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(Communicated by Andreas Seeger)

Abstract. We present a general method for construction of frames {ψI}I∈D
for Triebel-Lizorkin and Besov spaces, whose nature can be prescribed. In par-
ticular, our method allows for constructing frames consisting of rational func-
tions or more general functions which are linear combinations of a fixed (small)
number of shifts and dilates of a single smooth and rapidly decaying function θ
such as the Gaussian θ(x) = exp(−|x|2). We also study the boundedness and
invertibility of the frame operator Sf =

∑
I∈D〈f, ψI〉ψI on Triebel-Lizorkin

and Besov spaces and give necessary and sufficient conditions for the dual
system {S−1ψ}I∈D to be a frame as well.

1. Introduction

Frames were introduced in the early 1950’s by Duffin and Schaeffer [DS] as a
means for studying the convergence and summability properties of nonharmonic
Fourier series. Since then frames have attracted a lot of attention, which is partly
due to their numerous applications in Signal analysis, Fourier analysis, and Ap-
proximation theory. In particular, Gabor frames have been used for time-frequency
analysis of functions (signals) (see [FG2]), while wavelet-type frames have been used
in statistics, image processing, and nonlinear approximation (see e.g. [De, Do]).

Let (H, 〈·, ·〉) be a separable Hilbert space. A countable family of functions
Ψ ⊂ H is called a frame for H if there exist constants A, B > 0 such that for all
f ∈ H,

A‖f‖2
H ≤

∑
ψ∈Ψ

|〈f, ψ〉|2 ≤ B‖f‖2
H .

It is not hard to prove that the frame operator S : H → H defined by

Sf =
∑
ψ∈Ψ

〈f, ψ〉ψ

is a bounded linear operator and AI ≤ S ≤ BI; hence S is self-adjoint. Conse-
quently, S is invertible and B−1I ≤ S−1 ≤ A−1I. Moreover, the family S−1Ψ :=
{S−1ψ}ψ∈Ψ is a frame for H as well. Further, for every f ∈ H,

(1.1) f = SS−1f =
∑
ψ∈Ψ

〈f, S−1ψ〉ψ.
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Thus Ψ provides a stable representation of all f ∈ H; it acts like a Riesz basis.
However, unlike bases, in general, Ψ is redundant. Thus representation (1.1) is not
necessarily unique. In many applications this redundancy turns out to be of an
advantage since it provides extra flexibility. We refer the reader to [HW] for a more
detailed overview of the basic properties of frames for Hilbert spaces.

In the late 1980’s it was recognized that certain elements of the abstract the-
ory on Hilbert spaces could be extended to more general settings. Gröchenig [G],
building upon the theory of the so-called co-orbit spaces and using group theoretic
techniques, introduced frames for Banach spaces which included the modulation
spaces and the Besov-Triebel-Lizorkin spaces (see also [FG1]).

Suppose that X is a quasi-Banach space and let Y be an associated sequence
space. We say that a countable family of functions Ψ in the dual X∗ of X is a
frame for X if there exist constants A, B > 0 such that for all f ∈ X,

A‖f‖X ≤ ‖(〈f, ψ〉)ψ∈Ψ‖Y ≤ B‖f‖X ,

where 〈f, ψ〉 := ψ(f).
Our goal in this article is to develop a general method for construction of frames

for homogeneous Triebel-Lizorkin and Besov spaces. An obvious modification of this
method (which will not be considered here) produces frames for inhomogeneous
Triebel-Lizorkin and Besov spaces as well. Our method utilizes a specific small
perturbation principle which allows for a lot of flexibility. Thus the main feature
of our method is that the nature of the frame elements can be prescribed. In
particular, if θ is a sufficiently smooth and rapidly decaying function on R

d, then
our method allows for constructing a frame consisting of functions which are linear
combinations of a fixed (small) number of shifts and dilates of θ. Typical examples
of such functions are θ(x) = exp(−|x|2) and θ(x) = (1 + |x|2)−N . For construction
of bases, this method was first introduced in [Pet] and further generalized and
refined in [KP].

Frames for Triebel-Lizorkin-Besov spaces can be valuable if the representation
(1.1) holds; this is no longer a byproduct of the general theory. Moreover, it
is important to know whether the membership of a distribution f to a certain
Triebel-Lizorkin or Besov space can be characterized by the frame coefficients
〈f, S−1ψ〉, ψ ∈ Ψ, i.e. if S−1Ψ is a frame itself. These are the primary objec-
tives of our development of new frames in this article.

To better describe our results we begin with the introduction of some standard
notation. As is customary we denote by S := S(Rd) the Schwartz space of infinitely
differentiable, rapidly decreasing functions on R

d and by S
′
:= S

′
(Rd) its dual, the

space of tempered distributions. We also denote by S
′/P the space of equivalence

classes of distributions in S
′

modulo polynomials, and by S∞ its dual (for more
details and references we refer the reader to [Gr],[K],[T]).

We let D denote the family of all dyadic cubes in R
d and let Dm, m ∈ Z, be the

collection of all cubes I ∈ D of side-length �(I) = 2−m. For any dyadic cube I ∈ D,
we use xI to denote its lower-left corner and |I| for its volume.

As usual the Fourier transform f̂ of an integrable function f is defined by f̂(ξ) =∫
Rd f(x)e−ixξ dx and can be extended by duality uniquely from S to S

′
. Finally,

we use 〈f, η〉 for the standard inner product
∫

fη of two functions (whenever this
makes sense) and the same notation is employed for the action of a distribution
f ∈ S

′
on η ∈ S.
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1.1. Frames for homogeneous Triebel Lizorkin and Besov spaces. Choose
an arbitrary function ϕ ∈ S so that supp ϕ̂ ⊂ {ξ : 2−1 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ c > 0
if 3/5 ≤ |ξ| ≤ 5/3, and define ϕν(·) := 2dνϕ(2ν ·).

For s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, the homogeneous Triebel-Lizorkin space Ḟ s
pq

is defined as the set of all f ∈ S
′/P such that

‖f‖Ḟ s
pq

:=
∥∥(∑

ν∈Z

[
2νs|ϕν ∗ f |

]q)1/q∥∥
Lp

< ∞

with the usual modification when q = ∞. By interchanging the roles of integration
and summation we get the homogeneous Besov spaces; that is, for s ∈ R, 0 < p, q ≤
∞, Ḃs

pq is defined as the set of all f ∈ S
′/P such that

‖f‖Ḃs
pq

:=
(∑
ν∈Z

[
2νs

∥∥ϕν ∗ f
∥∥

Lp

]q)1/q
< ∞.

It can be shown that the above definitions of Triebel-Lizorkin and Besov spaces are
independent of the specific selection of ϕ (see e.g. [T]).

Note that the F- and B-spaces are quasi-Banach spaces (Banach spaces if p, q ≥
1) and by varying the indexes s, p, q one can recover from them most of the classical
spaces (see e.g. [T]). In particular, Ḟ 0

p2 ≈ Lp if 1 < p < ∞, and Ḟ 0
p2 ≈ Hp (the

Hardy space) if 0 < p ≤ 1. Also, for s > 0, 1 < p < ∞, Ḟ s
p2 coincides with

the potential space Hs
p and for integer values of s, Ḟ s

p2 ≈ W s
p , the Sobolev space

equipped with its seminorm. Here ≈ means that the spaces have equivalent (quasi-
)norms.

Now, let ϕ ∈ S satisfy

(1.2)

(i) supp ϕ̂ ⊂ {ξ : 2−1 ≤ |ξ| ≤ 2},
(ii) |ϕ̂(ξ)| ≥ c > 0 if 3/5 ≤ |ξ| ≤ 5/3,

(iii)
∑
ν∈Z

|ϕ̂(2νξ)|2 = 1, ξ �= 0.

By (1.2(iii)) it readily follows that for f ∈ S
′/P,

(1.3)
∑
ν∈Z

ϕ̃ν ∗ ϕν ∗ f = f, ϕ̃ν(x) := ϕν(−x),

in the sense of S
′/P. Identity (1.3) is the so-called Calderón reproducing formula.

Using techniques reminiscent of the Shannon sampling theorem and expanding
ϕ̃ν ∗ ϕν ∗ f , one can further show [FJ2] that for all f ∈ S

′/P,

(1.4) f =
∑
I∈D

〈f, ϕI〉ϕI ,

where ϕI(·) := |I|−1/2ϕ( ·−xI

�(I) ).

The F- and B-spaces are naturally characterized by the sequence spaces ḟs
pq and

ḃs
pq defined as follows: For s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞,

ḟs
pq := {h := (hI)I∈D : ‖h‖ḟs

pq
< ∞},

where
‖h‖ḟs

pq
:= ‖(

∑
I∈D

(|I|−s/d−1/2|hI�I |)q)1/q‖Lp
.
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Similarly, for s ∈ R and 0 < p, q ≤ ∞,

ḃs
pq := {h := (hI)I∈D : ‖h‖ḃs

pq
< ∞},

where
‖h‖ḃs

pq
:=

(∑
e∈E

∑
m∈Z

( ∑
I∈Dm

(
|I|−s/d+1/p−1/2|hIe|

)p)q/p)1/q
.

A fundamental result due to Frazier and Jawerth [FJ1, FJ2] states that the
family Φ := {ϕI}I∈D is a frame for both the Triebel-Lizorkin and Besov spaces: If
s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞, there exist constants c1, c2 > 0 such that for
f ∈ Ḟ s

pq,

(1.5) c1‖f‖Ḟ s
pq

≤ ‖(〈f, ϕI〉)I‖ḟs
pq

≤ c2‖f‖Ḟ s
pq

.

Similarly, if s ∈ R, and 0 < p, q ≤ ∞, then for f ∈ Ḃs
pq,

(1.6) c1‖f‖Ḃs
pq

≤ ‖(〈f, ϕI〉)I‖ḃs
pq

≤ c2‖f‖Ḃs
pq

.

1.2. The construction of new frames. The construction of affine frames in the
literature follows in the footsteps of the main scheme for constructing wavelet bases,
namely, by making use of the notion of a Multiresolution analysis (see e.g. [BL]).
As a consequence, most of the constructed frames are of a very particular nature.

Here instead we propose a method for constructing frames based on the idea of
the small perturbation principle. The starting point of our method is the selection of
a frame Φ := {ϕI}I∈D such as the Frazier-Jawerth frame described above, consisting
of sufficiently smooth and rapidly decaying functions. Then, the main step of our
scheme is to approximate every frame element ϕI of Φ by a function ψI of the new
system Ψ := {ψI}I∈D.

The grand question is: What kind of approximation should be used in this con-
struction in order that the new system Ψ be a frame for the spaces of interest?

Following the idea introduced in [Pet] and further developed in [KP], we pro-
pose the following approximation scheme: For suitable values of the parameters
ε, r, k, M > 0 we require that all ψI in Ψ satisfy the conditions:

A1.

|∂αϕI(x) − ∂αψI(x)| ≤ ε|I|−1/2−|α|/d
(
1 + �(I)−1|x − xI |

)−M
, |α| ≤ r.

A2. ∫
Rd

xαψI(x) dx = 0, |α| ≤ k.

Here the ψI ’s are not necessarily the dyadic dilates and shifts of a single function.
For simplicity we shall assume in the following that Φ is the Frazier-Jawerth frame
described above. However, any other frame consisting of sufficiently smooth and
rapidly decaying functions with enough vanishing moments can do the job.

We shall prove in Theorem 3.1 that if ε > 0 is sufficiently small and r, k, M are
sufficiently large (depending on s, p, q), then the family Ψ is a frame for the Besov-
Triebel-Lizorkin spaces. The questions that naturally arise here are, whether S−1Ψ
is a frame itself and if the representation

(1.7) f =
∑
I∈D

〈f, S−1ψI〉ψI
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holds true? It turns out that the key to both questions is the boundedness of the
operator with matrix

B = (bIJ)I,J∈D, where bIJ := 〈ϕJ , S−1ψI〉,

on ḟs
pq (or ḃs

pq). As we show in Theorem 3.3 the boundedness of B is a neces-
sary and sufficient condition for S−1Ψ to be a frame for the Triebel-Lizorkin and
Besov spaces. Moreover, the same condition guarantees that (1.7) holds in the
distributional sense.

Since the family Φ is generated by dilations and shifts of a single function ϕ, it
suffices to approximate ϕ by a function ψ satisfying the conditions:

B1.
|∂αϕ(x) − ∂αψ(x)| ≤ ε

(
1 + |x|

)−M
, |α| ≤ r.

B2. ∫
Rd

xαψ(x) dx = 0, |α| ≤ k.

Then we define the new system Ψ by Ψ := {ψI}I∈D, where ψI(·) := |I|−1/2ψ( ·−xI

�(I) ).
The construction of functions ψ satisfying B1 and B2 has been explored in [KP].

In particular, it is shown that if θ is an arbitrary sufficiently smooth and rapidly
decaying function on R

d, then one can devise ψ satisfying B1 and B2 using a finite
linear combination of shifts and dilates of θ. Typical examples include the rational
function θ(·) := (1 + | · |2)−N and the Gaussian θ(·) := e−|·|2 .

2. Auxiliary results

In this section we present some basic results concerning the algebra of almost
diagonal operators on ḟs

pq and ḃs
pq and their interplay with the study of the bound-

edness of linear operators on Triebel-Lizorkin and Besov spaces. These results have
been established by Frazier and Jawerth within the framework of the so-called ϕ-
transform (see [FJ1, FJ2, FJW]) and will be needed for our developments in the
next section.

Let A be a linear operator acting on ḟs
pq or ḃs

pq with associated matrix (aIJ)I,J∈D.
We say that A is almost diagonal on ḟs

pq or ḃs
pq if there exist δ > 0 and c > 0 such

that
|aIJ | ≤ cωδ(I, J), I, J ∈ D,

with

ωδ(I, J) :=
(

�(I)
�(J)

)s(
1 +

|xI − xJ |
max{�(I), �(J)}

)−J−δ

× min
{(

�(I)
�(J)

)(d+δ)/2

,

(
�(J)
�(I)

)(δ−d)/2+J }
,

where J := d/ min{1, p, q} for ḟs
pq and J := d/ min{1, p} for ḃs

pq .
We denote by ads

pq the collection of all almost diagonal operators on ḟs
pq or ḃs

pq.
It turns out that ads

pq is closed under composition and therefore it is an algebra.
Moreover, almost diagonal operators are bounded on ḟs

pq and ḃs
pq .

Proposition 2.1. Let s ∈ R, 0 < p, q ≤ ∞ and A ∈ ads
pq. Then A is bounded on

ḃs
pq and, if p < ∞, on ḟs

pq.
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It is not hard to construct almost diagonal operators for the f - or b-spaces.
Consider for instance the following construction: Let J be as above and N :=
max{[J − d − s],−1}. Suppose that for some M > max{J , d + s}, k ≥ [s], and
r > N , the functions {bI}I∈D satisfy the conditions

|∂αbI(x)| ≤ c|I|−1/2−|α|/d
(
1 + �(I)−1|x − xI |

)−M
, |α| ≤ r,(2.1) ∫

Rd

xαbI(x) dx = 0, |α| ≤ k,(2.2)

where (2.2) is void if s < 0, then the operator A with matrix

(2.3) A = (aIJ)I,J∈D, where aIJ := 〈ϕJ , bI〉,

is almost diagonal on ḟs
pq or ḃs

pq.
An important consequence of the boundedness of A is that the family {bI}I∈D is

a norming family for the Triebel-Lizorkin and Besov spaces; that is, for all f ∈ Ḟ s
pq,

(2.4) ‖(〈f, bI〉)I‖ḟs
pq

≤ c‖f‖Ḟ s
pq

,

and similarly for f ∈ Ḃs
pq,

(2.5) ‖(〈f, bI〉)I‖ḃs
pq

≤ c‖f‖Ḃs
pq

.

We say that {mI}I∈D is a family of smooth molecules for Ḟ s
pq or Ḃs

pq if for some
r > [s], k ≥ N , and M > J ,

|mI(x)| ≤ c|I|−1/2
(
1 + �(I)−1|x − xI |

)−max(M,M−s)
,(2.6)

|∂αmI(x)| ≤ c|I|−1/2−|α|/d
(
1 + �(I)−1|x − xI |

)−M
, |α| ≤ r,(2.7) ∫

Rd

xαmI(x) dx = 0, |α| ≤ k,(2.8)

where (2.7) is void if s < 0.
Similarly as above, molecules give rise to almost diagonal operators. For instance,

the operator C with matrix

(2.9) C = (cIJ)I,J∈D, where cIJ := 〈mJ , ϕI〉,

is almost diagonal on ḟs
pq and ḃs

pq. Consequently, for every sequence (sI)I ∈ ḟs
pq,

(2.10)
∥∥∥ ∑

I

sImI

∥∥∥
Ḟ s

pq

≤ c‖(sI)I‖ḟs
pq

,

and similarly if (sI)I ∈ ḃs
pq, then

(2.11)
∥∥∥ ∑

I

sImI

∥∥∥
Ḃs

pq

≤ c‖(sI)I‖ḃs
pq

.

Let us now assume that T is a continuous linear operator from S to S
′
. If the

operator with matrix

(2.12) D = (dIJ)I,J∈D, where dIJ := 〈TϕJ , ϕI〉,
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is almost diagonal on ḟs
pq or ḃs

pq, then T extends to a bounded operator on Ḟ s
pq or

Ḃs
pq. Indeed, employing (1.4)–(1.5), we have for f ∈ Ḟ s

pq,

‖Tf‖Ḟ s
pq

≤ c‖(〈Tf, ϕI〉)I‖ḟs
pq

= c
∥∥∥( ∑

J

dIJ 〈f, ϕJ〉
)

I

∥∥∥
ḟs

pq

≤ c‖(〈f, ϕI〉)I‖ḟs
pq

≤ c‖f‖Ḟ s
pq

.

A similar result holds for Besov spaces as well.

3. Main results

We recall some of our notation from the previous section: J := d/ min{1, p, q}
in the case of Triebel-Lizorkin spaces, while J := d/ min{1, p} for Besov spaces.
Also N := max{[J − d − s],−1}.

Theorem 3.1. Suppose that s ∈ R, 0 < p, q ≤ ∞ and let Ψ := {ψI}I∈D satisfy A1
and A2 for some r > N , k ≥ [s], and M > max{J , d + s}. If ε > 0 is sufficiently
small, then there exist constants A, B > 0 such that for f ∈ Ḃs

pq,

(3.1) A‖f‖Ḃs
pq

≤ ‖(〈f, ψI〉)I‖ḃs
pq

≤ B‖f‖Ḃs
pq

and, if p < ∞, for f ∈ Ḟ s
pq,

(3.2) A‖f‖Ḟ s
pq

≤ ‖(〈f, ψI〉)I‖ḟs
pq

≤ B‖f‖Ḟ s
pq

.

Proof. We shall prove only (3.2) since (3.1) follows similarly. From A1 and A2 it
follows that Ψ is a norming family for Ḟ s

pq (see (2.4)), i.e. there exists a constant
B such that for f ∈ Ḟ s

pq,

‖(〈f, ψI〉)I‖ḟs
pq

≤ B‖f‖Ḟ s
pq

.

Thus we only have to establish the left-hand-side estimate in (3.2). For this we
note that since (ϕI) satisfies (2.1)–(2.2) for all r > 0, the family ((ϕI − ψI)ε−1) is
a norming family as well and, therefore, for some c > 0,

‖(〈f, ϕI − ψI〉)I‖ḟs
pq

≤ cε‖f‖Ḟ s
pq

.

Consequently,

‖(〈f, ϕI〉)I‖ḟs
pq

≤ c(‖(〈f, ψI〉)I‖ḟs
pq

+ ‖(〈f, ϕI − ψI〉)I‖ḟs
pq

)

≤ c(‖(〈f, ψI〉)I‖ḟs
pq

+ ε‖f‖Ḟ s
pq

).

Taking into account that the family Φ is a frame, using (1.5) we obtain

c1‖f‖Ḟ s
pq

≤ c‖(〈f, ψI〉)I‖ḟs
pq

+ cε‖f‖Ḟ s
pq

.

Choosing ε > 0 sufficiently small, we have A := (c1 − cε)/c > 0 and hence

A‖f‖Ḟ s
pq

≤ ‖(〈f, ψI〉)I‖ḟs
pq

,

which completes the proof of the theorem. �

Assume now that Ψ := {ψI}I∈D is a frame for Ḟ s
pq (or Ḃs

pq) satisfying (2.1)–(2.2)
(with {bI} replaced by {ψI}) and let k, M, r be sufficiently large. If k ≥ 0, M > d,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1766 GEORGE KYRIAZIS AND PENCHO PETRUSHEV

and r > 0, Ψ constitutes a frame for F 0
22 = B0

22 = L2(Rd) and from the Hilbert
space theory we know that the frame operator S : L2(Rd) → L2(Rd) defined by

Sf :=
∑
I∈D

〈f, ψI〉ψI ,

is self-adjoint and invertible. Moreover, the family S−1Ψ := {S−1ψI}I∈D is also a
frame for L2(Rd) and for f ∈ L2(Rd),

f =
∑
I∈D

〈f, S−1ψI〉ψI .

We would like to devise conditions on Ψ which would guarantee that S−1Ψ is a
frame for the Triebel-Lizorkin and Besov spaces as well. As already mentioned in
the introduction, in essence one has to study the boundedness of the operator B
with matrix

(3.3) B := (bIJ)I,J∈D, where bIJ := 〈ϕJ , S−1ψI〉,

on the corresponding sequence spaces.
We first have to give meaning to the coefficients 〈f, S−1ψI〉. Since S−1Ψ is a

frame for L2(Rd), if f ∈ L2(Rd), then f =
∑

J 〈f, ϕJ〉ϕJ in L2, and hence

(3.4) 〈f, S−1ψI〉 =
∑
J∈D

〈f, ϕJ〉〈ϕJ , S−1ψI〉, I ∈ D.

Assuming that B is bounded on ḟs
pq, (3.4) yields that for f ∈ L2(Rd) ∩ Ḟ s

pq and
I ∈ D,

(3.5) |〈f, S−1ψI〉| ≤ ‖(〈f, S−1ψI〉)I‖ḟs
pq

≤ c‖(〈f, ϕI〉)I‖ḟs
pq

≤ c‖f‖Ḟ s
pq

.

A similar argument applies to the ḃs
pq and Ḃs

pq spaces as well. Using the density of
L2(Rd) in Ḟ s

pq (or Ḃs
pq) and a standard argument, one now easily extends the linear

functional S−1ψI : f → 〈f, S−1ψI〉 to Ḟ s
pq (or Ḃs

pq).

Lemma 3.2. Suppose that s ∈ R, 0 < p, q ≤ ∞ and let Ψ := {ψI}I∈D be a frame
for L2(Rd) satisfying (2.6)–(2.8) for some r > [s], k ≥ N , and M > J . If B is
bounded on ḃs

pq, then for f ∈ Ḃs
pq,

(3.6) f =
∑
I∈D

〈f, S−1ψI〉ψI ,

in the sense of S
′/P. Similarly, if p < ∞ and B is bounded on ḟs

pq, then (3.6) holds
for f ∈ Ḟ s

pq.

Proof. We shall again treat only the case of Triebel-Lizorkin spaces. Since Ψ is a
frame for L2(Rd), we know that for every I ∈ D,

ϕI =
∑
J∈D

〈ϕI , S
−1ψJ〉ψJ

in L2 (and consequently in the sense of S
′/P).
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For f ∈ Ḟ s
pq, we have

f =
∑
I∈D

〈f, ϕI〉ϕI =
∑
I∈D

∑
J∈D

〈f, ϕI〉〈ϕI , S
−1ψJ 〉ψJ

=
∑
J∈D

∑
I∈D

〈f, ϕI〉〈ϕI , S
−1ψJ 〉ψJ =

∑
J∈D

〈f, S−1ψJ〉ψJ .

To justify the shift of the order of the summation, it is sufficient to show that if
η ∈ S∞, then the series ∑

J∈D

∑
I∈D

〈f, ϕI〉〈ϕI , S
−1ψJ 〉〈ψJ , η〉

converges absolutely. To this end we note that since (〈f, ϕI〉)I∈D ∈ ḟs
pq and B is

bounded on ḟs
pq, the sequence

d := (dJ)J∈D with dJ :=
∑

I∈D |〈f, ϕI〉||〈ϕI , S
−1ψJ〉|

belongs to ḟs
pq. Using this fact one easily obtains (see [K], Lemma 4.1) that,∑

J∈D
|dJ ||〈ψJ , η〉| < ∞.

�

Theorem 3.3. Suppose that s ∈ R, 0 < p, q ≤ ∞ and let Ψ := {ψI}I∈D be a frame
for L2(Rd) satisfying (2.6)–(2.8) for some r > [s], k ≥ N , and M > J . Then
S−1Ψ is a frame for Ḃs

pq or Ḟ s
pq, when p < ∞, if and only if the operator B defined

by (3.3) is bounded on ḃs
pq or ḟs

pq, respectively.

Proof. We again treat only the case of Triebel-Lizorkin spaces. Let us first assume
that B is a bounded operator on Ḟ s

pq. We shall prove that there exist constants
A, B > 0 such that for f ∈ Ḟ s

pq,

(3.7) A‖f‖Ḟ s
pq

≤ ‖(〈f, S−1ψI〉)I‖ḟs
pq

≤ B‖f‖Ḟ s
pq

.

The right-hand side estimate in (3.7) has already been established in (3.5).
To prove the left-hand-side estimate in (3.7) let us consider the operator C with

matrix

C := (cIJ)I,J∈D, where cIJ = 〈ψJ , ϕI〉.

As in (2.9) we know that C is bounded on ḟs
pq. Since

〈f, ϕI〉 =
∑
J∈D

〈f, S−1ψJ 〉〈ψJ , ϕI〉

for I ∈ D, putting cf := (〈f, ϕI〉)I∈D and d := (〈f, S−1ψI〉)I∈D, we can write

Cd = cf .

Then

‖f‖Ḟ s
pq

≤ c‖(〈f, ϕI〉)I‖ḟs
pq

= c‖Cd‖ḟs
pq

≤ c‖d‖ḟs
pq

= c‖(〈f, S−1ψI〉)I‖ḟs
pq

.
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Assume now that S−1Ψ is a frame for Ḟ s
pq. We claim that the operator B (see

(3.3)) is necessarily bounded on ḟs
pq . To see this let (dI)I∈D ∈ ḟs

pq. From (2.10) we
know that the distribution f =

∑
I∈D dIϕI belongs to Ḟ s

pq and

(3.8) ‖
∑
I∈D

dIϕI‖Ḟ s
pq

≤ c‖(dI)I‖ḟs
pq

.

Since S−1Ψ is a frame for Ḟ s
pq, we also have

(3.9) ‖(〈f, S−1ψI〉)I‖ḟs
pq

≤ B‖f‖Ḟ s
pq

.

Finally, we use 〈f, S−1ψI〉 =
∑

J∈D dJ 〈ϕJ , S−1ψI〉 =
∑

J∈D dJbIJ = (Bd)I and
(3.8)–(3.9) to obtain

‖Bd‖ḟs
pq

= ‖(〈f, S−1ψI〉)I‖ḟs
pq

≤ c‖f‖Ḟ s
pq

≤ c‖d‖ḟs
pq

.

�
Although Theorem 3.3 is sufficient for our purposes, it does not answer the

question, whether Ψ is a frame itself for the Triebel-Lizorkin and Besov spaces. We
address this question in the following proposition.

Proposition 3.4. Suppose s ∈ R, 0 < p, q ≤ ∞ and let Ψ := {ψI}I∈D be a frame
for L2(Rd) satisfying (2.1)–(2.2) for some r > N , k ≥ [s], and M > max{J , d+s}.
If the operator BT (the transpose of B) is bounded on ḃs

pq or ḟs
pq for p < ∞, then Ψ

is a frame for Ḃs
pq or ḟs

pq as well. In addition, if f ∈ Ḃs
pq (or f ∈ Ḟ s

pq with p < ∞),
then

(3.10) f =
∑
I∈D

〈f, ψI〉S−1ψI

in the sense of S
′/P.

The proof of this proposition is quite similar to the proofs of Lemma 3.2 and
Theorem 3.3 and will be omitted.

We next prove that if Ψ satisfies A1 and A2 for sufficiently small ε > 0, then B
is indeed a bounded operator on ḃs

pq and ḟs
pq.

Theorem 3.5. Suppose s ∈ R, 0 < p, q ≤ ∞, and let Ψ := {ψI}I∈D be a family
of functions satisfying A1 and A2 for some r, k > max{[s],N} and M >

max{J , d + s}. If ε > 0 is sufficiently small, then S−1Ψ is a frame for Ḃs
pq and

Ḟ s
pq, if p < ∞.

Proof. According to Theorem 3.3 we need to establish that for sufficiently small
ε > 0 the operator B defined in (3.3) is bounded on ḟs

pq or ḃs
pq, respectively.

We begin by showing that the operator S−1 is bounded on Ḟ s
pq. To this end it

suffices to show that
‖I − S‖Ḟ s

pq→Ḟ s
pq

< 1.

In particular, we shall show that there exists a constant c > 0 independent of ε
such that for f ∈ Ḟ s

pq,

(3.11) ‖(I − S)f‖Ḟ s
pq

≤ cε‖f‖Ḟ s
pq

.

According to (2.12) it suffices to prove that the operator D with matrix

D := (dIJ )I,J∈D, where dIJ := 〈(I − S)ϕJ , ϕI〉,
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is bounded on ḟs
pq and

(3.12) ‖Dd‖ḟs
pq

≤ cε‖d‖ḟs
pq

for d ∈ ḟs
pq.

Using that ϕJ =
∑

Q 〈ϕJ , ϕQ〉ϕQ and SϕJ =
∑

Q 〈ϕJ , ψQ〉ψQ, we have

dIJ = 〈(I − S)ϕJ , ϕI〉 =
∑
Q

〈ϕJ , ϕQ〉〈ϕQ, ϕI〉 −
∑
Q

〈ϕJ , ψQ〉〈ψQ, ϕI〉

=
∑
Q

〈ϕJ , ϕQ〉〈ϕQ − ψQ, ϕI〉 +
∑
Q

〈ϕJ , ϕQ − ψQ〉〈ψQ, ϕI〉.

Setting now
D1 := (d1

IJ )I,J∈D, where d1
IJ := 〈ϕJ − ψJ , ϕI〉,

D2 := (d2
IJ )I,J∈D, where d2

IJ := 〈ϕJ , ϕI〉,
D3 := (d3

IJ )I,J∈D, where d3
IJ := 〈ψJ , ϕI〉,

D4 := (d2
IJ )I,J∈D, where d4

IJ := 〈ϕJ , ϕI − ψI〉,
we obtain

D = D1D2 + D3D4.

The operators associated with all four matrices are bounded on ḟs
pq. Indeed, note

that D1,D2, and D3 give rise to bounded operators as for the operator C in (2.9)
because the families Φ, Ψ, and {ε−1(ϕI −ψI)}I∈D consist of smooth molecules. In
particular, the last family gives us that for d ∈ ḟs

pq,

(3.13) ‖D1d‖ḟs
pq

≤ cε‖d‖ḟs
pq

.

As far as D4 is concerned, since {ε−1(ϕI − ψI)}I∈D is a norming family, then as
for the operator A defined in (2.3) we obtain that for d ∈ ḟs

pq,

(3.14) ‖D4d‖ḟs
pq

≤ cε‖d‖ḟs
pq

.

Taking into account (3.13)–(3.14) it follows that for d ∈ ḟs
pq,

‖Dd‖ḟs
pq

≤ c(‖D1‖‖D2‖ + ‖D3‖‖D4‖)‖d‖ḟs
pq

≤ cε‖d‖ḟs
pq

,

which establishes (3.12). Consequently, (3.11) holds and hence for sufficiently small
ε > 0 the operator S−1 is bounded on Ḟ s

pq, i.e. for f ∈ Ḟ s
pq,

(3.15) ‖S−1f‖Ḟ s
pq

≤ c‖f‖Ḟ s
pq

.

Finally, in order to show that the operator B is bounded on ḟs
pq we recall from

(2.10) that if d := (dI)I∈D ∈ ḟs
pq and f =

∑
I dIϕI , then

(3.16) ‖f‖Ḟ s
pq

≤ c‖d‖ḟs
pq

.

Clearly, for I ∈ D,

〈S−1f, ψI〉 =
∑
J∈D

dJ 〈S−1ϕJ , ψI〉 =
∑
J∈D

dJ 〈ϕJ , S−1ψI〉 = (Bd)I .

Therefore,

‖Bd‖ḟs
pq

= ‖(〈S−1f, ψI〉)I‖ḟs
pq

≤ c‖S−1f‖Ḟ s
pq

≤ c‖f‖Ḟ s
pq

≤ c‖d‖ḟs
pq

.

Here, for the first inequality, we used that Ψ is a frame for Ḟ s
pq if ε > 0 is sufficiently

small, which follows by Theorem 3.1; we also used (3.15)–(3.16). �
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