
Math. Nachr. 279, No. 9–10, 1099 – 1127 (2006) / DOI 10.1002/mana.200510412

Anisotropic Franklin bases on polygonal domains

George Kyriazis∗1, Kyungwon Park∗∗ 2, and Pencho Petrushev∗∗∗2

1 Department of Mathematics and Statistics, University of Cyprus, 1648 Nicosia, Cyprus
2 Department of Mathematics, University of South Carolina, Columbia SC 29208, USA

Received 22 April 2005, accepted 6 January 2006
Published online 7 June 2006

Key words Franklin systems, polygonal domains, spaces of homogeneous type
MSC (2000) Primary: 42C10, 46E30

Franklin systems induced by Courant elements over multilevel nested triangulations of polygonal domains in
R

2 are explored. Mild conditions are imposed on the triangulations which prevent them from deterioration and
at the same time allow for a lot of flexibility and, in particular, arbitrarily sharp angles. It is shown that such
anisotropic Franklin systems are Schauder bases for C and L1, and unconditional bases for Lp (1 < p < ∞)
and the corresponding Hardy spaces H1. It is also proved that the anisotropic H1 is exactly the space of
all functions in L1 for which the corresponding Franklin system expansions converge unconditionally in L1.
Finally, it is shown that the Franklin bases characterize the corresponding anisotropic BMO spaces.
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1 Introduction

The Franklin systems in the univariate case as well as in the multivariate case in regular setups are thoroughly
studied and well-known. We refer the reader to [11], [1], and [8] as references for Franklin systems.

In this article, we consider Franklin systems generated by sequences of Courant elements, i.e., piecewise
linear elements, induced by multilevel nested triangulations of compact polygonal domains in R

2. For a given
polygonal domain E in R

2 we consider a sequence of nested triangulations T0, T1, . . . of a general nature. Mild
conditions are imposed on the triangulations which prevent them from deterioration. At the same time these
conditions allow for a great deal of flexibility and, in particular, arbitrarily sharp angles.

We show that the Franklin systems obtained by applying the Gram–Schmidt orthogonalization process to the
corresponding Courant elements are Schauder bases for C and L1, and unconditional bases for Lp (1 < p < ∞)
and the corresponding Hardy space H1. Further, we prove that H1 is exactly the space of all functions in L1 for
which the corresponding Franklin system expansions converge unconditionally in L1. Finally, we show that the
anisotropic Franklin systems characterize the corresponding BMO spaces. Thus we show that the basic and well-
known results on Franklin bases in the regular case have analogues in the anisotropic case. We do not consider
anisotropic atomic Hardy spaces Hp with 0 < p < 1 in this article.

The motivation for this article is two-fold. On the one hand the spaces induced by general multilevel nested
triangulations are an example of spaces on homogeneous type. There are no bases available for such spaces in
general and hence such bases are worthy to be studied. On the other hand the Franklin bases that we explore are
the only anisotropic bases over general sequences of nested triangulations. There are no constructions of spline
wavelet or prewavelet bases over such triangulations available as for now.

In [12] we show that the anisotropic Franklin systems considered in this article characterize the anisotropic
B-space (generalized Besov spaces) which are naturally associated with hierarchical sequences of nested trian-
gulations. These spaces play a fundamental role in nonlinear spline approximation (see [4, 5, 9, 10]).

The paper is organized as follows. In §2 we give all auxiliary results needed for the development of the
anisotropic Franklin bases. In §3 we introduce the anisotropic Franklin systems and state and proof our main
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results. In the Appendix we give an example which shows that the anisotropic H1 spaces essentially depend on
the triangulations which are used.

Notation Throughout this article for a set G ⊂ R
2, |G| denotes the Lebesgue measure of G, while G◦ means

the interior of G; �G denotes the characteristic function of G, and �̃G := |G|−1/2
�G. For a finite set G, #G

denotes the cardinality of G. Positive constants are denoted by c, c1, . . . (if not specified, they may vary at every
occurrence), A ≈ B means c1A ≤ B ≤ c2B, and A := B or B =: A stands for “A is by definition equal to B”.
We set 〈f, g〉 :=

∫
E

fg.

2 Preliminaries

In this section we collect all prerequisites regarding triangulations, maximal operators, Hardy spaces on spaces
of homogeneous type, and other results, which will be needed in the development of the Franklin bases. Most of
these facts are well-known and we give only the essentials and suitable references for them.

2.1 Multilevel triangulations

We call E ⊂ R
2 a bounded polygonal domain if its interior E◦ is connected and E is the union of a finite set T0

of closed triangles with disjoint interiors: E =
⋃

�∈T0
�. Following [9] we call

T =
∞⋃

m=0

Tm

a locally regular triangulation of E or briefly an LR-triangulation with levels (Tm)m≥0 if the following condi-
tions are fulfilled:

(a) Every level Tm is a partition of E, that is, E =
⋃

�∈Tm
� and Tm consists of closed triangles with disjoint

interiors.
(b) The levels (Tm) of T are nested, i.e., Tm+1 is a refinement of Tm.
(c) Each triangle � ∈ Tm has at least two and at most M0 children (subtriangles) in Tm+1, where M0 ≥ 2 is

a constant.
(d) The valence Nv of each vertex v of any triangle � ∈ Tm (the number of the triangles from Tm which

share v as a vertex) is at most N0, where N0 is a constant.
(e) No hanging vertices condition: No vertex of any triangle � ∈ Tm which belongs to the interior of E lies

in the interior of an edge of another triangle from Tm.
(f) There exist constants 0 < r < ρ < 1

(
r ≤ 1

2

)
such that for each � ∈ Tm (m ≥ 0) and any child

�′ ∈ Tm+1 of �,

r |�| ≤ |�′| ≤ ρ |�| . (2.1)

(g) There exists a constant 0 < δ ≤ 1 such that for �′,�′′ ∈ Tm (m ≥ 0) with a common vertex,

δ ≤ |�′|/|�| ≤ δ−1 . (2.2)

The notion of a regular triangulation will be needed later on. We call T =
⋃∞

m=0 Tm a regular triangulation of
a bounded polygonal domain E ⊂ R

2 if T satisfies conditions (a)–(e) of LR-triangulations and also the minimal
angle condition, that is, min angle (�) ≥ β for every triangle � ∈ T , where β > 0 is a constant. Evidently,
every regular triangulation is locally regular but not the other way around. For other types of triangulations,
see [9].

We denote by Vm the set of all vertices of triangles from Tm, where if v is on the boundary of E we include in
Vm as many different copies of v as is its multiplicity. The multiplicity of a vertex v ∈ T0 on the boundary of E
can be larger than one if the interior of the union of all triangles which share v as a vertex is not connected. Also,
cuts in E along edges of triangles from T0 are possible; such edges belong to the boundary of E.

We let Em denote the set of all edges of triangles in Tm. We also set V :=
⋃

m≥0
Vm and E :=

⋃
m≥0

Em.
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Fig. 1 A skewed cell in an LR-triangulation
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We next clarify a number of issues concerning LR-triangulations, which are discussed in detail in [9] (see also
[5, 10]).

The constants M0, N0, r, ρ, δ, and #T0 (the cardinality of T0) associated with an LR-triangulation T are
assumed fixed. We refer to them as parameters of T .

It is an important observation that the collection of all LR-triangulations with given (fixed) parameters is
invariant under affine transforms. More precisely, if T is an LR-triangulation of E ⊂ R

2 and A is an affine
transform of R

2, then A(T ) := {A(�) : � ∈ T } is an LR-triangulation of the polygonal domain A(E) with
the same parameters.

The most important conditions (f)–(g) on LR-triangulations involve only areas of triangles but not angles.
Consequently, if T is an LR-triangulation and �′,�′′ ∈ Tm have a common edge, then it may happen that �′ is
an equilateral triangle (or close to an equilateral triangle) but �′′ has a uncontrollably sharp angle (see Fig. 1).

In an LR-triangulation T there can be an equilateral (or close to such) triangle �� at any level Tm with
descendants �1 ⊃ �2 ⊃ . . . such that min angle(�j) → 0 as j → ∞.

It is important to know how fast the area |�| of a triangle � ∈ Tm may change when � moves away from a
fixed triangle within the same level. Condition (f) suggests a geometric rate of change but in fact it is polynomial.

Lemma 2.1 If �, �′ ∈ Tm can be connected by n intermediate edges from Em, then

c−1
1 (n + 1)−s ≤ |�′|/|�′′| ≤ c1(n + 1)s , (2.3)

where s, c1 > 0 depend only on the parameters of T .

This result follows easily by the following lemma (see [9, Lemma 2.4]):

Lemma 2.2 Let T be an LR-triangulation of E ⊂ R
2. Suppose that �′,�′′ ∈ Tm (with m sufficiently large)

and �′ and �′′ can be connected by less than 2ν intermediate edges from Em with (pairwise) common vertices.
Then there exist �1,�2 ∈ Tm−2N0ν with a common vertex such that �′ ⊂ �1 and �′′ ⊂ �2.

From the above discussion (see Fig. 1) it follows that for two triangles �′,�′′ ∈ Tm which share a vertex
|max edge (�′)|/|max edge (�′′)| can by uncontrollably large (or small). However, when going in depth the
maximal edges of the triangles behave similarly as their areas.

Lemma 2.3 If T is an LR-triangulation of E, there exist constants 0 < r1 < ρ1 < 1 depending only on the
parameters of T such that if �′ ⊂ �, � ∈ Tm (m ≥ 0), and �′ ∈ Tm+3N0ν , ν ≥ 1, then

rν
1 ≤ |max edge (�′)|

|max edge (�)| ≤ ρν
1 . (2.4)

P r o o f. Evidently, it suffices to prove (2.4) for ν = 1 only. Let � ∈ Tm and let e be an edge of �. If it is
also an edge of a child of �, then the valence of at least one of the two endpoints of e will increase by one at
level m + 1. (Recall that there are always at least two children, so that a child and a parent cannot be the same
triangle.) Therefore, e will be subdivided at least once after at most S := 2(N0 − 3) + 1 steps of refinement. By
(2.1) it readily follows that any edge e′ obtained by subdividing e satisfies |e′| ≤ ρ |e|.

We say that an edge of a descendant of � is a cutting edge for � if one of its endpoints is a vertex of � and
the other lies in the interior of the opposite edge of �. Since all cutting edges must emanate from the same vertex
of �, there are totally no more than M := N0 − 3 such edges for �. Therefore, no new cutting edges for �
will be created at levels l > m + N0 − 3. (It is easy to see that, as long as no new cutting edges are created
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at a level l, they cannot be created at any further level.) Using this and the above observation, we conclude that
there will be no cutting edges at levels l > m + M + S since they all will be subdivided. Therefore, each edge
e′ inside � at these levels is either a proper part of an edge of �, or has both of its endpoints in the interiors of
two different edges of �, or it has at least one endpoint in the interior of �. In all cases, condition (2.1) ensures
that |e′| ≤ ρ |max edge (�)|. Consequently, if �′ ∈ Tm+3N0 then |max edge (�′)| ≤ ρ |max edge (�)|, since
3N0 > M + S + 1. Thus the upper bound in (2.4) is established.

The argument for the proof of the lower bound in (2.4) is simpler. Suppose � ∈ Tm, �′ ∈ Tm+1, and
�′ ⊂ �. Let emax and e′max be the largest edges of � and �′, respectively. Denote by h the length of the
height to emax in � and by h′ the length of the height to e′max in �′. Further, let R and R′ be the radii of the
circles inscribed in � and �′ respectively. A simple geometric argument shows that R < h < 3R as well as
R′ < h′ < 3R′. Since �′ ⊂ �, then R′ ≤ R and hence h′ < 3h. We use this and (2.1) to obtain

(1/2)r |emax|h = r |�| ≤ |�′| ≤ (1/2) |e′max|h′ ≤ (3/2) |e′max|h

which implies |e′max| ≥ (r/3) |emax|. This obviously yields the lower bound in (2.4).

Graph distance. We next introduce the mth level graph distance between vertices, which will play a vital role
in our further development: For any two vertices v′, v′′ ∈ Tm, m ≥ 0, we define the graph distance ρm(v′, v′′)
as the minimum number of edges from Em needed to connect v′ and v′′.

By the conditions on LR-triangulations, in particular condition (d), it follows that every edge in E is divided at
least once after 2N0 steps of refinement. This immediately implies the important inequality

ρm+2N0ν(v′, v′′) ≥ 2νρm(v′, v′′) , v′ , v′′ ∈ Vm , m , ν ≥ 0 . (2.5)

The following lemma is a consequence of Lemma 2.2.

Lemma 2.4 There exist constants c > 0 and t > 0 depending only on the parameters of T such that for any
v� ∈ Vm

#{v ∈ Vm : ρm(v, v�) ≤ n} ≤ cnt , n ≥ 1 . (2.6)

Furthermore, for any v′, v′′ ∈ Vm with ρm(v′, v′′) = n,

#{v ∈ Vm : ρm(v, v′) + ρm(v, v′′) = n + k} ≤ c(n + k)t , k ≥ 0. (2.7)

P r o o f. To prove (2.6) choose ν ≥ 1 so that 2ν−1 ≤ n < 2ν . Assume first that m ≥ 2N0ν. Denote by
T � the set of all triangles � ∈ Tm which have at least one vertex in the set {v ∈ Vm : ρm(v, v�) ≤ n}. Let
�� ∈ T � have v� as a vertex. Applying Lemma 2.2 with �� and any other triangle in T �, it readily follows that
there exists a set T 0, say, consisting of a triangle �0 ∈ Tm−2N0ν and its neighbors (triangles in Tm−2N0ν which
share a vertex with �0) such that

⋃
�∈T � � ⊂

⋃
�∈T 0 �. Evidently #T 0 < 3N0.

Let �min be a triangle in T � with maximum area. By (2.1) and (2.2), we infer δr2N0ν |�0| ≤ |�min|. We
use this to obtain

#T � |�min| ≤
∑

�∈T 0

|�| ≤ 3N0δ
−1 |�0| ≤ 3N0δ

−2r−2N0ν |�min|

and hence

#{v ∈ Vm : ρm(v, v�) ≤ n} ≤ 3#T � ≤ 9N0δ
−2r−2N0ν ≤ cnt

for some c, t > 0 depending on N0, r, and δ.
If m < 2N0ν one proceeds in the same way using T0 in place of T 0.
Estimate (2.7) follows easily by (2.6).

Cells. For any vertex v ∈ Vm (m ≥ 0), we denote by θv the union of all triangles from Tm which have v as a
common vertex. (Here we take into account the above observation about the multiplicities of vertices from Vm).
We denote by Θm the set of all such cells θv with v ∈ Vm and set Θ =

⋃
m≥0 Θm. For a given cell θ ∈ Θ, we
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shall denote by vθ the “central” vertex of θ. We let l(θ) denote the level of θ. Thus l(θ) = m if θ ∈ Θm.
For given θ′, θ′′ ∈ Θm, we define the graph distance ρm(θ′, θ′′) between θ′ and θ′′ by ρm(θ′, θ′′) :=

ρm(vθ′ , vθ′′), where vθ′ , vθ′′ ∈ Vm are the “central vertices” of θ′ and θ′′. Evidently, ρm(·, ·) is a true distance
on Θm.

Furthermore, if θ′, θ′′ ∈ Θm−1 ∪ Θm then vθ′ , vθ′′ ∈ Vm, and we define the mth level graph distance
ρm(θ′, θ′′) between θ′ and θ′′ by ρm(θ′, θ′′) := ρm(vθ′ , vθ′′). Evidently, if Λ ⊂ Θm−1 ∪ Θm consists of cells
with distinct “central” points, then ρm(·, ·) is a true distance on Λ. This will be needed in §3.2.

Definition of θm
x . We want to associate with each x ∈ E a cell θm

x ∈ Θm, m ≥ 0, which contains x. Since
the cells from Θm overlap, this needs some care. We first associate with each triangle � ∈ Tm a cell θm

� ∈ Θm

such that � ⊂ θm
� . Such a cell can be selected in three different ways. We choose one of them for each � ∈ Tm.

Then for each x ∈ E such that x ∈ �◦ with � ∈ Tm, we define θm
x := θm

�. If x lies on the edge of a triangle
from Tm, we define θm

x as any cell from θm such that x belongs to its interior, but if x = vθ for some θ ∈ Θm,
we set θm

x := θ.
From the above definition of θm

x it readily follows that for any θ ∈ Θm the function h(x) := ρm

(
θ, θm

x

)
is

piecewise constant over Tm and hence it is measurable, which will be needed later on.
We now introduce the mth level graph “distance” between any two points x, y ∈ E by

ρm(x, y) := ρm

(
θm

x , θm
y

)
. (2.8)

The following useful inequality is immediate from (2.5): For m ≥ 0, ν ≥ 1, and x, y ∈ E,

ρm+2N0ν(x, y) ≥ 2ν−2ρm(x, y) if ρm(x, y) ≥ 3 . (2.9)

Stars. In order to deal with graph distances and neighborhood relations it is convenient to employ the notion
of the mth level star of a set: For any set G ⊂ E and m ≥ 0, we define the first mth level star of G by

Starm(G) := Star1
m(G) :=

⋃
{θ ∈ Θm : θ◦ ∩ G �= ∅} (2.10)

and inductively

Stark
m(G) := Star1

m

(
Stark−1

m (G)
)
, k > 1 . (2.11)

When G consists of a single point x, in slight abuse of notation, we shall write Stark
m(x) instead of Stark

m({x}).
For instance, Star1

m(v) = θv if v ∈ Vm.

Courant elements. The no-hanging-vertices condition (e) on LR-triangulations guarantees the existence of
Courant elements, that is, for every cell θ ∈ Θm there exists a unique continuous piecewise linear function ϕθ on
E which is supported on θ and satisfies ϕθ(vθ) = 1. We denote Φm := Φm,T := (ϕθ)θ∈Θm

.

We let Sm denote the space of all continuous piecewise linear functions over Tm. Clearly, S ∈ Sm if and only
if S =

∑
v∈Vm

S(v)ϕθv . Evidently, S0 ⊂ S1 ⊂ . . . and by Lemma 2.3 it follows that
⋃

m≥0 Sm = Lp(E),
0 < p ≤ ∞.

We shall frequently use the obvious fact that all norms of a polynomial on a triangle are equivalent, namely, if
P is a polynomial of degree ≤ k and � is a triangle in R

2, then

‖P‖Lp(�) ≈ |�|1/p−1/q ‖P‖Lq(�) , 0 < p , q ≤ ∞ , (2.12)

with constants of equivalence depending only on k, p, and q.
The Lp-stability of Φm = (ϕθ)θ∈Θm is immediate from (2.12). In fact we shall need the following obvious

modification of this fact: Let Λ ⊂ Θm−1 ∪ Θm consists of cells with distinct “central points”. If (aθ)θ∈Λ is an
arbitrary sequence of real numbers and S :=

∑
θ∈Λ aθϕθ , then

||S||p ≈
(∑

θ∈Λ

‖aθϕθ‖p
p

)1/p

≈
(∑

θ∈Λ

|θ| |aθ|p
)1/p

, 0 < p ≤ ∞ . (2.13)
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2.2 Quasi-distance and maximal operators

Here we introduce a quasi-distance and maximal operators induced by LR-triangulations.
We begin by recalling the definition of a quasi-distance on a set X : The mapping d : X × X → [0,∞) is

called a quasi-distance on X if for x, y, z ∈ X ,

(a) d(x, y) = 0 ⇐⇒ x = y,

(b) d(y, x) = d(x, y),
(c) d(x, z) ≤ K(d(x, y) + d(y, z)) with K ≥ 1.

Assuming that T is an LR-triangulation of a polygonal domain E ⊂ R
2, we define the quasi-distance

dT : E × E → [0,∞) by

dT (x, y) := min{ |θ| : θ ∈ Θ and x, y ∈ θ} , (2.14)

if x, y belong to at least one cell from Θ, and by dT (x, y) := |E| otherwise.

Lemma 2.5 The mapping dT : E × E → [0,∞) defined above is a quasi-distance on E.

P r o o f. Conditions (a) and (b) on quasi-distances are apparently satisfied by dT (·, ·). To prove that condition
(c) holds let x, y, z be three distinct points in E. Assume that d(x, z) = |θ′|, where θ′ ∈ Θm is a cell containing
x and z, and for some cell θ′′ ∈ Θn containing y and z let d(y, z) = |θ′′|. Suppose m ≤ n. Since x, z ∈ θ′, x
and z lie in two triangles from Tm with a common vertex or in the same triangle. Since m ≤ n, the same is true
for y and z. In other words, there exist triangles �1,�2 ∈ Tm, which can be connected by less than 22 edges
from Tm, so that x ∈ �1 and y ∈ �2.

Assume that m ≥ 4N0. Then by Lemma 2.2 there exists θ ∈ Θm−4N0 such that �1,�2 ⊂ θ and hence
d(x, y) ≤ |θ|. By (2.1) and (2.2) there exists a constant c depending on the parameters of T such that |θ| ≤ c |θ′|.
Therefore, d(x, y) ≤ c(d(x, z) + d(z, y)). If m < 4N0, we use E instead of θ with the same result.

With the following lemma we relate the quasi-distance dT (·, ·) to the mth level graph distance introduced
in §2.1.

Lemma 2.6 There exist constants β > 0 and c > 0 such that for θ ∈ Θm (m ≥ 0) and x ∈ E,

dT (vθ, x) ≤ c |θ| ρm

(
θ, θm

x

)β
if ρm

(
θ, θm

x

)
≥ 2 . (2.15)

P r o o f. Clearly, if we prove (2.15) when x = v′ with v′ ∈ Vm, then it will hold in general with a different
constant c. Let dT (vθ, v

′) = |ω| with ω ∈ Θ� (� ≥ 0), i.e., the cell ω is of minimum area and vθ, v
′ ∈ ω. Let

ω∗ ∈ Ω be of maximum level such that vθ, v
′ ∈ ω∗. Evidently, |ω| ≤ |ω∗|. Since ω ∩ ω∗ �= ∅, it follows from

(2.1) and (2.2) that

l(ω) ≤ l(ω∗) ≤ l(ω) + ν0

where ν0 > 0 is a constant depending only on the parameters of T .
Our next claim is that ρm(vθ, v

′) ≥ 2n, where n := [(m − l(ω∗))/2N0] + 1. Assume to the contrary that
ρm(vθ , v

′) < 2n. Then by Lemma 2.2 it follows that there is η ∈ Θm−2N0n such that vθ, v
′ ∈ η and hence

m − 2N0n ≥ l(ω∗) or n ≤ (m − l(ω∗)/2N0, which is a contradiction. Therefore,

ρm(vθ, v
′) ≥ 2(m−l(ω∗))/2N0 ≥ 2(m−l(ω)−ν0)/2N0 ≥ c 2(m−l(ω))/2N0 . (2.16)

Evidently, by (2.1) and (2.2), |ω|/|θ| ≤ c(1/r)m−l(ω). Combining this with (2.16), there exists β > 1 such that

dT (vθ, v
′) = |ω| ≤ c |θ|

(
2(m−l(ω))/2N0

)β

≤ c |θ| ρm(vθ, v
′)β .

Above it may happen that ω = θ0 := E. The proof is the same.
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The quasi-distance dT (·, ·) induces a maximal operator. Denote by B(y, a) the “ball” centered at y of radius
a > 0 with respect to this quasi-distance. Then for any s > 0 the maximal operator Ms

dT
is defined by

(
Ms

dT f
)
(x) := sup

B: x∈B

(
1
|B|

∫
B

|f(y)|s dy

)1/s

, x ∈ E , (2.17)

where the supremum is over all balls B containing x.
For our purposes it is more convenient to use the equivalent maximal operator Ms

T defined by

(
Ms

T f
)
(x) := sup

θ:x∈θ

(
1
|θ|

∫
θ

|f(y)|sdy

)1/s

(2.18)

where the supremum is over all cells θ ∈ Θ containing x or θ = E.

Lemma 2.7 For any measurable function f

Ms
T f(x) ≈ Ms

dT f(x) , x ∈ R
2 , (2.19)

where the constants of equivalence depend only on s and the parameters of T .

This equivalence is immediate from the following lemma which will be needed later on as well.

Lemma 2.8 (a) Given a ball B = B(x, r), x ∈ E, r > 0, there exist θ′ ∈ Θ and θ′′ ∈ Θ or θ′′ = E such
that

θ′ ⊂ B ⊂ θ′′ and r ≤ |θ′′| ≤ c1 |B| ≤ c2 |θ′| < c2r . (2.20)

(b) For any θ ∈ Θ there exists a ball B ⊂ E (with respect to the quasi-distance dT ) such that

θ ⊂ B and |B| ≤ c |θ| (2.21)

Here the constants depend only on the parameters of T .

P r o o f. (a) Fix a ball B = B(x, r), x ∈ E, r > 0. Let θ′ be a cell of minimal level, say m, such that
x ∈ θ′ ⊂ B. Clearly,

B ⊂
⋃

θ∈Θm: x∈θ

θ ⊂ Star2
m(x)

and by Lemma 2.2 there exists θ′′ ∈ Θm−4N0 or θ′′ = E if m < 4N0 such that

θ′ ⊂ B ⊂ Star2
m(x) ⊂ θ′′ .

By properties (f) and (g) of LR-triangulations (§2.1), it follows that |θ′′| ≤ c |θ′|. Evidently |θ′| < r and |θ′′| ≥ r,
and (2.20) follows.

(b) Suppose that θ ∈ Θn (n ≥ 0) is with “central” vertex v. Let δ := max
{
|θ| : θ ⊂ Star2

n(v)
}

. Then for
sufficiently small ε > 0,

θ ⊂ B(v, δ + ε) =
⋃

|θ̃|<δ+ε: v∈θ̃

θ̃ ⊂ Star2
n(v) ,

which yields |B(v, δ + ε)| ≤ c |θ|.

We now come to the main point in this subsection. It is well-known that the Fefferman–Stein vector valued
maximal inequality holds for maximal functions generalized by quasi-distances as in our case (see [15]). This
combined with Lemma 2.7 gives the needed maximal inequality:

Proposition 2.9 Let T be an LR-triangulation of E ⊂ R
2. If 0 < p < ∞, 0 < q ≤ ∞, and 0 < s <

min{p, q}, then for any sequence of functions (fj)∞j=1 on E,∥∥∥∥∥∥
( ∞∑

j=1

|Ms
T fj |q

)1/q
∥∥∥∥∥∥

p

≤ c

∥∥∥∥∥∥
( ∞∑

j=1

|fj |q
)1/q

∥∥∥∥∥∥
p

, (2.22)

where c depends only on p, q, s, and the parameters of T .
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2.3 Spaces of homogeneous type on polygonal domains

Spaces of homogeneous type were first introduced in [2] as a means to extend the Calderon–Zygmund theory of
singular integral operators to more general settings.

Let X be a topological space endowed with a Borel measure µ and a quasi-distance d(·, ·) (see §2.2). Assume
that the balls B(x, r) := {y ∈ X : d(x, y) < r}, x ∈ X , r > 0, form a basis for the topology T in X , and
µ(B(x, r)) > 0 if r > 0. The space (X, d, µ) is said to be of homogeneous type if there exists a constant A such
that for all x ∈ X and r > 0,

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) . (2.23)

The space of homogeneous type (E, dT , m). Suppose that E is a bounded polygonal domain and let T be
a LR-triangulation on E. Also, let dT (·, ·) be the quasi-distance on E defined in (2.14). Finally, denote by m
the Lebesgue measure on E. It is easy to see that (E, dT , m) is a space of homogeneous type, so that we can
utilize the machinery developed in [2]. Indeed, by Lemma 2.5, dT (·, ·) is a quasi-distance on E and evidently
m(B(x, r)) = |B(x, r)| > 0 for x ∈ E and r > 0. Further, it follows by Lemma 2.8 that condition (2.23) is
fulfilled as well.

The Hardy space H1(E, T ). We next define the Hardy space H1 := H1(E, T ) associated with the space
(E, dT , m) by means of atomic representations (see [3]).

According to Coifmann and Weiss [3], a function a(x) is said to be a q-atom (1 < q ≤ ∞) if there exist
x0 ∈ E and r > 0 such that

(i) supp a ⊂ B(x0, r), (ii) ‖a‖q ≤ |B(x0, r)|1/q−1, (iii)
∫

a(x) dx = 0.
In addition, |E|−1

�E is by definition a q-atom as well.
We adopt the following slightly different but equivalent definition for a q-atom which better suits our purposes.

Definition 2.10 A function a(x) is said to be a q-atom (1 < q ≤ ∞) for H1(E, T ) if there is θ ∈ Θ or θ = E
such that

(a) supp a ⊂ θ,
(b) ‖a‖q ≤ |θ|1/q−1,

(c)
∫

E
a(x) dx = 0.

We also postulate |E|−1
�E to be a q-atom.

The equivalence of the two definitions for a q-atom is immediate by Lemma 2.8 (a).

Definition 2.11 The space Hq
1 := Hq

1 (E, T ) (1 < q ≤ ∞) is defined to be the set of all functions f ∈ L1(E)
admitting an atomic decomposition

f =
∞∑

j=0

λjaj ,

where the aj’s are q-atoms and
∑∞

j=0 |λj | < ∞. Moreover, the norm of f ∈ Hq
1 is given by

‖f‖Hq
1

:= inf

⎧⎨⎩
∞∑

j=0

|λj | : f =
∞∑

j=0

λjaj , aj q-atoms

⎫⎬⎭ .

A fundamental fact in the theory of Hardy spaces is that Hq
1 = H∞

1 whenever 1 < q ≤ ∞ with equivalent
norms (see [3, Theorem A]). Thus all spaces Hq

1 are the same and we shall drop the index q. In the following we
shall only work with the norm in H1 defined by using 2-atoms.

An important fact is that the spaces H1(E, T ) essentially depend on the triangulations T . We call H1(E, T ∗)
a regular H1-space if T ∗ is a regular multilevel triangulation of E (see §2.1). It is readily seen that if H1(E, T ∗)
is regular, then it is the same (with equivalent norms) as the space H1(E) defined using atoms generated by the
Euclidean distance on E. Thus all regular spaces H1(E, T ) are the same. Consider the case when E := [−1, 1]2

and denote by H1(E) the regular H1-space on [−1, 1]2. As will be shown in the appendix, there exists an
LR-triangulation T such that H1(E, T ) �= H1(E). The reason for this is that there exist LR-triangulations on
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[−1, 1]2 containing triangles with uncontrollably sharp angles (see §2.1). The fact that the spaces H1(E, T ),
where T is allowed to vary, are not all the same is not a surprise since as is well-known the norm in H1

(
R

d
)

(d > 1) is not invariant (like the L1-norm) under linear transforms with determinant one. We do not explore in
more detail the relationship between the various spaces H1(E, T ) in this article.

It is not hard to prove that H1(E, T ) is a Banach space and ‖f‖L1(E) ≤ c ‖f‖H1(E,T ) for f ∈ H1(E, T ).
Another fundamental result is that the dual of H1(E, T ) is the space BMO := BMO(E, T ) which can be

defined in our case as the set of all functions f on E such that

‖f‖BMO :=
∣∣∣∣ ∫

E

f(x) dx

∣∣∣∣ + sup
θ

(
1
|θ|

∫
θ

|f(x) − fθ|2 dx

)1/2

< ∞ , (2.24)

where fθ := 1
|θ|

∫
θ f(x) dx and the supremum is taken over all θ ∈ Θ or θ = E. More precisely, for

g ∈ BMO(E, T ) and f ∈ H1(E, T ) with an atomic decomposition f =
∑∞

j=1 λjaj ,

lim
m→∞

m∑
j=1

λj

∫
E

g(x)aj(x) dx (2.25)

defines a continuous linear functional on H1 whose norm is equivalent to ‖g‖BMO and vice versa each continuous
linear functional on H1 is of this form.

Note that an equivalent norm in BMO(E, T ) can be defined by replacing in (2.24)
(

1
|θ|

∫
θ |f(x)−fθ|2 dx

)1/2

by 1
|θ|

∫
θ
|f(x) − fθ| dx. For more details, see [3].

Finally, we observe that since H1(E, T ) �= H1(E) for some LR-triangulations T , then by a duality argument
it follows that for the same triangulations BMO(E, T ) �= BMO(E), where BMO(E) stands for the regular
BMO space on E. Thus in general BMO(E, T ) depends on the triangulation T .

One of the advantages of introducing H1 via atomic decompositions is that questions related to the bounded-
ness of Calderon–Zygmund operators (CZO) on H1 can be answered by focusing on individual atoms. Evidently,
any operator T would be bounded if T maps atoms into atoms. Coifman and Weiss observed that for certain type
of operators T , for every atom a(x), Ta is a function with similar structure, which they term a molecule. We
shall use the following definition of a molecule.

Definition 2.12 For a given ε > 0, we say that m(x) is an ε-molecule for H1(E, T ) centered at x0 ∈ E if(∫
E

|m(x)|2 dx

)(∫
E

|m(x)|2 dT (x, x0)1+ε dx

)1/ε

≤ 1 and
∫

E

m(x) dx = 0 . (2.26)

It is trivial to see that every 2-atom is an ε-molecule for any ε > 0. More importantly, ‖m‖H1 ≤ c for each
ε-molecule m(x) (see [3, Theorem C]). From this it follows that a linear operator mapping atoms into molecules
has a bounded extension to H1.

The following result [3] will play an important role in our further development:

Proposition 2.13 Let T : L2(E) → L2(E) be a bounded linear operator given by

(Tf)(x) =
∫

E

K(x, y)f(y) dy .

Suppose that for each 2-atom a �= |E|−1
�E∫

E

(Ta)(x) dx = 0 (2.27)

and there is ε > 0 such that for d(x, y0) > c d(y, y0) the kernel K(·, ·) satisfies

|K(x, y) − K(x, y0)| ≤ c

(
d(y, y0)
d(x, y0)

)ε 1
d(x, y0)

. (2.28)

Then Ta is a constant multiple of an ε-molecule for any atom a �= |E|−1
�E .
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3 Anisotropic Franklin bases

In this section we explore the Franklin system FT generated by the Courant elements associated with an arbitrary
locally regular triangulation T of a compact polygonal domain E in R

2. We shall show that each such Franklin
system is a Schauder basis for C(E) and L1(E), and it is an unconditional basis for H1(E, T ) and Lp(E)
(1 < p < ∞). We also prove some related results.

3.1 Definition of the Franklin system. Main results

Throughout this section, we assume that T =
⋃∞

m=0 Tm is an LR-triangulation of E. We recall that Vm denotes
the set of all vertices of triangles from Tm. We set V∗

0 = V0 and V∗
m = Vm \ Vm−1 for m ≥ 1 and write

V∗ =
⋃∞

m=0 V∗
m.

Let θ0 := E. Choose θmax ∈ Θ0 to be of maximum area and denote Θ∗
0 := {θ0} ∪ Θ0 \ {θmax}, i.e., we

replace θmax by θ0 = E. Moreover, we associate θ0 with vθmax and set ϕθ0 := �θ0 . For m ≥ 1 denote by Θ∗
m

the set of all cells θ ∈ Θm with “central” vertices vθ ∈ V∗
m and set Θ∗ :=

⋃∞
m=0 Θ∗

m.
Note that for each m, the set

{
ϕθ : θ ∈

⋃m
i=0 Θ∗

i

}
is linearly independent. Also,

Sm = span{ϕθ : θ ∈ Θm} = span

{
ϕθ : θ ∈

m⋃
i=0

Θ∗
i

}
.

For θ ∈ Θ we denote by ϕ̃θ the L2-normalized version of the Courant element ϕθ , i.e., ϕ̃θ := ‖ϕθ‖−1
2 ϕθ ≈

|θ|−1/2 ϕθ .
We consider an arbitrary (but fixed) linear order � on Θ∗ satisfying the following conditions:

(i) If θ ∈ Θ∗
m and θ′ ∈ Θ∗

n with m < n, then θ � θ′,

(ii) θ0 � θ, for all θ ∈ Θ∗.
(3.1)

We now define the Franklin system FT by applying the Gram–Schmidt orthogonalization process to {ϕ̃θ}θ∈Θ∗

in L2(E) with respect to the order �. We obtain an orthonormal system FT := {fθ}θ∈Θ∗ in L2(E) consisting of
continuous piecewise linear functions. Each Franklin function fθ is uniquely determined (up to a multiple ±1)
by the conditions:

(a) fθ ∈ span {ϕθ′ : θ′ � θ}.

(b) 〈fθ, ϕθ′〉 = 0 for all θ′ ≺ θ,

(c) ‖fθ‖2 = 1.

Note that fθ0 = ±�̃θ0 := ±|E|−1/2
�E .

We next state our main results on Franklin systems FT , where T is an arbitrary LR-triangulation of a bounded
polygonal domain E ⊂ R

2.

Theorem 3.1 The Franklin system FT := {fθ}θ∈Θ∗ is a Schauder basis for Lp(E), 1 ≤ p ≤ ∞, with
L∞(E) := C(E).

Theorem 3.2 The Franklin system FT := {fθ}θ∈Θ∗ is an unconditional basis for H1(E, T ) and Lp(E),
1 < p < ∞.

Theorem 3.3 The following conditions are equivalent:
(a) f ∈ H1(E, T );
(b) The series

∑
θ∈Θ∗〈f, fθ〉fθ converges unconditionally in L1;

(c) Sf (x) :=
(∑

θ∈Θ∗ |〈f, fθ〉|2 |fθ(x)|2
)1/2

∈ L1;

(d) Ff (x) :=
(∑

θ∈Θ∗ |〈f, fθ〉|2 |�̃θ(x)|2
)1/2

∈ L1.

Furthermore, if f ∈ H1(E, T ), then

‖f‖H1 ≈ ‖Sf‖L1 ≈ ‖Ff‖L1 . (3.2)
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Theorem 3.4 A function f ∈ BMO(E, T ) if and only if

sup
θ

(
1
|θ|

∑
η∈Θ∗: η⊂θ

|〈f, fη〉|2
)1/2

< ∞ , (3.3)

where the supremum is taken over all θ ∈ Θ or θ = E. Furthermore, ‖f‖BMO(E,T ) is equivalent to the quantity
in (3.3).

3.2 Representation of the Franklin functions and proof of Theorem 3.1

The exponential decay of the Franklin functions is a central issue in the study of Franklin systems. We begin with
a generalization of the well-known result of Demko [6] on the inverses of band matrices, given in [13].

Proposition 3.5 Suppose K is a finite set of indices and let ρ be a distance on K . Let A = [ak,l]k,l∈K be an
invertible band matrix of order r ≥ 1, i.e., ak,l = 0 if ρ(k, l) > r. Let A−1 = [bk,l]k,l∈K be the inverse matrix of
A. Suppose that for some 1 ≤ p ≤ ∞,

‖A‖�p(K)→�p(K) ≤ M1 and
∥∥A−1

∥∥
�p(K)→�p(K)

≤ M2 .

Then there exist constants c > 0 and 0 < q < 1 depending only on M1, M2, r, and p such that

|bk,l| ≤ cqρ(k,l) for k , l ∈ K .

For any η ∈ Θ∗
m (m ≥ 0), denote

Λη := Θm−1 ∪ {θ ∈ Θ∗
m : θ � η} . (3.4)

Note that the cells θ∈Λη have distinct “central” points vθ and hence the set {ϕθ : θ ∈ Λη} is linearly independent.
Let Gη be the Gram matrix given by

Gη = [aθθ′]θ,θ′∈Λη with aθθ′ := 〈ϕ̃θ, ϕ̃θ′〉 , (3.5)

and denote G−1
η =: [bθθ′]θ,θ′∈Λη .

Lemma 3.6 There exist constants 0 < q < 1 and c > 0 such that for any η ∈ Θ∗
m (m ≥ 0) we have, for the

entries of G−1
η , the following estimate

|bθθ′| ≤ c qρm(θ,θ′) , θ , θ′ ∈ Λη , (3.6)

where ρm(θ, θ′) is the mth level graph distance between θ and θ′, introduced in §2.1.

P r o o f. By condition (c) on LR-triangulations, every triangle � ∈ T has at most M0 children. Then aθθ′ :=
〈ϕ̃θ , ϕ̃θ′〉 = 0 if ρm(θ, θ′) > 2M0 and hence the Gram matrix Gη is r-banded with r := 2M0 + 1. Since Gη is
symmetric, then

‖Gη‖�2(Λη)→�2(Λη) = max{λ : λ eigenvalue of Gη} and∥∥G−1
η

∥∥
�2(Λη)→�2(Λη)

= max{1/λ : λ eigenvalue of Gη} .

On the other hand, for any vector x := (xθ)θ∈Λη we have
∥∥∑

θ∈Λη
xθϕ̃θ

∥∥2

L2(E)
= 〈Gx, x〉 and thus by (2.13)

there exist constants c1, c2 > 0 such that

c1 ‖x‖2
�2(Λη) ≤ 〈Gηx, x〉 ≤ c2 ‖x‖2

�2(Λη) ,

which implies c1 ≤ λ ≤ c2 for every eigenvalue λ. Hence

‖Gη‖�2(Λη)→�2(Λη) ≤ c2 and
∥∥G−1

η

∥∥
�2(Λη)→�2(Λη)

≤ c−1
1 .

Finally, note that since the “central” points of the cells from Λη are distinct points in Vm, the mth level graph
distance ρm(·, ·) is a true distance on Λη. Thus Gη satisfies the conditions of Lemma 3.5 with ρ(·, ·) = ρm(·, ·)
and hence (3.6) holds.
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We are now prepared to deduce an important representation of the Franklin functions.

Lemma 3.7 For any θ ∈ Θ∗
m (m ≥ 0) the Franklin function fθ has a representation of the form

fθ =
∑

η∈Θm

cθηϕ̃η , (3.7)

with coefficients cθη satisfying

|cθη| ≤ c qρm(θ,η) , η ∈ Θm , (3.8)

where the constants 0 < q < 1 and c > 0 depend only on the parameters of T .

P r o o f. It is readily seen (and well-known) that the function gθ defined by

gθ :=
∑
ξ∈Λθ

bθξϕ̃ξ =
∑

ξ∈Θm−1

bθξϕ̃ξ +
∑

ξ∈Θ∗
m: ξ�θ

bθξϕ̃ξ , (3.9)

where bθξ are entries of G−1
θ , has the property 〈gθ, ϕ̃η〉 = δθη. Here, we set bθξ := 0 if ξ ∈ Θ−1. Therefore,

fθ = ±‖gθ‖−1
2 gθ. Evidently, for ξ ∈ Θm−1,

ϕ̃ξ =
∑

η∈Θm: η⊂ξ

ϕ̃ξ(vη)‖ϕη‖2 ϕ̃η .

Substituting this in (3.9) and switching the order of summation, we arrive at

fθ =
∑

η∈Θm

cθηϕ̃η ,

where

cθη =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖gθ‖−1

2 ‖ϕη‖2

X
ξ∈Θm−1: η⊂ξ

bθξϕ̃ξ(vη) if η ∈ Θm \ Λθ ,

‖gθ‖−1
2

(
bθη + ‖ϕη‖2

X
ξ∈Θm−1: η⊂ξ

bθξ eϕξ(vη)

!
if η ∈ Θm ∩ Λθ .

Note that

1 = 〈gθ, ϕ̃θ〉 ≤ ‖gθ‖2 ‖ϕ̃θ‖2 = ‖gθ‖2

and ρm(η, ξ) ≤ M0, whenever η ∈ Θm−1, ξ ∈ Θm, and ξ ⊂ η. Also, ‖ϕ̃ξ‖∞ = ‖ϕξ‖−1
2 ≈ |ξ|−1/2. We use

these along with properties (2.1) and (2.2) of LR-triangulations, and the estimate for |bθη| from Lemma 3.6 to
obtain, for η ∈ Θm ∩ Λθ,

|cθη| ≤ |bθη| + c |η|1/2
∑

ξ∈Θm−1: η⊂ξ

|bθξ| ϕ̃ξ(vη)

≤ c qρm(θ,η) + c (|η|/|ξ|)1/2
∑

ξ∈Θm−1: η⊂ξ

qρm(θ,ξ) ≤ c qρm(θ,η) .

The estimate of |cθη| when η ∈ Θm \ Λθ is the same.

P r o o f o f T h e o r e m 3.1. As was already mentioned in §2.1,
⋃∞

m=0 Sm = Lp(E), 1 ≤ p ≤ ∞, and hence
FT is dense in Lp(E). It remains to prove that the orthogonal projector operator Pηf :=

∑
θ�η〈f, fθ〉fθ is

bounded on Lp(E) (1 ≤ p ≤ ∞), i.e., considered as an operator from Lp into Lp. It is easy to see that

Pηf(x) =
∫

E

∑
θ,θ′∈Λη

bθ,θ′ϕ̃θ(x)ϕ̃θ′(y)f(y) dy , Λη := Θm−1 ∪ {θ ∈ Θ∗
m : θ � η} .
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Denote Kη(x, y) :=
∑

θ,θ′∈Λη
bθ,θ′ϕ̃θ(x)ϕ̃θ′ (y). Then for each x ∈ E,

‖Kη(x, ·)‖L1 ≤
∑

θ,θ′∈Λη

|bθ,θ′| |ϕ̃θ(x)| ‖ϕ̃θ′‖L1 ≤ c
∑

θ,θ′∈Λη

qρm(θ,θ′)
(
|θ|/|θ′|

)1/2
�θ(x) ,

where we used (3.6) and that ‖ϕ̃θ‖2 = 1. Our goal is to show that ‖Kη(x, ·)‖L1 ≤ C < ∞. Fix x ∈
E. Since there are at most 6 cells θ ∈ Λη such that x ∈ θ◦, it suffices to show that for each θ ∈ Λη,∑

θ′∈Λη
qρm(θ,θ′)

(
|θ|/|θ′|

)1/2 ≤ c < ∞. By (2.3) it follows that if ρm(θ, θ′) = n (n ≥ 1), then |θ|/|θ′| ≤ cns.
On the other hand, Lemma 2.4 yields that #{θ′ ∈ Λη : ρm(θ, θ′) = n} ≤ c nt. Using the above, we obtain

∑
θ′∈Λη

qρm(θ,θ′)
(
|θ|/|θ′|

)1/2 ≤ c

∞∑
n=1

qnnt+s/2 ≤ c < ∞

since 0 < q < 1. Consequently, ‖Kη(x, ·)‖L1 ≤C. This estimate implies

‖Pη‖L1→L1 < ∞ and ‖Pη‖L∞→L∞ < ∞ .

By interpolation it follows that ‖Pη‖Lp→Lp < ∞, 1 < p < ∞.

3.3 Localization and smoothness of the Franklin functions

Here we show that the Franklin functions belong to Lip ε (for some ε > 0) with respect to the quasi-distance
dT (·, ·) introduced in (2.14) and have exponential rate of decay with respect to the corresponding graph distance.

We shall systematically use the notation introduced in §2.1. We recall, in particular, that for x ∈ E, θm
x is a

cell from Θm containing x, and ρm(·, ·) is the mth level graph distance.

Theorem 3.8 There exist constants ε > 0, 0 < q1 < 1, and c > 0 depending only on the parameters of T
such that for any θ ∈ Θ∗

m (m ≥ 0),

|fθ(x) − fθ(y)| ≤ c
dT (x, y)ε

|θ|1/2+ε

(
q

ρm(θ,θm
x )

1 + q
ρm(θ,θm

y )

1

)
, x , y ∈ E . (3.10)

Moreover,

|fθ(x)| ≤ c |θ|−1/2q
ρm(θ,θm

x )
1 , x ∈ E , (3.11)

and for any s > 0 there exist a constant cs such that

|fθ(x)| ≤ cs |θ|−1/2
(
Ms

T �θ

)
(x) , x ∈ E , (3.12)

where Ms
T is the maximal operator defined in (2.18).

In addition,

c−1
p |θ|1/p−1/2 ≤ ‖fθ‖Lp(θ) ≤ ‖fθ‖p ≤ cp |θ|1/p−1/2 , 0 < p ≤ ∞ , (3.13)

and

‖fθ‖H1 ≤ c |θ|1/2 . (3.14)

We first prove that each Courant element ϕθ is an Lip ε function with respect to the quasi-distance dT .

Lemma 3.9 There exist constants ε > 0 and c > 0 depending only on the parameters of T such that for any
θ ∈ Θ

|ϕθ(x) − ϕθ(y)| ≤ c
dT (x, y)ε

|θ|ε , x , y ∈ E . (3.15)

P r o o f. Let θ ∈ Θn, n ≥ 0, and assume that dT (x, y) > 0 and x ∈ θ or y ∈ θ. (Otherwise the claim is
trivial.) Also, let dT (x, y) = |θ�| with θ� ∈ Θm (m ≥ 0) and θ� containing x and y.

If m ≤ n, (3.15) is trivial because there is a constant c > 0 such that |θ�|/|θ| > c (θ ∩ θ� �= ∅).
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Assume that n + 3N0k < m ≤ n + 3N0(k + 1) for some k ≥ 0.
Case 1: Let x, y ∈ �, where � ∈ Tn is one of the triangles forming θ. It is easy to see that estimate (3.15) is

invariant under affine transforms. So, without loss of generality we may assume that � is an equilateral triangle
with side lengths 1. Then there exist two triangles �′,�′′ ∈ Tm with a common vertex such that x ∈ �′, y ∈ �′′

and �′,�′′ ⊂ �. (It may happen that �′ = �′′.) By Lemma 2.3,

max{|max edge (�′)|, |max edge (�′′)|} ≤ ρk
1 |max edge (�)| ≤ ρk

1

with 0 < ρ1 < 1. Choose ε1 > 0 so that ρ1 = rε1 , where 0 < r < 1 is from (2.1). Then

|φθ(x) − φθ(y)| ≤ ‖∇ϕθ‖L∞(�) |x − y| ≤ 2 max{|maxedge (�′)|, |max edge (�′′)|}

≤ 2ρk
1 ≤ 2

(
r3N0k

) ε1
3N0 ≤ 2

(
r3N0k |�|

) ε1
3N0 ≤ c |�′|ε ≤ c |θ�|ε ,

where ε = ε1/3N0 and we used (2.1). Since |θ| ≈ |�| ≈ 1, estimate (3.15) follows.
Case 2: Let x ∈ �1 and y ∈ �2, where �1,�2 ∈ Tn are distinct triangles with a common vertex vθ and

�1,�2 ⊂ θ. Since x, y ∈ θ�, there are two smaller subtriangles �′,�′′ ∈ Tm of θ� containing x and y,
respectively, such that �′ ⊂ �1 and �′′ ⊂ �2. Choose z ∈ �′ ∩�′′. Then using that estimate (3.15) holds in
Case 1, we obtain

|ϕθ(x) − ϕθ(y)| ≤ |ϕθ(x) − ϕθ(z)| + |ϕθ(z) − ϕθ(y)|

≤ c

(
dT (x, z)ε

|θ|ε +
dT (z, y)ε

|θ|ε

)
≤ c

dT (x, y)ε

|θ|ε ,

where we used that dT (x, z) ≤ dT (x, y) since x, z ∈ θ�, and similarly dT (z, y) ≤ dT (x, y).
Case 3: Let x ∈ θ and y /∈ θ (or y ∈ θ and x /∈ θ). This case reduces to the first case by introducing an

appropriate point z on the boundary of θ such that dT (x, z) ≤ dT (x, y) and taking into account that ϕθ(y) =
ϕθ(z) = 0.

P r o o f o f T h e o r e m 3.8. By Lemmas 3.7 and 3.9, we have for θ ∈ Θ∗
m,

|fθ(x) − fθ(y)| ≤
∑

η∈Θm

|η|−1/2 |cθη| |ϕη(x) − ϕη(y)|

≤
∑

η∈Θm: x∈η◦ or y∈η◦

|η|−1/2−εqρm(θ,η)dT (x, y)ε

≤ |θ|−1/2−εdT (x, y)ε

( ∑
η∈Θm: x∈η◦

+
∑

η∈Θm: y∈η◦

)
(|θ|/|η|)1/2+εqρm(θ,η) .

Note first that for any x ∈ E there are at most 3 cells η ∈ Θm such that x ∈ η◦. By the definition of θm
x ,

we have x ∈ θm
x and θm

x ∈ Θm, and hence |η| ≈ |θm
x | if η ∈ Θm and x ∈ η. Also, by (2.3) it follows that

|θ|/|θm
x | ≤ c

(
ρm

(
θ, θm

x

)
+ 1

)s
. Finally, we choose the constants c1 > 0 and q < q1 < 1, depending only on q,

ε, and s, so that (ν + 1)(1/2+ε)sqν ≤ c1q
ν
1 for ν ≥ 1. We use this preparation to obtain∑

η∈Θm: x∈η◦

(|θ|/|η|)1/2+εqρm(θ,η) ≤ c
(
ρm

(
θ, θm

x

)
+ 1

)(1/2+ε)s
qρm(θ,θm

x ) ≤ c q
ρm(θ,θm

x )
1 .

We similarly estimate the second sum above, and (3.10) follows.
Estimate (3.11) follows in a similar way but it is easier and will be omitted.
To prove (3.12) we need estimate

(
Ms

T �θ

)
(x) (θ ∈ Θm) from below. By (2.2) it follows that(

Ms
T �θ

)
(x) ≥ c > 0 for x ∈ Star1

m(θ) . (3.16)

Suppose x ∈ E \ Star1
m(θ). Then ρm

(
θ, θm

x

)
≥ 2. Let dT (vθ, x) = |θ�| with θ� ∈ Θ� and θ� containing vθ and

x. Evidently, � < m and |θ ∩ θ�| ≥ c |θ|. Further, by Lemma 2.6, dT (vθ, x) ≤ c |θ|ρm

(
θ, θm

x

)β
. Using all of the
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above, we obtain

(
Ms

T �θ

)
(x) ≥

(
1

|θ�|

∫
θ�
�θ(y) dy

)1/s

= (|θ ∩ θ�|/|θ�|)1/s ≥ cρm

(
θ, θm

x

)−β/s
.

Combining this estimate with (3.16) and (3.11) yields (3.12).
We next prove (3.13). If p < ∞ and θ ∈ Θ∗

m, by using (3.11) we have

‖fθ‖p
p ≤

∞∑
ν=0

∑
η∈X ν

m

‖fθ‖p
Lp(η) ≤ |θ|−p/2

∞∑
ν=0

∑
η∈X ν

m

|η| qρm(θ,η)
1 , (3.17)

where X ν
m := {η ∈ θm : ρm(θ, η) = ν}. As above |η|/|θ| ≤ c (ρm(θ, η) + 1)s = c (ν + 1)s if η ∈ X ν

m, and by
Lemma 2.4 it follows that #X ν

m ≤ c (ν + 1)t. Using these in (3.17), we find

‖fθ‖p
p ≤ c |θ|−p/2+1

∞∑
ν=0

(ν + 1)s+tqν
1 ≤ c |θ|p(1/p−1/2) . (3.18)

We now estimate ‖fθ‖p from below. From the proof of Lemma 3.7 it follows that fθ = ±‖gθ‖−1
2 gθ , where

gθ =
∑

ξ∈Λθ
bθξϕ̃ξ, and also 〈gθ, ϕ̃θ〉 = 1. Exactly as in (3.17) and (3.18) (with fθ replaced by gθ) we obtain

‖gθ‖2 ≤ c. Therefore,

|〈fθ, ϕ̃θ〉| = ‖gθ‖−1
2 |〈gθ, ϕ̃θ〉| = ‖gθ‖−1

2 ≥ c .

On the other hand |〈fθ, ϕ̃θ〉| ≤ |θ|1/2 ‖fθ‖L∞(θ). Consequently, ‖fθ‖L∞(θ) ≈ |θ|−1/2 and using (2.12), we infer
‖fθ‖Lp(θ) ≈ |θ|1/p−1/2, 0 < p ≤ ∞.

It remains to prove that each Franklin function fθ belongs to H1 and (3.14) holds true. To this end it suffices
to prove that gθ := |θ|−1/2fθ is a constant multiple of an ε-molecule centered at vθ . Evidently

∫
E
|gθ(x)|2 dx =

|θ|−1. We use Lemma 2.6 and (3.11) to obtain∫
E

|gθ(x)|2 dT (x, vθ)1+ε dx ≤ c |θ|−1+ε

∫
E

q
ρm(θ,θm

x )
1

(
ρm

(
θ, θm

x

)
+ 1

)β(1+ε)
dx

≤ c |θ|−1+ε
∑

η∈Θm

|η| qρm(θ,η)
1 (ρm(θ, η) + 1)β(1+ε)

≤ c |θ|ε ,

(3.19)

where for the latter estimate we proceed exactly as in (3.17) and (3.18). Therefore, according to the defini-
tion of a molecule (see Definition 2.12) gθ is a constant multiple of an ε-molecule and hence fθ ∈ H1 and
‖fθ‖H1 ≤ c |θ|1/2.

3.4 Proof of Theorem 3.2

We first observe that since by Theorem 3.8 each Franklin function fθ belongs to H1, then (fθ, fθ)θ∈Θ∗ is a
biorthogonal system in H1.

We next prove a technical result which will provide the main step in the proof of Theorem 3.2.

Proposition 3.10 For any 2-atom a(x),

a =
∑

θ∈Θ∗

〈a, fθ〉fθ , (3.20)

where the series converges unconditionally in H1. Moreover, there exists a constant c > 0 depending only on the
parameters of T such that for any M ⊂ Θ∗ and any sequence ω = (ωθ)θ∈M with ωθ = ±1,∥∥∥∥∥ ∑

θ∈M
ωθ〈a, fθ〉fθ

∥∥∥∥∥
H1

≤ c (3.21)

and
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( ∑

θ∈Θ∗

|〈a, fθ〉|2 |fθ(x)|2
)1/2

∥∥∥∥∥
L1

≤ c . (3.22)

For given M ⊂ Θ∗ and ω = (ωθ)θ∈M with ωθ = ±1, consider the linear operator

(TM,ωf)(x) :=
∫

E

KM,ω(x, y)f(y) dy (3.23)

with kernel

KM,ω(x, y) :=
∑
θ∈M

ωθfθ(x)fθ(y) . (3.24)

With the next lemma we show that the kernel KM,ω satisfies condition (2.28) of Proposition 2.13

Lemma 3.11 There exists a constant c > 0 such that if dT (x, y0) > 2KdT (y, y0), where K is the constant
from the definition of the quasi-distance dT (·, ·), and min{l(θ) : θ ∈ M} ≥ µ ≥ 0, then

|KM,ω(x, y) − KM,ω(x, y0)| ≤ γµ

(
dT (y, y0)
dT (x, y0)

)ε 1
dT (x, y0)

, (3.25)

where ε > 0 is from Theorem 3.8, 0 < γµ ≤ c, and γµ → 0 as µ → ∞.

P r o o f. Denote Km(x, y) :=
∑

θ∈M∩Θ∗
m

ωθfθ(x)fθ(y). We use (3.10) and (3.11) to obtain

|Km(x, y) − Km(x, y0)| ≤
∑

θ∈Θm

|fθ(x)| |fθ(y) − fθ(y0)|

≤ c dT (y, y0)ε
∑

θ∈Θm

|θ|−1−εq
ρm(θ,θm

x )
1

(
q

ρm(θ,θm
y )

1 + q
ρm(θ,θm

y0
)

1

)
.

(3.26)

We now claim that there exist constants c > 0 and 0 < q2 < 1 such that∑
θ∈Θm

|θ|−1−εq
ρm(θ,θm

x )+ρm(θ,θm
y )

1 ≤ c |θm
y |−1−εq

ρm(θm
x ,θm

y )

2 . (3.27)

To see this set n := ρm

(
θm

x , θm
y

)
and define

Ak :=
{
θ ∈ Θm : ρm

(
θ, θm

x

)
+ ρm

(
θ, θm

y

)
= k + n

}
.

By Lemma 2.4, #Ak ≤ c (n + k)t, and by Lemma 2.1,
∣∣θm

y

∣∣/|θ| ≤ cρm

(
θ, θm

y

)s
if θ ∈ Θm. We use the above

to obtain ∑
θ∈Θm

q
ρm(θ,θm

x )+ρm(θ,θm
y )

1

|θ|1+ε
=

∣∣θm
y

∣∣−1−ε ∑
k≥0

∑
θ∈Ak

(∣∣θm
y

∣∣/|θ|)1+ε
qn+k
1

≤ c
∣∣θm

y

∣∣−1−ε ∑
k≥0

∑
θ∈Ak

ρm

(
θ, θm

y

)s(1+ε)
qn+k
1

≤ c
∣∣θm

y

∣∣−1−ε ∑
k≥0

(n + k)t+s(1+ε)qn+k
1

≤ c
∣∣θm

y

∣∣−1−ε
qn
2

= c
∣∣θm

y

∣∣−1−ε
q

ρm(θm
x ,θm

y )

2 ,

where q1 < q2 < 1. Thus (3.27) is established.
Applying (3.27) in (3.26) we get

|Km(x, y) − Km(x, y0)| ≤ c dT (y, y0)ε

(
q

ρm(θm
x ,θm

y )

2∣∣θm
y

∣∣1+ε +
q

ρm(θm
x ,θm

y0
)

2∣∣θm
y0

∣∣1+ε

)
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and hence

|KM,ω(x, y) − KM,ω(x, y0)| ≤
∞∑

m=0

|Km(x, y) − Km(x, y0)|

≤ c dT (y, y0)ε
∞∑

m=µ

(
q

ρm(θm
x ,θm

y )

2∣∣θm
y

∣∣1+ε +
q

ρm(θm
x ,θm

y0
)

2∣∣θm
y0

∣∣1+ε

)
.

(3.28)

To estimate the latter quantity above let us assume that dT (x, y) = |θ∗| with θ∗ ∈ Θm∗ . Then

∞∑
m=µ

q
ρm(θm

x ,θm
y )

2∣∣θm
y

∣∣1+ε =

(
m∗∑

m=µ

+
∞∑

m=m∗+1

)
q

ρm(θm
x ,θm

y )

2

|θm
y |1+ε

=: σ1 + σ2 . (3.29)

For σ1, using (2.1) and (2.2), we have

σ1 ≤ c

|θ∗|1+ε

m∗∑
m=µ

(
|θ∗|/|θm

y

)1+ε
q

ρm(θm
x ,θm

y )

2

≤ c

|θ∗|1+ε

m∗∑
m=µ

ρ(m∗−m)(1+ε)

≤ c

dT (x, y)1+ε
.

(3.30)

We now estimate σ2. Denote Ik := [m∗ + 2N0k, m∗ + 2N0(k + 1)). Note that by (2.9)

ρ�

(
θ�

x, θ�
y

)
≥ 2k−2ρm∗+2N0

(
θm∗+2N0

x , θm∗+2N0
y

)
≥ 2k−2 ,

whenever � ≥ m∗ + 2N0k. We use this, (2.1) and (2.2) to obtain

σ2 ≤ c

|θ∗|1+ε

∞∑
m=m∗+1

(
|θ∗|/|θm

y

)1+ε
q

ρm(θm
x ,θm

y )

2

≤ c

dT (x, y)1+ε

∞∑
m=m∗+1

r(m∗−m)(1+ε)q
ρm(θm

x ,θm
y )

2

≤ c

dT (x, y)1+ε

∞∑
k=0

∑
m∈Ik

r(m∗−m)(1+ε)q2k

2

≤ c

dT (x, y)1+ε

∞∑
k=0

r−2N0(k+1)(1+ε)q2k

2

≤ c

dT (x, y)1+ε
.

(3.31)

Estimates (3.30) and (3.31) yield

∞∑
m=0

qρm(θm
x ,θm

y )∣∣θm
y

∣∣1+ε ≤ c

dT (x, y)1+ε
.

Using this inequality twice in (3.28) (for y and y0) we obtain

|KM,ω(x, y) − KM,ω(x, y0)| ≤ c dT (y, y0)ε

(
1

dT (x, y)1+ε
+

1
dT (x, y0)1+ε

)
. (3.32)

Finally, since dT (x, y0) > 2KdT (y, y0), it follows that d(x, y) ≈ d(x, y0) and (3.32) implies (3.25) with γµ = c.
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If m∗ + 2N0k
� ≤ µ < m∗ + 2N0(k� + 1) for some k� ≥ 1, then σ1 = 0 and as above

σ2 ≤ c

dT (x, y)1+ε

∞∑
k=k�

r−2N0(k+1)(1+ε)q2k

2 ≤ cq2(µ−m∗)/2N0

3

dT (x, y)1+ε

for some 0 < q3 < 1. This estimate yields (3.25) with γµ := cq2(µ−m∗)/2N0

3 . Evidently, γµ → 0 as µ → ∞. The
proof of Lemma 3.11 is complete.

P r o o f o f P r o p o s i t i o n 3.10. Suppose first that a(x) = ±|E|−1
�E . If θ0 ∈ M, then using the orthogo-

nality of the Franklin functions and that fθ0 = ±|E|−1/2
�E it follows that TM,ωa = ±a, while if θ0 �∈ M then

TM,ωa = 0. In both cases the result obviously holds.
Let now a(x) be a 2-atom and a �= ±|E|−1

�E . Then
∫

E
a = 0. As above, we see that

∫
E

TM,ωa = 0. Then
by Proposition 2.13 and Lemma 3.11 with M := {θ ∈ Θ∗ : l(θ) ≥ µ} and an arbitrary sequence ω = (ωθ)θ∈Θ∗

with ωθ = ±1, it follows that the function

hµ :=
∑

θ∈Θ∗, l(θ)≥µ

ωθ〈a, fθ〉fθ

belongs to H1 and ‖hµ‖H1 ≤ γµ, where γµ → 0 as µ → ∞. Therefore, the series in (3.20) converges uncondi-
tionally in H1. We also know that (3.20) holds in L2. Since both spaces H1 and L2 are continuously embedded
in L1, it follows that (3.20) holds in H1.

Estimate (3.21) follows by Proposition 2.13 and Lemma 3.11.
It remains to prove (3.22). From above for an arbitrary sequence ω = (ωθ)θ∈Θ∗ with ωθ = ±1, we have∥∥∥∥∥ ∑

θ∈Θ∗

ωθ〈a, fθ〉fθ

∥∥∥∥∥
L1

≤ c

∥∥∥∥∥ ∑
θ∈Θ∗

ωθ〈a, fθ〉fθ

∥∥∥∥∥
H1

≤ c .

Applying now the usual trick with Khintchine’s inequality, we infer∥∥∥∥∥ ∑
θ∈Θ∗

|〈a, fθ〉|2 |fθ(x)|2
∥∥∥∥∥

L1

≤ c

∥∥∥∥∥ ∑
θ∈Θ∗

ωθ〈a, fθ〉fθ

∥∥∥∥∥
L1

≤ c .

P r o o f o f T h e o r e m 3.2. We begin by proving that the Franklin system FT is a unconditional basis for
H1 := H1(E, T ). As we have already mentioned, fθ ∈ H1 for all θ ∈ Θ∗, and hence (fθ, fθ)θ∈Θ∗ is a
biorthogonal system in H1.

By Proposition 3.10 for any atom a(x), a =
∑

θ∈Θ∗〈a, fθ〉fθ in H1. This along with the definition of H1

yields that FT is dense in H1.
By estimate (3.21) from Proposition 3.10, it readily follows that for any M ⊂ Θ∗,∥∥∥∥∥ ∑

θ∈M
〈f, fθ〉fθ

∥∥∥∥∥
H1

≤ c ‖f‖H1 for f ∈ H1 . (3.33)

Therefore, FT is a unconditional basis for H1.
We now turn to Lp (1 < p < ∞). Taking into account Lemma 2.3, it is obvious that FT is dense in Lp(E).

For a given M ⊂ Θ∗, consider the operator TM := TM,ω with ω = (1)θ∈M, where TM,ω is defined in (3.23).
By (3.33) TM is bounded on H1 and, since FT is an orthogonal basis for L2, TM is bounded on L2 as well. Then
by interpolation it follows that TM is bounded on Lp for 1 < p ≤ 2. Finally, by a standard duality argument, it
easily follows that TM is bounded on Lp, 2 < p < ∞, as well. Consequently, FT is a unconditional basis for
Lp(E), 1 < p < ∞.
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3.5 Proof of Theorem 3.3

We first note that the implication (a) → (b) is immediate from the fact that FT is a unconditional basis for H1

(see Theorem 3.2), since H1 is embedded in L1.
One applies Khintchine’s inequality as usual to show that (b) ↔ (c) (see e.g. [11, 17]).
We now show that (c) ↔ (d). We know from Theorem 3.8 that for any s > 0, |fθ(x)| ≤ cs

(
Ms

T �̃θ

)
(x),

x ∈ E. Then choosing 0 < s < 1 and applying Proposition 2.9 we obtain
∥∥Sf

∥∥
L1

≤ c
∥∥Ff

∥∥
L1

; thus (d) → (c).
For the other direction, we first note that by Theorem 3.8, ‖fθ‖L∞(θ) ≥ c |θ|−1/2. Then since fθ is linear on

each triangle of θ, there exist a set Gθ ⊂ θ with |Gθ| ≥ α |θ| such that |fθ(x)| ≥ c |Gθ|−1/2 for x ∈ Gθ, where
c > 0 and 0 < α < 1 are constants depending only on the parameters of T . Therefore, �̃Gθ

(x) ≤ c |fθ(x)| for
x ∈ E. Denote

Γf (x) :=

( ∑
θ∈Θ∗

|〈f, fθ〉|2
∣∣�̃Gθ

(x)
∣∣2)1/2

.

Then by the above estimate ‖Γf‖L1 ≤ c ‖Sf‖L1 . On the other hand, �̃θ(x) ≤ cs

(
Ms

T �̃Gθ

)
(x), since |Gθ| ≥

α |θ|. Applying again Proposition 2.9 we infer ‖Ff‖L1 ≤ c ‖Γf‖L1 ≤ c
∥∥Sf

∥∥
L1

. Consequently, (c) → (d).
It remains to show that (d) → (a) which is the main step in the proof of Theorem 3.3. We give it in the

following proposition.

Proposition 3.12 Suppose that for a collection of numbers (aθ)θ∈Θ∗ we have

F (x) :=

( ∑
θ∈Θ∗

|aθ|2
∣∣�̃θ(x)

∣∣2)1/2

∈ L1 (3.34)

which is equivalent to

S(x) :=

( ∑
θ∈Θ∗

|aθ|2 |fθ(x)|2
)1/2

∈ L1 . (3.35)

Then f :=
∑

θ∈Θ∗ aθfθ belongs to H1 and ‖f‖H1 ≤ c ‖F‖L1 .

P r o o f. We shall use the idea of the proof in the wavelet case (see e.g. [14, 17]). Note first that the equivalence
‖F‖L1 ≈ ‖S‖L1 follows by the argument which we used above to show that (c) ↔ (d).

Let us denote

Gk :=
{
x ∈ E : F (x) > 2k

}
, k ∈ Z .

It is easy to see that∑
k∈Z

2k |Gk| ≤ 2 ‖F‖L1(E) (3.36)

(see e.g. [17, Proposition 8.15]).
We introduce the collections of cells

Ck := {θ ∈ Θ∗ : |θ ∩ Gk| > |θ|/2} .

Since Gk+1 ⊂ Gk, then Ck+1 ⊂ Ck. It is easy to see that

Θ∗ =
⋃
j∈Z

Cj .

Indeed, if aθ �= 0, then |aθ| |θ|−1/2 > 2j for some j ∈ Z, and hence F (x) ≥ |aθ| �̃(x) > 2j on θ. Therefore,
θ ∈ Cj .
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Denote now

G∗
k :=

⋃
θ∈Ck

θ .

It is not hard to see that the Lebesgue differentiation theorem holds with the cells from Θ.
(
For its proof one can

use the maximal operator M1
T introduced in §2.2.

)
Consequently, Gk ⊂ G∗

k modulo a set of measure zero.
By the coloring lemma in [10] (Lemma 3.2), Θ can be represented as a finite disjoint union of subsets (Θν)K

ν=1

with K = K(N0, M0) such that each Θν has a tree structure with respect to the inclusion relation, i.e., if
θ′, θ′′ ∈ Θν , then (θ′)◦ ∩ (θ′′)◦ = ∅ or θ′ ⊂ θ′′ or θ′′ ⊂ θ′.

Further, denote by Mkν the set of all maximal cells in Ck ∩ Θν , i.e., θ ∈ Mkν if θ ∈ Ck ∩ Θν and θ is not
contained in any other cell from Ck ∩ Θν . Clearly, G∗

k =
⋃K

ν=1

⋃
θ∈Mkν

θ and

|G∗
k| ≤

K∑
ν=1

∑
θ∈Mkν

|θ| ≤ 2
K∑

ν=1

∑
θ∈Mkν

|Gk ∩ θ| ≤ 2
K∑

ν=1

∣∣∣∣∣Gk ∩
⋃

θ∈Mkν

θ

∣∣∣∣∣ ≤ 2K |Gk| . (3.37)

Denote Dk := Ck \ Ck+1. Now for any θ ∈ Mkν we define Dθ := {η ∈ Dk ∩ Θν : η ⊂ θ}. Clearly, the sets
Dθ are disjoint and

Θ∗ =
⋃
k∈Z

K⋃
ν=1

⋃
θ∈Mkν

Dθ .

We also define

Aθ :=
∑

η∈Dθ

aθfθ , θ ∈ Mkν .

We next show that mθ := 2−k |θ|−1Aθ is a constant multiple of an ε-molecule, which will imply ‖mθ‖H1 ≤ c
and as a consequence ‖Aθ‖H1 ≤ 2k |θ|. Note first that, for θ ∈ Mkν ,∫

θ\Gk+1

F 2(x) dx ≥
∑

η∈Dθ

|aη|2
∫

θ\Gk+1

�̃
2
η(x) dx ≥

∑
η∈Dθ

|aη|2 |η|−1 |η \ Gk+1| .

Since η �∈ Ck+1, |Gk+1 ∩ η| ≤ |η|/2 and hence |η \ Gk+1| ≥ |η|/2. Therefore,∫
θ\Gk+1

F 2(x) dx ≥ 1
2

∑
η∈Dθ

|aη|2 , θ ∈ Mkν . (3.38)

On the other hand,∫
θ\Gk+1

F 2(x) dx ≤ 22(k+1) |θ \ Gk+1| ≤ 4 · 22k |θ| .

Combining this with (3.38) we arrive at

‖Aθ‖2
2 =

∑
η∈Dθ

|aη|2 ≤ c 22k |θ| . (3.39)

To prove that mθ is a constant multiple of an ε-molecule it suffices to show that mθ satisfies (2.26) with the 1
in the right-hand side of (2.26) replaced by a constant c > 0 (for some ε > 0). This is apparently equivalent to(∫

E

|Aθ(x)|2 dx

)(∫
E

|Aθ(x)|2 dT (x, vθ)1+ε dx

)1/ε

≤ c
(
22k |θ|2

)1+1/ε
.

We choose an arbitrary ε > 0, e.g. ε = 1, and fix it. Taking into account (3.39) it suffices to show that∫
E

|Aθ(x)|2 dT (x, vθ)1+ε dx ≤ c 22k |θ|2+ε . (3.40)

To prove this estimate we need the following lemma:
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Lemma 3.13 For θ ∈ Θm (m ≥ 0) and x ∈ E with ρm

(
θ, θm

x

)
≥ 3, we have

R(x) :=
∑

η∈Θ∗, η⊂θ

|fη(x)| ≤ c |θ|−1/2q
ρm(θ,θm

x )
∗ , (3.41)

where the constants c > 0 and 0 < q∗ < 1 depend only on the parameters of T .

P r o o f. Write briefly N := ρm

(
θ, θm

x

)
and Ik := [2N0k, 2N0(k + 1)), where N0 is from condition (d) on

LR-triangulations (§2.1). If ν ∈ Ik (k ≥ 0), then using (2.9) we obtain ρm+ν(vθ, x) ≥ 2k−2ρm(vθ, x) = 2k−2N .
Then by (3.11) we have for ν ∈ Ik,∑

η∈Θ∗
m+ν , η⊂θ

|fη(x)| ≤ c
∑

η∈Θ∗
m+ν , η⊂θ

|η|−1/2 q
ρm+ν(η,θm+ν

x )
1

≤ c
∑

µ≥2k−2N

∑
η∈Xµ

m+ν

|η|−1/2 qµ
1 ,

(3.42)

where

Xµ
m+ν :=

{
η ∈ Θm+ν : ρm+ν

(
η, θm+ν

x

)
= µ and η ⊂ θ

}
.

By Lemma 2.4, #Xµ
m+ν ≤ cµt, and by (2.1) and (2.2) we have for η ∈ Xµ

m+ν , |η| ≥ c rν |θ| ≥ c r2N0k |θ|, since
η ⊂ θ. Using these in (3.42), we obtain∑

η∈Θ∗
m+ν , η⊂θ

|fη(x)| ≤ c |θ|−1/2r−N0k
∑

µ≥2k−1N

qµ
1 #Xµ

m+ν

≤ c |θ|−1/2r−N0k
∑

µ≥2k−1N

qµ
1 µt

≤ c |θ|−1/2q2kN
∗ ,

where 0 < q∗ < 1 and we used that 0 < q1 < 1. Summing up the above estimates we get

R(x) ≤ c |θ|−1/2
∞∑

k=0

2N0q
2kN
∗ ≤ c |θ|−1/2qN∗ = c |θ|−1/2q

ρm(θ,θm
x )

∗ .

We are now prepared to prove (3.40). Assuming that θ ∈ Θm, m ≥ 0, we can write∫
E

|Aθ(x)|2 dT (x, vθ)1+ε dx =
∫

Star3
m(vθ)

+
∫

E\Star3m(vθ)

=: J0 + J1 .

To estimate the first integral we note that dT (vθ , x) ≤ c |θ| if x ∈ Star3
m(vθ) and using (3.39) we obtain

J0 ≤ c |θ|1+ε ‖Aθ‖2
2 ≤ c 22k |θ|2+ε . (3.43)

To estimate J1 we first observe that by (3.39) it follows that |aη| ≤ c 2k |θ|1/2 for η ∈ Dθ. Using this and
Lemma 2.6, we obtain

J1 =
∫

E\Star3m(vθ)

|Aθ(x)|2 dT (x, vθ)1+εdx

≤
∫

E\Star3m(vθ)

( ∑
η∈Dθ

|aη| |fη(x)|
)2

dT (x, vθ)1+ε dx

≤ c 22k |θ|2+ε

∫
E\Star3m(vθ)

( ∑
η∈Θ∗, η⊂θ

|fη(x)|
)2

ρm

(
θ, θm

x

)β(1+ε)
dx .
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Applying Lemma 3.13 we obtain

J1 ≤ c 22k |θ|1+ε

∫
E\Star3

m(vθ)

q
ρm(θ,θm

x )
∗ ρm

(
θ, θm

x

)β(1+ε)
dx

and exactly as in (3.19) (see also (3.17) and (3.18)) we obtain J1 ≤ c 22k |θ|2+ε. This and (3.43) yield (3.40).
Consequently, ‖Aθ‖H1 ≤ c 2k |θ|, which implies

‖f‖H1 ≤
∑
k∈Z

K∑
ν=1

∑
θ∈Dkν

‖Aθ‖H1 ≤ c
∑
k∈Z

2k
K∑

ν=1

∑
θ∈Mkν

|θ| ≤ c
∑
k∈Z

2k |Gk| ≤ c ‖F‖L1 ,

where we used (3.36). This completes the proof of Proposition 3.12.

It remains to prove equivalences (3.2). The estimate ‖f‖H1 ≤ c ‖Sf‖L1 and the equivalence ‖Sf‖H1 ≈
‖Ff‖L1 are immediate from Proposition 3.12. The estimate ‖Sf‖L1 ≤ c ‖f‖H1 holds since by Proposition 3.10
it is true for each individual atom. The proof of Theorem 3.3 is complete. �

3.6 Proof of Theorem 3.4

We shall follow the scheme of the proof of Wojtaszczyk [16] combined with our techniques of this article. We
begin with one technical lemma.

Lemma 3.14 For any θ ∈ Θm (m ≥ 0) and 1 ≤ q < ∞, we have∥∥∥∥∥ ∑
η∈Θ∗, η⊂θ

|η|1/2 |fη|
∥∥∥∥∥

Lq(E\θ)

≤ c |θ|1/q (3.44)

and ∥∥∥∥∥ ∑
η∈Θ∗, η ⊂θ, l(η)>m

|η|1/2 |fη|
∥∥∥∥∥

Lq(θ)

≤ c |θ|1/q . (3.45)

P r o o f. We shall prove only (3.44) since the proof of (3.45) is the same. We first observe that by (3.11) and
Lemma 2.4, ∑

η∈Θ∗
n

|η|1/2 |fη(x)| ≤ c , x ∈ E , n ≥ 0 . (3.46)

For x ∈ E \ θ and ν ≥ 1, we define ρm+ν

(
θ, θm+ν

x

)
:= infy∈θ ρm+ν

(
θm+ν

y , θm+ν
x

)
. Exactly as in the proof of

Lemma 3.13 one shows that there exist constants 0 < q∗ < 1 and c > 0 such that∑
η∈Θ∗, η⊂θ, l(η)≥m+ν

|η|1/2 |fη(x)| ≤ c q
ρm+ν(θ,θm+ν

x )
∗ , x ∈ E \ Star2

m+ν(θ) , (3.47)

and, in particular,∑
η∈Θ∗, η⊂θ

|η|1/2 |fη(x)| ≤ c q
ρm(θ,θm

x )
∗ , x ∈ E \ Star2

m(θ) . (3.48)

Taking into account (2.5), estimates (3.46) and (3.47) yield∑
η∈Θ∗, η⊂θ

|η|1/2 |fη(x)| ≤ c (ν + 1) , x ∈ E \ Star2
m+ν(θ) , ν ≥ 0 . (3.49)

For the proof of (3.44) we also need the estimate∣∣Star2
m+ν(θ) \ θ

∣∣ ≤ c ρν
2 |θ| , ν ≥ 0, (3.50)
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where 0 < ρ2 < 1 and c > 0 are constants depending only on the parameters of T . Estimate (3.50) is an
immediate consequence of estimate (2.4) from Lemma 2.3 and properties (2.1) and (2.2) of LR-triangulations.

Denote briefly F (x) :=
∑

η∈Θ∗, η⊂θ |η|1/2 |fη(x)|. We have∫
E\θ

|F (x)|qdx =
∫

E\Star2m(θ)

|F (x)|q dx +
∞∑

ν=0

∫
Star2m+ν(θ)\Star2m+ν+1(θ)

|F (x)|q dx . (3.51)

Using (3.48) we obtain∫
E\Star2m(θ)

|F (x)|q dx ≤ c
∑

ω∈Θm: ω◦∩Star2m(θ)=∅

|ω| qqρm(θ,ω)
∗ ≤ c |θ| , (3.52)

where for the latter estimate we proceed exactly as in (3.17) and (3.18).
By (3.49) and (3.50) we get

∞∑
ν=0

∫
Star2m+ν(θ)\Star2m+ν+1(θ)

|F (x)|q dx ≤ c

∞∑
ν=0

(ν + 1)ρν
2 |θ| ≤ c |θ| .

This and (3.52) yield (3.44).

We are now in a position to prove Theorem 3.4.
(a) Assume that (3.3) holds and denote by A the quantity in (3.3). We shall prove that f ∈ BMO(E, T ) and

‖f‖BMO ≤ cA.
Let θ ∈ Θm (m ≥ 0) (the case θ = E is trivial). We write

f =

( ∑
η∈Θ∗, η⊂θ

+
∑

η∈Θ∗, η ⊂θ, l(η)>m

+
∑

η∈Θ∗, l(η)≤m

)
〈f, fη〉fη =: F1 + F2 + F3 .

Using (3.3) we have

‖F1‖2
L2(E) =

∑
η⊂θ

|〈f, fη〉|2 ≤ A2 |θ| . (3.53)

From (3.3), |〈f, fη〉| ≤ A |η|1/2 and using (3.45) with q = 2, we obtain

‖F2‖L2(θ) ≤ cA |θ|1/2 . (3.54)

We use (3.10) and that |〈f, fη〉| ≤ A |η|1/2 to obtain, for x ∈ θ,

|F3(x) − F3(vθ)| ≤ cA
∑

η∈Θ∗, l(η)≤m

|η|1/2 |fη(x) − fη(vθ)|

≤ cA

m∑
ν=0

∑
η∈Θ∗

ν

dT (vθ, x)ε |η|−ε
(
q

ρν (η,θν
x)

1 + q
ρν(η,θν

vθ
)

1

)

≤ cA |θ|ε
m∑

ν=0

∑
η∈Θ∗

ν

|η|−εq
ρν(η,θν

x)
1 .

(3.55)

Now, exactly as in the proof of Lemma 3.11, we have∑
η∈Θ∗

ν

|η|−εq
ρν(η,θν

x)
1 ≤ c |θ|−ερ(m−ν)ε

∑
η∈Θ∗

ν

ρν(η, θν
x)sεq

ρν(η,θν
x)

1 ≤ c |θ|−ερ(m−ν)ε .

We use this in (3.55) to obtain

|F3(x) − F3(vθ)| ≤ cA , x ∈ θ . (3.56)
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By (3.53)–(3.56) it readily follows that(
1
|θ|

∫
θ

|f(x) − f(vθ)|2 dx

)1/2

≤ cA .

Consequently, ‖f‖BMO ≤ cA.

(b) Assume that f ∈ BMO and ‖f‖BMO = B. Fix θ ∈ Θm (m ≥ 0) (the case θ = E is easier). We shall
prove that ∑

η∈Θ∗, η⊂θ

|〈f, fη〉|2 ≤ cB2 |θ| , (3.57)

which implies (3.3).
We write

f =

( ∑
η∈Θ∗, η⊂θ

+
∑

η∈Θ∗, η ⊂θ, l(η)>m

+
∑

η∈Θ∗, l(η)≤m

)
〈f, fη〉fη =: F1 + F2 + F3 .

As was shown in the proof of Theorem 3.2 ‖fη‖H1 ≤ c |η|1/2. Then by (2.25) it follows that

|〈f, fη〉| ≤ ‖f‖BMO ‖fη‖H1 ≤ cB |η|1/2. (3.58)

We use this and (3.44) to obtain∣∣∣∣ ∫
θ

F1(x) dx

∣∣∣∣ ≤
∑

η∈Θ∗, η⊂θ

|〈f, fη〉|
∣∣∣∣ ∫

θ

fη(x) dx

∣∣∣∣
≤ cB

∑
η∈Θ∗, η⊂θ

|η|1/2

∣∣∣∣ ∫
E\θ

fη(x) dx

∣∣∣∣
≤ cB

∥∥∥∥∥ ∑
η∈Θ∗, η⊂θ

|η|1/2 |fη|
∥∥∥∥

L1(E\θ)

≤ cB |θ|1/2 .

(3.59)

Using (3.45) we have

‖F2‖L2(θ) ≤ cB

∥∥∥∥∥ ∑
η∈Θ∗, η ⊂θ, l(η)>m

|η|1/2 |fη|
∥∥∥∥∥

L2(θ)

≤ cB |θ|1/2 . (3.60)

Finally, exactly as in (3.56)
(
using (3.58) instead of |〈f, fη〉| ≤ cA |η|1/2

)
, we obtain

|F3(x) − F3(vθ)| ≤ cB , x ∈ θ . (3.61)

Now, (3.59)–(3.61) readily imply

|F3(vθ) − fθ| =
∣∣∣∣F3(vθ) −

1
|θ|

∫
θ

f(x) dx

∣∣∣∣ ≤ cB .

This combined with the definition of BMO yields(
1
|θ|

∫
θ

|f(x) − F3(vθ)|2 dx

)1/2

≤ cB .
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This in turn along with (3.60) and (3.61) implies ‖F1‖L2(θ) ≤ cB |θ|1/2. On the other hand using (3.44) we have

‖F1‖L2(E\θ) ≤ cB

∥∥∥∥∥ ∑
η∈Θ∗, η⊂θ

|η|1/2 |fη(x)|
∥∥∥∥∥

L2(E\θ)

≤ cB |θ|1/2 .

Therefore, ‖F1‖L2(E) ≤ cB |θ|1/2. Consequently,∑
η∈Θ∗, η⊂θ

|〈f, fη〉|2 = ‖F1‖2
L2(E) ≤ cB2 |θ| ,

which is (3.57). The proof of Theorem 3.4 is complete.

A Appendix: Example of a space H1(E, T ) �= H1(E)

Here H1(E) denotes the regular H1-space on E. We consider the case E := [−1, 1]2.
Denote

g(x) = g(x1, x2) :=

⎧⎨⎩ | ln |x1| |1/2 | ln |x2| |1/2 if x ∈ [−1, 1] ,

0 if x ∈ R
2 \ [−1, 1] .

(A.1)

In the following we denote by BMO(E) the regular BMO space on E.

Lemma A.1 The above defined function g(x) belongs to BMO
(
R

2
)
.

P r o o f. Let I := [a, b] × [c, d] with b − a = d − a = h > 0. We shall prove that there is a constant C such
that

1
|I|

∫
I

|g(x) − C| dx ≤ c < ∞ , (A.2)

where c > 0 is an absolute constant.
We first consider the important situation when I ⊂

[
− 1

4 , 1
4

]
× [−1, 1] ∪ [−1, 1] ×

[
− 1

4 , 1
4

]
and hence

0 < h ≤ 1/2. Note that g(−x1, x2) = g(x1,−x2) = g(x1, x2). Therefore, all possibilities for I are covered by
considering the following three cases:

Case 1: a < 0 < b and c < 0 < d. Because of the symmetry of g(x) we may assume that |a| ≤ b and |c| ≤ d.
By integration by parts we get∫ u

0

| ln t|1/2 dt = u | lnu|1/2 +
1
2

∫ u

0

| ln t|−1/2 dt , 0 < u < 1/2 ,

and hence

1
u

∫ u

0

| ln t|1/2 dt = | ln u|1/2 + Ru , where 0 < Ru ≤ 1
2 | lnu|1/2

. (A.3)

Denote I1 := [0, b]× [0, d], I2 := [a, 0]× [0, d], I3 := [a, 0]× [c, 0], and I4 := [0, b]× [c, 0]. From the definition
of g(x) it follows that 0 < g(b, d) = minx∈I g(x) and hence

1
|I|

∫
I

|g(x) − g(b, d)| dx =
1
|I|

∫
I

(g(x) − g(b, d)) dx =
4∑

j=1

1
|I|

∫
Ij

(g(x) − g(b, d)) dx .

Using the assumptions and the symmetry of g(x), each integral
∫

Ij
g(x) dx can be written in the form∫

Ij

g(x) dx =
∫ u

0

∫ v

0

| ln x1|1/2 | ln x2|1/2 dx1 dx2

www.mn-journal.com c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1124 Kyriazis, Park, and Petrushev: Anisotropic Franklin bases

for some u, v satisfying 0 ≤ u ≤ b and 0 ≤ v ≤ d. Then using (A.3), we have

1
|I|

∫
Ij

(g(x) − g(b, d)) dx

= uv |I|−1
[(
| ln u|1/2 + Ru

)(
| ln v|1/2 + Rv

)
− | ln b|1/2 | ln d|1/2

]
≤ uv(bd)−1

[
| ln u|1/2 | ln v|1/2 − | ln b|1/2 | lnd|1/2

]
+ uv(bd)−1| ln u|1/2Rv + uv(bd)−1| ln v|1/2Ru + uv(bd)−1RuRv

=: A1 + A2 + A3 + A4 .

To estimate A1 we substitute u = sb and v = td, 0 < s, t ≤ 1, and obtain

A1 = st
[
(| ln s| + | ln b|)1/2(| ln t| + | ln d |)1/2 − | ln b|1/2 | ln d |1/2

]
=

st
[
(| ln s| + | ln b|)(| ln t| + | ln d |) − | ln b| | ln d |

]
(| ln s| + | ln b|)1/2(| ln t| + | ln d |)1/2 + | ln b|1/2 | ln d |1/2

≤ st(| ln s| | ln t| + B | ln t| + D | ln s|)
(BD)1/2

,

where B := | ln b| and D := | ln d |. Since b− a = d− c = h>0, |a| ≤ b and |c| ≤ d, then ln 2 ≤ | ln h| ≤ B and
D ≤ | ln(h/2)| ≤ 2 | ln h|. We use this above to obtain

A1 ≤ (ln 2)−1s | ln s| · t | ln t| + 2t | ln t| + 2s | ln s| ≤ c < ∞ .

To estimate A2 we use (A.3) and again replace u and v by u = sb and v = td (0 < s, t ≤ 1), respectively. We
have

A2 ≤ uv | ln u|1/2

bd | ln v|1/2
= st

(
| ln s| + | ln b|
| ln t| + | ln d |

)1/2

≤ 2st

(
| ln s| + | ln h|
| ln t| + | ln h|

)1/2

.

Since 1 < | ln h| < ∞ (0 < h ≤ 1/2), it is readily seen that

| ln s| + | ln h|
| ln t| + | ln h| ≤ | ln s| + 1

| ln t| + 1
+ 1 ≤ | ln s| + 2 .

Consequently,

A2 ≤ 2s(| ln s| + 2)1/2 ≤ c < ∞ .

Exactly in the same way we get A3 ≤ c < ∞. Also, by (A.3),

A4 ≤ uv

4bd(| lnu| | ln v|)1/2
≤ 1

4 ln 2
.

The above estimates for A1, A2, A3 and A4 imply (A.2) with C := g(b, d) and c > 0 an absolute constant.

Case 2: 0 ≤ a < b and 0 ≤ c < d. In this case we shall make use of the following simple identity∫ b

a

| ln t|1/2 dt = (b − a) | ln b|1/2 +
1
2

∫ b

a

t − a

t | ln t|1/2
dt , (A.4)

which can be verified by differentiating both sides with respect to b. We next use (A.4) to prove the following
(h := b − a):

1
h

∫ b

a

| ln t|1/2 dt = | ln b|1/2 + Rab , where 0 < Rab ≤ 2
| ln h|1/2

. (A.5)
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Note first that from our assumptions it follows that h ≤ 1/4. If 0 ≤ a ≤ h, then by (A.4)

Rab ≤ 1
2h

∫ b

a

1
| ln t|1/2

dt ≤ 1
2 | ln b|1/2

≤ 1
2 | ln 2h|1/2

≤ 1
| ln h|1/2

.

If h < a ≤ 1/4, then (A.4) implies

Rab ≤ 1
2

∫ b

a

1
t | ln t|1/2

dt ≤ h

2h | lnh|1/2
=

1
2 | lnh|1/2

,

where we used that the function t | ln t|1/2 is increasing on (0, 1/2] and b = a + h ≤ 1/2. Finally, (A.5) is trivial
if a > 1/4. Thus (A.5) holds true.

Evidently, 0 < g(b, d) = minx∈I g(x) and hence

1
|I|

∫
I

|g(x) − g(b, d)| dx =
1
|I|

∫
I

(g(x) − g(b, d)) dx

=
1
h2

∫ b

a

| ln x1|1/2 dx1 ·
∫ d

c

| ln x2|1/2 dx2 − | ln b|1/2 | ln d |1/2 .

Now, employing (A.5), we obtain

1
|I|

∫
I

|g(x) − g(b, d)| dx =
(
| ln b|1/2 + Rab

)(
| ln d |1/2 + Rcd

)
− | ln b|1/2 | ln d |1/2

= | ln b|1/2 Rcd + | ln d |1/2 Rab + RabRcd

≤ 2 | ln b|1/2/| lnh|1/2 + 2 | lnd|1/2/| lnh|1/2 + 4/| lnh|
≤ c < ∞ ,

where we used that b, d ≥ h and 0 < h ≤ 1/4. Thus (A.2) holds true.

Case 3: 0 ≤ a < b and c ≤ 0 < d. In this case one proceeds as above using (A.3) and (A.5). We omit the
details.

It remains to show that (A.2) holds whenever I �⊂
[
− 1

4 , 1
4

]
× [−1, 1] ∪ [−1, 1] ×

[
− 1

4 , 1
4

]
. If in this case

h < 1/8 and I ⊂ [−1, 1]2, then (A.2) is obvious since ‖g‖L∞(I) ≤ g(1/8, 1/8) = ln 8.
If h > 1/8, then

∫
I
g(x) dx ≤

∫
[−1,1]2

g(x) dx = c < ∞ and (A.2) follows.

If I◦ ∩ [−1, 1]2 = ∅, then (A.2) is again obvious.
Finally, suppose that h ≤ 1/8, I �⊂ [−1, 1]2, and I ∩ [−1, 1]2 �= ∅. Then evidently there is a square

J = [α, β] × [γ, δ] of the same size as I such that J ⊂ [−1, 1]2 and I ∩ [−1, 1]2 ⊂ J . Then by the monotonicity
of g(x), we have

1
|I|

∫
I

g(x) dx ≤ 1
|J |

∫
J

g(x) dx ≤ c < ∞ ,

where we used the results of Case 2 or Case 3 above. This yields (A.2) with C = 0. The prove of the lemma is
complete.

Armed with this lemma, we proceed to showing that there is an LR-triangulation T of E := [−1, 1]2 such that
H1(E, T ) �= H1(E).

From [9] (see the construction in the beginning of §2.1) it follows that there exists an LR-triangulation T of E
with the property: There is a sequence of cells in T : θ1 ⊃ θ2 ⊃ . . . such that

[−λν/2, λν/2]× [−εν/2, εν/2] ⊂ θν ⊂ [−λν , λν ] × [−εν , εν ] ,

where 1/4 ≥ λ1 > λ2 > . . . > 0, 1/4 ≥ ε1 > ε2 > . . . > 0, limν→∞ λν = 0, limν→∞ εν = 0, and
limν→∞ εν/λν = 0. In addition to this each θν is convex and symmetric with respect to the x1-axis and the
x2-axis.
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Let θ+
ν := {(x1, x2) ∈ θν : x1 ≥ 0} and θ−ν := {(x1, x2) ∈ θν : x1 < 0}. The functions aν :=

|θν |−1
(
�θ+

ν
− �θ−

ν

)
are obviously atoms in H1(E, T ).

Now, fix ν ≥ 1 and denote briefly θ := θν , λ := λν , ε := εν , a := aν , etc. We next estimate from
below ‖a‖H1(E), where H1(E) is the regular H1-space on E. By Lemma A.1 the function g from (A.1) is in
BMO

(
R

2
)

and hence all functions obtained from g by dilations and shifts also belong to BMO
(
R

2
)

and have
the same BMO norm. In particular, gλ(x) := g(x1/λ + 1/2, x2/λ) belongs to BMO(R2) and ‖gλ‖BMO =
‖g‖BMO. Therefore, the restriction of gλ on E := [−1, 1] (that we denote again by gλ) belongs to BMO(E)
and ‖gλ‖BMO(E) ≤ ‖g‖

BMO
(

R2
).

Clearly,

‖a‖H1(E) = sup
ϕ∈BMO(E)

〈a, ϕ〉
‖ϕ‖BMO

≥ 〈a, gλ〉
‖gλ‖BMO

≥ c

∫
θ

a(x)gλ(x) dx .

Since g(x1,−x2) = g(x1, x2) and g(x1, x2) is monotone decreasing with respect to x1 on (0, 1), we have

‖a‖H1(E) ≥ c

λε

∫ ε/2

0

[ ∫ 0

−λ/2

g

„
x1

λ
+

1

2
,
x2

λ

«
dx1 −

∫ λ/2

0

g

„
x1

λ
+

1

2
,
x2

λ

«
dx1

]
dx2 .

Substituting y1 := x1/λ + 1/2 and y2 := x2/λ we infer

‖a‖H1(E) ≥ cλ

ε

∫ ε/λ

0

(∫ 1/2

0

g(y1, y2) dy1 −
∫ 1

1/2

g(y1, y2) dy1

)
dy2

=
cλ

ε

∫ ε/λ

0

| ln y2|1/2 dy2

(∫ 1/2

0

| ln y1|1/2 dy1 −
∫ 1

1/2

| ln y1|1/2 dy1

)
≥ c1(ln λ/ε)1/2 ,

where c1 > 0 is an absolute constant and for the last estimate we used (A.3). Thus there is a sequence of atoms
(aν)∞ν=1 in H1(E, T ) such that ‖aν‖H1(E) → ∞ as ν → ∞, which leads to the conclusion that H1(E, T ) �=
H1(E).
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