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ABSTRACT. As is well known the kernel of the orthogonal projector onto the polynomials of
degree n in L2(wα,β , [−1, 1]), wα,β(t) = (1 − t)α(1 + t)β , can be written in terms of Jacobi
polynomials. It is shown that if the coefficients in this kernel are smoothed out by sampling a
compactly supported C∞ function then the resulting function has nearly exponential (faster than
any polynomial) rate of decay away from the main diagonal. This result is used for the construction
of tight polynomial frames for L2(wα,β ) with elements having almost exponential localization.

1. Introduction

A basic technique in Harmonic analysis is to represent functions or distributions as linear
combinations of functions of a particularly simple nature (building blocks), which form
bases or frames. Meyer’s wavelets [6] and theϕ-transform of Frazier and Jawerth [3] provide
such building blocks on R

d . A distinctive feature of Meyer’s wavelets and the elements of
Frazier-Jawerth is their almost exponential space localization and simple structure on the
frequency side. This makes them an universal tool for decomposition of spaces of functions
and distributions on R

d .
Our primary goal in this article is to develop similar building blocks for decomposition

of weighted spaces on [−1, 1] with weight

wα,β(t) = (1 − t)α(1 + t)β ,

and in particular, Lp(wα,β), Hardy spaces Hp(wα,β), Besov spaces, and more general
Triebel-Lizorkin spaces. The structure of the weighted spaces on [−1, 1] is different and
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more complicated than the structure of the spaces on R due to the fact that there are no simple
translation or dilation operators in these spaces. This creates a great deal of complications.

The Jacobi polynomials {P (α,β)n }∞n=0 provide a basic vehicle for representation and
analysis of functions or distributions in the weighted spaces on [−1, 1] with weight wα,β .

We let cα,β denote the normalization constant of wα,β , i.e., c−1
α,β := ∫ 1

−1wα,β(t) dt . The

Jacobi polynomials {P (α,β)n }∞n=0 are orthogonal with respect to wα,β , namely [8],

cα,β

∫ 1

−1
P (α,β)n (t)P (α,β)m (t)wα,β(t) dt = δn,mh

(α,β)
n ,

where

h(α,β)n = �(α + β + 2)

�(α + 1)�(β + 1)

�(n+ α + 1)�(n+ β + 1)

(2n+ α + β + 1)�(n+ 1)�(n+ α + β + 1)
.

For f ∈ L1(wα,β) the Fourier expansion in Jacobi polynomials is

f (t) ∼
∞∑
n=0

dn(f )
(
h(α,β)n

)−1
P (α,β)n (t), dn(f ) = cα,β

∫ 1

−1
f (t)P (α,β)n (t)wα,β(t) dt .

The nth partial sum of the expansion can be written in terms of the reproducing kernel
K
(α,β)
n (x, y) as

Sn(f ; x) =
n∑
j=0

dj (f )
(
h
(α,β)
j

)−1
P
(α,β)
j (x) = cα,β

∫ 1

−1
f (t)K(α,β)

n (x, t)wα,β(t) dt ,

where the kernel is given by

K(α,β)
n (x, y) =

n∑
j=0

(
h
(α,β)
j

)−1
P
(α,β)
j (x)P

(α,β)
j (y) . (1.1)

One of our main results in this article asserts that any polynomial in two variables of
the form

Lα,βn (x, y) =
∞∑
j=0

â

(
j

n

)(
h
(α,β)
j

)−1
P
(α,β)
j (x)P

(α,β)
j (y) , (1.2)

where â ∈ C∞[0,∞) with supp â ⊂ [1/2, 2] (or more generally supp â ⊂ [c, d], c > 0)
has almost exponential localization around the main diagonal y = x of [−1, 1]2. To be
more precise, let

wα,β(n; x) := (
1 − x + n−2)α+1/2(1 + x + n−2)β+1/2

.

Then for α, β > −1/2 and any k ≥ 1, there is a constant ck > 0 such that∣∣Lα,βn (cos θ, cosφ)
∣∣ ≤ ck

n√
wα,β(n; cos θ)

√
wα,β(n; cosφ)(1 + n|θ − φ|)k (1.3)

for 0 ≤ θ, φ ≤ π . This result is a far reaching extension of the recent discovery in [7]
that Lλ,λn (x, 1) (with λ a half integer) has almost exponential localization around x = 1,
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which is utilized in [7] for the construction of frames on the n dimensional sphere. The
above result shows that if one smooths out the coefficients of the kernel in (1.1) by sampling
a C∞ function then the resulting function decays away from the main diagonal at nearly
exponential (faster than any polynomial) rate. This fact, which is well known for the
trigonometric system, has apparently been overlooked. We believe that it will play an
important role in various problems for weighted spaces.

The polynomials Lα,βn give us a handy tool for constructing tight frames in L2(wα,β)

and other weighted spaces (with weight wα,β ) on [−1, 1]. Our construction of frames
utilizes a semi-discrete Calderon type decomposition coupled with discretization using the
Gaussian quadrature formula (see Section 3). A similar scheme is used in [7] for the
construction of frames on the sphere.

Let us denote by ψξ , ξ ∈ X , the constructed frame elements (Section 3), where
X = ∪∞

j=0Xj is a multilevel index set consisting of the localization points (poles) of the
ψξ ’s. Then our frame is defined by

� := {ψξ }ξ∈X .

We show that every function f ∈ L2(wα,β) has the representation

f =
∑
ξ∈X

〈f,ψξ 〉ψξ and ‖f ‖L2(wα,β )
=
( ∑
ξ∈X

|〈f,ψξ 〉|2
)1/2

,

i.e., � is a tight frame in L2(wα,β).
A distinctive property of the j th level frame elementsψξ (ξ ∈ Xj ) is their localization:

|ψξ (cos θ)| ≤ ck
2j/2√

wα,β(2j ; cos θ)
(
1 + 2j |θ − arccos ξ |)k ∀ k , (1.4)

which is analogous to the localization of Meyer’s wavelets. It is worthwhile to point out

that the factor
√
wα,β(2j ; cos θ) in the denominator in (1.4) as well as the corresponding

terms in (1.3) reflect the expected “effect” at the end points of [−1, 1] and play a critical
role in our development. Notice that this term is present even in the case whenwα,β(t) = 1
(α = β = 0).

The superb localization of the frame elements {ψξ } prompted us to term them
needlets. This along with the semi-orthogonal structure of � and the increasing num-
ber of vanishing moments of the ψξ ’s enables one to utilize the needlet system � for
decomposition of spaces other than L2(wα,β) such as Besov and Triebel-Lizorkin spaces.
We shall report on results of this kind in a follow-up article.

We do not discuss here the literature on polynomial bases and frames on the interval
because to the best of our knowledge the elements of the existing bases or frames do not
have the localization of the needlets. It is an open problem to construct bases in L2(wα,β)

with basis elements having localization similar to (1.4).
This article is organized as follows. In Section 2, we establish the localization (1.3)

of the polynomials Lα,βn from (1.2), where in Section 2.1 we consider the particular case
φ = 0 (y = 1) , while in Section 2.2 we prove (1.3) in general. In Section 3, we construct
our polynomial frames and establish their main properties.

Throughout the article positive constants are denoted by c, c1, . . . ; unless specified,
their values may vary at every occurrence. The notation A ∼ B means c1A ≤ B ≤ c2A,
and A := B or B =: A stands for “A is by definition equal to B.”
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2. Localized Polynomials in Terms of Jacobi
Polynomials

In this section we establish the localization properties of Lα,βn (x, y) from (1.2) depending
on the smoothness of â. We first prove (1.3) when φ = 0 (y = 1) and then consider the
general case.

2.1 The Localization of L
α,β
n (x, y) in the Case y = 1

Theorem 1. Let â ∈ Ck[0,∞) with k ≥ 1 and supp â ⊂ [1/2, 2]. Assume that
α ≥ β > −1/2 and define

Lα,βn (cos θ) =
∞∑
j=0

â

(
j

n

)(
h
(α,β)
j

)−1
P
(α,β)
j (1)P (α,β)j (cos θ) . (2.1)

Then there exists a constant ck > 0 depending only on k, α, β, and â such that∣∣Lα,βn (cos θ)
∣∣ ≤ ck

n2α+2

(1 + nθ)k+α−β , 0 ≤ θ ≤ π . (2.2)

The dependence of ck on â is of the form ck = c(α, β, k)max1≤ν≤k ‖̂a(ν)‖L1 .

Proof. Since P (α,β)n (1) = (α + 1)n/n! = �(n + α + 1)/[�(α + 1)�(n + 1)] (cf. [8,
(4.1.1)]) it is easy to verify that

Lα,βn (cos θ) = �(β + 1)

�(α + β + 2)
(2.3)

×
∞∑
j=0

â

(
j

n

)
(2j + α + β + 1)�(j + α + β + 1)

�(j + β + 1)
P
(α,β)
j (cos θ) .

Notice that since supp â ⊂ [1/2, 2], the sum in (2.1) [and (2.3)] is finite; in fact it is over
n/2 < j < 2n.

We first prove (2.2) for 0 ≤ θ ≤ π/n. Using the fact that [8, Theorem 7.32.1]
‖P (α,β)j ‖L∞[−1,1] ∼ cjα and �(j + a)/�(j + 1) ∼ ja−1 as j → ∞, it follows that

∣∣Lα,βn (cos θ)
∣∣ ≤ c

2n∑
j=0

j2α+1 ≤ cn2α+2 ,

which yields (2.2).
Let π/n ≤ θ ≤ π . We will use the identity [4]:

P
(α,β)
m (cos θ)

P
(α,β)
m (1)

= dα,β(1 − cos θ)−α
∫ θ

0
cos [m+ (α + β + 1)/2]φ

× (cosφ − cos θ)α−1/2

(1 + cosφ)(α+β)/2 2F1

(
α + β

2
,
α − β

2
;α + 1

2
; cos θ − cosφ

1 − cos θ

)
dφ ,

for 0 < θ < π and α > −1/2, where 2F1 denotes the hypergeometric function and
dα,β = 2(α+β+1)/2�(α + 1)/(

√
π�(α+1/2)). Recall the identity [8, (4.1.3)] P (α,β)m (x) =
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(−1)mP (β,α)m (−x). Now changing first the variables φ �→ π − φ in the integral, and then
setting θ �→ π − θ and interchanging the places of α and β, we obtain

P
(α,β)
m (cos θ)

P
(β,α)
m (1)

= dβ,α(1 + cos θ)−β
∫ π

θ

cos [mφ − (α + β + 1)(π − φ)/2] (2.4)

× (cos θ − cosφ)β−1/2

(1 − cosφ)(α+β)/2 2F1

(
α + β

2
,
β − α

2
;β + 1

2
; cosφ − cos θ

1 − cos θ

)
dφ .

Since P (β,α)j (1) = �(j + β + 1)/[�(β + 1)�(j + 1)], we have

P
(β,α)
j (1)

�(β + 1)

�(α + β + 2)

�(j + α + β + 1)

�(j + β + 1)
= 1

�(α + β + 2)

�(j + α + β + 1)

�(j + 1)
.

Using this and combining (2.3) with (2.4), we get

Lα,βn (cos θ) = d∗
α,β(1 + cos θ)−β

×
∫ π

θ

[
cos(λφ − λπ)Acos

n (φ)− sin(λφ − λπ)Asin
n (φ)

]
× (cos θ − cosφ)β−1/2

(1 − cosφ)(α+β)/2 2F1

(
α + β

2
,
β − α

2
;β + 1

2
; cosφ − cos θ

1 − cos θ

)
dφ ,

(2.5)

where d∗
α,β := 2dβ,α/�(α + β + 1) and

Acos
n (θ) :=

∞∑
j=0

â

(
j

n

)
(j + λ)�(j + 2λ)

�(j + 1)
cos jθ ,

Asin
n (θ) :=

∞∑
j=0

â

(
j

n

)
(j + λ)�(j + 2λ)

�(j + 1)
sin jθ

with λ := (α + β + 1)/2.
The idea of the proof is to derive (2.2) from the analogous localization of the trigono-

metric polynomials Acos
n and Asin

n . This in turn will follow by employing the fact that
any trigonometric polynomial An(θ) = ∑∞

j=1 aj e
ijθ has an excellent localization around

zero whenever the coefficients aj come from sampling of a smooth compactly supported
function.

Define

G(t) := (t + λ)�(t + 2λ)

�(t + 1)
if t ≥ 0 .

Notice that 2λ = α + β + 1 > 0, since α ≥ β > −1/2.
With the next lemma we establish the smoothness and decay as t → ∞ of G and its

derivatives.

Lemma 1. The function G is analytic on [0,∞) and for any k ≥ 0∣∣G(k)(t)∣∣ ≤ ckt
2λ−k, t ≥ 1 , (2.6)

where ck depends only on k and λ.
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Proof. We first show that for b > a > 0, σ := a + 1 − b, and t > 0,

dk

dtk

�(t + a)

�(t + b)
= (−1)kBσ0 (a)

�(b − a + k)

�(b − a)

1

tb−a+k
(
1 + O(t−1)) , as t → ∞ , (2.7)

whereBσn (u) (here n = 0) are the generalized Bernoulli polynomials defined in [1, (C.4.2)].
We will slightly modify the argument from [1].

The relation between Gamma and Beta functions gives

�(t + a)

�(t + b)
= 1

�(b − a)

∫ 1

0
ut+a−1(1 − u)b−a−1 du

= 1

�(b − a)

∫ ∞

0
e−s(t+a)

(
1 − e−s

)b−a−1
ds .

It is readily seen that the last integral is an analytic function for t ≥ 0 and it can be
differentiated with respect to t as follows

dk

dtk

�(t + a)

�(t + b)
= (−1)k

�(b − a)

∫ ∞

0
e−st ske−sa

(
1 − e−s

)b−a−1
ds .

Now exactly as in [1, C.4, p. 615],

ske−as(
1 − e−s

)σ =
∞∑
n=0

(−1)n

n! Bσn (a)s
n−σ+k, |t | < 2π ,

and by Watson’s lemma, we obtain the asymptotic expansion

dk

dtk

�(t + a)

�(t + b)
∼

∞∑
n=0

(−1)k+n

n! Bσn (a)
�(b − a + k + n)

�(b − a)

1

tb−a+k+n
as t → ∞ ,

which implies (2.7).
Let a := 2λ−�2λ�, where �x� denotes the largest integer less than x. Then 0 < a ≤

1. Using that �(1 + x) = x�(x), we have

G(t) = (t + 1)(t + λ)�(t + 2λ)

�(t + 2)

= (t + 1)(t + λ)(t + 2λ− 1) . . . (t + a)
�(t + a)

�(t + 2)
= p(t)

�(t + a)

�(t + 2)
,

where p(t) is a polynomial of degree �2λ� + 2. Now by (2.7),∣∣∣∣ dνdtν �(t + a)

�(t + 2)

∣∣∣∣ ≤ c

t2−a+ν , t ≥ 1, ν = 0, 1, . . . ,

and hence

∣∣G(k)(t)∣∣ ≤
k∑
ν=0

(
k

ν

)∣∣p(ν)(t)∣∣ ∣∣∣∣ dk−νdtk−ν
�(t + a)

�(t + 2)

∣∣∣∣
≤ c

k∑
ν=0

(
k

ν

)
t�2λ�+2−ν

t2−a+k−ν ≤ ct2λ−k .
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Thus, (2.6) is established.

Now relying on the smoothness and localization properties of â andG, we derive the
desired localization of Acos

n and Asin
n .

Lemma 2. If An = Acos
n or An = Asin

n , then

|An(θ)| ≤ ck
n2λ+1

(1 + n|θ |)k , |θ | ≤ π , (2.8)

where ck is of the form ck = c(α, β, k)max1≤ν≤k ‖̂a(ν)‖L1 with c(α, β, k) depending only
on α, β, and k.

Proof. Let n ≥ 2 and set

�n(θ) :=
∑
j∈Z

â(|j |/n)s(j)G(|j |)eijθ ,

where s(t) = 1 or s(t) = sign t . Evidently, �n(θ) = 2Acos
n (θ) if s(t) = 1 and �n(θ) =

2iAsin
n (θ) if s(t) = sign t .

Set �̂n(t) := â(|t |/n)s(t)G(|t |) and define �n(t) := 1
2π

∫
R
�̂n(ξ)e

itξ dξ . Clearly,
�̂n(t) ∈ Ck(R) and supp �̂n ⊂ [−2n,−n/2] ∪ [n/2, 2n]. Consequently,

tk�n(t) = ik

2π

∫
R

dk

dξk
�̂n(ξ)e

itξ dξ

and using (2.6),

∣∣tk�n(t)∣∣ ≤
∫

R

∣∣∣ dk
dξk

[̂
a(ξ/n)G(ξ)

]∣∣∣ dξ
≤

k∑
j=0

(
k

j

)
1

nj

∫
R

∣∣̂a(j)(ξ/n)G(k−j)(ξ)∣∣ dξ
= 2

k∑
j=0

(
k

j

)
n

nj

∫ 2

1/2

∣∣̂a(j)(u)G(k−j)(nu)∣∣ du
≤ cn2λ−k+1

k∑
j=0

(
k

j

)∫ 2

1/2

∣∣̂a(j)(u)∣∣u2λ+j−k du

≤ cn2λ−k+1 max
0≤j≤k

∥∥̂a(j)∥∥
L1 = ckn

2λ−k+1 .

Therefore, |�n(t)| ≤ ckn
2λ−k+1|t |−k . As above (with k = 0) but easier, we obtain

|�n(t)| ≤ cn2λ+1. Combining these, we get

|�n(t)| ≤ ck
n2λ+1

(1 + n|t |)k , t ∈ R . (2.9)

Applying the Poisson summation formula

2π
∑
j∈Z

f (2πj) =
∑
j∈Z

f̂ (j)
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to the function f (t) := �n(t + θ) (then f̂ (t) = �̂n(t)e
itθ ), we get

�n(θ) =
∑
j∈Z

�̂n(j)e
ijθ = 2π

∑
j∈Z

�n(2πj + θ) .

Now using (2.9), we obtain for |θ | ≤ π ,

|�n(θ)| = 2π

∣∣∣∣∣ ∑
j∈Z

�n(2πj + θ)

∣∣∣∣∣ ≤ c
∑
j∈Z

n2λ+1

(1 + n|2πj + θ |)k

≤ c
n2λ+1

(1 + n|θ |)k + c

∞∑
j=1

n2λ+1

(1 + n(2j − 1)π)k

≤ c
n2λ+1

(1 + n|θ |)k + c
n2λ+1

(1 + n)k

∞∑
j=1

j−k

≤ c
n2λ+1

(1 + n|θ |)k

and estimate (2.8) follows.

We are now in a position to complete the proof of estimate (2.2) in the case π/n ≤
θ ≤ π . Since 0 ≤ (cos θ − cosφ)/(1 − cos θ) ≤ 1 for θ ≤ φ ≤ π , the absolute value of
the 2F1 term under the integral in (2.5) is bounded by a constant. Hence, using (2.5) and
Lemma 2, we infer

∣∣Lα,βn (cos θ)
∣∣ ≤ c(1 + cos θ)−β

∫ π

θ

nα+β+2

(1 + nφ)k

(cos θ − cosφ)β−1/2

(1 − cosφ)(α+β)/2 dφ . (2.10)

In the following we will use the identities cos θ − cosφ = 2 sin θ+φ
2 sin θ−φ

2 , 1 − cosφ =
2 sin2 φ

2 , and 1 + cosφ = 2 cos2 φ
2 .

Consider first the case π/n ≤ θ ≤ π/2. Then for θ ≤ φ ≤ π ,

2
√

2

3π
(θ + φ) ≤ sin

θ + φ

2
≤ θ + φ

2
and

φ − θ

π
≤ sin

φ − θ

2
≤ φ − θ

2
.

Using these in (2.10), we get

∣∣Lα,βn (cos θ)
∣∣ ≤ cnα+β+2

∫ π

θ

(
φ2 − θ2

)β−1/2

(1 + nφ)kφα+β dφ

≤ cnα+β+2 θ2β

(nθ)kθα+β

∫ π
θ

1

(
u2 − 1

)β−1/2

uk+α+β du

≤ c
n2α+2

(nθ)k+α−β

∫ ∞

1

(
u2 − 1

)β−1/2

uk+α+β du ≤ c
n2α+2

(1 + nθ)k+α−β .

In the case π/2 ≤ θ ≤ π , estimate (2.10) evidently gives

∣∣Lα,βn (cos θ)
∣∣ ≤ c

nα+β+2

(1 + nθ)k
(1 + cos θ)−β

∫ π

θ

(cos θ − cosφ)β−1/2

(1 − cosφ)α+β dφ .
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Let θ ′ = π − θ . Then 0 ≤ θ ′ ≤ π/2. Hence, we have, for 0 ≤ φ ≤ θ ′, (θ ′ ± φ)/π ≤
sin[(θ ′ ± φ)/2] ≤ (θ ′ ± φ)/2. Consequently, substituting φ �→ π − φ gives∫ π

θ

(cos θ − cosφ)β−1/2

(1 − cosφ)α+β dφ =
∫ θ ′

0

(
cosφ − cos θ ′)β−1/2

(1 + cosφ)α+β dφ

≤ c

∫ θ ′

0

(
θ ′2 − φ2)β−1/2

dφ = cθ ′2β .

Since 1 + cos θ = 1 − cos θ ′ = 2 sin2(θ ′/2) ∼ (θ ′)2, this shows that

∣∣Lα,βn (cos θ)
∣∣ ≤ c

nα+β+2

(1 + nθ)k
≤ c

n2α+2

(1 + nθ)k+α−β

as π/2 ≤ θ ≤ π . The proof of Theorem 1 is complete.

2.2 The Localization of L
α,β
n (x, y) in the General Case

Recall the definition of Lα,βn (x, y) from (1.2):

Lα,βn (x, y) :=
∞∑
j=0

â

(
j

n

)(
h
(α,β)
j

)−1
P
(α,β)
j (x)P

(α,β)
j (y) .

In this subsection we estimate the localization ofLα,βn (x, y) around the main diagonal y = x

of [−1, 1]2, which depends on the smoothness of â. To this end we will need the quantity

wα,β(n; x) := (
1 − x + n−2)α+1/2(1 + x + n−2)β+1/2

. (2.11)

Notice that since sin θ
2 ∼ sin θ on [0, 2π/3] and cos θ2 ∼ sin θ on [π/3, π ], then

wα,β(n; cos θ) ∼ (
sin θ + n−1)2α+1

, 0 ≤ θ ≤ 2π/3 , (2.12)

and

wα,β(n; cos θ) ∼ (
sin θ + n−1)2β+1

, π/3 ≤ θ ≤ π . (2.13)

Theorem 2. Let α, β > −1/2 and let â ∈ Ck[0,∞) with k ≥ 2α + 2β + 3 and
supp â ⊂ [1/2, 2]. Then there is a constant ck > 0 depending only on k, α, β, and â such
that for 0 ≤ θ, φ ≤ π∣∣Lα,βn (cos θ, cosφ)

∣∣ ≤ ck
n√

wα,β(n; cos θ)
√
wα,β(n; cosφ)(1 + n|θ − φ|)σ , (2.14)

where σ = k − 2α − 2β − 3. Here the dependence of ck on â is of the form ck =
c(α, β, k)max1≤ν≤k ‖̂a(ν)‖L1 .

Proof. We need the product formula of Jacobi polynomials [5]: For α > β > −1/2,

P
(α,β)
n (x)P

(α,β)
n (y)

P
(α,β)
n (1)

= cα,β

∫ π

0

∫ 1

0
P (α,β)n (t (x, y, r, ψ)) dm(r, ψ) ,
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where

t (x, y, r, ψ) = 1
2 (1 + x)(1 + y)+ 1

2 (1 − x)(1 − y)r2 + r
√

1 − x2
√

1 − y2 cosψ − 1 ,

the integral is against

dm(r, ψ) = (
1 − r2)α−β−1

r2β+1(sinψ)2β dr dψ ,

and the constant cα,β is selected so that

cα,β

∫ π

0

∫ 1

0
1 dm(r, ψ) = 1 .

Once (2.14) is established for α > β > −1/2, the case β > α > −1/2 will follow from
the relation P (α,β)n (cos θ) = (−1)nP (β,α)n (cos(π − θ)). In the case α = β = λ − 1/2 we
use the product formula of Gegenbauer polynomials (cf. [2, Vol. I, Section 3.15.1, (20)])

Cλj (cos θ)Cλj (cosφ)

Cλj (1)
= cλ

∫ 1

−1
Cλj (cos θ cosφ + u sin θ sin φ)

(
1 − u2)λ−1

du ,

where cλ is the normalization constant of the weight function (1 − u2)λ−1. Since the case
α = β is much easier, we shall only give the proof when α > β.

The product formula allows us to writeLα,βn (cos θ, cosφ) in terms ofLα,βn (t) defined
in Theorem 1, namely,

Lα,βn (x, y) = cα,β

∫ π

0

∫ 1

0
Lα,βn (t (x, y, r, ψ)) dm(r, ψ) . (2.15)

For t = cos θ with 0 ≤ θ ≤ π , we have θ ∼ sin θ/2 ∼ √
1 − t , and consequently

the estimate of |Lα,βn (t)| from Theorem 1 can be rewritten as

∣∣Lα,βn (t)
∣∣ ≤ ck

n2α+2(
1 + n

√
1 − t

)k+α−β , −1 ≤ t ≤ 1 . (2.16)

We will apply this estimate with t = t (x, y, r, ψ). Let x = cos θ and y = cosφ, 0 ≤
θ, φ ≤ π . Then

1 − t (x, y, r, ψ) = 1 − cos θ cosφ − sin θ sin φ

+ 1
2 (1 − cos θ)(1 − cosφ)

(
1 − r2)+ sin θ sin φ(1 − r cosψ) (2.17)

= 2 sin2 θ − φ

2
+ 2 sin2 θ

2
sin2 φ

2

(
1 − r2)+ sin θ sin φ(1 − r cosψ) ,

yielding

1 − t (x, y, r, ψ) ≥ 2 sin2 θ − φ

2
∼ (θ − φ)2 .

Then by (2.15)–(2.16), we get

∣∣Lα,βn (cos θ, cosφ)
∣∣ ≤ cn2α+2

(1 + n|θ − φ|)k+α−β , 0 ≤ θ, φ ≤ π . (2.18)
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Our next step is to show that this estimate can be substantially improved away from
the end points of the interval.

Case (a): 0 ≤ θ ≤ 2π/3 and 0 ≤ φ ≤ π/2. By (2.17), we have

1 − t (x, y, r, ψ) ≥ c
(|θ − φ|2 + sin θ sin φ(1 − r cosψ)

)
.

Then by (2.15)–(2.16),

∣∣Lα,βn (cos θ, cosφ)
∣∣≤cn2α+2

∫ π

0

∫ 1

0

(
1 − r2

)α−β−1
r2β+1(sinψ)2β dr dψ(

1 + n
[|θ − φ|2 + sin θ sin φ(1 − r cosψ)

]1/2)σ ,
where σ = k + α − β. Set F(u) := 1/(1 + n(|θ − φ|2 + sin θ sin φ(1 − u))1/2)σ . In the
following we evaluate the double integral by changing the variables several times:

∫ π

0

∫ 1

0
F(r cosψ) dm(r, ψ) =

∫ 1

0

∫ 1

−1
F(rs)

(
1 − r2)α−β−1

r2β+1(1 − s2)β−1/2
ds dr

=
∫ 1

0

∫ r

−r
F (u)r

(
1 − r2)α−β−1(

r2 − u2)β−1/2
du dr

=
∫ 1

−1
F(u)

∫ 1

|u|
r
(
1 − r2)α−β−1(

r2 − u2)β−1/2
dr du

= c

∫ 1

−1
F(u)

(
1 − u2)α−1/2

du ,

where c = (1/2)
∫ 1

0 v
β−1/2(1 − v)α−β−1 dv (here v = (r2 − u2)/(1 − u2) is the last

substitution). This gives

∣∣Lα,βn (cos θ, cosφ)
∣∣ ≤ cn2α+2

∫ 1

−1

(
1 − u2

)α−1/2
du(

1 + n
[|θ − φ|2 + sin θ sin φ(1 − u)

]1/2)σ .
We now split up the last integral into two integrals: One over [−1, 0] and the other over
[0, 1]. For the first integral, 1 − u ≥ 1 and hence

∫ 0

−1
F(u)

(
1 − u2)α−1/2

du ≤ c(
1 + n

[|θ − φ|2 + sin θ sin φ
]1/2)σ

≤ c(
n2 sin θ sin φ

)α+1/2
(1 + n|θ − φ|)k−α−β−1

.

To estimate the integral over [0, 1] we apply the substitution t = 1 − u and obtain

∫ 1

0
F(u)

(
1 − u2)α−1/2

du ≤ c

∫ 1

0

(1 − u)α−1/2 du(
1 + n

[|θ − φ|2 + sin θ sin φ(1 − u)
]1/2)σ
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≤ c(
n2 sin θ sin φ

)α+1/2

∫ n2 sin θ sin φ

0

tα−1/2 dt(
1 + [

n2(θ − φ)2 + t
]1/2)σ

≤ c(
n2 sin θ sin φ

)α+1/2
(1 + n|θ − φ|)σ−2α−2

∫ ∞

0

tα−1/2 dt

(1 + t)α+1

≤ c(
n2 sin θ sin φ

)α+1/2
(1 + n|θ − φ|)k−α−β−2

.

Putting these estimates together, we get

∣∣Lα,βn (cos θ, cosφ)
∣∣ ≤ cn

(sin θ sin φ)α+1/2(1 + n|θ − φ|)k−α−β−2
. (2.19)

Our last step here is to show that estimates (2.18)–(2.19) imply (2.14). Observe first
that since 0 ≤ θ, φ ≤ 2π/3, we have by (2.12),

wα,β(n; cos θ)wα,β(n; cosφ) ∼ (
sin θ + n−1)2α+1( sin φ + n−1)2α+1 (2.20)

∼ (
θ + n−1)2α+1(

φ + n−1)2α+1
.

We need the following simple inequality

(
θ + n−1)(φ + n−1) ≤ 3

(
θφ + n−2)(1 + n|θ − φ|), θ, φ ≥ 0 . (2.21)

To prove this we assume that φ ≥ θ and define γ ≥ 1 from φ = γ θ . Suppose γ ≥ 3.
Then (2.21) will follow if we show that (θ + φ)n−1 ≤ 3n−2n|θ − φ|, which is equivalent
to γ + 1 ≤ 3(γ − 1). But this holds since γ ≥ 3.

Let now 1 ≤ γ < 3. Then it suffices to show that (θ + φ)n−1 ≤ 2(θφ + n−2). In
turn this inequality holds if 4θn−1 ≤ 2(θ2 + n−2), which is apparently true. Thus, (2.21)
is established.

It is now readily seen that (2.18)–(2.19) yield (2.14) by using (2.20)–(2.21).

Case (b): π/3 ≤ θ ≤ π and π/2 ≤ φ ≤ π . In this case, we have by (2.17)

1 − t (x, y, r, ψ) ≥ c
(|θ − φ|2 + (1 − r)+ r(1 − cosψ) sin θ sin φ

)
(2.22)

upon writing 1 − r cosψ = 1 − r + r(1 − cosψ). In particular,

1 − t (x, y, r, ψ) ≥ c
(|θ − φ|2 + (1 − r)

)
,

which shows, using (2.15)–(2.16) , that

∣∣Lα,βn (cos θ, cosφ)
∣∣ ≤ cn2α+2

∫ 1

0

(
1 − r2

)α−β−1
r2β+1 dr(

1 + n
[|θ − φ|2 + (1 − r)

]1/2)σ ,
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with σ := k + α − β as before. Applying the substitution n2(1 − r) = s, we get∣∣Lα,βn (cos θ, cosφ)
∣∣ ≤ cn2α+2

∫ 1

0

(1 − r)α−β−1 dr(
1 + n

(|θ − φ|2 + (1 − r)
)1/2)σ (2.23)

≤ cn2β+2
∫ n2

0

sα−β−1 ds(
1 + (

n2|θ − φ| + s
)1/2)σ

≤ c
n2β+2

(1 + n|θ − φ|)σ−2(α−β)−1/2

∫ ∞

0

sα−β−1 ds

(1 + s)α−β+1/4

≤ c
n2β+2

(1 + n|θ − φ|)k−α+β−1/2
.

Furthermore, using (2.15)–(2.16), and (2.22), we obtain∣∣Lα,βn (cos θ, cosφ)
∣∣

≤ cn2α+2
∫ 1

0

∫ π

0

(
1 − r2

)α−β−1
r2β+1(sinψ)2β dψ dr(

1 + n
[|θ − φ|2 + (1 − r)+ r(1 − cosψ) sin θ sin φ

]1/2)σ .
The inner integral can be estimated by changing the variables. Set A := |θ − φ|2 + 1 − r .
Then ∫ π/2

0
=
∫ 1

0

(1 − s)β−1/2 ds(
1 + n[A+ r(1 − s) sin θ sin φ]1/2

)σ
= 1(

n2r sin θ sin φ
)β+1/2

∫ n2r sin θ sin φ

0

tβ−1/2 dt(
1 + (

n2A+ t
)1/2)σ

≤ 1(
n2r sin θ sin φ

)β+1/2(1 + nA1/2
)σ−2β−2

∫ ∞

0

tβ−1/2 dt

(1 + t)β+1

≤ c(
n2r sin θ sin φ

)β+1/2(1 + nA1/2
)k+α−3β−2

,

and since 1 − s ≥ 1 for −1 ≤ s ≤ 0,∫ π

π/2
=
∫ 0

−1

(1 − s)β−1/2 ds

(1 + n(A+ r(1 − s) sin θ sin φ)σ
≤ c(

1 + n(A+ r sin θ sin φ)1/2
)σ

≤ c(
n2r sin θ sin φ

)β+1/2(1 + nA1/2
)k+α−3β−2

.

Combining these, we get

∣∣Lα,βn (cos θ, cosφ)
∣∣ ≤ cn2α+2(

n2 sin θ sin φ
)β+1/2

∫ 1

0

(
1 − r2

)α−β−1
rβ+1/2 dr(

1 + n
(|θ − φ|2 + (1 − r)

)1/2)τ ,
where τ := k + α − 3β − 2. The last integral (with σ in place of τ ) has already been
estimated in (2.23). Consequently,∣∣Lα,βn (cos θ, cosφ)

∣∣ ≤ cn2β+2(
n2 sin θ sin φ

)β+1/2
(1 + n|θ − φ|)k−α−β−5/2

.
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As in Case (a), this estimate along with (2.23) implies (2.14), using (2.13) and (2.21).

Case (c): Either 0 ≤ θ ≤ π/3 and π/2 ≤ φ ≤ π or 2π/3 ≤ θ ≤ π and 0 ≤ φ ≤ π/2. In
this case, we have |θ − φ| ≥ π/6, so that

1 − t (x, y, r, ψ) ≥ c|θ − φ|2 ≥ c > 0 .

Hence, by (2.15)–(2.16),

∣∣Lα,βn (cos θ, cosφ)
∣∣ ≤ cn2α+2

(1 + n)k+α−β ≤ cn

(1 + n)k−α−β−1
,

which yields (2.14) since wα,β(n; cos θ)wα,β(n; cosφ) ≤ c. The proof of Theorem 2 is
complete.

The estimate of |Lα,βn (x, y)| from Theorem 2 allows us to control its Lp integral.

Proposition 1. Let k ≥ 3α + 3β + 5. Then for 1 ≤ p < ∞,∫ 1

−1

∣∣Lα,βn (x, y)
∣∣pwα,β(y) dy ≤ c

np−1

(wα,β(n; x))p−1
, −1 ≤ x ≤ 1 . (2.24)

Proof. We will prove (2.24) only in the case 0 ≤ x ≤ 1, since the case −1 ≤ x < 0 is
the same. Let x =: cos θ and set I[a,b] := ∫ b

a
|Lα,βn (x, y)|pwα,β(y) dy. We first estimate

I[−1/2,1]. Using Theorem 2 and (2.12) and substituting y = cosφ, we get

I[−1/2,1] ≤ c
np

(wα,β(n; x))p/2
∫ 2π/3

0

(sin φ)2α+1 dφ(
sin φ + n−1

)(α+1/2)p
(1 + n|θ − φ|)σp

with σ = k − 2α − 2β − 3. Denoting the last integral by J , we use the relation sin φ ∼ φ

for 0 ≤ φ ≤ 2π/3 and apply the substitution u = nθ to obtain

J ≤ c
n(α+1/2)p

n2α+1

∫ 2π/3

0

dφ

(1 + nφ)(α+1/2)(p−2)(1 + n|θ − φ|)σp

≤ c
n(α+1/2)p

n2α+2

∫ 2nπ/3

0

du

(1 + u)(α+1/2)(p−2)(1 + |u− nθ |)σp .

If p ≥ 2, then we split the last integral into two integrals: One over [0, nθ/2] and the
other over [nθ/2, 2nπ/3]. We have∫ nθ/2

0
≤ c

(1 + nθ)σp

∫ nθ/2

0

du

(1 + u)(α+1/2)(p−2)
≤ c

(1 + nθ)σp−1

and ∫ 2nπ/3

nθ/2
≤ c

(1 + nθ)(α+1/2)(p−2)

∫ 2nπ/3

nθ/2

du

(1 + |u− nθ |)σp
≤ c

(1 + nθ)(α+1/2)(p−2)
,

using that the last integral is bounded by
∫∞
−∞(1 + |u|)−σp du ≤ c.
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The assumption k ≥ 3α + 3β + 5 yields σp − 1 ≥ α(p − 2) and hence

J ≤ c
n(α+1/2)p

n2α+2(1 + nθ)(α+1/2)(p−2)
≤ c

n(θ + n−1)(α+1/2)(p−2)

≤ c

n(wα,β(n; cos θ))p/2−1
.

If p < 2, then we have

J ≤ c
n(α+1/2)p

n2α+2

∫ 2nπ/3

0

(1 + u)(α+1/2)(2−p)du
(1 + |u− nθ |)σp

= c
n(α+1/2)p

n2α+2

∫ n(2π/3−θ)

−nθ
(1 + v + nθ)(α+1/2)(2−p) dv

(1 + |v|)σp .

Using the inequality (A+ B)a ≤ 2a(Aa + Ba) we conclude that

J ≤ c
n(α+1/2)p

n2α+2

[ ∫ ∞

−∞
dv

(1 + |v|)σp−(α+1/2)(2−p) + (nθ)(α+1/2)(2−p)
∫ ∞

−∞
dv

(1 + |v|)σp
]

≤ c
n(α+1/2)p

n2α+2
(1 + nθ)(α+1/2)(2−p) ≤ c

n(wα,β(n; cos θ))p/2−1
,

which is the same as in the case of p ≥ 2. Here we have used that k ≥ 3α+ 3β + 5, which
yields σp − (α + 1/2)(2 − p) > 1.

Putting these estimates together, we conclude that

I[−1/2,1] ≤ c
npJ

(wα,β(n; x))p/2 ≤ c
np−1

(wα,β(n; x))p−1
. (2.25)

To estimate I[−1,−1/2] we again apply the substitution y = cosφ. Notice that since
0 ≤ θ ≤ π/2 and 2π/3 ≤ φ ≤ π , we have |θ − φ| ≥ π/6. Employing Theorem 2
and (2.13), we obtain as above

I[−1,−1/2] ≤ c
np

(wα,β(n; x))p/2
n(β+1/2)p

nσp

∫ π

2π/3

(sin φ)2β+1

(1 + n sin φ)(β+1/2)p
dφ

≤ c
np

(wα,β(n; x))p/2
n(β+1/2)p

nσp

1

n(β+1/2)(p−1)
≤ c

np−1

(wα,β(n; x))p−1
,

using the trivial inequalities n−(2α+1) ≤ wα,β(n; cos θ) ≤ c for 0 ≤ θ ≤ π/2 and the fact
that k ≥ 3α + 3β + 5. The last estimate coupled with (2.25) yields (2.24). The proof of
Proposition 1 is complete.

3. Tight Polynomial Frames in L2(wα,β)

We now turn to the construction of polynomial frames. In addition to the localized poly-
nomials from Section 2, we shall need the Gaussian quadrature formula. Let ξj = cos θj ,

1 ≤ j ≤ n, denote the zeros of the Jacobi polynomial P (α,β)n (t), ordered so that

0 =: θ0 < θ1 < · · · < θn < θn+1 := π .
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Let λn(t) be the Christoffel function and bν = λn(ξν). It is known that

θν+1 − θν ∼ n−1 and hence θν ∼ νn−1 (1 ≤ ν ≤ n) ;

and also
bν ∼ n−1wα,β(ξν)

(
1 − ξ2

ν

)1/2 ∼ n−1wα,β(n; ξν) .
Here the constants of equivalence depend only on α, β (cf. [9, p. 282]). These quantities
appear in the well-known Gaussian quadrature:

Proposition 2. For each n ≥ 1, the quadrature

cα,β

∫ 1

−1
f (t)wα,β(t) dt ∼

n∑
ν=1

bνf (ξν) (3.1)

is exact for all polynomials of degree 2n− 1.

We shall utilize Proposition 2 with n = 2j . Let us denote by ξj,ν and bj,ν (ν =
1, 2, . . . , 2j ) the knots and the coefficients of the Gaussian quadrature when n = 2j , and
set

Xj := {
ξj,ν : ν = 1, 2, . . . , 2j

}
, and bξ := bj,ν if ξ = ξj,ν .

Then the Gaussian quadrature

cα,β

∫ 1

−1
f (t)wα,β(t) dt ∼

∑
ξ∈Xj

bξ f (ξ) (3.2)

is exact for all polynomials of degree at most 2j+1 − 1.
Let â satisfy the conditions:

â ∈ C∞(R), â ≥ 0, supp â ⊂ [1/2, 2] , (3.3)

â(t) > c > 0, if t ∈ [3/5, 5/3] , (3.4)

â2(t)+ â2(2t) = 1, if t ∈ [1/2, 1] . (3.5)

It follows from these conditions that

∞∑
ν=0

â2(2−ν t
) = 1, t ∈ [1,∞) . (3.6)

It is easy to construct functions that satisfy properties (3.3)–(3.5). Indeed, a standard
construction (e.g., in wavelets) shows that there exists a function g with the properties:
g ∈ C∞(R), supp g = [−1, 1], g(t) > 0 on (−1, 1), g(−t) = g(t), g(0) = 1 and
|g(t)|2 + |g(t + 1)|2 = 1 on [−1, 0]. Then the function â(t) := g(log2 t) has the required
properties.

We introduce the orthonormal Jacobi polynomials P(α,β)n , which are given by

P(α,β)n (x) := (
h(α,β)n

)−1/2
P (α,β)n (x) .

The sequence {P(α,β)ν }∞ν=0 is an orthonormal basis in L2(wα,β, [−1, 1]) with inner product

〈f, g〉 := cα,β

∫ 1

−1
f (t)g(t)wα,β(t) dt .
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Assuming that â satisfies conditions (3.3)–(3.5), we write Lα,β0 := 1 and

L
α,β
j (x, y) :=

∞∑
ν=0

â
( ν

2j−1

)
P(α,β)ν (x)P(α,β)ν (y), j = 1, 2, . . . . (3.7)

We now define our frame elements (needlets) by

ψξ (x) := √
bξ · Lα,βj (x, ξ) for ξ ∈ Xj , j = 0, 1, . . . , (3.8)

where Xj is the set of knots and the bξ ’s are the weights in the Gaussian quadrature (3.2).
Denote X := ∪∞

j=0Xj , where every two points ξ, η ∈ X from different levels Xj �=
Xk are considered to be different elements of X even if they coincide. We use X as an
index set in the definition of the needlet system

� := {ψξ }ξ∈X ,

which as will be shown in Theorem 4 below is a tight frame in L2(wα,β).
We next show that each ψξ has nearly exponential (faster than any polynomial) rate

of decay away from ξ . This property of needlets is critical for their implementation to
decomposition of spaces other than L2(wα,β).

Theorem 3. For any k ≥ 1 there exists a constant ck depending only on k, α, β, and â
such that for ξ ∈ Xj , j = 1, 2, . . . ,

|ψξ (cos θ)| ≤ ck
2j/2√

wα,β
(
2j ; cos θ

)(
1 + 2j |θ − arccos ξ |)k , θ ∈ [0, π ] , (3.9)

and, consequently, for ν = 1, 2, . . . , 2j ,

|ψξj,ν (cos θ)| ≤ ck
2j/2√

wα,β
(
2j ; cos θ

)(
1 + 2j

∣∣θ − ν2−j ∣∣)k , θ ∈ [0, π ] . (3.10)

Proof. Estimates (3.9)–(3.10) follow immediately from the estimate in Theorem 2,
taking into account the simple fact that 1 + 2j |θ ± c2−j | ∼ 1 + 2j θ if 0 ≤ θ ≤ π and the
fact that bξ ∼ 2−jwα,β(2−j ; ξ). Since by assumption â is in C∞, estimates (3.9)–(3.10)
holds for every k ≥ 1.

Remark. It is worthwhile to mention that the estimate (3.9) or (3.10) (also Proposition 1
with p = 2) immediately yields ‖ψξj,ν‖L2(wα,β )

≤ c.

Our next theorem shows that � is a tight frame in L2(wα,β).

Theorem 4. If f ∈ L2(wα,β), then

f =
∞∑
j=0

2j∑
ν=1

〈f,ψξj,ν 〉ψξj,ν =
∑
ξ∈X

〈f,ψξ 〉ψξ in L2(wα,β) (3.11)

and

‖f ‖L2(wα,β )
=
( ∑
ξ∈X

|〈f,ψξ 〉|2
)1/2

. (3.12)
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Proof. Suppose f ∈ L2(wα,β). Then f = ∑∞
ν=0 dν(f )P

(α,β)
ν , where dν(f ) :=

〈f,P(α,β)ν 〉. Here and elsewhere in the following the convergence is in L2(wα,β). Denote
briefly

(Lj ∗ f )(x) := cα,β

∫ 1

−1
L
α,β
j (x, t)f (t)wα,β(t) dt ,

where Lα,βj are defined in (3.7). One can regard this as a nonstandard convolution which is
evidently associative but not commutative. We next show that the following Calderon type
decomposition holds

f =
∞∑
j=0

L
α,β
j ∗ Lα,βj ∗ f . (3.13)

Indeed, clearly for j ≥ 1,

L
α,β
j ∗ f =

2j∑
ν=1

â
( ν

2j−1

)
dν(f )P(α,β)ν

and then

L
α,β
j ∗ Lα,βj ∗ f =

2j∑
ν=1

â2
( ν

2j−1

)
dν(f )P(α,β)ν .

Consequently,

∞∑
j=0

L
α,β
j ∗ Lα,βj ∗ f = d0(f )P

(α,β)

0 +
∞∑
j=1

2j∑
ν=1

â2
( ν

2j−1

)
dν(f )P(α,β)ν

= d0(f )P
(α,β)

0 +
∞∑
ν=1

∞∑
j=1

â2
( ν

2j−1

)
dν(f )P(α,β)ν

=
∞∑
ν=0

dν(f )P(α,β)ν = f ,

where we used (3.6). Thus, (3.13) is established.
As we already mentioned Lα,βj ∗Lα,βj ∗f = (L

α,β
j ∗Lα,βj )∗f . Since Lα,βj (x, t)L

α,β
j

(t, y) is a polynomial of degree at most 2j+1 − 1 in t and the quadrature formula (3.2) is
exact for such polynomials, we have(

L
α,β
j ∗ Lα,βj

)
(x, y) = cα,β

∫ 1

−1
L
α,β
j (x, t)L

α,β
j (t, y)wα,β(t) dt

=
∑
ξ∈Xj

√
bξ · Lα,βj (x, ξ)

√
bξ · Lα,βj (ξ, y)

=
∑
ξ∈Xj

ψξ (x)ψξ (y) .

Here we also used that Lα,βj (x, y) = L
α,β
j (y, x) and the definition of the frame elements

in (3.8). Consequently,

L
α,β
j ∗ Lα,βj ∗ f =

∑
ξ∈Xj

〈f,ψξ 〉ψξ ,
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which along with (3.13) yields (3.11).
For the proof of (3.12) we denote FJf := ∑J

j=0
∑
ξ∈Xj

〈f,ψξ 〉ψξ . Evidently,

〈f, FJ f 〉 =
J∑
j=0

∑
ξ∈Xj

|〈f,ψξ 〉|2

and passing to the limit as J → ∞ we arrive at (3.12).
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