polynomial (possibly discontinuous) functions over Im of degree
k − 1, i.e.

S ∈ S̃km if S =
∑
I∈Im

1I · PI ,

where 1I is the characteristic function of I and PI ∈ Πk. S is assumed to be
right-continuous at the knots of Im. Then the space of the mth level splines is
defined by

Skm := S̃km ∩ Ck−2, k ≥ 2. (2.7)

B-splines. Given Q := [xm,j , xm,j+k] ∈ Qm, m ∈ Z, (see (2.5)) we denote
by ϕQ the B-spline of degree k − 1 with knots xm,j , . . . , xm,j+k; these are
k + 1 consecutive knots of Im. For the precise definition of ϕQ, see e.g. [6,
Chapter 5, (2.7)]. Note that: (i) Q is the support of ϕQ and (ii) ‖ϕQ‖∞ ∼ 1
with constants of equivalence depending only on k and λ. We denote by VQ :=
{xm,j , . . . , xm,j+k} the knots of ϕQ.

It will be convenient to index the B-splines of degree k−1 by their supports.
Thus, given a regular multilevel partition I, the collection of all B-splines of
degree k − 1 is

Φ = Φ(I) := {ϕQ : Q ∈ Q(I)}.

As is well known {ϕQ : Q ∈ Qm} is a basis for Skm. Each S ∈ Skm has a
unique representation

S =
∑
Q∈Qm

βQ(S)ϕQ.

According to de Boor – Fix theorem (see e.g. [6, Chapter 5, Theorem 3.2]) the
coefficient βQ(S) is a linear functional given by:

βQ(S) :=

k−1∑
ν=0

(−1)ν$
(k−ν−1)
Q (ξQ)S(ν)(ξQ), (2.8)

$Q(x) :=
1

(k − 1)!

j+k−1∏
ν=j+1

(x− xm,ν), Q = [xm,j , xm,j+k],

where ξQ is an arbitrary point from (xm,j , xm,j+k). The value of βQ(S) in (2.8)
is independent of the choice of ξQ.

From condition (c) on the multilevel partition I it readily follows that

|βQ(S)| ≤ c‖S‖L∞(Q), Q ∈ Qm.
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This implies that (see e.g. [4, Lemma 2.3] in the case R2) if S =
∑
Q∈Qm bQϕQ,

where {bQ} is an arbitrary sequence of complex numbers, then

‖S‖p ∼
( ∑
Q∈Qm

‖bQϕQ‖pp
)1/p

, 0 < p ≤ ∞.

Moreover, for any 0 < p, τ ≤ ∞( ∑
I∈Im

[
‖S‖Lp(I)

]τ)1/τ

∼
( ∑
Q∈Qm

[
‖bQϕQ‖p

]τ)1/τ

(2.9)

with the usual modification when τ =∞. Note that βQ(S) = bQ.

2.4. Local Polynomial Approximation

Recall first some simple properties of polynomials that will be frequently
used.

Lemma 2.1. Let P ∈ Πk, k ≥ 1, and 0 < p, q ≤ ∞.

(a) For any compact interval J

|J |−1/p‖P‖Lp(J) ∼ |J |−1/q‖P‖Lq(J) (2.10)

with constants of equivalence depending only on k and min{p, q}.
(b) Let J ′ ⊂ J be two intervals such that |J | ≤ (1 + δ)|J ′|, δ > 0. Then

‖P‖Lp(J) ≤ c‖P‖Lp(J′)

with c = c(p, k, δ).

(c) For any compact interval J

‖P ′‖Lp(J) ≤ c|J |−1‖P‖Lp(J)

with c = c(p, k).

Applied to B-splines Lemma 2.1 (a), (c) imply

|Q|−1/q‖ϕQ‖q ∼ ‖ϕQ‖∞ ∼ 1, ‖ϕ′Q‖p ∼ |Q|−1‖ϕQ‖p.

For a function f ∈ Lp(J), defined on a compact interval J ⊂ R, 1 ≤ p ≤ ∞,
and k ≥ 1, we define

Ek(f, J)p := inf
P∈Πk

‖f − P‖Lp(J). (2.11)

Also, we denote by ωk(f, J)p the k-th modulus of smoothness of f on J :

ωk(f, J)p := sup
h∈R
‖∆k

h(f, ·, J)‖Lp(J), (2.12)

where

∆k
h(f, x, J) :=

{ ∑k
j=0(−1)k+j

(
k
j

)
f(x+ jh), if [x, x+ kh] ⊂ J ;

0, otherwise.
(2.13)
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Lemma 2.2 (Whitney). If f ∈ Lp(J), 1 ≤ p ≤ ∞, and k ≥ 1, then

Ek(f, J)p ≤ cωk(f, J)p.

From above and ∆k
h(P, x, J) = 0 for all P ∈ Πk it readily follows that

Ek(f, J)p ∼ ωk(f, J)p, ∀f ∈ Lp(J), 1 ≤ p ≤ ∞. (2.14)

The following useful property of modili of smoothness is well known:

ωk(f, J)pp ∼
1

|J |

∫ |J|
0

∫
J

|∆k
h(f, x, J)|pdxdh, 1 ≤ p <∞. (2.15)

For proofs of the above claims and further details, see e.g. [20, § 7.1].
We find useful the concept of near best approximation. A polynomial

PJ(f) ∈ Πk is said to be a polynomial of near best Lp(J)-approximation to f
from Πk with constant A ≥ 1 if

‖f − PJ(f)‖Lp(J) ≤ AEk(f, J)p.

Note that since p ≥ 1 a near best Lp(J)-approximation PJ(f) (with an appro-
priate A) can be easily realized by a linear projector, see below.

Lemma 2.3. [6, Chapter 12, Lemma 6.2] Suppose 1 ≤ q < p ≤ ∞ and PJ
is a polynomial of near best Lq(J)-approximation to f ∈ Lp(J) from Πk. Then
PJ is a polynomial of near best Lp(J)-approximation to f .

Local projectors onto polynomials. Given 1 ≤ p ≤ ∞ and a compact
interval J , we let PJ,p : Lp(J)→ Πk be a linear projector such that

‖f − PJ,p(f)‖Lp(J) ≤ AEk(f, J)p, ∀f ∈ Lp(J), (2.16)

where the constant A ≥ 1 is independent of J and f . Note that (2.16) implies
‖PJ,p‖Lp(J)→Lp(J) ≤ 1 +A, i.e. PJ,p is a bounded linear operator. PJ,p can be
defined via the averaged Taylor polynomial, see e.g. [1, Section 4.1], which is
a linear operator for fixed J, k that does not depend on p (cf. Lemma 2.3).

Remark 2.1. As is well know most of the above approximation results are
valid in the wider range p > 0. The restriction p ≥ 1 reflects our believe that
polynomial approximation of functions in Lp, p < 1, is not natural. There
is no linear operator realization of polynomial near best approximation in Lp,
p < 1, because there are no continuous linear functional in Lp, p < 1. Hence,
the polynomial approximation in Lp, p < 1, is nonconstructive. It should be
replaced by approximation in the Hardy space Hp, p < 1. However, as will be
seen later on the use of polynomial approximation in Lp or Hp, p < 1, can be
avoided completely in nonlinear spline approximation in BMO.
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2.5. Quasi-interpolant

We define the linear operator Tm : S̃km → Skm by

Tm(S) :=
∑
Q∈Qm

βQ(S)ϕQ, ∀S ∈ S̃km,

where βQ(S) are defined in (2.8) with the additional requirement ξQ does not
coincide with a knot of Qm. As observed in § 2.3 the identity Tm(S) = S for
every S ∈ Skm holds independently of the choice of ξQ. But for S ∈ S̃km \Skm the
value of βQ(S) may depend on the interval (xm,ν , xm,ν+1), ν = j, . . . , j+k−1,
containing ξQ. In order to have well defined operator Tm from now on for every
Q ∈ Qm we fixed the interval I ∈ Im, I ⊂ Q, containing ξQ in its interior.

From (2.8) it follows that

|βQ(S)| ≤ c‖S‖L∞(Q), ∀S ∈ S̃km, Q ∈ Qm,

which easily leads to

‖Tm(S)‖Lp(I) ≤ c‖S‖Lp(ΩI), ∀S ∈ S̃km, I ∈ Im, 1 ≤ p ≤ ∞, (2.17)

where ΩI is given in (2.6).
We next extend Tm to Lploc(R). Let PJ,p : Lp(J) → Πk be the projector

from (2.16). Define

Pm,p(f) :=
∑
I∈Im

1I · PI,p(f), f ∈ Lploc(R), (2.18)

(the precise values of Pm,p(f) at the knots of Im are not of importance for this
study) and set

Tm,p(f) := Tm(Pm,p(f)), f ∈ Lploc(R). (2.19)

Lemma 2.4. If f ∈ Lploc(R), 1 ≤ p ≤ ∞, m ∈ Z, then

‖f − Tm,p(f)‖Lp(I) ≤ cEk(f,ΩI)p, ∀I ∈ Im.

Proof. Let R ∈ Πk be such that ‖f −R‖Lp(ΩI) ≤ cEk(f,ΩI)p. Then

‖f − Tm,p(f)‖Lp(I) = ‖f − Tm(Pm,p(f))‖Lp(I)

≤ ‖f −R‖Lp(I) + ‖R− Tm(Pm,p(f))‖Lp(I)

= ‖f −R‖Lp(I) + ‖Tm[Pm,p(R− f)]‖Lp(I)

≤ ‖f −R‖Lp(ΩI) + c‖Pm,p(R− f)‖Lp(ΩI)

≤ c‖f −R‖Lp(ΩI) ≤ cEk(f,ΩI)p.

Here we used (2.17) and the boundedness of Pm,p. �
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2.6. Embedding of Sequence Type B-spline Spaces into BMO

The sequence `τ = `τ (Q) space indexed by Q, 0 < τ ≤ ∞, is the set of all
sequence {aQ}Q∈Q of complex numbers such that

‖{aQ}‖`τ :=
( ∑
Q∈Q
|aQ|τ

)1/τ

<∞.

The embedding of the Besov spaces of interest to us in BMO will play
a crucial role in this article. This embedding is in essence contained in the
following

Theorem 2.1. Let {aQ}Q∈Q ∈ `τ (Q), 0 < τ <∞.

(a) If τ > 1, then
∑
Q∈Q aQϕQ converges unconditionally in BMO(R) and∥∥∥ ∑
Q∈Q

aQϕQ

∥∥∥
BMO

≤ c‖{aQ}‖`τ . (2.20)

Consequently,
∑
Q∈Q aQϕQ ∈ VMO(R).

(b) If 0 < τ ≤ 1, then obviously
∑
Q∈Q aQϕQ converges absolutely and

unconditionally in L∞(R) to a continuous function and∥∥∥ ∑
Q∈Q

aQϕQ

∥∥∥
BMO

≤
∥∥∥ ∑
Q∈Q
|aQϕQ|

∥∥∥
∞
≤ c‖{aQ}‖`τ .

The proof of this theorem depends on the following

Lemma 2.5. Let 0 < p, τ <∞. Then for any sequence {aQ}Q∈Q and any
compact interval J ⊂ R we have∥∥∥ 1

|J |1/p
∑

Q∈Q,Q⊂J
|aQϕQ|

∥∥∥
p
≤ c
( ∑
Q∈Q,Q⊂J

|aQ|τ
)1/τ

. (2.21)

This lemma is a consequence of the following well known embedding result
(see e.g. [16, Theorem 3.3]).

Proposition 2.1. If 0 < τ < p < ∞, then for any sequence {aQ}Q∈Q of
complex number one has∥∥∥ ∑

Q∈Q
|aQϕQ|

∥∥∥
p
≤ c
( ∑
Q∈Q
‖aQϕQ‖τp

)1/τ

,

where the constant c > 0 depends only on p, τ , and the parameter λ from
condition (c) on I.

To streamline our presentation we defer the proofs of Lemma 2.5 and The-
orem 2.1 to § 8.1 in the appendix.
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3. Homogeneous Besov Spaces

In this section, we introduce and discuss the Besov spaces Ḃα,kτ that will
be used for characterization of nonlinear n-term spline approximation in BMO.
For the theory of Besov spaces we refer the reader to [18, 22, 9, 10, 11].

Throughout the section we assume that

α > 0, k ≥ 2, and τ := 1/α.

3.1. The Homogeneous Besov Space Ḃα,kτ in the Case τ ≥ 1

Definition 3.1. The homogeneous Besov space Ḃα,kτ = Ḃα,kτ (R), 1 ≤ τ <
∞ (0 < α ≤ 1), is defined as the collection of all functions f ∈ Lτloc(R) such
that ∆k

hf ∈ Lτ (R) for all h ∈ R and

‖f‖Ḃα,kτ
:=
(∫ ∞

0

[t−αωk(f, t)τ ]τ
dt

t

)1/τ

<∞, (3.1)

where

ωk(f, t)τ := sup
|h|≤t

‖∆k
hf‖τ , ∆k

hf(x) =

k∑
j=0

(−1)k+j

(
k

j

)
f(x+ jh).

Notice the different definition and notation of finite differences (2.13) and mod-
uli (2.12) on compact interval. Observe that ‖f + P‖Ḃα,kτ

= ‖f‖Ḃα,kτ
for each

polynomial P ∈ Πk.

From the properties of ωk(f, t)τ it readily follows that

‖f‖Ḃα,kτ
∼
(∑
ν∈Z

(
2ανωk(f, 2−ν)τ

)τ)1/τ

. (3.2)

It is also easy to see that

‖f‖Ḃα,kτ
∼
(∑
I∈I

(|I|−αωk(f,ΩI)τ )τ
)1/τ

∼
(∑
I∈I

(|I|−αEk(f,ΩI)τ )τ
)1/τ

. (3.3)

Recall that Ek(f,ΩI)τ ∼ ωk(f,ΩI)τ , see (2.14). For reader’s convenience we
give a simple proof of equivalence (3.3) in §8.2 in the appendix.

Subsequently, in Theorem 3.2 we shall show the following key equivalence:
For any 1 ≤ q <∞, τ ≥ 1,

‖f‖Ḃα,kτ
∼
(∑
I∈I

(
|I|−

1
q ωk(f,ΩI)q

)τ)1/τ

∼
(∑
I∈I

(
|I|−

1
qEk(f,ΩI)q

)τ)1/τ

.

(3.4)
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3.2. The Besov Space Ḃα,kτ in the General Case When 0 < τ <∞

As was alluded to in Definition 2.1 to us polynomial approximation in Lτ ,
τ < 1, is not normal and should be avoided. Furthermore, we think that even
when τ ≥ 1 the Besov spaces Ḃα,kτ are most naturally defined via local poly-
nomial approximation in Lq with q ≥ 1. The equivalence (3.4) is a motivation
for making the following

Definition 3.2. Let I be a regular multilevel partition of R (see §2.2). The
Besov space Ḃα,kτ (E, q), 1 ≤ q <∞, 0 < τ <∞, is defined as the collection of
all functions f ∈ Lqloc(R) such that

‖f‖Ḃα,kτ (E,q) :=
(∑
I∈I

(
|I|−

1
q ωk(f,ΩI)q

)τ)1/τ

∼
(∑
I∈I

(
|I|−

1
qEk(f,ΩI)q

)τ)1/τ

(3.5)
is finite. Here ωk(f,ΩI)q and Ek(f,ΩI)q are defined in (2.12) and (2.11) with
ΩI from (2.6).

Lemma 3.1. The Besov space Ḃα,kτ (E, q) introduced above is independent
of the particular selection of the multilevel partition I of R being used.

Proof. Let I ′ be another multilevel partition of R with the properties of I.
It is readily seen that for every level I ′m of I ′ there exists a level In of I with
these properties: (a) The intervals in I ′m and In are comparable in length,
and (b) For each interval I ′ ∈ I ′m there exists an interval I ∈ In such that
ΩI′ ⊂ ΩI . For example, condition (b) is satisfied whenever maxI′∈I′m |I

′| ≤
3/2 minI∈In |I|. Hence,∑

I′∈I′m

(
|I ′|−

1
q ωk(f,ΩI′)q

)τ ≤ c ∑
I∈In

(
|I|−

1
q ωk(f,ΩI)q

)τ
.

Clearly, each level In of I can serve in this capacity for only uniformly bounded
number of levels from I ′. The claim follows. �

In light of (3.3) the spaces Ḃα,kτ and Ḃα,kτ (E, τ) are the same with equivalent
norms when τ ≥ 1. Furthermore, as will be shown in Theorem 3.2 (3.4) is valid
and hence the spaces Ḃα,kτ (E, q) are the same space for all 1 ≤ q < ∞ with
equivalent norms when τ ≥ 1. The same theorem extends the equivalence of
these spaces for 0 < τ <∞. To achieve this we need some preparation.

3.3. Norms via Projectors

We define

qm,q := Tm,q − Tm−1,q for m ∈ Z, (3.6)
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where Tm,q is defined in (2.19). For a given function f ∈ Lqloc(R), 1 ≤ q <∞,
clearly qm,q(f) ∈ Skm and we define uniquely the sequence {bQ,q(f)}Q∈Qm by

qm,q(f) =:
∑
Q∈Qm

bQ,q(f)ϕQ. (3.7)

Since the near-best approximant in (2.16) is realized as a linear operator, then,
evidently, {bQ,q(·)} are linear functionals.

We introduce the following (quasi-)norms for functions f ∈ Lqloc(R),
1 ≤ q <∞, 0 < τ <∞:

‖f‖Ḃα,kτ (Q,q) :=
( ∑
Q∈Q

(|Q|−1/q‖bQ,q(f)ϕQ‖q)τ
)1/τ

.

By (2.9) we have

‖f‖Ḃα,kτ (Q,q) ∼
(∑
I∈I

(|I|−1/q‖qm,q(f)‖Lq(I))τ
)1/τ

, (3.8)

and, since ‖ϕQ‖p ∼ |Q|1/p,

‖f‖Ḃα,kτ (Q,q) ∼
( ∑
Q∈Q
|bQ,q(f)|τ

)1/τ

. (3.9)

Lemma 3.2. If f ∈ Ḃα,kτ (E, q), 1 ≤ q <∞, then

‖f‖Ḃα,kτ (Q,q) ≤ c‖f‖Ḃα,kτ (E,q). (3.10)

Proof. Let f ∈ Ḃα,kτ (E, q). If I ∈ Ij and J ∈ Ij−1 is the unique parent of
I (I ⊂ J), then by Lemma 2.4

‖qj,q(f)‖Lq(I) ≤ c‖f − Tj,q(f)‖Lq(I) + c‖f − Tj−1,q(f)‖Lq(J) (3.11)

≤ cEk(f,ΩI)q + cEk(f,ΩJ)q, 1 ≤ q <∞.

This, (3.8) and (3.5) imply (3.10). �

As will be shown later ‖·‖Ḃα,kτ (Q,q) is another equivalent norm in Ḃα,kτ (E, q).

3.4. Decomposition of Ḃα,kτ (E, q) and Embedding in VMO

Our next step is to derive a representation of the functions in Ḃα,kτ (E, q)
via the quasi-intrepolant from (2.19). We first show that the Besov space
Ḃα,kτ (E, q) is embedded in BMO modulo polynomials of degree k − 1.

We define the BMO type space BMOq,k(R), 1 ≤ q < ∞, as the set of all
functions f ∈ Lqloc(R) such that

‖f‖BMOq,k := sup
I∈I
|I|−1/qωk(f,ΩI)q ∼ sup

I∈I
|I|−1/qEk(f,ΩI)q <∞.
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Proposition 3.1. For any f ∈ BMOq,k(R), 1 ≤ q < ∞, there exists a
polynomial P ∈ Πk such that f − P ∈ BMO and

‖f − P‖BMO ≤ c‖f‖BMOq,k . (3.12)

Proof. If ‖f‖BMOq,k = 0 then f coincides with its polynomial of best ap-
proximation on every of the over-lapping intervals ΩI and (3.12) follows triv-
ially.

Let ‖f‖BMOq,k > 0. Denote Jν := [−2ν , 2ν ], ν ∈ N0. Evidently, for each
ν ∈ N0 there exists an interval Iν ∈ I such that Jν ⊂ ΩIν and |Jν | ∼ |Iν |. In
light of Whitney’s theorem (Lemma 2.2), there exists a polynomial Pν ∈ Πk

such that

1

|Jν |

∫
Jν

|f(x)− Pν(x)|qdx ≤ c|Jν |−1ωk(f, Jν)qq ≤ c‖f‖
q
BMOq,k

. (3.13)

Denote Υν := Pν −Pν−1. Since Υν ∈ Πk we have for x ∈ Jn, n ≥ 0, and ν ≥ n

|Υν(x)−Υν(0)| ≤ |Jn|‖Υ′ν‖L∞(Jn) ≤ |Jn|‖Υ′ν‖L∞(Jν) ≤ c|Jn||Jν |−1‖Υν‖L∞(Jν)

and using Lemma 2.1 and (3.13)

‖Υν‖L∞(Jν) ≤ |Jν |−1/q‖Υν‖Lq(Jν) ≤ |Jν |−1/q‖Υν‖Lq(Jν−1)

≤ c|Iν |−1/qωk(f,ΩIν )q + c|Iν−1|−1/qωk(f,ΩIν−1
)q ≤ c‖f‖BMOq,k .

Then for any n,m ∈ N, n < m, we have

m∑
ν=n+1

‖Υν −Υν(0)‖L∞(Jn) ≤ c|Jn|
m∑

ν=n+1

|Jν |−1‖Υν‖L∞(Jν) (3.14)

≤ c‖f‖BMOq,k .

From above with n = 0 it follows that the series
∑∞
ν=1(Υν −Υν(0)) converges

uniformly on J0 = [−1, 1] to some polynomial in Πk. Hence, there exists a
polynomial P ∈ Πk such that

‖Pm − Pm(0)− (P − P (0))‖L∞(J0) → 0 as m→∞.

From this and (3.14) it follows that for any (fixed) n ∈ N

‖Pm − Pm(0)− (P − P (0))‖L∞(Jn) → 0 as m→∞. (3.15)

We shall next show that (3.12) holds with the polynomial P from above.
Let J be an arbitrary compact interval. Then there exists an interval Ĩ0 ∈ I
such that J ⊂ ΩĨ0 and |Ĩ0| ∼ |J |. Let n ∈ N be the minimal positive integer

such that J ⊂ Jn. Let {Ĩj}`j=0 be intervals from consecutive levels of I such

that Ĩ0 ⊂ Ĩ1 ⊂ · · · ⊂ Ĩ`, Ĩj is a parent of Ĩj−1, Ĩ` ∩ Jn 6= ∅, and |Ĩ`| ∼ |Jn|.
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As n ∈ N is already fixed we choose m > n so that

‖Pm − Pm(0)− (P − P (0))‖L∞(Jn) < ‖f‖BMOq,k . (3.16)

This is possible because of (3.15).
Just as in (3.13), applying Whitney’s theorem (Lemma 2.2) there exist

polynomials P̃j ∈ Πk, j = 0, 1, . . . , `, such that

1

|Ĩj |

∫
ΩĨj

|f(x)− P̃j(x)|qdx ≤ c|Ĩj |−1ωk(f,ΩĨj )
q
q ≤ c‖f‖

q
BMOq,k

. (3.17)

At this point we select several constants. We choose c̃ := P̃0(y) − P̃`(y),
where y ∈ J is fixed, c? := Pn(0) − Pm(0), and c?? := Pm(0) − P (0). We also
set c� = c̃+ c? + c??.

Using the above polynomials and constants we get

1

|J |

∫
J

|f(x)− P (x)− c�|qdx ≤ c

|J |

∫
J

|f(x)− P̃0(x)|qdx

+ c‖P̃0 − P̃` − c̃‖qL∞(J) + c‖P̃` − Pn‖qL∞(J) + c‖Pn − Pm − c?‖qL∞(J)

+ c‖Pm − P − c??‖qL∞(J) =: W1 +W2 +W3 +W4 +W5.

To estimate W1 we use (3.17) and obtain

W1 ≤
1

|Ĩ0|

∫
ΩĨ0

|f(x)− P̃j(x)|qdx ≤ c|Ĩ0|−1ωk(f,ΩĨ0)qq ≤ c‖f‖
q
BMOq,k

.

We proceed just as in (3.14) to obtain

W2 = c‖P̃0 − P̃` − c̃‖qL∞(J) ≤ c‖f‖
q
BMOq,k

.

We now estimate W3. Observe that because Ĩ` ∩ Jn 6= ∅ and |Ĩ`| ∼ |Jn| we
have |ΩĨ` ∩ Jn| ∼ |ΩĨ` | ∼ |Jn|. We use this, (3.13), and (3.17) to obtain

W3 ≤ c‖P̃` − Pn‖qL∞(Jn∩ΩĨ`
) ≤ c|Jn ∩ ΩĨ` |

−1‖P̃` − Pn‖qLq(Jn∩ΩĨ`
)

≤ c|Jn|−1‖f − Pn‖qLq(Jn) + c|ΩĨ` |
−1‖f − P̃`‖qLq(ΩĨ` )

≤ c‖f‖q
BMOq,k

.

To estimate W4 we use (3.14) and obtain W4 ≤ c‖f‖qBMOq,k
. We also have from

(3.16) that W5 ≤ c‖f‖qBMOq,k
.

Putting the above estimates together we obtain that for any interval J there
is a constant c� such that

1

|J |

∫
J

|f(x)− P (x)− c�|qdx ≤ c‖f‖q
BMOq,k

and (3.12) follows in view of (2.2). �

From the trivial embedding Ḃα,kτ (E, q) ⊂ BMOq,k, which is a consequence
of ‖ · ‖`∞ ≤ ‖ · ‖`τ , and Proposition 3.1 we obtain
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Proposition 3.2. For any f ∈ Ḃα,kτ (E, q), 1 ≤ q < ∞, 0 < τ < ∞, there
exists a polynomial P ∈ Πk such that f − P ∈ BMO and

‖f − P‖BMO ≤ c‖f‖Ḃα,kτ (E,q).

The following decomposition result will play a central role in our theory of
Besov spaces.

Theorem 3.1. For any f ∈ Ḃα,kτ (E, q), 1 ≤ q < ∞, 0 < τ < ∞, there
exists a polynomial P ∈ Πk such that f − P ∈ VMO and

f − P =
∑
m∈Z

∑
Q∈Qm

bQ,q(f)ϕQ, (3.18)

where the convergence is unconditional in BMO. Here the coefficients {bQ,q(f)}
are from (3.7). Furthermore,( ∑

Q∈Q
|bQ,q(f)|τ

)1/τ

≤ c‖f‖Ḃα,kτ (E,q). (3.19)

We divert the long and tedious proof of this theorem to §8.3 in the appendix.

3.5. Norm in Ḃα,kτ via B-splines

Theorems 2.1 and 3.1 are the motivation for the following

Definition 3.3. The Besov space Ḃα,kτ (Φ) is defined as the collection of
all functions f on R for which there exists a polynomial P ∈ Πk such that
f −P ∈ VMO and f −P can be represented in the form f −P =

∑
Q∈Q aQϕQ,

where the convergence is unconditional in BMO, and
∑
Q∈Q |aQ|τ < ∞. The

norm in Ḃα,kτ (Φ) is defined by

‖f‖Ḃα,kτ (Φ) := inf
{( ∑

Q∈Q
|aQ|τ

)1/τ

: f − P =
∑
Q∈Q

aQϕQ

}
.

Observe that due to ‖ϕQ‖q ∼ |Q|1/q, 0 < q ≤ ∞, we have

‖f‖Ḃα,kτ (Φ) ∼ inf
{( ∑

Q∈Q

(
|Q|−1/q‖aQϕQ‖q

)τ)1/τ

: f − P =
∑
Q∈Q

aQϕQ

}
.

3.6. Equivalent Besov Norms

Theorem 3.2. The homogeneous Besov spaces Ḃα,kτ (Φ), Ḃα,kτ (E, q) and
Ḃα,kτ (Q, q) for all q ∈ [1,∞) are the same with equivalent norms:

‖f‖Ḃα,kτ (Φ) ∼ ‖f‖Ḃα,kτ (E,q) ∼ ‖f‖Ḃα,kτ (Q,q)

with constants of equivalence depending only on α, k, q, and the parameters
of I.
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Proof. (a) We first show that if f ∈ Ḃα,kτ (Φ), then f ∈ Ḃα,kτ (E, q) for
q ∈ [1,∞) and

‖f‖Ḃα,kτ (E,q) ≤ c‖f‖Ḃα,kτ (Φ). (3.20)

Note that Hölder’s inequality implies for any compact interval J

|J |−1/pEk(f, J)p ≤ |J |−1/qEk(f, J)q, 1 ≤ p < q ≤ ∞, f ∈ Lq(J),

and hence

‖f‖Ḃα,kτ (E,p) ≤ c‖f‖Ḃα,kτ (E,q), if 1 ≤ p ≤ q <∞.

Therefore, it is sufficient to prove (3.20) in the (most unfavorable) case when
q > max{1, τ}.

Assume f ∈ Ḃα,kτ (Φ). Then by Definition 3.3 f can be represented in the
form

f − P =
∑
Q∈Q

aQϕQ

with unconditional convergence in BMO, where P ∈ Πk, f − P ∈ VMO and

the coefficients {aQ} satisfy
(∑

Q∈Q |aQ|τ
)1/τ ≤ 2‖f‖Ḃα,kτ (Φ).

Denote by `(I) the level of I (`(I) = m if I ∈ Im) and, similarly, by `(Q)
the level of Q. Fix I ∈ I. To estimate ωk(f,ΩI)q we split the representation
of f − P into two:

f − P =
∑
j≥`(I)

∑
Q∈Qj

aQϕQ +
∑
j<`(I)

∑
Q∈Qj

aQϕQ =: GI +HI .

We use Proposition 2.1 to obtain

ωk(GI ,ΩI)q ≤ c‖GI‖Lq(ΩI) ≤ c
( ∑
`(Q)≥`(I),
Q∩ΩI 6=∅

‖aQϕQ‖τq
)1/τ

(3.21)

≤ c
( ∑
`(Q)≥`(I),
Q∩ΩI 6=∅

|Q|τ/q|aQ|τ
)1/τ

.

To estimate ωk(HI ,ΩI)q we use that ‖∆k
hϕQ‖∞ ≤ c(|h|/|Q|)k ≤ c|h|/|Q| (for

|h| ≤ |ΩI |/k and Q ∈ Qj with j < `(I)) and ∆k
hϕQ(x) = 0 if [x, x+kh]∩VQ = ∅,

where VQ is the set of all knots of ϕQ. We obtain

ωk(HI ,ΩI)q ≤
∑
j<`(I)

∑
Q∈Qj

ωk(aQϕQ,ΩI)q (3.22)

≤ c
∑
j<`(I)

∑
Q∈Qj ,

VQ∩ΩI 6=∅

|I|1+1/q

|Q|
|aQ|.
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Using (3.5) we have

‖f‖τ
Ḃα,kτ (E,q)

≤ c
∑
I∈I
|I|−τ/qωk(GI ,ΩI)

τ
q + c

∑
I∈I
|I|−τ/qωk(HI ,ΩI)

τ
q =: S1 + S2.

(3.23)
To estimate S1 we use (3.21) and obtain

S1 ≤
∑
I∈I
|I|−τ/q

∑
`(Q)≥`(I),
Q∩ΩI 6=∅

|Q|τ/q|aQ|τ

= c
∑
Q∈Q
|aQ|τ

∑
I∈I,

`(I)≤`(Q),
ΩI∩Q6=∅

(|Q|/|I|)τ/q ≤ c
∑
Q∈Q
|aQ|τ

∑
ν≥0

ρντ/q ≤ c‖f‖τ
Ḃα,kτ (Φ)

.

Here ρ < 1 is from (2.4) and we used the nested structure of the partition I;
we switched once the order of summation.

We now estimate S2. If τ ≥ 1 using (3.22) we get

S2 ≤ c
∑
I∈I
|I|−τ/q

( ∑
j<`(I)

∑
Q∈Qj ,

VQ∩ΩI 6=∅

|I|1+1/q

|Q|
|aQ|

)τ

= c
∑
I∈I

( ∑
j<`(I)

∑
Q∈Qj ,

VQ∩ΩI 6=∅

(|I|/|Q|)|aQ|
)τ

≤ c
∑
I∈I

( ∑
j<`(I)

∑
Q∈Qj ,

VQ∩ΩI 6=∅

|I|/|Q|
)τ/τ ′ ∑

j<`(I)

∑
Q∈Qj ,

VQ∩ΩI 6=∅

(|I|/|Q|)|aQ|τ

≤ c
∑
I∈I

∑
j<`(I)

∑
Q∈Qj ,

VQ∩ΩI 6=∅

(|I|/|Q|)|aQ|τ .

For the former inequality above we used Hölder’s inequality. For the last in-
equality we used (2.4) as in the estimate of S1. Switching the order of summa-
tion in the last sums above we get

S2 ≤ c
∑
Q∈Q
|aQ|τ

∑
I∈I,

`(I)>`(Q),
ΩI∩VQ 6=∅

|I|/|Q| ≤ c
∑
Q∈Q
|aQ|τ ≤ c‖f‖τḂα,kτ (Φ)

.

Here we used the simple fact that for any point y ∈ R and J ∈ I we have∑
I∈I,

`(I)>`(J),
I3y

|I| ≤ |J |
∑
ν>0

ρν ≤ c|J |,
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where 0 < ρ < 1 is from (2.4).
If 0 < τ < 1 we apply the same arguments in the estimate of S2 but using

the concavity of the function yτ instead of Hölder’s inequality. We have

S2 ≤ c
∑
I∈I

( ∑
j<`(I)

∑
Q∈Qj ,

VQ∩ΩI 6=∅

(|I|/|Q|)|aQ|
)τ
≤ c

∑
I∈I

∑
j<`(I)

∑
Q∈Qj ,

VQ∩ΩI 6=∅

(|I|/|Q|)τ |aQ|τ

≤ c
∑
Q∈Q
|aQ|τ

∑
I∈I,

`(I)>`(Q),
ΩI∩VQ 6=∅

(|I|/|Q|)τ ≤ c
∑
Q∈Q
|aQ|τ ≤ c‖f‖τḂα,kτ (Φ)

.

The above estimates for S1 and S2 and (3.23) yield (3.20).

(b) We now show that if f ∈ Ḃα,kτ (E, q), 1 ≤ q <∞, then f ∈ Ḃα,kτ (Φ) and

‖f‖Ḃα,kτ (Φ) ≤ c‖f‖Ḃα,kτ (Q,q) ≤ c‖f‖Ḃα,kτ (E,q). (3.24)

Indeed, assume that f ∈ Ḃα,kτ (E, q). Then by Theorem 3.1 there exists a
polynomial P ∈ Πk such that with unconditional convergence in BMO

f − P =
∑
Q∈Q

bQ,q(f)ϕQ,

and by (3.9) and (3.19)

‖f‖Ḃα,kτ (Q,q) ∼
( ∑
Q∈Q
|bQ,q(f)|τ

)1/τ

≤ c‖f‖Ḃα,kτ (E,q).

Now, using Definition 3.3 we conclude that f ∈ Ḃα,kτ (Φ) and (3.24) is valid.

(c) Parts (a), (b) of the proof establish the theorem for any fixed 1 ≤ q <∞.
Taking into account that the space Ḃα,kτ (Φ) does not depend on q this completes
the proof. �

Remark 3.1. Observe first that the space Ḃα,kτ when τ ≥ 1 is the usual
homogeneous Besov space Ḃαττ . For simplicity of notation we suppress the
second index τ . Theorem 3.2 shows that ‖ · ‖Ḃα,kτ (Q,q) and ‖ · ‖Ḃα,kτ (E,q) with

1 ≤ q < ∞ are other equivalent norms in the Besov space Ḃα,kτ , τ ≥ 1. These
norms will be more useful for our purposes of spline approximation than the
norm from (3.1).

An important difference occurs when τ < 1. The norm ‖ · ‖Ḃα,kτ
from (3.1)

that involves the modulus of smoothness ωk(f, t)τ is hardly usable, while the
norms ‖ · ‖Ḃα,kτ (Q,q) and ‖ · ‖Ḃα,kτ (E,q) with 1 ≤ q <∞ work very well. We could

have defined the Besov space Ḃα,kτ for all τ > 0 from the outset using the norm
‖ · ‖Ḃα,kτ (Q,q).

As is seen above we have introduced k as a parameter and consider α and k
independent. The reason for this is that by allowing τ < 1 the spaces Ḃα,kτ (Q, q)
are nontrivial and different for all α > 0 and k ≥ 2.
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According to Theorem 3.2 all spaces Ḃα,kτ (Q, q), Ḃα,kτ (E, q), 1 ≤ q < ∞,
and Ḃα,kτ (Φ) (also Ḃα,kτ if τ ≥ 1, see (3.3)) are the same; from now on we shall
use the notation Ḃα,kτ for this Besov space.

4. Nonlinear Spline Approximation in BMO

Assume that I is a regular multilevel partition of R. We denote by Φ(I)
the collection of all k−1 degree B-splines ϕQ generated by I (see §2.3). Notice
that Φ(I) is not a basis; Φ(I) is redundant. We consider the nonlinear n-term
approximation in BMO from Φ(I).

Denote by Σn(I) the set of all spline functions g of the form

g =
∑
Q∈Λn

aQϕQ,

where aQ ∈ C, Λn ⊂ Q(I), #Λn ≤ n, and Λn may vary with g. We denote by
σn(f, I)BMO the error of BMO-approximation to f ∈ VMO from Σn(I):

σn(f)BMO = σn(f, I)BMO := inf
g∈Σn(I)

‖f − g‖BMO.

Throughout this section we assume as before that

α > 0, 1/τ := α and k ≥ 2,

and denote by Ḃα,kτ the Besov space introduced in Section 3.

Convention. Clearly, if f ∈ Ḃα,kτ , then ‖f + P‖Ḃα,kτ
= ‖f‖Ḃα,kτ

for all

P ∈ Πk. Hence, Ḃα,kτ consists of equivalence classes modulo Πk. In light of
Theorem 3.1 for any function f ∈ Ḃα,kτ there exists a polynomial P ∈ Πk such
that f − P ∈ VMO. From now on we shall assume that each f ∈ Ḃα,kτ is
the canonical representative f −P ∈ VMO of the equivalence class modulo Πk

generated by f . As before (see §2.1) we identify each f ∈ VMO with f + a, a
is an arbitrary constant.

The following pair of companion Jackson and Bernstein estimates are our
main results in this article.

Theorem 4.1 (Jackson estimate). If f ∈ Ḃα,kτ , then f ∈ VMO and

σn(f, I)BMO ≤ cn−α‖f‖Ḃα,kτ
, n ∈ N, (4.1)

with c > 0 depending only on α, k, and the parameters of I.

Theorem 4.2 (Bernstein estimate). If g ∈ Σn(I), n ∈ N, then

‖g‖Ḃα,kτ
≤ cnα‖g‖BMO (4.2)

with c > 0 depending only on α, k, and the parameters of I.
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Remark 4.1. As will be seen from the proof of the Bernstein estimate
(4.2) (see §7) the assumption that g being in Σn(I) belongs to Ck−2 is not
important; it is only used that g ∈ C. Therefore, estimate (4.2) is valid for
B-splines that are only continuous.

As is well known the companion Jackson and Bernstein estimates (4.1),
(4.2) imply complete characterization of the approximation spaces associated
with spline approximation in BMO. We next describe this result.

Denote by K(f, t) the K-functional associated with VMO and Ḃα,kτ , defined
for f ∈ VMO and t > 0 by (see e.g. [6, Chapter 6])

K(f, t) = K(f, t; VMO, Ḃα,kτ ) := inf
g∈Ḃα,kτ

(
‖f − g‖BMO + t‖g‖Ḃα,kτ

)
.

The Jackson and Bernstein estimates (4.1), (4.2) imply the following direct
and inverse estimates: If f ∈ VMO, then

σn(f)BMO ≤ cK
(
f, n−α

)
, n ≥ 1, (4.3)

and

K(f, n−α) ≤ cn−α
[( n∑

ν=1

1

ν
(νασν(f, I)BMO)µ

)1/µ

+ ‖f‖BMO

]
, n ≥ 1, (4.4)

where µ := min{τ, 1}.
The proofs of (4.3), (4.4) are standard, see e.g. [6, Chapter 7, Theorem

5.1].
We define the approximation space Aγq (BMO, I) generated by nonlinear

n-term approximation in BMO from B-spliens to be the set of all functions
f ∈ BMO such that

‖f‖Aγq (BMO,I) := ‖f‖BMO +
( ∞∑
n=1

(
nγσn(f, I)BMO

)q 1

n

)1/q

<∞,

with the usual modification when q =∞.
The following characterization of the approximation spaces Aγq (BMO, I) is

immediate from inequalities (4.3), (4.4):

Theorem 4.3. If 0 < γ < α and 0 < q ≤ ∞, then

Aγq (BMO, I) =
(

VMO, Ḃα,kτ

)
γ
α ,q
.

In particular, if f ∈ VMO, then

K(f, tα) = O(tγ) if and only if σn(f)BMO = O(n−γ).

Above (X0, X1)λ,q stands for the real interpolation space induced by two spaces
X0, X1, see e.g. [6, Chapter 6, §7].
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5. Comparison with Spline Approximation in Other
Spaces

5.1. Comparison between Spline Approximation in BMO and L∞

Here we clarify the differences and similarities between nonlinear n-term
approximation from B-splines in BMO and in the uniform norm.

Denote by σn(f, I)∞ the error of L∞-approximation to f from Σn(I):

σn(f, I)∞ := inf
S∈Σn(I)

‖f − S‖∞.

We denote by Ḃα,kτ the Besov space introduced in Section 3. The following
theorem follows from the Jackson estimates in [3, Theorem 4.1] or [17, Theo-
rem 4.1].

Theorem 5.1 (Jackson estimate). If f ∈ Ḃα,kτ , α ≥ 1, 1/τ = α, k ≥ 2,
then f is continuous on R, lim|x|→∞ f(x) = 0, and

σn(f, I)∞ ≤ cn−α‖f‖Ḃα,kτ
, n ∈ N, (5.1)

with c depending only on α and the parameters of I.

Observe that the B-spaces used for nonlinear spline approximation in L∞

in [3, 17] are somewhat different because the approximation there takes place
in dimension d ≥ 1 or d = 2. However, from (3.5) in [3] or (2.15) in [17] it is
clear that these spaces are the same as Ḃα,kτ in dimension d = 1.

Theorem 5.2 (Bernstein estimate). Let α > 0 and 1/τ = α. If S ∈
Σn(I), n ∈ N, then

‖S‖Ḃα,kτ
≤ cnα‖S‖∞, (5.2)

with c depending only on α and the parameters of I.

This theorem follows by the Bernstein estimates in [3, Theorem 4.2], see
also [17, Theorem 4.2].

Several clarifying remarks are in order:
(1) The Besov space Ḃα,kτ is obviously not embedded in L∞ when α < 1.

For this reason the Jackson estimate (5.1) is not valid when α < 1. At the
same time the Jackson estimate (4.1) holds for all α > 0.

(2) Since ‖S‖BMO ≤ ‖S‖∞ the Bernstein estimate (5.2) is a consequence of
the Bernstein estimate (4.2). Similarly, the Jackson estimate (4.1) follows by
(5.1) in the case when α ≥ 1.

(3) It is interesting that in the case when α ≥ 1 the same Besov spaces Ḃα,kτ

work for spline approximation in both BMO and L∞.
(4) Algorithms for nonlinear n-term approximation from linear B-splines

are developed in [4] and in more general settings in [3]. The results in [3, 17]
use ideas that originate in earlier development of spline approximation in L∞

in [7].
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5.2. Comparison between Spline Approximation in BMO and
Lp, p <∞

There is a principle difference between nonlinear spline approximation in
BMO(R) (or L∞(R)) and in Lp(R), 1 ≤ p < ∞, that we would like to clarify
here.

To be specific, denote by S(k, n) the set of all piecewise polynomials func-
tions on R of degree k−1 with n+1 free knots, that is, S ∈ S(k, n) if there exist
points −∞ < x0 < x1 < · · · < xn <∞ and polynomials Pj ∈ Πk, j = 1, . . . , n,
such that

S =

n∑
j=1

1Ij · Pj , Ij := [xj−1, xj). (5.3)

Here the knots {xj} are allowed to vary with S. Hence S(k, n) is nonlinear.
No multilevel partition is assumed. Given f ∈ Lp(R), 1 ≤ p <∞, define

Skn(f)p := inf
S∈S(k,n)

‖f − S‖p.

One is interested in characterizing the approximation spaces associate to this
approximation process. The Besov spaces

Ḃα,kτ , α > 0, 1/τ := α+ 1/p, k ≥ 1,

naturally appear in this sort of problems. These spaces are standardly defined
[19] by the following norm using muduli of smoothness as in (3.1) for 0 < τ <∞:

‖f‖Ḃα,kτ
:=
(∫ ∞

0

[t−αωk(f, t)τ ]τ
dt

t

)1/τ

.

However, the definition of Ḃα,kτ can be modified as in Definition 3.2 when τ < 1,
q < p, see [4, 16].

The following Jackson and Bernstein estimates have been established in
[19]: If f ∈ Ḃα,kτ , then f ∈ Lp and

Skn(f)p ≤ cn−α‖f‖Ḃα,kτ

and for any S ∈ S(k, n)
‖S‖Ḃα,kτ

≤ cnα‖S‖p.

Clearly, these two estimates allow to completely characterize the associated to
{Skn(f)p} approximation spaces.

Discussion. As the following remarks show the nature of nonlinear spline
(piecewise polynomials) approximation in BMO(R) (or L∞(R)) and in Lp(R),
p <∞, is totaly different.

When approximating from piecewise polynomials in Lp, 1 ≤ p <∞, there is
no need to assume any smoothness or continuity, we simply work with discon-
tinuous piecewise polynomials, see (5.3). The point is that smooth piecewise
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polynomials and discontinuous piecewise polynomials produce the same rates of
approximation for p <∞. More importantly, if SI := 1I · P for some compact
interval I and a polynomial P ∈ Πk, P 6≡ 0, then

‖SI‖Ḃα,kτ
<∞, ∀α > 0, 1/τ = α+ 1/p.

In other words this piecewise polynomial function is infinitely smooth in the
scale of the Besov spaces Ḃα,kτ .

In contrast, it is easy to see for SI /∈ C(R) that

‖SI‖Ḃα,kτ
=∞ for any α > 0 whenever 1/τ = α, i.e. p =∞.

Furthermore, the Bernstein estimate (4.2) cannot be true for piecewise poly-
nomials S of the form (5.3) even if S ∈ Ck−2. We next clarify this claim
with the following simple example. Let S(x) = 1 for x ∈ [0, 1], S(x) = 0
for x ∈ (−∞,−ε] ∪ [1 + ε,∞), and S is linear and continuous on [−ε, 0] and
[1, 1 + ε], where ε > 0 is sufficiently small. It is readily seen that ω2(S, t)ττ ∼ t
for ε ≤ t ≤ 1/2 and hence

‖S‖τ
Ḃα,2τ

≥ c
∫ 1/2

ε

dt

t
≥ c ln(1/ε).

Therefore, the Bernstein estimate (4.2) is not valid for piecewise polynomials
of the form (5.3) even if they are smooth. This is the reason for considering
nonlinear approximation from splines generated by a hierarchy of B-splines.

6. Proof of Theorem 4.1

In this section we prove the Jackson estimate (4.1). We shall derive this
estimate from an estimate for approximation in general sequence spaces.

6.1. Jackson Inequality for Nonlinear Approximations in f0q∞

Here we consider nonlinear n-term approximation from finitely supported
sequences in the spaces f0q∞ in a general setting developed in [13, §7.2].

Definition 6.1. Let X = ∪∞m=−∞Xm be a countable multilevel index set.
With every ξ ∈ X we associate an open set Uξ ⊂ R. We call {Uξ : ξ ∈ X} a
nested structure associate with X if there exists constant λ ≥ 1 such that:

(a) |R\
⋃
ξ∈Xm Uξ| = 0 ∀m ∈ Z;

(b) If η ∈ Xm, ξ ∈ Xν and m ≥ ν then either Uη ⊂ Uξ or Uη ∩ Uξ = ∅;

(c) For every ξ ∈ Xν ,m < ν, there is unique η ∈ Xm such that Uξ ⊂ Uη;
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(d) |Uη| ≤ λ|Uζ | ∀η, ζ ∈ Xm,∀m ∈ Z;

(e) Every Uξ, ξ ∈ Xm, has at least two children, i.e. there are η, ζ ∈ Xm+1

such that Uη ⊂ Uξ, Uζ ⊂ Uξ, η 6= ζ.

We also assume that there exist one D1 or two D1,D2 disjoint subsets of
R with the properties: (i) |R \ ∪Kj=1D

j | = 0; (ii) for every ξ ∈ X there is

j, 1 ≤ j ≤ K, such that Uξ ⊂ Dj ; (iii) if the sets Uη, Uζ are contained in Dj

for some 1 ≤ j ≤ K, then there exists Uξ ⊂ Dj such that Uη ⊂ Uξ, Uζ ⊂ Uξ.
Here K = 1 or K = 2.

Remark 6.1. Conditions (a)–(c) imply that for every ξ ∈ Xm we have

|Uξ| =
∑

η∈Xm+j

Uη⊂Uξ

|Uη|, ∀j ∈ N.

Conditions (d)–(e) imply that there exists ρ ∈ (0, 1), namely ρ = λ/(λ+ 1),
such that

|Uη| ≤ ρ|Uξ| ∀m ∈ Z, ξ ∈ Xm, η ∈ Xm+1, Uη ⊂ Uξ. (6.1)

Recall that by definition the sequence spaces `τ = `τ (X ), 0 < τ ≤ ∞,
consists of all sequences {hξ : ξ ∈ X} such that

‖h‖`τ :=

(∑
ξ∈X

|hξ|τ
)1/τ

<∞.

We define the sequence spaces gq = gq(X ), 0 < q ≤ ∞, as the set of all
sequences {hξ : ξ ∈ X} such that

‖h‖gq := sup
ξ∈X

( ∑
Uη⊂Uξ

|hη|q
|Uη|
|Uξ|

)1/q

<∞.

Note that the definition of `τ (X ) does not need a nested structure associate
with X , while the definition of gq(X ), q < ∞, requires such kind of structure.
Of course, for q = τ =∞ we have g∞ = `∞.

The best nonlinear approximation of h ∈ gq from sequences with at most n
non-zero elements is given by

σn(h)gq := inf
| supp h̄|≤n

‖h− h̄‖gq = inf
Λn⊂X

#Λn≤n

sup
ξ∈X

( ∑
Uη⊂Uξ
η/∈Λn

|hη|q
|Uη|
|Uξ|

)1/q

.

Theorem 6.1 (Jackson inequality). Let 0 < τ < ∞ and 0 < q ≤ ∞.
Assume {Uξ : ξ ∈ X} is a nested structure associate with X . There exists a
constant c = c(τ, q, λ) such that for any h ∈ `τ we have h ∈ gq and

σn(h)gq ≤ cn−1/τ‖h‖`τ , n ∈ N.
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6.2. Proof of Theorem 4.1

Let the support Q ∈ Qm of ϕ be Q = [xm,j , xm,j+k]. We use Q in the
place of ξ, Qm in the place of Xm, m ∈ Z, Q in the place of X and the open
interval IQ := (xm,j , xm,j+1) in the place of Uξ from Definition 6.1. If I is a
regular multilevel partition of R then the system of intervals {IQ : Q ∈ Q} is
a nested structure associate with Q = ∪∞m=−∞Qm. It satisfies all conditions of
Definition 6.1.

In order to determine K from Definition 6.1 we consider all knots {xm,j :
m, j ∈ Z}. In view of (6.1) it is not possible to have two different points
y1, y2 ∈ R that are common knots for all levels m ∈ Z. If all levels have one
common knot y1 then K = 2, D1 = (−∞, y1), D2 = (y1,∞). If there is no
common knot for all levels then K = 1, D1 = (−∞,∞).

Lemma 6.1. If {aQ}Q∈Q ∈ g1(Q) and f =
∑
Q∈Q aQϕQ ∈ VMO(R) then

‖f‖BMO ≤ c‖{aQ}‖g1 .

Proof. Denote

fν :=
∑
j>ν

∑
Q∈Qj

aQϕQ, ν ∈ Z.

We claim that

‖fν‖BMO ≤ c sup
Q∈Qj ,j>ν

∑
IQ′⊂IQ

|aQ′ |
|IQ′ |
|IQ|

=: ‖{aQ}‖g1(ν). (6.2)

Let J be an arbitrary compact interval in R. Then there exist m ∈ Z such that
if Q ∈ Qm and Q ∩ J 6= ∅, then |Q| ∼ |J | and Q ⊂ 2J . Denote J̃ := 2J .

We may assume that ν < m. We split fν into two: fν = fm + (fν − fm).
Using (2.10) we get

1

|J |

∫
J

|fm(x)|dx ≤ 1

|J |

∫
J

∑
Q′⊂J̃

|aQ′ϕQ′(x)|dx ≤ c

|J̃ |

∫
J̃

∑
Q′⊂J̃

|aQ′ϕQ′(x)|dx

≤ c
∑

Q∈Qm,Q∩J̃ 6=∅

sup
Q∈Qj ,j>m

∑
IQ′⊂IQ

|aQ′ |
|IQ′ |
|IQ|

≤ c‖{aQ}‖g1(ν). (6.3)

Fix y ∈ J . Denote Fνm := fν − fm. We claim that

1

|J |

∫
J

|Fνm(x)− Fνm(y)|dx ≤ c‖{aQ}‖g1(ν). (6.4)

Indeed, let Q ∈ Qj , j ≤ m, and assume Q ∩ J 6= ∅. Then for x ∈ Q

|ϕQ(x)− ϕQ(y)| ≤ |x− y||ϕ′Q(ξ)| ≤ c|x− y||Q|−1, ξ ∈ (x, y).
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For every x ∈ J using the above we get

|Fνm(x)− Fνm(y)| ≤
m∑

j=ν+1

∑
Q∈Qj ,Q3x

|cQ||ϕQ(x)− ϕQ(y)|

≤ c‖{aQ}‖g1(ν)

m∑
j=ν+1

∑
Q∈Qj ,Q3x

|ϕQ(x)− ϕQ(y)|

≤ c‖{aQ}‖g1(ν)

m∑
j=ν+1

∑
Q∈Qj ,Q3x

|J ||Q|−1 ≤ c‖{aQ}‖g1(ν).

In the last inequality we used (2.4) and that every point x is contained in k
different Q’s from every level. Estimate (6.4) follows readily from the above
inequalities.

From (6.3) and (6.4) it follows that

1

|J |

∫
J

|fν(x)− Fνm(y)|dx ≤ c‖{aQ}‖g1(ν),

which implies (6.2).
Now, condition f ∈ VMO(R) implies limν→−∞ ‖fν−f‖BMO = 0 and, hence,

(6.2) proves the lemma. �

Completion of the proof of Theorem 4.1. Let h = {aQ}Q∈Q ∈ `τ (Q).
Then Theorem 6.1 with n = 1 implies h ∈ g1 and Theorem 2.1 gives
f =

∑
Q∈Q aQϕQ ∈ VMO. Using Lemma 6.1 and once more time Theorem 6.1

we obtain

σn(f)BMO(R) ≤ cσn(h)g1(Q) ≤ cn−1/τ‖h‖`τ (Q) ≤ cn−α‖f‖Ḃα,kτ
, n ∈ N.

This proves Theorem 4.1. �

7. Proof of Theorem 4.2

For the proof of the Bernstein estimate (4.2) we shall need Lemma 2.1 and
the following

Lemma 7.1. Let f ∈ BMO and f(x) = 0 for x ∈ J \ I, where I, J are two
intervals so that I ⊂ J and |J | = (1 + δ)|I|, δ > 0. If 1 ≤ τ <∞, then∫

I

|f(x)|τdx ≤ (1 + δ−1)τ
∫
J

|f(x)−AvgJf |τdx ≤ c|J |‖f‖τBMO, (7.1)

where c = c(δ, τ).
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Proof. Using the hypothesis of the lemma we have( 1

|I|

∫
I

|f(x)|τdx
)1/τ

≤
( 1

|I|

∫
I

|f(x)−AvgJf |τdx
)1/τ

+ |AvgJf |

≤
( 1

|I|

∫
I

|f(x)−AvgJf |τdx
)1/τ

+
1

|J |

∫
J

|f(x)| dx

≤
( 1

|I|

∫
J

|f(x)−AvgJf |τdx
)1/τ

+
|I|
|J |

1

|I|

∫
I

|f(x)| dx

≤
( 1

|I|

∫
J

|f(x)−AvgJf |τdx
)1/τ

+
1

1 + δ

( 1

|I|

∫
I

|f(x)|τdx
)1/τ

with Hölder’s inequality applied in the last inequality. This proves the first
inequality in (7.1), while the second inequality follows from (2.2). �

Proof of Theorem 4.2. Given a partition I we set tm = λ supI∈Im |ΩI |,
m ∈ Z, with λ from (2.3). From (2.3) we infer that tmλ

−2 ≤ |ΩI | ≤ tmλ−1 for
every I ∈ Im and from (2.4) we obtain rtm ≤ tm+1 ≤ ρtm, m ∈ Z.

Let g =
∑
Q∈Λn

aQϕQ ∈ Σn. Denote by x0 < x1 < · · · < xN , N ≤ (k+1)n,
the knots of ϕQ, Q ∈ Λn, in increasing order (if two B-splines have a common
knot then it appears only once in this sequence). There exist polynomials
Pj ∈ Πk−1, j = 1, . . . , N , such that

g =

N∑
j=1

1Jj · Pj , Jj := [xj−1, xj ], g ∈ C(R). (7.2)

In fact g ∈ Ck−2(R). Also, denote J0 := (−∞, x0] and JN+1 := [xN ,∞). Note
that the points x0 < x1 < · · · < xN are among the knots of partition I and
two consecutive xj−1, xj may belong to different levels of I.

(a) Let 1 ≤ τ < ∞. For every m ∈ Z and every I ∈ Im we shall establish
the estimate

Ek(g,ΩI)
τ
τ ≤ c

( ∑
Jν⊂ΩI

|Jν |+
∑

0<|Jµ∩ΩI |<|ΩI |
Jµ\ΩI 6=∅

min
{
|Jµ|,

t1+τ
m

|Jµ|τ
})
‖g‖τBMO. (7.3)

The second sum in (7.3), where the summation is on Jµ, contains 0, 1 or 2
terms. Every such term represents an interval Jµ which partially covers ΩI
and contains in its interior one of the end points of ΩI . Note that J0 and
JN+1 have length ∞ and if they are among Jµ’s then the corresponding term
is 0. We shall term the intervals Jj , j = 1, . . . , N, with |Jj | > tm big intervals
for the level m.

For the proof of (7.3) we consider five cases depending on the position of
the interval ΩI , I ∈ Im, relative to the intervals Jj , j = 0, 1, . . . , N + 1, of g.

Case 1: ΩI is a subset to one of the intervals Jj , j = 0, 1, . . . , N + 1.
In this case (7.3) is trivially satisfied because Ek(g,ΩI)τ = 0.
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Case 2: Both end points of ΩI are either among the knots xj , j = 1, . . . , N ,
or are in the interior of intervals Jµ with |Jµ| ≤ tm.

Note that min{|Jµ|, t1+τ
m /|Jµ|τ} = |Jµ| if Jµ belongs to the second sum in

(7.3). Set J? = ∪|Jν∩ΩI |>0Jν . Then (7.3) follows from

Ek(g,ΩI)
τ
τ ≤ E1(g, J?)ττ ≤ |J?|‖g‖τBMO =

∑
|Jν∩ΩI |>0

|Jν |‖g‖τBMO.

Case 3: Both end points of ΩI are in the interior of two intervals Jµ with
|Jµ| > tm and there is only one knot among xj , j = 1, . . . , N , in the interior
of ΩI .

Let xj be the knot of g in the interior of ΩI . Then the two big intervals
covering the ends of ΩI are Jj and Jj+1. We have

Ek(g,ΩI)
τ
τ ≤ E1(g,ΩI)

τ
τ ≤ c|ΩI |

(
|ΩI |‖g′‖L∞(Jj∪Jj+1)

)τ
≤ c|ΩI |1+τ

(
‖g′‖τL∞(Jj)

+ ‖g′‖τL∞(Jj+1)

)
.

Further, using Lemma 2.1 we get for J = Jj or J = Jj+1

‖g′‖L∞(J) = ‖(g −AvgJg)′‖L∞(J)

≤ c

|J |
‖g −AvgJg‖L∞(J) ≤

c

|J |2
‖g −AvgJg‖L1(J) (7.4)

=
c

|J |
· 1

|J |

∫
J

|g(x)−AvgJg|dx ≤
c

|J |
‖g‖BMO.

Therefore

Ek(g,ΩI)
τ
τ ≤ ct1+τ

m

∑
0<|Jµ∩ΩI |<|ΩI |

Jµ\ΩI 6=∅

1

|Jµ|τ
‖g‖τBMO. (7.5)

Note that (7.5) also holds if one of Jj and Jj+1 is unbounded because g = 0 on
this interval. Inequality (7.3) reduces to (7.5) in this case.

Case 4: Both end points of ΩI are in the interior of two intervals Jµ with
|Jµ| > tm and there are at least two knots among xj , j = 1, . . . , N , inside ΩI .

Let xj1 , . . . , xj2−1, xj1 < xj2−1, be the knots of g in the interior of ΩI .
Then the intervals Jµ from the second sum in (7.3) are Jj1 are Jj2 . Denote
J = [xj1 , xj2−1], J? = Jj1 ∪ J ∪ Jj2 , and

V =
∑

Q∈Λn, #VQ∩J≥2

aQϕQ.

Recall VQ denotes the knots of ϕQ. Note that |J | < |ΩI | and |J1|, |J2| > λ|ΩI |.
Hence #VQ ∩ J ≥ 2 implies #VQ ∩ J = k+ 1 (for Q ∈ Λn), i.e. if a B-spline is
involved in the sum of V , then it has all knots in J . The same argument shows
that if g has two B-splines from different levels with only one knot in J , then
this is a common knot. (Assuming the contrary, from the refinement property
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of I we get that the higher level contains an interval of length < |ΩI | and
hence it cannot contain an interval of length > λ|ΩI |. This contradicts the
assumption that a B-spline from this level has a single knot in J .) Denote by
y the common knot of all B-splines of g with only one knot in the interior of J
(if there are such splines). Hence we can write

g(x) = U(x) + V (x), x ∈ J?,

where

U = 1[xj1−1,y]Pj1 + 1[y,xj2 ]Pj2 , Pj1 , Pj2 ∈ Πk−1, U ∈ C(J).

Here Pj1 , Pj2 are from (7.2). In case there are no B-splines of g with only one
knot in the interior of J the above representation holds with Pj1 = Pj2 and y
being any of xj1 , . . . , xj2−1.

We have
Ek(g,ΩI)

τ
τ ≤ cEk(U,ΩI)

τ
τ + cEk(V,ΩI)

τ
τ . (7.6)

To estimate the best approximation of V we use Lemma 7.1 and 3J ⊂ J?

to obtain

Ek(V,ΩI)
τ
τ ≤ c‖V ‖ττ = c

∫
J

|V (x)|τdx ≤ c
∫

3J

|V (x)−Avg3JV |τdx

≤ c
∫

3J

|g(x)−Avg3Jg|τdx+ c

∫
3J

|U(x)−Avg3JU |τdx (7.7)

≤ c|J |‖g‖τBMO + c|J |
(
|J |‖U ′‖L∞(J?)

)τ
.

To estimate the best approximation of U we write

Ek(U,ΩI)
τ
τ ≤ E1(U,ΩI)

τ
τ ≤ c|ΩI |

(
|ΩI |‖U ′‖L∞(J?)

)τ
(7.8)

Inserting (7.7) and (7.8) in (7.6) we obtain

Ek(g,ΩI)
τ
τ ≤ c

∑
Jν⊂ΩI

|Jν |‖g‖τBMO + ct1+τ
m ‖U ′‖τL∞(J?). (7.9)

For the estimate of U ′ we use Lemma 2.1 and (7.4) with J = Jj1 to obtain

‖U ′‖L∞([xj1−1,y]) ≤ c‖U ′‖L∞(Jj1 ) = c‖g′‖L∞(Jj1 ) ≤
c

|Jj1 |
‖g‖BMO. (7.10)

Similarly for the interval [y, xj2 ] ⊃ Jj2 .
Combining (7.9) and (7.10) we obtain (7.3). Estimate (7.3) is also valid in

the case when one or both intervals Jj1 , Jj2 are unbounded because g = U = 0
here.

Case 5: One of the end points of ΩI is among the knots xj , j = 1, . . . , N ,
or is in the interior of an interval Jµ with |Jµ| ≤ tm and the other end point is
in the interior of an interval Jµ with |Jµ| > tm.
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This is a simplified version of Case 4. Let xj1 , . . . , xj2−1, xj1 ≤ xj2−1, be
the knots of g in the interior of ΩI . Without loss of generality, let |Jj1 | > tm
be the big interval containing the left end of I. Then for the right end of I
belongs to Jj2 = [xj2−1, xj2 ] and |Jj2 | ≤ tm. Set J = [xj1 , xj2 ], J? = Jj1 ∪ J ,
and

U = 1J?Pj1 , Pj1 ∈ Πk; V (x) = g(x)− U(x), x ∈ J?.

Thus, the polynomial U coincides with g on Jj1 and the spline V is zero on Jj1 .
We have

Ek(g,ΩI)
τ
τ = Ek(V,ΩI)

τ
τ ≤ c‖V ‖ττ ≤ c|J |‖g‖τBMO + c|J |

(
|J |‖U ′‖L∞(J?)

)τ
(7.11)

as in (7.7) with the interval 3J replaced with [xj1 − |J |/2, xj1 ] ∪ J ⊂ J?.
For the estimation of U ′ we use (7.10), which together with (7.11) gives

(7.3). Estimate (7.3) is also valid in the case when Jj1 is unbounded because
g = U = 0 here. Thus, (7.3) is proved.

Using estimates (7.3) we obtain

∑
I∈Im

|I|−1Ek(g,ΩI)
τ
τ

≤ c
∑
I∈Im

|I|−1

( ∑
Jν⊂ΩI

|Jν |+
∑

0<|Jµ∩ΩI |<|ΩI |
Jµ\ΩI 6=∅

min
{
|Jµ|,

t1+τ
m

|Jµ|τ
})
‖g‖τBMO

≤ c
( ∑
|Jν |≤tm

|Jν |
tm

+
∑
|Jν |>tm

tτm
|Jµ|τ

)
‖g‖τBMO. (7.12)

In the last inequality we use that every Jν with |Jν | ≤ tm may belong to at
most 2k − 1 different intervals ΩI , I ∈ Im, and that every Jµ (independently
of |Jν | ≤ tm or tm < |Jν | < ∞) may partially cover at most 4k − 2 different
intervals ΩI , I ∈ Im.

Finally, taking a sum on m in (7.12) and using tm+1 ≤ ρtm and N ≤ (k+1)n
we obtain

∑
I∈I
|I|−1Ek(g,ΩI)

τ
τ ≤ c

∑
m∈Z

( ∑
|Jν |≤tm

|Jν |
tm

+
∑
|Jν |>tm

tτm
|Jµ|τ

)
‖g‖τBMO

= c

N∑
ν=1

( ∑
m∈Z
|Jν |≤tm

|Jν |
tm

+
∑
m∈Z
|Jν |>tm

tτm
|Jµ|τ

)
‖g‖τBMO ≤ cn‖g‖τBMO. (7.13)

In view of (3.3) this completes the proof of the theorem in the case 1 ≤ τ <∞.

(b) Let 0 < τ < 1. We shall use the identification Ḃα,kτ = Ḃα,kτ (E, 1), see
(3.5). From (7.3) with τ = 1 and the concavity of yτ for 0 < τ < 1 we obtain
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for every I ∈ Im, m ∈ Z, the inequality

(|I|−1Ek(g,ΩI)1)τ

≤ c
( ∑
Jν⊂ΩI

|Jν |τ

tτm
+

∑
0<|Jµ∩ΩI |<|ΩI |

Jµ\ΩI 6=∅

min
{ |Jµ|τ
tτm

,
tτm
|Jµ|τ

})
‖g‖τBMO. (7.14)

Now, proceeding as in the proof of (7.12) and (7.13) we obtain from (7.14)∑
I∈I

(|I|−1Ek(g,ΩI)1)τ

≤ c
N∑
ν=1

( ∑
m∈Z
|Jν |≤tm

|Jν |τ

tτm
+

∑
m∈Z
|Jν |>tm

tτm
|Jµ|τ

)
‖g‖τBMO ≤ cn‖g‖τBMO.

In view of (3.5) this completes the proof of the theorem in the case 0 < τ < 1.
�

8. Appendix

8.1. Proofs of Lemma 2.5 and Theorem 2.1

Proof of Lemma 2.5. Let {aQ}Q∈Q be a sequence of complex numbers and
fix an compact interval J ⊂ R. Consider first the case when 0 < τ < p. By
[16, Theorem 3.3] we have∥∥∥ ∑

Q∈Q,Q⊂J
|aQϕQ|

∥∥∥
p
≤ c
( ∑
Q∈Q,Q⊂J

‖aQϕQ‖τp
)1/τ

. (8.1)

Clearly, ‖aQϕQ‖p ≤ c|aQ||Q|1/p ≤ c|aQ||J |1/p, which along with (8.1) implies
(2.21).

In the case τ ≥ p we choose q > τ and use Hölder’s inequality and (2.21)
in the proven case from above to obtain∥∥∥ 1

|J |1/p
∑
Q∈Q,
Q⊂J

|aQϕQ|
∥∥∥
p
≤
∥∥∥ 1

|J |1/q
∑
Q∈Q,
Q⊂J

|aQϕQ|
∥∥∥
q
≤ c
( ∑
Q∈Q,
Q⊂J

|aQ|τ
)1/τ

.

The proof is complete. �

Proof of Theorem 2.1. Part (b) is trivial. For the proof of part (a) assume
τ > 1. Denote

fν :=
∑
j>ν

∑
Q∈Qj

aQϕQ, ν ∈ Z.
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We claim that

‖fν‖BMO ≤ c
(∑
j>ν

∑
Q∈Qj

|aQ|τ
)1/τ

=: ‖{aQ}‖`τ (ν). (8.2)

Let J be an arbitrary compact interval in R. Then there exist m ∈ Z such that
if Q ∈ Qm and Q ∩ J 6= ∅, then |Q| ∼ |J | and Q ⊂ 2J . Denote J̃ := 2J .

First, we consider the less favorable case ν < m. We split fν into two:
fν = fm + (fν − fm). Using Lemma 2.5 we get

1

|J |

∫
J

|fm(x)| dx ≤ c

|J̃ |

∫
J̃

∑
j>m

∑
Q∈Qj ,
Q⊂J̃

|aQϕQ(x)| dx

≤ c
(∑
j>m

∑
Q∈Qj

|aQ|τ
)1/τ

≤ c‖{aQ}‖`τ (ν). (8.3)

Denote Fνm := fν − fm and fix y ∈ J . We claim that

1

|J |

∫
J

|Fνm(x)− Fνm(y)| dx ≤ c‖{aQ}‖`τ (ν). (8.4)

Indeed, let Q ∈ Qj , j ≤ m, and assume Q ∩ J 6= ∅. Then for x ∈ Q

|ϕQ(x)− ϕQ(y)| ≤ |x− y|‖ϕ′Q‖∞ ≤ c|x− y||Q|−1.

Fix x ∈ J and assume that x belongs to the interior of some Q? ∈ Qm. Using
the above we get

|Fνm(x)− Fνm(y)| ≤
m∑

j=ν+1

∑
Q∈Qj ,
Q3x

|aQ||ϕQ(x)− ϕ(y)|

≤ c‖{aQ}‖`τ (ν)

m∑
j=ν+1

∑
Q∈Qj ,
Q3x

|x− y||Q|−1

≤ c‖{aQ}‖`τ (ν)|J |
∑
j≤m

∑
Q∈Qj ,
Q3x

|Q|−1

≤ c‖{aQ}‖`τ (ν)|J ||Q?|−1 ≤ c‖{aQ}‖`τ (ν).

Here we used that
∑
j≤m

∑
Q∈Qj ,Q3x |Q|

−1 ≤ c|Q?|−1, which follows from the

conditions on the underlying regular multilevel partition I. Estimate (8.4)
follows readily from the above inequalities.

From (8.3) and (8.4) it follows that

1

|J |

∫
J

|fν(x)− Fνm(y)|dx ≤ c‖{aQ}‖`τ (ν),
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which implies (8.2).
In the easier case ν ≥ m (8.2) will follow directly from an estimate similar

to (8.3). In turn, (8.2) implies that for any ν, µ ∈ Z, µ > ν,

‖fν − fµ‖BMO ≤ c
( µ∑
j=ν+1

∑
Q∈Qj

|aQ|τ
)1/τ

→ 0 as ν, µ→ −∞.

Since BMO is complete, it follows that limν→−∞ fν = f for some f ∈ BMO,
where the convergence is in the BMO-norm. It also follows that ‖f‖BMO ≤
c‖{aQ}‖`τ , which confirms (2.20).

Finally, because the norm ‖{aQ}‖`τ does not change when reshuffling the
terms in its definition, it readily follows from the above proof that the conver-
gence in

∑
Q∈Q aQϕQ is unconditional in BMO. �

8.2. Proof of Equivalence (3.3)

Denote

‖f‖Ḃα,kτ (E) :=
(∑
I∈I

(
|I|−αωk(f,ΩI)τ )τ

)1/τ

.

Denote by Dm the mth level dyadic intervals (|J | = 2−m if J ∈ Dm) and set
D := ∪m∈ZDm. Clearly, see (2.12),

ωk(f, 2−m)ττ ≤
∑
J∈Dm

ωk(f, (2k + 1)J)ττ .

From the conditions on I it follows that for each J ∈ D the interval (2k + 1)J
is contained in some interval ΩI , I ∈ I, of minimum lenght (hence, |ΩI | ∼ |J |),
and each ΩI , I ∈ I, contains a uniformly bounded number of such intervals
J ∈ D. Therefore,

‖f‖τ
Ḃα,kτ

∼
∑
m∈Z

2mωk(f, 2−m)ττ

≤ c
∑
J∈D

|J |−1ωk(f, (2k + 1)J)ττ ≤ c
∑
I∈I

(
|I|− 1

τ ωk(f,ΩI)τ )τ

and hence ‖f‖Ḃα,kτ
≤ c‖f‖Ḃα,kτ (E).

For the estimate in the other direction we use (2.15). We obtain∑
I∈I, 12<2m|I|≤2

(
|I|− 1

τ ωk(f,ΩI)τ )τ

≤ c
∑

I∈I, 12<2m|I|≤2

|I|−2

∫ |ΩI |
0

∫
ΩI

|∆k
h(f, x,ΩI)|τdxdh

≤ c22m

∫ c2−m

0

∫
R
|∆k

hf(x)|τdxdh

≤ c2mωk(f, c2−m)ττ ≤ c2mωk(f, 2−m)ττ .
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Here we used that only finitely many of the intervals {ΩI : I ∈ I, 1
2 <2m|I|≤2}

may overlap at any point x ∈ R, and ωk(f, c2−m)τ ≤ c′ωk(f, 2−m)τ . From
above and (3.2) we get

‖f‖Ḃα,kτ (E) =
∑
I∈I

(
|I|− 1

τ ωk(f,ΩI)τ )τ ≤ c
∑
m∈Z

2mωk(f, 2−m)ττ ≤ c‖f‖τḂα,kτ
.

This and the estimate in the other direction from above yield the equivalence
‖f‖Ḃα,kτ

∼ ‖f‖Ḃα,kτ (E). �

8.3. Proof of Theorem 3.1

Let f ∈ Ḃα,kτ (E, q). In light of Proposition 3.2 there exists a polynomial
P ∈ Πk such that ‖f − P‖BMO ≤ c‖f‖Ḃα,kτ

(E, q). Let Tm,q be the quasi-

interpolant from (2.19)
(a) First we show that

lim
m→∞

‖f − P − Tm,q(f − P )‖BMO = 0. (8.5)

Fix ε > 0. In light of (3.5) there exists m0 ∈ N such that

∞∑
j=m0

∑
I∈Ij

|I|−τ/qEk(f,ΩI)
τ
q < ετ . (8.6)

Fix m ≥ m0. Let J be an arbitrary compact interval and let ν be its level (see
§2.2). We next consider two cases depending on the size of |J |.

Case 1: ν > m. There exist two adjacent intervals I1, I2 in Iν such that
J ⊂ I1 ∪ I2, |J | ∼ |I1| ∼ |I2|. For an appropriate constant c� (to be selected)
we have

1

|J |

∫
J

∣∣f(x)− P (x)− Tm,q(f − P )(x)− c�
∣∣qdx (8.7)

=
1

|J |

∫
J

|f(x)− Tm,q(f)(x)− c�|qdx ≤ c

|J |

∫
J

|f(x)− Tν,q(f)(x)|qdx

+ c
∥∥Tν,q(f)− Tm,q(f)− c�

∥∥q
L∞(J)

=: S1 + S2.

To estimate S1 we use Lemma 2.4 and (8.6) to obtain

S1 ≤
1

|J |

∫
I1∪I2

|f(x)− Tν,q(f)(x)|qdx

≤ c|I1|−1Ek(f,ΩI1)qq + c|I2|−1Ek(f,ΩI2)qq < cεq. (8.8)

To estimate S2 we shall use the abbreviated notation qj := Tj,q(f)− Tj−1,q(f)
(see (3.6)). We fix y ∈ J and select the constant c� := Tν,q(f)(y)−Tm,q(f)(y).
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Then for any x ∈ J we have

|Tν,q(f)(x)− Tm,q(f)(x)− c�| =
∣∣∣ ν∑
j=m+1

(qj(x)− qj(y))
∣∣∣ ≤ |J | ν∑

j=m+1

‖q′j‖L∞(J).

The choice of ν implies that for any j = m+ 1, . . . , ν there exist two adjacent
intervals I ′j , I

′′
j in Ij such that J ⊂ I ′j ∪ I ′′j . Using that qj is a polynomial of

degree k − 1 on I ′j and on I ′′j we obtain from Lemma 2.1 and (2.3)

|J |
ν∑

j=m+1

‖q′j‖L∞(J) ≤ |J |
ν∑

j=m+1

(
‖q′j‖L∞(I′j)

+ ‖q′j‖L∞(I′′j )

)
≤ c|J |

ν∑
j=m+1

(|I ′j |−1‖qj‖L∞(I′j)
+ |I ′′j |−1‖qj‖L∞(I′′j ))

≤ c
ν∑

j=m+1

|J |
|I ′j |
(
|I ′j |−1/q‖qj‖Lq(I′j) + |I ′′j |−1/q‖qj‖Lq(I′′j )

)
.

Using (3.11), (8.6) and (2.4) in the above, we obtain

S2 = c
∥∥Tν,q(f)− Tm,q(f)− c�

∥∥q
L∞(J)

< cεq.

This together with (8.7) and (8.8) implies

1

|J |

∫
J

∣∣f(x)− P (x)− Tm,q(f − P )(x)− c�
∣∣qdx ≤ cεq. (8.9)

Case 2: ν ≤ m. Hence |J | ≥ c|I| for all I ∈ Im and
∑
I∈Im,I∩J 6=∅ |I| ≤ c|J |.

Using Lemma 2.4 and (8.6) we obtain

1

|J |

∫
J

|f(x)− Tm,q(f)(x)|qdx ≤ 1

|J |
∑

I∈Im,I∩J 6=∅

∫
I

|f(x)− Tm,q(f)(x)|qdx

≤ c

|J |
∑

I∈Im,I∩J 6=∅

Ek(f,ΩI)
q
q ≤

c

|J |
∑

I∈Im,I∩J 6=∅

|I|εq ≤ cεq.

In turn, this and estimate (8.9) yield

‖f − P − Tm,q(f − P )‖BMO ≤ cε, ∀m ≥ m0,

which implies (8.5).

(b) We next prove that

lim
m→−∞

‖Tm,q(f − P )‖BMO = 0. (8.10)

Let ε > 0. By (3.5) it follows that there exists m1 ∈ Z such that

m1∑
j=−∞

∑
I∈Ij

|I|−τ/qEk(f,ΩI)
τ
q < ετ . (8.11)
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Fix m < m1. Let J be an arbitrary compact interval and let ν − 1 be its level
(see §2.2). Then J contains some interval I ∈ Iν and |J | ∼ |I|.

As in part (a) we shall use the abbreviated notation qj := Tj,q(f)−Tj−1,q(f).
Observe that Tm,q(f − P ) = Tm,q(f)− P . Using this we write

Tm,q(f − P ) =

m∑
j=N+1

qj + TN,q(f)− P =

m∑
j=N+1

∑
Q∈Qj

bQ,q(f)ϕQ + TN,q(f)− P,

where N < m, N < ν and ν − N is sufficiently large (to be determined).
Clearly, for any constant c? (to be selected) there exists a constant c?? such
that

1

|J |

∫
J

|Tm,q(f − P )− c??|qdx ≤ c
∥∥∥ m∑
j=N+1

∑
Q∈Qj

bQ,q(f)ϕQ

∥∥∥q
BMO

(8.12)

+
c

|J |

∫
J

|TN,q(f)(x)− P (x)− c?|qdx =: S1 + S2.

To estimate S1 we invoke Theorem 2.1, (3.9), (3.8), (3.11), (8.11) and obtain

S1 ≤ c
( m∑
j=−∞

∑
Q∈Qj

|bQ,q(f)|τ
)q/τ

≤ c
( m∑
j=−∞

∑
I∈Ij

|I|−τ/q‖qj‖τLq(I)
)q/τ

(8.13)

≤ c
( m∑
j=−∞

∑
I∈Ij

|I|−τ/qEk(f,ΩI)
τ
q

)q/τ
< cεq.

To estimate S2 we recall that N < ν and hence there are two adjacent
intervals I1, I2 in IN such that J ⊂ I1 ∪ I2. Let I� ∈ IN−1 be the only parent
of I1 (I1 ⊂ I�). Clearly, ΩI1 ∪ ΩI2 ⊂ ΩI� . Let R ∈ Πk be a polynomial such
that

‖f −R‖Lq(ΩI� ) ≤ cEk(f,ΩI�)q. (8.14)

We now choose the constant c? to be c? := R(y)− P (y), where y ∈ J is fixed.
We have

S2 ≤
c

|J |

∫
J

|TN,q(f)(x)− P (x)− c?|qdx (8.15)

≤ c

|J |

∫
J

|TN (PN,q −R)(x)|qdx+
c

|J |

∫
J

|R(x)− P (x)− c?|qdx =: U1 + U2.

Using (2.17) and (2.10) we get

U1 =
c

|J |

∫
J

|TN (PN,q −R)(x)|qdx ≤ c‖TN (PN,q −R)‖qL∞(I1∪I2)

≤ c‖PN,q −R‖qL∞(ΩI1∪ΩI2 ) ≤ c max
I∈IN ,I⊂ΩI1∪ΩI2

‖PN,q −R‖qL∞(I)
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≤ c
∑

I∈IN ,I⊂ΩI1∪ΩI2

|I|−1‖PN,q −R‖qLq(I)

≤ c
∑

I∈IN ,I⊂ΩI1∪ΩI2

(
|I|−1‖f − PN,q‖qLq(I) + |I|−1‖f −R‖qLq(I)

)
.

By the definition of PN,q we have ‖f − PN,q‖Lq(I) ≤ cEk(f, I)q ≤ cEk(f,ΩI)q
(see (2.18) and (2.16)). We use this, (8.14), (8.11) and the above estimates for
U1 to obtain

U1 ≤ c
N∑

j=N−1

∑
I∈Ij ,I∩(ΩI1∪ΩI2 ) 6=∅

|I|−1Ek(f,ΩI)
q
q < cεq. (8.16)

Here we used that in the double sum above there is a constant number (de-
pending only on k) of terms.

In estimating U2 we shall use the abbreviated notation I? := I1 ∪ I2, where
I1, I2 ∈ IN are determined above. Using that R and P are polynomials on I?
and Lemma 2.1 we get

U2 =
c

|J |

∫
J

|R(x)− P (x)− (R(y)− P (y))|qdx ≤ c(|J |‖(R− P )′‖L∞(I?))
q

= c
(
|J |‖(R− P − c̃)′‖L∞(I?)

)q ≤ c(|J |/|I?|)q‖R− P − c̃‖qL∞(I?)

≤ c(|J |/|I?|)q|I?|−1‖R− P − c̃‖qLq(I?),

where the constant c̃ is defined by c̃ := AvgI?(f−P ). We now use (8.14), (2.2),
(8.11), and obtain

|I?|−1‖R− P − c̃‖qLq(I?)

≤ c|I?|−1‖f −R‖qLq(I?) + c|I?|−1‖f − P −AvgI?(f − P )‖qLq(I?)

≤ c|I�|−1Ek(f,ΩI�)
q
q + c‖f − P‖qBMO ≤ cε

q + c‖f − P‖qBMO.

On the other hand, because |J | ∼ |I| with I ∈ Iν and I? = I1 ∪ I2 with
I1, I2 ∈ IN , we infer from (2.4) that |J |/|I?| ≤ cρν−N . Putting all of the above
together we obtain

U2 ≤ cρ(ν−N)q(εq + ‖f − P‖qBMO).

Combining this with (8.15) and (8.16) we get

S2 ≤ cεq + cρ(ν−N)q‖f − P‖qBMO.

In turn, this along with (8.12) and (8.13) yield

1

|J |

∫
J

|Tm,q(f − P )− c?|qdx ≤ cεq + cρ(ν−N)q‖f − P‖qBMO, ∀m < m1.
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Since the constant c in this estimate is independent of N and f − P ∈ BMO,
by letting N → −∞ we arrive at

1

|J |

∫
J

|Tm,q(f − P )− c?|qdx ≤ cεq, ∀m < m1.

This estimate implies ‖Tm,q(f − P )‖BMO ≤ cε for all m < m1, which yields
(8.10).

Clearly, decomposition (3.18) follows at once by (8.5) and (8.10). Inequality
(3.19) follows by Lemma 3.2. The unconditional convergence in (3.18) is a
consequence of Theorem 2.1. Finally, the unconditional convergence in BMO
of the series in (3.18) and the fact that each ϕQ is in C0(R) leads to the
conclusion that f − P is in VMO. �
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Birkhäuser, Verlag, Basel, 1983.

Kamen G. Ivanov

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
1113 Sofia
BULGARIA
E-mail: kamen@math.bas.bg

Pencho Petrushev

Department of Mathematics
University of South Carolina
Columbia, SC 29208
USA
E-mail: pencho@math.sc.edu


