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Abstract
We deal with homogeneous Besov and Triebel–Lizorkin spaces in the setting of a
doubling metric measure space in the presence of a non-negative self-adjoint operator
whose heat kernel has Gaussian localization and the Markov property. The class of
almost diagonal operators on the associated sequence spaces is developed and it is
shown that this class is an algebra. The boundedness of almost diagonal operators is
utilized for establishing smooth molecular and atomic decompositions for the above
homogeneousBesov andTriebel–Lizorkin spaces. Spectralmultipliers for these spaces
are established as well.
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1 Introduction

Homogeneous Besov and Triebel–Lizorkin spaces are developed in [18] in the general
setting of a metric measure space with the doubling property and in the presence
of a non-negative self-adjoint operator whose heat kernel has Gaussian localization
and the Markov property. Their inhomogeneous version was previously developed in
[9,24]. These spaces can be viewed as a natural generalization of the classical Besov
and Triebel–Lizorkin spaces onRd , developed mainly by Peetre, Triebel, Frazier, and
Jawerth, see [14–16,26,34,35]. Our goal here is to develop various aspects of the theory
of homogeneous Besov and Triebel–Lizorkin spaces in the general setting indicated
above (see below), including, almost diagonal operators on respective sequence spaces,
atomic and molecular decompositions as well as spectral multipliers, in analogy to the
theory of Frazier and Jawerth [14,15].

We shall operate in the setting put forward in [9,24], which we describe next:
I. We assume that (M, ρ, μ) is a metric measure space satisfying the conditions:

(M, ρ) is a locally compact metric spacewith distance ρ(·, ·) andμ is a positive Radon
measure such that the following volume doubling condition is valid

0 < |B(x, 2r)| ≤ c0|B(x, r)| < ∞ for all x ∈ M and r > 0, (1.1)

where |B(x, r)| is the volume of the open ball B(x, r) centered at x of radius r and
c0 > 1 is a constant.

From the above it follows that there exist c′0 > 0 and d > 0 such that,

|B(x, λr)| ≤ c′0λd |B(x, r)| for x ∈ M, r > 0, and λ > 1. (1.2)

The minimal d satisfying (1.2) is a constant playing the role of a dimension.
We also assume that μ(M) = ∞.
II. The main assumption is that the geometry of the space (M, ρ, μ) is related to an

essentially self-adjoint non-negative operator L on L2(M, dμ), mapping real-valued
to real-valued functions, such that the associated semigroup Pt = e−t L consists of
integral operators with (heat) kernel pt (x, y) obeying the conditions:

(a) Gaussian upper bound There exist constants C�, c� > 0 such that

|pt (x, y)| ≤ C� exp{− c�ρ2(x,y)
t }

[|B(x,
√

t)||B(y,
√

t)|]1/2
for x, y ∈ M, t > 0. (1.3)

(b) Hölder continuity There exists a constant α > 0 such that

∣∣pt (x, y)− pt (x, y′)
∣∣ ≤ C�

(ρ(y, y′)√
t

)α exp{− c�ρ2(x,y)
t }

[|B(x,
√

t)||B(y,
√

t)|]1/2
(1.4)

for x, y, y′ ∈ M and t > 0, whenever ρ(y, y′) ≤ √
t .
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(c) Markov property:

∫

M
pt (x, y)dμ(y) = 1 for x ∈ M and t > 0. (1.5)

Above C�, c� > 0 are structural constants.

The following additional conditions on the geometry of M are also stipulated:
(d) Noncollapsing condition There exists a constant c1 > 0 such that

inf
x∈M

|B(x, 1)| ≥ c1. (1.6)

(e) Reverse doubling condition There exists a constant c2 > 1 such that

|B(x, 2r)| ≥ c2|B(x, r)| for x ∈ M and r > 0. (1.7)

Condition (e) readily implies

|B(x, λr)| ≥ c3λ
d∗ |B(x, r)| for x ∈ M, r > 0, and λ > 1, (1.8)

where d∗ := log2 c2 ≤ d and c3 = c−12 .
Note that the reverse doubling condition (1.7) is not restrictive because as shown

in [9, Proposition 2.2] if M is connected, then (1.7) follows by the doubling condition
(1.1).

The above setting appears naturally in the general framework of strictly local regular
Dirichlet spaces with a complete intrinsic metric. In particular, this setting covers the
cases of Lie groups or homogeneous spaceswith polynomial volume growth, complete
Riemannian manifolds with Ricci curvature bounded from below and satisfying the
volume doubling condition. It also contains the classical setting on R

n . For details,
see [9].

Analysis on metric measure spaces of homogeneous type (satisfying the doubling
property) goes back to the celebrated work of Coifman and Weiss [7,8]. Spaces of
functions or distributions associated with operators are studied during the last fifteen
years. The literature on the subject is extensive but as a small sample we refer to
[11,12,23] for Hardy spaces and [3] for Besov spaces. The reverse doubling property
is quite common (see e.g. [22,37]), while more general Gaussian bounds can be used
instead of (1.3) [20,25]. Two-sided Gaussian estimates are occasionally used [1,21];
in fact it is established that they imply the Hölder continuity (1.4). For more articles
in the area we refer to [4,9,13,24,25,36] and the references therein.

This article is a followup of [18], where the homogeneous Besov and Triebel-
Lizorlin spaces in the general setting described above are introduced and studied. Our
goal is to generalize a substantial part of the theory of Frazier and Jawerth [14,15] in
the general setting of this article.

The main point in the present article is to show that in the general setting described
above it is possible to develop atomic and molecular decomposition of homogeneous
Besov and Triebel–Lizorkin spaces and Mihlin type multipliers in almost complete
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generality as in the classical case on R
n . As an application, we cover new settings

such as the ones on Lie groups and Riemannian manifolds.
The organization of the paper is as follows. In Sects. 2, 3, 4, and 5weplace all needed

preliminaries from [9,18,24], including, smooth functional calculus, distributions,
frames, and frame decomposition of the homogeneous Besov and Triebel–Lizorkin

spaces Ḃs
pq ,

˙̃Bs

pq , Ḟ s
pq ,

˙̃Fs

pq . In Sect. 6, we develop almost diagonal operators on the
associated sequence spaces, improving on results of [10], in analogy to the classical
case on R

n , developed by Frazier and Jawerth [14,15]. In particular, we show that
the almost diagonal operators form an algebra and are bounded on the respective ḃ-
and ḟ -sequence spaces. In analogy to the classical case on Rn (see [14,15]) we intro-

duce in Sect. 7 smooth molecules for the spaces Ḃs
pq ,

˙̃Bs

pq , Ḟ s
pq ,

˙̃Fs

pq and establish
results for molecular decomposition of these spaces similar to the ones from [14,15].
We use these results and the compactly supported frames, essentially developed in
[10], to establish atomic decomposition of the spaces as well (Sect. 7.3). In Sect. 8,
we use the molecular decomposition to obtain Mihlin type spectral multipliers for

the spaces Ḃs
pq ,

˙̃Bs

pq , Ḟ s
pq , and

˙̃Fs

pq . The atomic and molecular decompositions of
inhomogeneous Besov and Triebel–Lizorkin spaces are briefly discussed in Sect. 9.
Section 1 is an appendix where we place the proofs of some claims from previous
sections.

Notation: Throughout we shall denote |E | := μ(E) and 1E will stand for the char-
acteristic function of E ⊂ M , ‖ · ‖p = ‖ · ‖L p := ‖ · ‖L p(M,dμ). The Schwartz class
on R will be denoted by S(R). Positive constants will be denoted by c, C , c1, c′,
. . . and will be allowed to vary at every occurrence. The notation a ∼ b will stand
for c1 ≤ a/b ≤ c2. We shall also use the standard notation a ∧ b := min{a, b} and
a ∨ b := max{a, b}.

2 Background

In this section we collect all basic ingredients for our theory, developed in [9,18,24].

2.1 Functional Calculus

Let Eλ, λ ≥ 0, be the spectral resolution associated with the non-negative self-adjoint
operator L from our setting (Sect. 1). As L maps real-valued to real-valued functions,
for any real-valued, measurable and bounded function f on R+ the operator f (L),
defined by f (L) := ∫∞

0 f (λ)d Eλ, is bounded on L2(M), self-adjoint, and maps real-
valued functions to real-valued functions. Furthermore, if f (L) is an integral operator,
then its kernel f (L)(x, y) is real-valued and f (L)(y, x) = f (L)(x, y), in particular,
pt (x, y) ∈ R and pt (y, x) = pt (x, y).

The finite speed propagation property plays an important role in this study:

〈
cos(t

√
L) f1, f2

〉 = 0, 0 < c̃t < r , c̃ := 1

2
√

c�
, (2.1)
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for all open sets U j ⊂ M , f j ∈ L2(M), supp f j ⊂ U j , j = 1, 2, where r :=
ρ(U1, U2).

This property is a consequence of the Gaussian localization of the heat kernel
and implies the following localization result for the kernels of operators of the form
f (δ

√
L) whenever f̂ is band limited, see [24]. Here f̂ (ξ) := ∫

R
f (t)e−i tξ dt .

Proposition 2.1 Let f be even, supp f̂ ⊂ [−A, A] for some A > 0, and f̂ ∈ W m
1 for

some m > d, i.e. ‖ f̂ (m)‖1 < ∞. Then for any δ > 0 and x, y ∈ M

f (δ
√

L)(x, y) = 0 if ρ(x, y) > c̃δA. (2.2)

We shall need the following result from the smooth functional calculus induced by
the heat kernel, developed in [9,24].

Theorem 2.2 Suppose f ∈ C N (R), N ≥ d + 1, f is real-valued and even, and

| f (ν)(λ)| ≤ AN (1+ |λ|)−r for λ ∈ R and 0 ≤ ν ≤ N , where r > N + d.

Then f (δ
√

L), δ > 0, is an integral operator with kernel f (δ
√

L)(x, y) satisfying

∣∣ f (δ
√

L)(x, y)
∣∣ ≤ cAN

(
1+ δ−1ρ(x, y)

)−N

(|B(x, δ)||B(y, δ)|)1/2
≤ c′AN

(
1+ δ−1ρ(x, y)

)−N+d/2

|B(x, δ)|
(2.3)

and

∣∣ f (δ
√

L)(x, y)− f (δ
√

L)(x, y′)
∣∣ ≤ cAN

(ρ(y,y′)
δ

)α(
1+ δ−1ρ(x, y)

)−N

(|B(x, δ)||B(y, δ)|)1/2
(2.4)

whenever ρ(y, y′) ≤ δ. Here α > 0 is from (1.4) and c, c′ > 0 are constants depending
only on r, N , and the structural constants c0, C�, c�, α.

Moreover,
∫

M f (δ
√

L)(x, y)dμ(y) = f (0).

In the construction of frames we utilize operators of the form ϕ(δ
√

L) generated
by cutoff functions ϕ specified in the following

Definition 2.3 A real-valued function ϕ ∈ C∞(R+) is said to be an admissible cutoff
function if ϕ �= 0, suppϕ ⊂ [0, 2], and ϕ(m)(0) = 0 for m ≥ 1.

Furthermore, ϕ is said to be admissible of type (a), (b) or (c) if ϕ is admissible and
in addition obeys the respective condition:

(a) ϕ(t) = 1, t ∈ [0, 1],
(b) suppϕ ⊂ [1/2, 2] or
(c) suppϕ ⊂ [1/2, 2] and ∑

j∈Z |ϕ(2− j t)|2 = 1 for t ∈ (0,∞).

The kernels of operators of the form ϕ(δ
√

L) with sub-exponential space localiza-
tion will be the main building blocks in constructing frames.
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Theorem 2.4 [24] For any 0 < ε < 1 there exists a cutoff function ϕ of any type, (a)

or (b) or (c), such that for any δ > 0 and m ≥ 0

|[Lmϕ(δ
√

L)](x, y)| ≤
c2δ−2m exp

{
− κ

(ρ(x,y)
δ

)1−ε
}

(|B(x, δ)||B(y, δ)|)1/2
, x, y ∈ M, (2.5)

where c, κ > 0 depend only on ε, m and the constants c0, C�, c� from (1.1)–(1.4).

Remark 2.5 Note that [Lmϕ(δ
√

L)](x, y) in (2.5) is the kernel of the operator
Lmϕ(δ

√
L), however, it can be considered as Lm acting on the kernel ϕ(δ

√
L)(·, y)

or Lm acting on ϕ(δ
√

L)(x, ·) as well. In fact the result is the same: For any x, y ∈ M

[Lmϕ(δ
√

L)](x, y) = Lm[ϕ(δ
√

L)(·, y)](x) = Lm[ϕ(δ
√

L)(x, ·)](y). (2.6)

Furthermore, if f , g are real-valued functions on R, obeying the hypotheses of The-
orem 2.2 and F(

√
L) := f (

√
L)g(

√
L), then

F(
√

L)(x, y) = f (
√

L)[g(
√

L)(·, y)](x) = f (
√

L)[g(
√

L)(x, ·)](y), ∀x, y ∈ M .

(2.7)
The above claims follow from the more general result in [18, Proposition 2.7].

2.2 Some Properties Related to the Geometry of the Underlying Space

To compare the volumes of balls with different centers x, y ∈ M and the same radius
r we shall use the inequality

|B(x, r)| ≤ c0
(
1+ ρ(x, y)

r

)d |B(y, r)|, x, y ∈ M, r > 0. (2.8)

As B(x, r) ⊂ B(y, ρ(y, x)+ r) the above inequality is immediate from (1.2).
The following simple inequalities are established in [18,24]:

Lemma 2.6 If σ > d and δ > 0, then for any x ∈ M

∫

M

(
1+ δ−1ρ(x, u)

)−σ
dμ(u) ≤ c|B(x, δ)|. (2.9)

Lemma 2.7 Let σ1, σ2 > d and δ1, δ2 > 0, and

I :=
∫

M

dμ(u)
(
1+ δ−11 ρ(x, u))σ1

(
1+ δ−12 ρ(y, u))σ2

(2.10)

Then for any x, y ∈ M

I ≤ c|B(x, δ1)|(
1+ δ−12 ρ(x, y))σ2

+ c|B(y, δ2)|(
1+ δ−11 ρ(x, y))σ1

(2.11)
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and consequently

I ≤ c|B(x, δ1)|
(1+ δ−1maxρ(x, y))(σ1−d)∧σ2

and I ≤ c|B(y, δ2)|
(1+ δ−1maxρ(x, y))σ1∧(σ2−d)

. (2.12)

Here δmax := δ1∨ δ2 and the constant c > 0 depends only on σ1, σ2, d, and c0. Recall
also that a ∧ b := min{a, b}.

Maximal ı-Nets

The construction of frames in our setting relies on a sequence of δ-nets. Such δ-nets
on manifolds have been used earlier in [29] and in the current framework in [9,18,24].
Note that in [25] the frames where built in an alternative way by using the Christ’s
“dyadic cubes” [5].

By definition X ⊂ M is a δ-net on M (δ > 0) if ρ(ξ, η) ≥ δ, ∀ξ, η ∈ X, and
X ⊂ M is a maximal δ-net on M if X is a δ-net on M that cannot be enlarged.
Some basic properties of maximal δ-nets will be needed (see [9, Proposition 2.5]):

A maximal δ-net on M always exists and if X is a maximal δ-net on M , then

M = ∪ξ∈ XB(ξ, δ) and B(ξ, δ/2)∩ B(η, δ/2) = ∅ if ξ �= η, ξ, η ∈ X. (2.13)

Furthermore, X is countable and there exists a disjoint partition {Aξ }ξ∈ X of M
consisting of measurable sets such that

B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ X. (2.14)

The next lemma is a discrete counterpart of Lemma 2.7; its proof is deferred to the
appendix.

Lemma 2.8 Let σ > d and 0 < δ ≤ δ1 ≤ δ2. Suppose X ⊂ M is a δ-net on M. Then

∑

ξ∈ X

1
(
1+ δ−11 ρ(x, ξ)

)σ (
1+ δ−12 ρ(y, ξ)

)σ ≤ c(δ1/δ)d

(
1+ δ−12 ρ(x, y)

)σ , ∀x, y ∈ M,

(2.15)
where the constant c > 0 depends only on σ , d, and the constant c0 from (1.1).

2.3 Maximal Inequality

We shall use the version Mt (t > 0) of the maximal operator defined by

Mt f (x) := sup
B�x

(
1

|B|
∫

B
| f |t dμ

)1/t

, x ∈ M, (2.16)

where the sup is over all balls B ⊂ M such that x ∈ B.
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With μ being a Radon measure on M obeying the doubling condition (1.2) the
general theory of maximal operators applies and the Fefferman-Stein vector-valued
maximal inequality holds [32]: If 0 < p < ∞, 0 < q ≤ ∞, and 0 < t < min{p, q}
then for any sequence of functions { fν} on M

∥
∥∥
(∑

ν

|Mt fν(·)|q
)1/q∥

∥∥
L p

≤ c
∥
∥∥
(∑

ν

| fν(·)|q
)1/q∥

∥∥
L p

. (2.17)

2.4 Spectral Spaces

As before Eλ, λ ≥ 0, will be the spectral resolution associated with the self-adjoint
positive operator L on L2 := L2(M, dμ). We let Fλ, λ ≥ 0, denote the spectral
resolution associated with

√
L , i.e. Fλ = Eλ2 . Then for any measurable and bounded

function f on R+ the operator f (
√

L) is defined by f (
√

L) = ∫∞
0 f (λ)d Fλ on L2.

For the spectral projectors we have Eλ = 1[0,λ](L) := ∫∞
0 1[0,λ](u)d Eu and

Fλ = 1[0,λ](
√

L) :=
∫ ∞

0
1[0,λ](u)d Fu =

∫ ∞

0
1[0,λ](

√
u)d Eu . (2.18)

For any compact K ⊂ [0,∞) the spectral space �
p
K is defined by

�
p
K := { f ∈ L p : θ(

√
L) f = f for all θ ∈ C∞

0 (R+), θ ≡ 1 on K }.

In general, given a space Y of measurable functions on M we set

�λ = �λ(Y ) := { f ∈ Y : θ(
√

L) f = f for all θ ∈ C∞
0 (R+), θ ≡ 1 on [0, λ]}.

For the use of band limited functions on similar settings, such as Lie groups, we
refer the reader to [27,28].

3 Distributions

Homogeneous Besov and Triebel–Lizorkin spaces associated with the operator L are
spaces of distributions modulo generalized polynomials, and are introduced in [18].
Here we collect some basic facts from [18,24].

3.1 Basic Facts

In the setting of this article the class of test functions S is defined (see [24]) as the set
of all complex-valued functions φ ∈ ∩m≥1D(Lm) such that

Pm(φ) := sup
x∈M

(
1+ ρ(x, x0)

)m max
0≤ν≤m

|Lνφ(x)| < ∞, ∀m ≥ 0. (3.1)
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Here x0 ∈ M is selected arbitrarily and fixed once and for all. Note that S is a complete
locally convex space with topology generated by the above sequence of norms, i.e. S
is a Fréchet space, see [30].

Observe also that if φ ∈ S, then φ ∈ S, which follows from the fact that Lφ = Lφ,
for L maps real-valued to real-valued functions.

The space S′ of distributions on M is defined as the set of all continuous linear
functionals on S and the action of f ∈ S′ on φ ∈ S will be denoted by 〈 f , φ〉 :=
f (φ), which is consistent with the inner product on L2(M).
Let us clarify the action of operators of the form ϕ(

√
L) on S′. Observe that if

the function ϕ ∈ S(R), the Schwarz class on R, is real-valued and even, then from
Theorem 2.2 it follows that ϕ(

√
L)(x, ·) ∈ S and ϕ(

√
L)(·, y) ∈ S. Moreover, it is

easy to see that ϕ(
√

L) maps continuously S into S.

Definition 3.1 We define ϕ(
√

L) f for any f ∈ S′ by

〈ϕ(
√

L) f , φ〉 := 〈 f , ϕ(
√

L)φ〉 for φ ∈ S. (3.2)

From above it follows that, ϕ(
√

L) maps continuously S′ into S′. Furthermore, if
ϕ,ψ ∈ S(R) are real-valued and even, then

ϕ(
√

L)ψ(
√

L) f = ψ(
√

L)ϕ(
√

L) f , ∀ f ∈ S′. (3.3)

3.2 Distributions Modulo Generalized Polynomials

We recall first the definition of generalized polynomials associated with the operator
L .

Generalized Polynomials In the setting of this article, we define the set Pm of “gen-
eralized polynomials” of degree m (m ≥ 1) by

Pm := {g ∈ S′ : Lm g = 0} (3.4)

and set P := ∪m≥1Pm . Clearly, g ∈ Pm if and only if 〈g, Lmφ〉 = 0 for all φ ∈ S.
We define an equivalence f ∼ g on S′ by

f ∼ g ⇐⇒ f − g ∈ P.

We denote by S′/P the set of all equivalent classes in S′. To avoid unnecessary
complicated notation we shall make no difference between any two elements f1, f2
belonging to one and the same equivalence class in S′/P.

Note that the null space of L contains no nontrivial test functions:

Proposition 3.2 Let N(Lk) := { f ∈ D(Lk) : Lk f = 0}, ∀k ≥ 0. Then

N(L) ∩ L2(M) = {0} and hence N(Lk) ∩ L2(M) = {0}, ∀k ∈ N. (3.5)
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The Classes S∞ and S′∞. Denote by S∞ the set of all functions φ ∈ S such that
for every k ≥ 1 there exists ωk ∈ S such that φ = Lkωk , that is, L−kφ ∈ S for all
k ≥ 1. Note that from Proposition 3.2 it follows that ωk above is unique and hence
L−kφ is well defined.

The topology in S∞ is defined by the sequence of norms

P�
m(φ) := sup

x∈M

(
1+ ρ(x, x0)

)m max−m≤ν≤m
|Lνφ(x)|, m ≥ 0. (3.6)

We denote by S′∞ the set of all continuous linear functional on S∞. As before the
action of f ∈ S′∞ onφ ∈ S∞ will be denoted by 〈 f , φ〉. Apparently, for any f ∈ S′∞
there exist constants m ∈ Z+ and c > 0 such that

|〈 f , φ〉| ≤ c P�
m(φ), ∀φ ∈ S∞. (3.7)

Several remarks are in order:

(1) Let θ ∈ S(R) be real-valued and θ(ν)(0) = 0 for ν = 0, 1, . . . . Then for any
k ≥ 1 we have λ−2kθ(λ) ∈ S(R), which implies that L−kθ(

√
L)φ ∈ S for each

φ ∈ S and hence θ(
√

L)φ ∈ S∞, ∀φ ∈ S.
(2) Clearly, if φ ∈ S∞, then Lkφ ∈ S∞ and L−kφ ∈ S∞, ∀k ≥ 0.
(3) It is important to note that S∞ is a Fréchet space, since it is complete.
(4) If ϕ ∈ S(R) is even and real-valued, then

L−kϕ(
√

L)φ = ϕ(
√

L)L−kφ, ∀φ ∈ S∞, ∀k ≥ 1, (3.8)

and hence
ϕ(
√

L)φ ∈ S∞, ∀φ ∈ S∞. (3.9)

Moreover, ϕ(
√

L) maps S∞ into S∞ continuously.
(5) The action of operators of the formϕ(

√
L) on S′∞, whereϕ ∈ S(R) is real-valued

and even, needs some further clarification:

Definition 3.3 We define ϕ(
√

L) f for any f ∈ S′∞ by

〈ϕ(
√

L) f , φ〉 := 〈 f , ϕ(
√

L)φ〉 for φ ∈ S∞. (3.10)

From (4) above it follows that,ϕ(
√

L)maps continuously S′∞ into S′∞. In addition,
if ϕ,ψ ∈ S(R) are real-valued and even, then

ϕ(
√

L)ψ(
√

L) f = ψ(
√

L)ϕ(
√

L) f , ∀ f ∈ S′∞. (3.11)

Proposition 3.4 Suppose ϕ ∈ S(R) is real-valued and even and ϕ(ν)(0) = 0 for
ν = 0, 1, . . . . Then for any f ∈ S′∞

ϕ(
√

L) f (x) = 〈 f , ϕ(
√

L)(x, ·)〉, x ∈ M . (3.12)

Moreover, ϕ(
√

L) f is a continuous and slowly growing function.
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Proposition 3.5 We have the following identification:

S′/P = S′∞. (3.13)

From Proposition 3.5 it follows that for a sequence { f j } ⊂ S′/P and f ∈ S′/P
we have

f j → f in S′/P if and only if 〈 f j , φ〉 → 〈 f , φ〉, ∀φ ∈ S∞. (3.14)

The main decomposition result takes the form:

Theorem 3.6 Let � ∈ C∞(R+), supp� ⊂ [b−1, b] with b > 1, � real-valued, and

∑

j∈Z
�(b− jλ) = 1 for λ ∈ (0,∞). (3.15)

Then for any f ∈ S′/P

f =
∑

j∈Z
�(b− j

√
L) f in S′/P, (3.16)

that is, for any f ∈ S′∞

lim
n,m→∞

m∑

j=−n

〈
�(b− j

√
L) f , φ

〉 = 〈 f , φ〉, ∀φ ∈ S∞. (3.17)

Remark 3.7 In the case when M = R
d and L = −� (the Laplacian) the distributions

modulo generalized polynomials S′/P introduced in Sect. 3.2 are just the classical
tempered distributions modulo polynomials on R

d . Therefore, our general setting
covers the classical case on R

d .

4 Frames

In the setting of this article frames are constructed in [9,18,24]. For frames on compact
homogeneous manifolds see [17].

We next recall the construction of frames.

Construction of Frame # 1 We first apply Theorem 2.4 for the construction of a
real-valued cutoff function � with the following properties: � ∈ C∞(R+), �(u) = 1
for u ∈ [0, 1], 0 ≤ � ≤ 1, and supp� ⊂ [0, b], where b > 1 is a constant, see [24].
Set

�(u) := �(u)−�(bu). (4.1)
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Observe that � ∈ C∞(R+) and supp� ⊂ [b−1, b]. By Theorem 2.4 �(δ
√

L) is an
integral operator with kernel �(δ

√
L)(x, y) of sub-exponential localization, that is,

|�(δ
√

L)(x, y)| ≤ c� exp
{− κ

(ρ(x,y)
δ

)β}

(|B(x, δ)||B(y, δ)|)1/2 , ∀x, y ∈ M . (4.2)

Here 0 < β < 1 is an arbitrary constant (as close to 1 as we wish) and κ > 0
and c� > 1 are constants depending only on β, b, and the constants c0, C�, c� from
(1.1)–(1.4). Furthermore, for any m ≥ 1

|[Lm�(δ
√

L)](x, y)| ≤ cmδ−2m exp
{− κ

(ρ(x,y)
δ

)β}

(|B(x, δ)||B(y, δ)|)1/2 , ∀x, y ∈ M . (4.3)

Set
� j (u) := �(b− j u), j ∈ Z. (4.4)

Clearly, � j ∈ C∞(R+), 0 ≤ � j ≤ 1, supp� j ⊂ [b j−1, b j+1], j ∈ Z, and

∑

j∈Z
� j (u) = 1 for u ∈ (0,∞).

Therefore, by Theorem 3.6 for any f ∈ S′/P

f =
∑

j∈Z
� j (

√
L) f (convergence in S′/P). (4.5)

The sampling Theorem 4.2 from [9] will play an important role in this construction.
In particular, this theorem yields the following

Proposition 4.1 For any ε > 0 there exists a constant γ (0 < γ < 1) such that for any
maximal δ−net X on M with δ := γ λ−1, λ > 0, and a companion disjoint partition
{Aξ }ξ∈ X of M as in Sect. 2.2 consisting of measurable sets such that B(ξ, δ/2) ⊂
Aξ ⊂ B(ξ, δ), ξ ∈ X, we have

(1− ε)‖ f ‖22 ≤
∑

ξ∈ X
|Aξ || f (ξ)|2 ≤ (1+ ε)‖ f ‖22, ∀ f ∈ �2

λ. (4.6)

At this point, we introduce a constant 0 < ε < 1 that will be specified later on. We
use the above proposition to produce for each j ∈ Z a maximal δ j -net X j on M with
δ j := γ b− j−2 and a disjoint partition {Aξ }ξ∈ X j of M such that

(1− ε)‖ f ‖22 ≤
∑

ξ∈ X j

|Aξ || f (ξ)|2 ≤ (1+ ε)‖ f ‖22, ∀ f ∈ �2
b j+2 . (4.7)

Set X := ∪ j∈Z X j , where equal points from different sets X j will be regarded as
distinct elements of X, and hence X can be used as an index set.
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Frame # 1 {ψξ }ξ∈ X is defined by

ψξ (x) := |Aξ |1/2� j (
√

L)(x, ξ), ξ ∈ X j , j ∈ Z. (4.8)

Construction of Frame # 2

A dual frame {ψ̃ξ } is constructed similarly as in [24] with properties similar to the
properties of {ψξ }.

The first step in this construction is to introduce a cutoff function

�(u) = �(b−2u)−�(bu), (4.9)

where� is from the construction of Frame #1. Clearly, supp� ⊂ [b−1, b3] and � = 1
on [1, b2], implying �(u)�1(u) = �1(u).

The construction of Frame # 2 hinges on the following

Lemma 4.2 [9] There exists a constant 0 < ε < 1 such that the following claim holds
true. Given λ > 0, let X be a maximal δ−net on M, where δ := γ λ−1b−3 with
γ the constant from Proposition 4.1, and suppose {Aξ }ξ∈ X is a companion disjoint
partition of M consisting of measurable sets such that B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ),
ξ ∈ X (Sect. 2.2). Set ωξ := (1 + ε)−1|Aξ | ∼ |B(ξ, δ)|. Then there exists a linear
operator Tλ : L2(M) → L2(M) of the form Tλ = Id + Sλ such that

(a)

‖ f ‖2 ≤ ‖Tλ f ‖2 ≤ 1

1− 2ε
‖ f ‖2, ∀ f ∈ L2.

(b) Sλ is an integral operator with kernel Sλ(x, y) verifying

|Sλ(x, y)| ≤ c exp
{− κ

2

(
λρ(x, y)

)β}

(|B(x, λ−1)||B(y, λ−1)|)1/2 , ∀x, y ∈ M . (4.10)

(c) Sλ(L2) ⊂ �2
[λb−1,λb3].

(d) For any f ∈ L2(M) such that �(λ−1
√

L) f = f we have

f (x) =
∑

ξ∈ X
ωξ f (ξ)Tλ[�λ(·, ξ)](x), ∀x ∈ M, (4.11)

where �λ(·, ·) is the kernel of the operator �λ := �(λ−1
√

L) with � from (4.9).

We use the above lemma to select the constant ε (0 < ε < 1) that was used in the
construction of Frame #1.

Let X j and {Aξ }ξ∈ X j be as in the definition of Frame #1. Denote briefly �λ j =
�(b− j+1√L) for j ∈ Zwith λ j := b j−1, and let Tλ j = Id+ Sλ j be the operator from
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Lemma 4.2, applied with λ = λ j . The dual frame {ψ̃ξ }ξ∈ X is defined by

ψ̃ξ (x) := cε|Aξ |1/2Tλ j

[
�λ j (·, ξ)

]
(x), ξ ∈ X j , j ∈ Z, cε := (1+ ε)−1. (4.12)

In the next theorem we record the main properties of {ψξ }ξ∈ X and {ψ̃ξ }ξ∈ X.

Theorem 4.3 [18, Theorem 4.3]

(a) Representation: For any f ∈ S′/P,

f =
∑

ξ∈ X
〈 f , ψ̃ξ 〉ψξ =

∑

ξ∈ X
〈 f , ψξ 〉ψ̃ξ in S′/P. (4.13)

(b) Space localization: For any 0 < κ̂ < κ/2, m ∈ Z, and any ξ ∈ X j , j ∈ Z,

|Lmψξ (x)|, |Lmψ̃ξ (x)| ≤ cmb2 jm |B(ξ, b− j )|−1/2 exp {− κ̂(b jρ(x, ξ))β
}
.

(4.14)
(c) Spectral localization: ψξ ∈ �

p
[b j−1,b j+1] and ψ̃ξ ∈ �

p
[b j−2,b j+2] for ξ ∈ X j ,

j ∈ Z, 0 < p ≤ ∞.
(d) Norms: For any ξ ∈ X j , j ∈ Z,

‖ψξ‖p ∼ ‖ψ̃ξ‖p ∼ |B(ξ, b− j )| 1p− 1
2 for 0 < p ≤ ∞. (4.15)

(e) Frame: The system {ψ̃ξ } as well as {ψξ } is a frame for L2, namely, there exists a
constant c > 0 such that

c−1‖ f ‖22 ≤
∑

ξ∈ X
|〈 f , ψ̃ξ 〉|2 ≤ c‖ f ‖22, ∀ f ∈ L2. (4.16)

5 Homogeneous Besov and Triebel–Lizorkin Spaces

Homogeneous Besov and Triebel–Lizorkin spaces in the setting of this article are
developed in [18]. Next, we recall the definition of these spaces and some basic results
on them.

Definition of Homogeneous Besov and Triebel–Lizorkin Spaces To deal with pos-
sible anisotropic geometries we introduced in [18] two types of homogeneous Besov
(B) and Triebel–Lizorkin (F) spaces:

(i) Classical homogeneous B-spaces Ḃs
pq = Ḃs

pq(L) and F-spaces Ḟ s
pq = Ḟ s

pq(L),
and

(ii) Nonclassical homogeneous B-spaces ˙̃Bs

pq = ˙̃Bs

pq(L) and F-spaces ˙̃Fs

pq =
˙̃Fs

pq(L).

Let the function ϕ ∈ C∞(R+) satisfy

suppϕ ⊂ [1/2, 2], |ϕ(λ)| ≥ c > 0 for λ ∈ [2−3/4, 23/4]. (5.1)
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Then
∑

j∈Z |ϕ(2− jλ)| ≥ c > 0 for λ ∈ R+. Set ϕ j (λ) := ϕ(2− jλ) for j ∈ Z.

Definition 5.1 Let s ∈ R and 0 < p, q ≤ ∞.

(i) The Besov space Ḃs
pq = Ḃs

pq(L) is defined as the set of all f ∈ S′/P such that

‖ f ‖Ḃs
pq
:=

( ∑

j∈Z

(
2 js‖ϕ j (

√
L) f (·)‖L p

)q)1/q

< ∞. (5.2)

(ii) The Besov space ˙̃Bs

pq = ˙̃Bs

pq(L) is defined as the set of all f ∈ S′/P such that

‖ f ‖ ˙̃Bs

pq
:=

( ∑

j∈Z

(
‖|B(·, 2− j )|−s/dϕ j (

√
L) f (·)‖L p

)q)1/q

< ∞. (5.3)

Definition 5.2 Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞.

(a) The Triebel–Lizorkin space Ḟ s
pq = Ḟ s

pq(L) is defined as the set of all f ∈ S′/P
such that

‖ f ‖Ḟs
pq
:=

∥∥
∥∥

(∑

j∈Z

(
2 js |ϕ j (

√
L) f (·)|

)q)1/q∥∥
∥∥

L p
< ∞. (5.4)

(b) The Triebel–Lizorkin space ˙̃Fs

pq = ˙̃Fs

pq(L) is defined as the set of all f ∈ S′/P
such that

‖ f ‖ ˙̃Fs

pq
:=

∥∥∥
∥

( ∑

j∈Z

(
|B(·, 2− j )|−s/d |ϕ j (

√
L) f (·)|

)q)1/q∥∥∥
∥

L p
< ∞. (5.5)

Above in both definitions the �q -norm is replaced by the sup-norm if q = ∞.
Several remarks regarding the homogeneous Besov and Triebel–Lizorkin spaces

are in order.

(1) The above definitions of the spaces Ḃs
pq ,

˙̃Bs

pq , Ḟ s
pq , and

˙̃Fs

pq are independent of
the particular selection of the function ϕ ∈ C∞(R+) obeying (5.1).

(2) In the definitions of the Ḃs
pq ,

˙̃Bs

pq , Ḟ s
pq , and

˙̃Fs

pq spaces above the role of the
constant 2 can be played by an arbitrary β > 1, then e.g. 2 js in (5.2) and (5.4)
will be replaced by β js . and then the resulting norms are equivalent to the ones
from Definitions 5.1 and 5.2.

(3) The space S∞ is continuously embedded in each of the spaces Ḃs
pq ,

˙̃Bs

pq , Ḟ s
pq ,

and ˙̃Fs

pq and each of the last is continuously embedded in S′/P = S′∞.

(4) Each of the spaces Ḃs
pq ,

˙̃Bs

pq , Ḟ s
pq , and

˙̃Fs

pq is continuously embedded in S′/P,
that is, there exist constants m ≥ 0 and c > 0, depending on s, p, q, such that
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|〈 f , φ〉| ≤ c‖ f ‖Ḃs
pq

P�
m(φ), ∀ f ∈ Ḃs

pq , ∀φ ∈ S∞, (5.6)

and similar inequalities hold for ˙̃Bs

pq , Ḟ s
pq , and

˙̃Fs

pq .

(5) By a standard argument the above assertion readily implies that the spaces Ḃs
pq ,

˙̃Bs

pq , Ḟ s
pq , and

˙̃Fs

pq are complete and hence they are quasi-Banach spaces (Banach
spaces if p, q ≥ 1).

Frame Decomposition of Homogeneous Besov and Triebel–Lizorkin Spaces

One of the main results in [18] asserts that the homogeneous Besov and Triebel–
Lizorkin spaces in the setting of this article can be characterized in terms of respective
sequence norms of the frame coefficients of distributions, using the frames {ψξ }ξ∈ X,
{ψ̃ξ }ξ∈ X from Sect. 4. As is Sect. 4 X := ∪ j∈Z X j will denote the sets of the centers
of the frame elements and {Aξ }ξ∈ X j will be the associated partitions of M .

In the following we first recall the definition of the homogeneous sequence spaces

ḃs
pq ,

˙̃bs

pq , and ḟ s
pq ,

˙̃f s

pq , associated with the Ḃ- and Ḟ-spaces, and then give the frame

characterization of the Ḃ- and Ḟ-spaces.

Definition 5.3 Let s ∈ R and 0 < p, q ≤ ∞.

(a) ḃs
pq is defined as the space of all complex-valued sequences a := {aξ }ξ∈ X such

that

‖a‖ḃs
pq
:=

( ∑

j∈Z
b jsq

[ ∑

ξ∈ X j

(
|B(ξ, b− j )|1/p−1/2|aξ |

)p]q/p)1/q

< ∞. (5.7)

(b)
˙̃bs

pq is defined as the space of all complex-valued sequences a := {aξ }ξ∈ X such
that

‖a‖ ˙̃bs

pq
:=

( ∑

j∈Z

[ ∑

ξ∈ X j

(
|B(ξ, b− j )|−s/d+1/p−1/2|aξ |

)p]q/p)1/q

< ∞.

(5.8)

Definition 5.4 Suppose s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞.

(a) ḟ s
pq is defined as the space of all complex-valued sequences a := {aξ }ξ∈ X such

that

‖a‖ ḟ s
pq
:=

∥∥
∥∥

( ∑

j∈Z
b jsq

∑

ξ∈ X j

[|aξ |1̃Aξ (·)
]q

)1/q∥∥
∥∥

L p
< ∞. (5.9)

(b) ˙̃f s

pq is defined as the space of all complex-valued sequences a := {aξ }ξ∈ X such
that
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‖a‖ ˙̃f s

pq
:=

∥
∥∥∥

( ∑

ξ∈ X

[
|Aξ |−s/d |aξ |1̃Aξ (·)

]q)1/q∥
∥∥∥

L p
< ∞. (5.10)

Here 1̃Aξ := |Aξ |−1/21Aξ with 1Aξ being the characteristic function of Aξ .

Above as usual the �p or �q norm is replaced by the sup-norm if p = ∞ or q = ∞.
The “analysis” and “synthesis” operators are defined by

Sψ̃ : f → {〈 f , ψ̃ξ 〉}ξ∈ X and Tψ : {aξ }ξ∈ X →
∑

ξ∈ X
aξψξ . (5.11)

Here the roles of {ψξ } and {ψ̃ξ } can be interchanged.

Theorem 5.5 [18, Theorem 5.6] Let s ∈ R and 0 < p, q ≤ ∞. (a) The operators
Sψ̃ : Ḃs

pq → ḃs
pq and Tψ : ḃs

pq → Ḃs
pq are bounded and Tψ ◦ Sψ̃ = I d on Ḃs

pq .

Consequently, for f ∈ S′/P we have f ∈ Ḃs
pq if and only if {〈 f , ψ̃ξ 〉}ξ∈ X ∈ ḃs

pq .

Moreover, if f ∈ Ḃs
pq , then ‖ f ‖Ḃs

pq
∼ ‖{〈 f , ψ̃ξ 〉}‖ḃs

pq
and

‖ f ‖Ḃs
pq
∼

( ∑

j∈Z
b jsq

[ ∑

ξ∈ X j

‖〈 f , ψ̃ξ 〉ψξ‖p
p

]q/p)1/q

. (5.12)

(b) The operators Sψ̃ : ˙̃Bs

pq → ˙̃bs

pq and Tψ : ˙̃bs

pq → ˙̃Bs

pq are bounded and Tψ ◦Sψ̃ =
I d on ˙̃Bs

pq . Hence, f ∈ ˙̃Bs

pq ⇐⇒ {〈 f , ψ̃ξ 〉}ξ∈ X ∈ ˙̃bs

pq . Furthermore, if f ∈ ˙̃Bs

pq ,

then ‖ f ‖ ˙̃Bs

pq
∼ ‖{〈 f , ψ̃ξ 〉}‖ ˙̃bs

pq
and

‖ f ‖ ˙̃Bs

pq
∼

( ∑

j∈Z

[ ∑

ξ∈ X j

(
|B(ξ, b− j )|−s/d‖〈 f , ψ̃ξ 〉ψξ‖p

)p]q/p)1/q

. (5.13)

Above in (a) and (b) the roles of {ψξ } and {ψ̃ξ } can be interchanged.

Theorem 5.6 [18, Theorem 5.7] Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. (a) The
operators Sψ̃ : Ḟ s

pq → ḟ s
pq and Tψ : ḟ s

pq → Ḟ s
pq are bounded and Tψ̃ ◦ Sψ = I d on

Ḟs
pq . Consequently, f ∈ Ḟ s

pq if and only if {〈 f , ψ̃ξ 〉}ξ∈ X ∈ ḟ s
pq , and if f ∈ Ḟ s

pq , then

‖ f ‖Ḟs
pq
∼ ‖{〈 f , ψ̃ξ 〉}‖ ḟ s

pq
. Furthermore,

‖ f ‖Ḟs
pq
∼

∥∥∥∥

( ∑

j∈Z
b jsq

∑

ξ∈ X j

[|〈 f , ψ̃ξ 〉||ψξ (·)|
]q

)1/q∥∥∥∥
L p

. (5.14)

(b) The operators Sψ̃ : ˙̃Fs

pq → ˙̃f s

pq and Tψ : ˙̃f s

pq → ˙̃Fs

pq are bounded and

Tψ̃ ◦ Sψ = I d on ˙̃Fs

pq . Hence, f ∈ ˙̃Fs

pq if and only if {〈 f , ψ̃ξ 〉}ξ∈ X ∈ ˙̃f s

pq , and if

f ∈ ˙̃Fs

pq , then ‖ f ‖ ˙̃Fs

pq
∼ ‖{〈 f , ψ̃ξ 〉}‖ ˙̃f s

pq
. Furthermore,
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‖ f ‖ ˙̃Fs

pq
∼

∥
∥∥∥

( ∑

ξ∈ X

[|B(ξ, b− j )|−s/d |〈 f , ψ̃ξ 〉||ψξ (·)|
]q

)1/q∥
∥∥∥

L p
. (5.15)

As before the roles of ψξ and ψ̃ξ can be interchanged.

6 Almost Diagonal Operators

As in the classical case onRn (see [15]), we shall introduce almost diagonal operators
acting on the sequence homogeneous Besov and Triebel–Lizorkin spaces. In fact, our
definition for almost diagonal operators is a refinement of the one given in [10] in the
inhomogeneous case.

As in the definition of the sequence Besov and Triebel–Lizorkin spaces in Sect. 5

X := ∪ j∈Z X j (6.1)

will be the set of centers of the frame elements ψξ and ψ̃ξ , ξ ∈ X, and

{Aξ }ξ∈ X j , ∪ξ∈ X j Aξ = M, j ∈ Z, (6.2)

will denote the companion disjoint partitions of M .

Remark 6.1 As indicated above the sets X j , j ∈ Z, X := ∪ j∈Z X j are from the
definition of the frames {ψξ }ξ∈ X, {ψ̃ξ }ξ∈ X in Sect. 4. Note that once the constant
γ > 0 is fixed (see Sect. 4), each set X j is an arbitrary maximal δ j−net on M with
δ j = γ b− j−2. Therefore, there is no uniqueness in the selection of these sets. In what
follows we shall assume that once selected these sets are fixed, once and for all.

A similar observation is valid about the sets Aξ , ξ ∈ X j , from (6.2). They form an
arbitrary disjoint partition of M consisting of measurable sets such that

B(ξ, δ j/2) ⊂ Aξ ⊂ B(ξ, δ j ), ξ ∈ X j . (6.3)

Again there is no uniqueness. We shall consider them fixed, once and for all.

It will be convenient to us to use the notation

�(ξ) := b− j and Bξ := B(ξ, δ j ) for ξ ∈ X j , j ∈ Z. (6.4)

Here b > 1 is the constant from the construction of the frames in Sect. 4. Observe that
by (1.2) and (6.3) it follows that |Aξ | ∼ |Bξ | ∼ |B(ξ, �(ξ))|.

Definition 6.2 Let A be a linear operator acting on one of the spaces ˙̃bs

pq ,
˙̃f s

pq , ḃs
pq ,

ḟ s
pq , with associated matrix (aξη)ξ,η∈ X. Let also J := d/min{1, p} for ḃs

pq ,
˙̃bs

pq and
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J := d/min{1, p, q} for ḟ s
pq ,

˙̃f s

pq . We say that the operator A is almost diagonal on
the respective b- or f -space if there exists δ > 0 such that

sup
ξ,η∈ X

|aξη|
ωξη(δ)

< ∞,

where

ωξη(δ) :=
(

�(ξ)

�(η)

)s( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

max{�(ξ), �(η)}
)− J−δ

×min

{(
�(ξ)

�(η)

)δ

,

(
�(η)

�(ξ)

) J+δ}
(6.5)

in the case of the spaces ḃs
pq or ḟ s

pq , and

ωξη(δ) :=
( |Bξ |
|Bη|

)s/d+1/2(
1+ ρ(ξ, η)

max{�(ξ), �(η)}
)− J−δ

×min

{(
�(ξ)

�(η)

)δ

,

(
�(η)

�(ξ)

) J+δ}
(6.6)

in the case of ˙̃bs

pq or ˙̃f s

pq .

6.1 Boundedness of Almost Diagonal Operators

We next show that the almost diagonal operators are bounded on ḃs
pq ,

˙̃bs

pq , ḟ s
pq , or

˙̃f s

pq , respectively. More precisely, with the notation

‖A‖δ := sup
ξ,η∈ X

|aξη|
ωξη(δ)

(6.7)

the following result holds:

Theorem 6.3 Suppose s ∈ R, 0 < q ≤ ∞, and 0 < p < ∞ (0 < p ≤ ∞ in the case
of ḃ-spaces) and let ‖A‖δ < ∞ (in the sense of Definition 6.2) for some δ > 0. Then
there exists a constant c > 0 such that for any sequence h := {hξ }ξ∈ X ∈ ḃs

pq

‖Ah‖ḃs
pq
≤ c‖A‖δ‖h‖ḃs

pq
, (6.8)

and the same holds true with ḃs
pq replaced by ˙̃bs

pq , ḟ s
pq , or ˙̃f s

pq .

The proof of this theorem will be carried out similarly as the proof of Theorem 3.3
in [15] or Theorem 4.4 in [10]. We place it in the appendix.
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6.2 The Algebra of Almost Diagonal Operators

Let s ∈ R, 0 < p < ∞ (0 < p ≤ ∞ in the case of ḃ-spaces), and 0 < q ≤ ∞ be

fixed. We denote by ads
pq the class of almost diagonal operators on ḃs

pq , ḟ s
pq ,

˙̃bs

pq , or
˙̃f s

pq , equipped with the norm

‖A‖ads
pq
:= inf

ε>0
‖A‖ε, (6.9)

where ‖A‖ε := supξ,η |aξη|/ωξη(ε), see (6.5)–(6.7).
This is a nondecreasing function of ε and, therefore, ‖A‖ads

pq
is indeed a norm.

Our next goal is to prove that the class ads
pq is an algebra under composition.

Theorem 6.4 Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞ (0 < p ≤ ∞ in the case of
ḃ-spaces). Then for the respective ḃ- and ḟ -spaces the following claims hold:

(i) If A, B ∈ ads
pq , then A ◦ B ∈ ads

pq .
(ii) For any ε > 0 there exists δ > 0 such that if A ∈ ads

pq and ‖I − A‖ε < δ, then

A is invertible and A−1 ∈ ads
pq .

We shall carry out the proof of this theorem in the spirit of the proof of Theorem 9.1
in [15]. We need some additional notation. For any β, γ > 0 and ξ, η ∈ X we set:

(i) in the case of ḃs
pq and ḟ s

pq ,

ωξη(β, γ ) :=
(

�(ξ)

�(η)

)s( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

max{�(ξ), �(η)}
)− J−β

×min

{(
�(ξ)

�(η)

)γ

,

(
�(η)

�(ξ)

) J+γ }
, (6.10)

(ii) in the case of ˙̃bs

pq and ˙̃f s

pq ,

ωξη(β, γ ) :=
( |Bξ |
|Bη|

)s/d+1/2(
1+ ρ(ξ, η)

max{�(ξ), �(η)}
)− J−β

×min

{(
�(ξ)

�(η)

)γ

,

(
�(η)

�(ξ)

) J+γ }
. (6.11)

Furthermore, given β, γ1, γ2 > 0 and ξ, η ∈ X, we set

Wξη(β, γ1, γ2) :=
∑

ζ∈ X
ωξζ (β, γ1)ωζη(β, γ2). (6.12)

The following lemma will be instrumental in the proof of Theorem 6.4.

Lemma 6.5 Let β, γ1, γ2 > 0 be such that γ1 �= γ2 and β < γ1 + γ2. Then for any
ξ, η ∈ X
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Wξη(β, γ1, γ2) ≤ cωξη(β, γ1 ∧ γ2), (6.13)

where the constant c > 0 depends on β, γ1, γ2, J, and the constant c0 from (1.1).

Proof We shall only carry out the proof for the spaces ḃs
pq and ḟ s

pq . The proof for the

spaces ˙̃bs

pq and ˙̃f s

pq is similar.
Assume �(ξ) ≤ �(η). Clearly, by (6.10)–(6.12)

Wξη(β, γ1, γ2) =
∑

ζ∈ X

(
�(ξ)

�(η)

)s( |Bξ |
|Bη|

)1/2

×
(
1+ ρ(ξ, ζ )

max{�(ξ), �(ζ )}
)− J−β(

1+ ρ(ζ, η)

max{�(ζ ), �(η)}
)− J−β

×min

{(
�(ξ)

�(ζ )

)γ1

,

(
�(ζ )

�(ξ)

) J+γ1
}
min

{(
�(ζ )

�(η)

)γ2

,

(
�(η)

�(ζ )

) J+γ2
}
.

Let �(ξ) = b− j , �(η) = b−ν , ν ≤ j . Then

Wξη(β, γ1, γ2) =
(

�(ξ)

�(η)

)s( |Bξ |
|Bη|

)1/2

(�1 +�2 +�3) ,

where

�1 =
∞∑

m= j+1

∑

ζ∈ Xm

(
1+ ρ(ξ, ζ )

max{�(ξ), �(ζ )}
)− J−β(

1+ ρ(ζ, η)

max{�(ζ ), �(η)}
)− J−β

×min

{(
�(ξ)

�(ζ )

)γ1

,

(
�(ζ )

�(ξ)

) J+γ1
}
min

{(
�(ζ )

�(η)

)γ2

,

(
�(η)

�(ζ )

) J+γ2
}

and �2 =
j∑

m=ν

∑

ζ∈ Xm

· · · , �3 =
ν−1∑

m=−∞
∑

ζ∈ Xm

· · · for the same quantity. Applying

(2.15) we get

�1 =
∞∑

m= j+1

∑

ζ∈ Xm

b( J+γ1)( j−m)bγ2(ν−m)

(
1+ b jρ(ξ, ζ )

) J+β
(1+ bνρ(ζ, η)) J+β

≤ c
(
1+ bνρ(ξ, η)

)− J−β
∞∑

m= j+1
b( J+γ1)( j−m)bγ2(ν−m)bd(m− j)

≤ c
(
1+ bνρ(ξ, η)

)− J−β
bγ2(ν− j),

where for the last inequality we used that γ1 + γ2 > 0 and J ≥ d.
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We use again (2.15) to obtain

�2 =
j∑

m=ν

∑

ζ∈ Xm

bγ1(m− j)bγ2(ν−m)

(1+ bmρ(ξ, ζ )) J+β (1+ bνρ(ζ, η)) J+β

≤ c
(
1+ bνρ(ξ, η)

)− J−β
j∑

m=ν

bγ1(m− j)bγ2(ν−m).

If γ1 < γ2, then

j∑

m=ν

bγ1(m− j)bγ2(ν−m) ≤
∞∑

m=ν

b(γ1−γ2)mb−γ1 j bγ2ν ≤ cbγ1(ν− j).

If γ1 > γ2, then

j∑

m=ν

bγ1(m− j)bγ2(ν−m) ≤
j∑

m=−∞
b(γ1−γ2)mb−γ1 j bγ2ν ≤ cbγ2(ν− j).

In both cases we get

�2 ≤ c
(
1+ bνρ(ξ, η)

)− J−β
b(γ1∧γ2)(ν− j).

To estimate �3 we use again (2.15) and obtain

�3 =
ν−1∑

m=−∞

∑

ζ∈ Xm

bγ1(m− j)b( J+γ2)(m−ν)

(1+ bmρ(ξ, ζ )) J+β (1+ bmρ(ζ, η)) J+β

≤ c
ν−1∑

m=−∞

(
1+ bmρ(ξ, η)

)− J−β
bγ1(m− j)b( J+γ2)(m−ν).

However, if m < ν, then

(
1+ bmρ(ξ, η)

)− J−β ≤ b( J+β)(ν−m)
(
1+ bνρ(ξ, η)

)− J−β

and due to γ1 + γ2 > β

ν−1∑

m=−∞
bγ1(m− j)b( J+γ2)(m−ν)b( J+β)(ν−m)

=
ν−1∑

m=−∞
b(γ1+γ2−β)mb−γ1 j b−γ2νbβν ≤ cbγ1(ν− j).
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Hence

�3 ≤ c
(
1+ bνρ(ξ, η)

)− J−β
bγ1(ν− j).

Putting the above estimates together we get for �(ξ) ≤ �(η)

Wξη(β, γ1, γ2) ≤ c

(
�(ξ)

�(η)

)s( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(η)

)− J−β(
�(ξ)

�(η)

)γ1∧γ2

.

Just in the same way one shows that if �(ξ) > �(η), then

Wξη(β, γ1, γ2) ≤ c

(
�(ξ)

�(η)

)s( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(ξ)

)− J−β(
�(η)

�(ξ)

) J+γ1∧γ2

.

The proof is complete. � 
Proof of Theorem 6.4 (i) Assume A, B ∈ ads

pq and let {aξη}ξ,η, {bξη}ξ,η be their
respective matrices. Then there exist εa , εb > 0 such that

|aξη| ≤ cωξη(εa), |bξη| ≤ cωξη(εb).

Evidently, ωξη(ε) is a nonincreasing function of ε and hence we may assume that
εa > εb. Note that by the definitions it follows that

ωξη(β, β) = ωξη(β), and ωξη(ε) ≤ ωξη(β, γ ), if 0 < β, γ ≤ ε. (6.14)

Denote by {cξη}ξ,η the matrix of the composition A ◦ B. Applying Lemma 6.5 we
get

|cξη| =
∣∣
∣∣
∑

ζ∈ X
aξζ bζη

∣∣
∣∣ ≤ c

∑

ζ∈ X
ωξζ (εa)ωζη(εb) ≤ c

∑

ζ∈ X
ωξζ (εb, εa)ωζη(εb, εb)

= cWξη(εb, εa, εb) ≤ c∗ωξη(εb, εb) = c∗ωξη(εb)

and the proof of (i) is complete.
(ii) Let D := I − A with matrix {dξη}ξ,η and fix ε > 0. Assume ‖I − A‖ε < δ for

some δ > 0, implying |dξη| ≤ δωξη(ε). Denote by {d(n)
ξη }ξ,η the matrix of Dn ,

n ≥ 1. Fix 0 < ε1 < ε. We claim that there exists a constant c∗ > 1, independent
of δ, such that for any n ∈ N

|d(n)
ξη | ≤ (δc∗)nωξη(ε1), ∀ξ, η ∈ X. (6.15)

Indeed, from (6.14) ωξη(ε) ≤ ωξη(ε1, ε) and just as in the proof of (i) we infer

|d(2)
ξη | ≤ c∗δ2ωξη(ε1) ≤ (c∗δ)2ωξη(ε1).
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Suppose that (6.15) holds for some n ∈ N. Then from |dξη| ≤ δωξη(ε) and (6.15)

it follows just as above that |d(n+1)
ξη | ≤ (δc∗)n+1ωξη(ε1). Therefore, (6.15) holds

for all n ∈ N.
Now, choose δ < 1/c∗. Then the Neumann series

∑
n≥0 Dn converges to the

operator (I − D)−1 = A−1 and for its matrix {a−1ξη }ξ,η it holds that

|a−1ξη | ≤ (1− δc∗)−1ωξη(ε1).

Therefore, A−1 exists and is almost diagonal. � 

6.3 Compactly Supported Frames

Frames for inhomogeneous Besov and Triebel–Lizorkin spaces in the setting of this
article with compactly supported elements are developed in [10]. We next show
how this construction can be modified for homogeneous Besov and Triebel–Lizorkin
spaces.

Let� be the compactly supportedC∞ functions from the construction of Frame # 1,
see (4.1). The first step is to construct a band limited function �, which approximates
� in the specific sense given next.

Proposition 6.6 For any ε > 0 and N ≥ K ≥ 1 there exists a function � ∈ C∞(R)

and R > 0 such that � is even and real-valued, supp �̂ ⊂ [−R, R], and

|�(ν)(u)−�(ν)(u)| ≤ ε|u|N
(1+ |u|)2N

, u ∈ R, ν = 0, 1, . . . , K . (6.16)

Furthermore,
supp F(u−m�(u)) ⊂ [−R, R] for 0 ≤ m ≤ N (6.17)

with F being the Fourier transform.

The constants N , K and ε (sufficiently small) will be selected later on. With these
constants fixed, we use the functions � from Proposition 6.6 to define the new frame.
Let the sets X j , X := ∪ j∈Z X j , and {Aξ }ξ∈ X j be as in the definition of Frame # 1.
We define a new system {θξ }ξ∈ X by

θξ (x) := |Aξ |1/2�(b− j
√

L)(x, ξ), ξ ∈ X j , j ∈ Z. (6.18)

Observe that by the fact that supp �̂ ⊂ [−R, R] and the final speed propagation
property (Proposition 2.1) it follows that each θξ is compactly supported, more pre-
cisely

supp θξ ⊂ B(ξ, c̃Rb− j ), ξ ∈ X j , j ∈ Z. (6.19)

The construction of a dual frame {θ̃ξ }ξ∈ X is more involved, see below and for more
details see [10].
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The basic result we need here is that the systems {θξ }ξ∈ X, {θ̃ξ }ξ∈ X form a pair of
frames for Besov and Triebel–Lizorkin spaces for the following range � of indices
determined by constants s0 ≥ 0, p0, p1, q0 > 0:

� := {(s, p, q) : |s| ≤ s0, p0 ≤ p ≤ p1, q0 ≤ q < ∞}. (6.20)

We introduce the following notation: J0 := d/min{1, p0} in the case of Ḃ-spaces
and J0 := d/min{1, p0, q0} in the case of Ḟ-spaces.

Theorem 6.7 Suppose (s, p, q) ∈ � and let {θξ }ξ∈ X be the system constructed in
(6.18), where

K ≥ s0 + J0 + d/2+ 1 and N ≥ K + s0 + J0 + 3d/2+ 1 (6.21)

Then for sufficiently small ε in the construction of {θξ }ξ∈ X the following claims are
valid:

(a) The operator

T f :=
∑

ξ∈ X
〈 f , ψ̃ξ 〉θξ ,

is invertible on Ḃs
pq and T , T−1 are bounded on Ḃs

pq .

(b) The system {θ̃ξ }ξ∈ X defined by

θ̃ξ :=
∑

η∈ X
〈T−1ψη, ψ̃ξ 〉ψ̃η, ξ ∈ X,

is a dual frame to {θξ }ξ∈ X in the following sense: For any f ∈ Ḃs
pq

f =
∑

ξ∈ X
〈 f , θ̃ξ 〉θξ and ‖ f ‖Ḃs

pq
∼ ‖(〈 f , θ̃ξ 〉)‖ḃs

pq
, (6.22)

where 〈 f , θ̃ξ 〉 is defined by

〈 f , θ̃ξ 〉 :=
∑

η∈ X
〈T−1ψη, ψ̃ξ 〉〈 f , ψ̃η〉 (6.23)

and the convergence in (6.22) is in S′/P and unconditional in Ḃs
pq .

Furthermore, (a) and (b) hold true when Ḃs
pq is replaced by ˙̃Bs

pq , Ḟ s
pq , or ˙̃Fs

pq ,

and ḃs
pq by ˙̃bs

pq , ḟ s
pq , or ˙̃f s

pq , respectively.

Theproof of this theorem is a straightforward adaptation of the proof ofTheorem4.2
in [10]; we omit it.
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7 SmoothMolecular and Atomic Decompositions

Families of smooth atoms andmolecules onHomogeneous Besov and Tribel–Lizorkin
spaces in the classical case onRn are introduced and studied in [14,15]. They not only
provide convenient building blocks for various spaces of distributions, but also can be
used in establishing boundedness of operators [2,6,19,31,33,38].

7.1 SmoothMolecules for Ḃ and Ḟ-Spaces

In this section we generalize the boundedness of the operators Tψ , Sψ̃ from (5.11) (see

Theorems5.5 and5.6) by replacing {ψξ } and {ψ̃ξ }by families of smoothmolecules.We
present the results for the Ḟ s

pq spaces, but they also hold for the Ḃs
pq spaces. We recall

from Definition 6.2 that J := d/min{1, p} for Ḃs
pq ,

˙̃Bs

pq and J := d/min{1, p, q}
for Ḟ s

pq ,
˙̃Fs

pq . Also, we set

K := !( J− s)/2" + 1 if s ≤ J and N := !s/2" + 1 if s ≥ 0 (7.1)

(K , N will be needed only for the indicated values of s). As before X = ∪ j∈Z X j

will be the set centers of the frame elements {ψξ } and {ψ̃ξ } and {Aξ }ξ∈ X j will be
the companion disjoint partitions of M , see Remark 6.1. Recall that �(ξ) := b− j and
Bξ := B(ξ, δ j ), δ j = γ b− j−2, ξ ∈ X j , j ∈ Z.

Definition of Smooth Synthesis Molecules

Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and let J, K , N be as above. We say that
{mξ }ξ∈ X is a family of smooth synthesis molecules for Ḟ s

pq , if there exists M > J
such that for any ξ ∈ X:

(i)

|mξ (x)| ≤ |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M

. (7.2)

(ii) If s ≥ 0 it is assumed that mξ ∈ D(L N ) and for 0 < ν ≤ N

|Lνmξ (x)| ≤ �(ξ)−2ν |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M

. (7.3)

(iii) In addition, if s ≤ J, it is also assumed that there exists a family of functions
{bξ }ξ∈ X, bξ ∈ D(L K ), such that

mξ = L K bξ , (7.4)
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and for 0 ≤ ν < K

|Lνbξ (x)| ≤ �(ξ)2(K−ν)|Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M

. (7.5)

Note that (7.3) is void if s < 0, and (7.4)–(7.5) are void if s > J.

Definition of Smooth Analysis Molecules

Let s, p, q and J, K , N be as above. We say that {m̃ξ }ξ∈ X is a family of smooth
analysis molecules for Ḟ s

pq , if there exists M > J such that for any ξ ∈ X:
(i)

|m̃ξ (x)| ≤ |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M+d

. (7.6)

(ii) If s ≤ J it is assumed that m̃ ∈ D(L K ) and for 0 ≤ ν ≤ K

|Lνm̃ξ (x)| ≤ �(ξ)−2ν |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M+d

. (7.7)

(iii) In addition, if s ≥ 0, it is also assumed that there exists a family of functions
{b̃ξ }ξ∈ X, b̃ξ ∈ D(L N ), such that:

m̃ξ = L N b̃ξ , (7.8)

and for 0 ≤ ν ≤ N

|Lν b̃ξ (x)| ≤ �(ξ)2(N−ν)|Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M+d

. (7.9)

As before condition (7.7) is voidwhenever s > J, and (7.8)–(7.9) are void if s < 0.

Remark 7.1 If {mξ }ξ∈ X is a family of smooth synthesis (or analysis) molecules, then
we shall say that mη (η ∈ X) is a molecule centered at η.

The first step here is to establish the following:

Lemma 7.2 There exist constants c∗, ĉ > 0 such that each of the frames {c∗ψξ }ξ∈ X
and {ĉψ̃ξ }ξ∈ X is a family of smooth synthesis and analysis molecules for Ḟs

pq .

Proof Wefirst show that there exists a constant c∗ > 0 such that {c∗ψξ }ξ∈ X is a family
of smooth synthesis molecules. Let

mξ (x) := c∗ψξ (x) = c∗|Aξ |1/2�(b− j
√

L)(x, ξ), (see (4.8))

where c∗ > 0 is a constant that will be selected later on. From (4.14) it readily follows
that mξ obeys (7.2)–(7.3) if the constant c∗ is sufficiently small.
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Let now s ≤ J and ξ ∈ X j . Write (see (4.8) and Remark 2.5)

bξ (x) := c∗L−K ψξ (x) = c∗|Aξ |1/2[L−K �(b− j
√

L)](x, ξ).

Then

L K bξ (x) = c∗ψξ (x) = mξ (x).

Assuming that 0 ≤ ν ≤ K , K = !( J − s)/2" + 1, we set g(u) := u2(ν−K )�(u).
Clearly Lν−K �(b− j

√
L) = b−2 j(K−ν)g(b− j

√
L), g ∈ C∞(R+) and supp g ⊂

[b−1, b]. Then by Theorem 2.2, applied to g, it follows that for any M > 0

|Lνbξ (x)| ≤ cc∗|Aξ |1/2b−2 j(K−ν)

|B(ξ, b− j )|(1+ b jρ(ξ, x))M
≤ cc∗�(ξ)2(K−ν)|Bξ |−1/2

(1+ �(ξ)−1ρ(x, ξ))M
,

where the constant c > 0 depends on M. We fix M > J. By choosing the constant
c∗ sufficiently small we conclude that {mξ } with mξ := c∗ψξ is a family of smooth
synthesis molecules.

Just as above one shows that there exists a constant c∗ > 0 such that {c∗ψξ }ξ∈ X is
a family of smooth analysis molecules. We omit the details.

We next show that there exists a constant ĉ > 0 such that {ĉψ̃ξ }ξ∈ X is a family of
smooth analysis molecules. Denote (see (4.12))

m̃ξ (x) := ĉψ̃ξ (x) = ĉcε |Aξ |1/2Tλ j

(
�λ j (·, ξ)

)
(x), λ j := b j−1, ξ ∈ X j .

where ĉ > 0 is a constant that will be selected later on. From (4.14) it readily follows
that m̃ξ obeys (7.6)–(7.7) if the constant ĉ is sufficiently small.

Let s ≥ 0 and ξ ∈ X j . Set

b̃ξ (x) := ĉcε |Aξ |1/2L−N Tλ j

(
�λ j (·, ξ)

)
(x). (7.10)

Clearly, m̃ξ = L N b̃ξ and it remains to show that for 0 ≤ ν ≤ N the function Lν b̃ξ

obeys (7.9). Observe that the operators L−N and Tλ j do not necessarily commute. We
go round this obstacle just as in the proof of Theorem 4.3 in [24]. We have

Tλ j := Id + Sλ j and Sλ j :=
∑

k≥1
Rλ j = Rλ j (Id + Sλ j ), (7.11)

where the operator Rλ j is from the proof of Lemma 4.2 in [24]. In fact, we have
Rλ j = �2

λ j
− Vλ j , where Vλ j is the operator with kernel

Vλ j (x, y) :=
∑

η∈ X j

ωη�λ j (x, η)�λ j (η, y). (7.12)
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Here ωη := (1 + ε)−1|Aη|, just as in Lemma 4.2. From (7.10)–(7.11) we derive the
following representation of Lν b̃ξ :

Lν b̃ξ (x) = ĉcε|Aξ |1/2
(

Lν−N �λ j (x, ξ)+ Lν−N Rλ j [�λ j (·, ξ)](x)

+ Lν−N Rλ j Sλ j [�λ j (·, ξ)](x)

)
.

Let h(u) := u2(ν−N )�(u). We have Lν−N �λ j = λ
−2(N−ν)
j h(λ−1j

√
L), and clearly

h ∈ C∞(R+) and supp h ⊂ [b−1, b3]. We now apply Theorem 2.2 to h(λ−1j

√
L) to

conclude that for any σ > 0 there exists a constant cσ such that the kernel of the
operator Lν−N �λ j obeys

|[Lν−N �λ j ](x, y)| ≤ cσ λ
−2(N−ν)
j

|B(y, λ j )|(1+ λ jρ(x, y))σ
.

We choose σ :=M+ 4d, where M > J is fixed. Then

|[Lν−N �λ j ](x, y)| ≤ cb−2 j(N−ν)

|B(y, b− j )|(1+ b jρ(x, y))M+4d
. (7.13)

Also, by Theorem 2.2

|�λ j (x, y)| ≤ c

|B(y, b− j )|(1+ b jρ(x, y))M+4d
. (7.14)

Estimates (7.13)–(7.14) along with (7.12) and Lemma 2.8 yield

|[Lν−N Vλ j ](x, y)| ≤ cb−2 j(N−ν)

|B(y, b− j )|(1+ b jρ(x, y))M+4d
.

On the other hand, (7.13)–(7.14) and Lemma 2.7 imply

|[Lν−N �2
λ j
](x, y)| ≤ cb−2 j(N−ν)

|B(y, b− j )|(1+ b jρ(x, y))M+3d
.

Therefore, the kernel of the operator Rλ j satisfies

|[Lν−N Rλ j ](x, y)| ≤ cb−2 j(N−ν)

|B(y, b− j )|(1+ b jρ(x, y))M+3d
. (7.15)

We apply inequality (2.11) twice using (7.15), (4.10), and (7.14) to obtain

|Lν−N Rλ j Sλ j [�λ j (·, ξ)](x)| ≤ cb−2 j(N−ν)

|B(ξ, b− j )|(1+ b jρ(x, ξ))M+d
.
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By the same token we get a similar estimate for |Lν−N Rλ j [�λ j (·, ξ)](x)|. These
estimates and (7.13) imply

|Lν b̃ξ (x)| ≤ cĉ|Aξ |1/2b−2 j(N−ν)

|B(ξ, b− j )|(1+ b jρ(ξ, x))M+d
≤ cĉ�(ξ)2(N−ν)|Bξ |−1/2

(1+ �(ξ)−1ρ(x, ξ))M+d
,

Therefore, inequality (7.9) holds if the constant ĉ is sufficiently small. Consequently,
{m̃ξ } with m̃ξ := ĉψ̃ξ is a family of analysis molecules.

Exactly as above one shows that there exists a constant ĉ > 0 such that {ĉψ̃ξ }ξ∈ X
is a family of synthesis molecules. We omit the details. � 
Lemma 7.3 Suppose {mξ } and {m̃ξ } are families of smooth synthesis and analysis
molecules for Ḟs

pq , respectively, and let A be the operator with matrix

(aξη)ξ,η∈ X = (〈mη, m̃ξ 〉)ξ,η∈ X.

Then there exist constants c, δ > 0 such that

|aξη| ≤ cωδ(ξ, η), ∀ξ, η ∈ X, (7.16)

where ωδ(ξ, η) is from (6.5). Therefore, A is almost diagonal on ḟ s
pq and by Theo-

rem 6.3 the operator A is bounded on ḟ s
pq .

Proof Under the hypothesis of the lemma, two cases present themselves here.
Case 1: �(ξ) ≥ �(η). We consider two subcases depending on whether s ≤ J or

s > J.
Let s ≤ J. By the definition of synthesis molecules (Sect. 7.1) there exists a

function bη ∈ D(L K ), K := !( J− s)/2" + 1, such that mη = L K bη and

|bη(x)| ≤ �(η)2K |Bη|−1/2
(
1+ ρ(x, η)

�(η)

)−M
. (7.17)

On the other hand, from (7.7)

|L K m̃ξ (x)| ≤ �(ξ)−2K |Bξ |−1/2
(
1+ ρ(x, ξ)

�(ξ)

)−M−d

. (7.18)

Clearly, aξη = 〈L K bη, m̃ξ 〉 = 〈bη, L K m̃ξ 〉 and using (7.17)–(7.18) and (2.12) we
obtain

|aξη| ≤ |Bη|−1/2|Bξ |−1/2
(

�(η)

�(ξ)

)2K ∫

M

(
1+ ρ(x, η)

�(η)

)−M(
1+ ρ(ξ, x)

�(ξ)

)−M−d

dμ(x)

≤ c|Bη|−1/2|Bξ |−1/2
(

�(η)

�(ξ)

)2K

|B(ξ, �(ξ))|
(
1+ ρ(ξ, x)

�(ξ)

)−M
.
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Here for the last inequality we used that |B(ξ, �(ξ))| ∼ |Bξ |. Hence

|aξη| ≤ c

(
�(η)

�(ξ)

)2K ( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(ξ)

)−M
. (7.19)

In the light of (6.5) the above implies (7.16) for any 0 < δ ≤ min{2K− J+s,M− J}.
If s > J, we use that aξη = 〈mη, m̃ξ 〉, the fact that mη, m̃ξ satisfy (7.2), (7.6), and

(2.12) to obtain

|aξη| ≤ |Bη|−1/2|Bξ |−1/2
∫

M

(
1+ ρ(x, η)

�(η)

)−M(
1+ ρ(ξ, x)

�(ξ)

)−M−d

dμ(x)

≤ c

( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(ξ)

)−M
. (7.20)

It is easy to see that this implies (7.16) for 0 < δ ≤ min{s − J,M− J}.
Case 2: �(η) > �(ξ). Here we consider two subcases: s ≥ 0 or s < 0.
Let s ≥ 0. By the definition of analysis molecules there exists b̃ξ ∈ D(L N ),

N := !s/2" + 1, such that m̃ξ = L N b̃ξ and b̃ξ obeys

|b̃ξ (x)| ≤ �(ξ)2N |Bξ |−1/2
(
1+ ρ(x, ξ)

�(ξ)

)−M−d

. (7.21)

Furthermore, by (7.3)

|L N mη(x)| ≤ �(η)−2N |Bη|−1/2
(
1+ ρ(x, η)

�(η)

)−M
. (7.22)

Clearly, aξη = 〈mη, L N b̃ξ 〉 = 〈L N mη, b̃ξ 〉. Then using (7.21)–(7.22), and (2.12) we
obtain just as in Case 1

|aξη| ≤
(

�(ξ)

�(η)

)2N

|Bη|−1/2|Bξ |−1/2
∫

M

(
1+ ρ(x, η)

�(η)

)−M(
1+ ρ(ξ, x)

�(ξ)

)−M−d

dμ(x)

≤ c

(
�(ξ)

�(η)

)2N ( |Bξ |
|Bη|

)1/2 (
1+ ρ(ξ, η)

�(η)

)−M
. (7.23)

This estimate and the fact that N = !s/2" + 1 readily imply (7.16) for an arbitrary
0 < δ ≤ min{2N − s,M− J}.

If s < 0, we use that aξη = 〈mη, m̃ξ 〉, the fact that mη, m̃ξ obey (7.2), and (7.6) to
obtain
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|aξη| ≤ |Bη|−1/2|Bξ |−1/2
∫

M

(
1+ ρ(x, η)

�(η)

)−M(
1+ ρ(ξ, x)

�(ξ)

)−M−d

dμ(x)

≤ c

( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(η)

)−M
,

(7.24)
implying (7.16) for any 0 < δ ≤ min{−s,M− J}.

Finally, choosing δ > 0 sufficiently small we arrive at (7.16). � 

After this preparation we come to the main assertions in this section.

Theorem 7.4 (Smoothmolecular synthesis) If {mξ }ξ∈ X is a family of smooth synthesis
molecules for Ḟs

pq , then for any sequence t = {tξ }ξ∈ X ∈ ḟ s
pq

∥∥∥
∥

∑

ξ∈ X
tξ mξ

∥∥∥
∥

Ḟs
pq

≤ c‖t‖ ḟ s
pq

, (7.25)

where the constant c > 0 is independent of {mξ } and {tξ }.

Proof By (4.13)we havemη = ∑
ξ∈ X〈mη, ψ̃ξ 〉ψξ ,where the convergence is in S′/P.

By Lemmas 7.2–7.3 it follows that the operator A with matrix

(aξη)ξ,η∈ X := (〈mη, ψ̃ξ 〉)ξ,η∈ X

is almost diagonal on ḟ s
pq and hence, by Theorem 6.3, A is bounded on ḟ s

pq . On the

other hand, by Theorem 5.6 the synthesis operator Tψ : ḟ s
pq → Ḟ s

pq from (5.11) is
also bounded. Observe that

Tψ At =
∑

ξ∈ X
(At)ξψξ =

∑

ξ∈ X

∑

η∈ X
aξηtηψξ

=
∑

η∈ X

( ∑

ξ∈ X
aξηψξ

)
tη =

∑

η∈ X
mηtη =: f .

Now, using the boundedness of the operators Tψ and A we infer

‖ f ‖Ḟs
pq
= ‖Tψ At‖Ḟs

pq
≤ c‖At‖ ḟ s

pq
≤ c‖t‖ ḟ s

pq
,

which completes the proof. � 

Theorem 7.5 (Smooth molecular analysis) If {m̃ξ } is a family of smooth analysis
molecules for Ḟs

pq , then for any f ∈ Ḟ s
pq

‖{〈 f , m̃ξ 〉}‖ ḟ s
pq
≤ c‖ f ‖Ḟs

pq
, (7.26)
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where c > 0 is a constant independent of f and {m̃ξ }. Here 〈 f , m̃ξ 〉 is defined by

〈 f , m̃ξ 〉 :=
∑

η∈ X
〈m̃ξ , ψη〉〈 f , ψ̃η〉, (7.27)

where the series converges absolutely.

Proof Let A and Â be the operators with matrices

(aξη)ξ,η∈ X := (〈m̃ξ , ψη〉)ξ,η∈ X and (âξη)ξ,η∈ X := (|aξη|)ξ,η∈ X.

By Lemmas 7.2–7.3 it follows that there exist constants c, δ > 0 such that

|〈m̃ξ , ψη〉| ≤ cωξη(δ), ∀ξ, η ∈ X.

Then Theorem 6.3 implies that both operators A and Â are bounded on ḟ s
pq .

On the other hand, by Theorem 5.6, for any f ∈ Ḟ s
pq the sequence {〈 f , ψ̃η〉}

belongs to ḟ s
pq and hence {|〈 f , ψ̃η〉|} ∈ ḟ s

pq . From this and the boundedness of the

operator Â it follows that

∑

η∈ X
|〈m̃ξ , ψη〉||〈 f , ψ̃η〉| < ∞, ∀ξ ∈ X.

Thus the absolute convergence of the series in (7.27) is established.
Let f ∈ Ḟ s

pq . By the boundedness of the operator A : ḟ s
pq → ḟ s

pq and the analysis

operator Tψ̃ : Ḟ s
pq → ḟ s

pq from (5.11) (Theorem 5.6), and (7.27) it follows that

‖{〈 f , m̃ξ 〉}‖ ḟ s
pq
= ‖ASψ̃ f ‖ ḟ s

pq
≤ c‖Sψ̃ f ‖ ḟ s

pq
≤ c‖ f ‖Ḟs

pq
,

which confirms (7.26). � 

7.2 SmoothMolecules for ˙̃B and ˙̃F-Spaces

In this section we establish results analogous to the ones from Sect. 7.1 for the ˙̃Fs

pq

spaces. Similar results hold as well for the Besov spaces ˙̃Bs

pq , which we shall not

treat here. There are a lot of similarities between these results for the Ḟ-spaces and
˙̃F-spaces. Therefore, we shall put the emphasis on the new features. Thus, unlike the
case of Ḟ-spaces here we also use the reverse doubling condition (1.7).

For s ≤ Jd/d∗ with J := d/min{1, p, q} and d∗ the constant from (1.8), we
define

K := !( J−s)/2"+1, if s < 0 and K := !( J−sd∗/d)/2"+1, if s ≥ 0. (7.28)
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As before we set N := !s/2" + 1, if s ≥ 0.

Definition of Smooth SynthesisMoleculesAssume s ∈ R, 0 < p < ∞, 0 < q ≤ ∞,
and let J, K , N be as above. We say that {mξ }ξ∈ X is a family of smooth synthesis

molecules for ˙̃Fs

pq , if there exists M > J+ |s|, such that:

(i)

|mξ (x)| ≤ |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M

. (7.29)

(ii) For s ≥ 0 and 0 ≤ ν ≤ N ,

|Lνmξ (x)| ≤ �(ξ)−2ν |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M

. (7.30)

(iii) In addition, if 0 ≤ s ≤ Jd/d∗ it is assumed that there exists a family of functions
{bξ }ξ∈ X, bξ ∈ D(L K ), such that

mξ = L K bξ , (7.31)

and for 0 ≤ ν ≤ K

|Lνbξ (x)| ≤ �(ξ)2(K−ν)|Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M

. (7.32)

Note that (7.30) is void if s < 0 and (7.31)–(7.32) are void if s > Jd/d∗.

Definition of Smooth Analysis Molecules Let s, p, q and J, K , N be as above. We

say that {m̃ξ }ξ∈ X is a family of smooth analysis molecules for ˙̃Fs

pq , if there exist
M > J+ |s|, such that:
(i)

|m̃ξ (x)| ≤ |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M+d

. (7.33)

(ii) For s ≤ Jd/d∗ and 0 ≤ ν ≤ K ,

|Lνm̃ξ (x)| ≤ �(ξ)−2ν |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M+d

. (7.34)

(iii) In addition, if s ≥ 0, it is assumed that there exists a family of distributions
{b̃ξ }ξ∈ X, b̃ξ ∈ D(L N ), such that

m̃ξ = L N b̃ξ , (7.35)

and for 0 ≤ ν ≤ N ,

|Lν b̃ξ (x)| ≤ �(ξ)2(N−ν)|Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M+d

. (7.36)
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Note that (7.34) is void if s > Jd/d∗ and (7.35)–(7.36) are void if s < 0.
As in Sect. 7.1 two lemmas will be needed.

Lemma 7.6 There exist constants c∗, ĉ > 0 such that each of the frames {c∗ψξ }ξ∈ X
and {ĉψ̃ξ }ξ∈ X is a family of smooth synthesis and analysis molecules for ˙̃Fs

pq .

The proof of this lemma is almost identical to the proof of Lemma 7.2; only the
ranges for s are different, which is not essential for the proof. We omit it.

Lemma 7.7 Suppose {mξ } and {m̃ξ } are families of smooth synthesis and analysis

molecules for ˙̃Fs

pq , respectively, and let A be the operator with matrix

(aξη)ξ,η∈ X = (〈mη, m̃ξ 〉)ξ,η∈ X.

Then there exist constants c, δ > 0 such that

|aξη| ≤ cωδ(ξ, η), ∀ξ, η ∈ X, (7.37)

where ωδ(ξ, η) is from (6.6). Therefore, A is almost diagonal on ˙̃f s

pq and by Theo-

rem 6.3 the operator A is bounded on ˙̃f s

pq .

Proof This proof will follow in the footsteps of the proof of Lemma 7.3. We shall
use some of the estimates derived in the proof of Lemma 7.3 as well. Under the
assumptions of the lemma, we consider two cases.

Case 1: �(ξ) ≥ �(η). There are two subcases to be considered depending onwhether
s ≤ Jd/d∗ or s > Jd/d∗.

Let s ≤ Jd/d∗. From the definition of synthesis molecules, there exists a function
bη ∈ D(L K ) such that mη = L K bη. Thus |aξη| = |〈L K bη, m̃ξ 〉| = |〈bη, L K m̃ξ 〉|.
Now just as in the proof of (7.19) we obtain

|aξη| ≤ c

(
�(η)

�(ξ)

)2K ( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(ξ)

)−M
. (7.38)

Let s > 0. By (2.8) and (1.8) it follows that

|B(η, �(ξ))| ≤ c0

(
1+ ρ(ξ, η)

�(ξ)

)d

|B(ξ, �(ξ))|,

|B(η, �(ξ))| ≥ c3

(
�(ξ)

�(η)

)d∗

|B(η, �(η))|,

implying
( |Bη|
|Bξ |

)s/d

≤ c

(
�(η)

�(ξ)

)sd∗/d(
1+ ρ(ξ, η)

�(ξ)

)s

. (7.39)
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Combining (7.38) and (7.39) we obtain

|aξη| ≤ c

(
�(η)

�(ξ)

)2K+sd∗/d( |Bξ |
|Bη|

)1/2+s/d(
1+ ρ(ξ, η)

�(ξ)

)−M+s

≤ cωξη(δ),

whenever 0 < δ ≤ min{2K + sd∗/d − J,M− s − J}.
Let s < 0. Using (1.2) and (2.8) we get

|B(ξ, �(ξ))| ≤ c

(
1+ ρ(ξ, η)

�(ξ)

)d(
�(ξ)

�(η)

)d

|B(η, �(η))|

implying (
1+ ρ(ξ, η)

�(ξ)

)s

≤ c

(
�(η)

�(ξ)

)s( |Bξ |
|Bη|

)s/d

. (7.40)

This coupled with (7.38) leads to

|aξη| ≤ c

(
�(η)

�(ξ)

)2K+s( |Bξ |
|Bη|

)1/2+s/d(
1+ ρ(ξ, η)

�(ξ)

)−M−s

≤ cωξη(δ),

whenever 0 < δ ≤ min{2K + s − J,M+ s − J}.
Assume s > Jd/d∗ (hence s > 0). Just as in the proof of (7.20) we obtain

|aξη| ≤ c

( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(ξ)

)−M
.

From this and (7.39) we obtain

|aξη| ≤ c

(
�(η)

�(ξ)

)sd∗/d( |Bξ |
|Bη|

)1/2+s/d(
1+ ρ(ξ, η)

�(ξ)

)−M+s

≤ cωξη(δ),

whenever 0 < δ ≤ min{sd∗/d − J,M− s − J}.
Case 2: �(ξ) < �(η). We consider two subcases: s ≥ 0 or s < 0.
Let s ≥ 0. From the definition of analysis molecules, there exists a distribution b̃ξ

such that m̃ξ = L N b̃ξ , where N = !s/2" + 1. Thus aξη = 〈L N mη, b̃ξ 〉 and just as in
(7.23) it follows that

|aξη| ≤ c

(
�(ξ)

�(η)

)2N ( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(η)

)−M
. (7.41)

As in the proof of (7.40) we get

(
1+ ρ(ξ, η)

�(η)

)−s

≤ c

(
�(η)

�(ξ)

)s( |Bξ |
|Bη|

)s/d

(7.42)
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and combining this with (7.41) it follows that

|aξη| ≤ c

(
�(ξ)

�(η)

)2N−s( |Bξ |
|Bη|

)1/2+s/d(
1+ ρ(ξ, η)

�(η)

)−M+s

≤ cωξη(δ),

whenever 0 < δ ≤ min{2N − s,M− J− s}.
Let s < 0. As in the proof of (7.24) we obtain

|aξη| ≤ c

( |Bξ |
|Bη|

)1/2(
1+ ρ(ξ, η)

�(η)

)−M
.

On the other hand, as in the proof of (7.39) we get

(
1+ ρ(ξ, η)

�(η)

)s

≤ c

( |Bξ |
|Bη|

)s/d(
�(η)

�(ξ)

)sd∗/d

. (7.43)

From the above two inequalities it follows that

|aξη| ≤ c

(
�(ξ)

�(η)

)−sd∗/d( |Bξ |
|Bη|

)1/2+s/d(
1+ ρ(ξ, η)

�(η)

)−M−s

≤ cωξη(δ),

whenever 0 < δ ≤ min{−sd∗/d,M+ s − J}.
Choosing δ sufficiently small the above estimates of |aξη| imply (7.37). � 
The next two theorems contain the main results of this section for ˙̃B and ˙̃F-spaces.

Theorem 7.8 (Smoothmolecular synthesis) If {mξ }ξ∈ X is a family of smooth synthesis

molecules for ˙̃Fs

pq , then for any sequence {tξ }ξ∈ X ∈ ˙̃f s

pq

∥∥∥∥
∑

ξ∈ X
tξ mξ

∥∥∥∥ ˙̃Fs

pq

≤ c‖t‖ ˙̃f s

pq
, (7.44)

where the constant c > 0 is independent of {mξ } and {tξ }.
Theorem 7.9 (Smooth molecular analysis) If {m̃ξ }ξ∈ X is a family of smooth analysis

molecules for ˙̃Fs

pq , then for any f ∈ ˙̃Fs

pq

‖{〈 f , m̃ξ 〉}‖ ˙̃f s

pq
≤ c‖ f ‖ ˙̃Fs

pq
, (7.45)

where c > 0 is a constant independent of f and {m̃ξ }. As before 〈 f , m̃ξ 〉 is defined by

〈 f , m̃ξ 〉 :=
∑

η∈ X
〈m̃ξ , ψη〉〈 f , ψ̃η〉, (7.46)

where the series converges absolutely.
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These theorems follow from Lemmas 7.6 and 7.7 exactly as Theorems 7.4 and 7.5
follow from Lemmas 7.2 and 7.3. We omit the details.

7.3 Smooth Atomic Decomposition

Here we focus on decompositions, where the building blocks are compactly supported
smooth functions - smooth atoms. We shall only consider atomic decompositions of
Ḟ-spaces but, as before, the results hold for Ḃ-spaces as well.

Definition of Smooth Atoms We say that {aξ }ξ∈ X is a family of smooth atoms for
Ḟ s

pq , if there exist integers

K ≥ (!( J− s)/2" + 1)+ and K̃ ≥ (!s/2" + 2)+ (7.47)

and a family of functions {bξ }ξ∈ X, bξ ∈ D(L K ), such that for any ξ ∈ X j , j ∈ Z,

aξ = L K bξ , (7.48)

|Lnaξ (x)| ≤ �(ξ)−2n|Bξ |−1/2 for 0 ≤ n ≤ K̃ , (7.49)

|Lνbξ (x)| ≤ �(ξ)2(K−ν)|Bξ |−1/2 for 0 ≤ ν ≤ K , and (7.50)

supp Lνbξ ⊂ cBξ for 0 ≤ ν ≤ K , (7.51)

where c > 0 is a constant independent of ξ .
Clearly a family {aξ } of smooth atoms is a family of smooth synthesis molecules.

Theorem 7.10 Let s ∈ R and 0 < p, q < ∞. Then for every f ∈ Ḟ s
pq there exist a

family of smooth atoms {aξ }ξ∈ X and a sequence {tξ }ξ∈ X of complex numbers such
that

f =
∑

ξ∈ X
tξ aξ and ‖t‖ ḟ s

pq
≤ c‖ f ‖Ḟs

pq
, (7.52)

where the series converges in S′/P and in the norm of Ḟs
pq .

Conversely, for every family of smooth atoms {aξ }ξ∈ X
∥∥∥∥

∑

ξ∈ X
tξ aξ

∥∥∥∥
Ḟs

pq

≤ c‖t‖ ḟ s
pq

. (7.53)

Proof Since a family of smooth atoms is also a family of smooth synthesis molecules,
(7.53) follows readily by Theorem 7.4.

To prove the first part of the theorem, we shall use the compactly supported frames
{θξ } from Sect. 6.3. In the construction of {θξ } and {θ̃ξ } in Sect. 6.3 we impose in
addition the condition that the constant K in (6.21) is larger than the constants K and
K̃ from (7.47). We also choose the parameters s0, p0, p1, q0 so that (s, p, q) ∈ �

with � from (6.20). From Theorem 6.7 we have for any f ∈ Ḟ s
pq

f =
∑

ξ∈ X
〈 f , θ̃ξ 〉θξ (convergence in S′/P and in Ḟ s

pq)
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and ‖ f ‖Ḟs
pq
∼ ‖{〈 f , θ̃ξ 〉}‖ ḟ s

pq
. Therefore, it only remains to show that there exists

a constant c∗ > 0 such that {c∗θξ }ξ∈ X is a family of smooth atoms. By definition

θξ (x) := |Aξ |1/2�(b− j
√

L)(x, ξ), ξ ∈ X j , j ∈ Z.

For each ξ ∈ X j , j ∈ Z, we set

aξ (x) := c∗θξ (x) = c∗|Aξ |1/2�(b− j
√

L)(x, ξ)

and

bξ (x) := c∗|Aξ |1/2L−K �(b− j
√

L)(x, ξ),

where c∗ > 0 is a constant to be determined. Evidently, aξ = L K bξ . Consider the
function

g(u) := u−2(K−ν)�(u), 0 ≤ ν ≤ K .

Clearly, g ∈ S(R), g is real-valued and even, and

g(b− j
√

L) = b2 j(K−ν)Lν−K �(b− j
√

L).

Hence
Lνbξ (x) = c∗|Aξ |1/2b−2 j(K−ν)g(b− j

√
L)(x, ξ). (7.54)

From (6.17) supp ĝ = supp F(u−2(K−ν)�(u)) ⊂ [−R, R] and, therefore, using
Proposition 2.1 it follows that

supp Lνbξ ⊂ B(ξ, c̃Rb− j ) ⊂ cBξ .

On the other hand, from Theorem 2.2 it follows that

∣∣g(b− j
√

L)(x, ξ)
∣∣ ≤ c|B(ξ, b− j )|−1

and on account of (7.54) we obtain

|Lνbξ (x)| ≤ cc∗�(ξ)2(k−ν)|Bξ |−1/2, 0 ≤ ν ≤ K .

Just as above we obtain as a consequence of Theorem 2.2 that

|Lnaξ (x)| ≤ cc∗�(ξ)−2n|Bξ |−1/2, 0 ≤ n ≤ K̃ .

Finally, choosing the constant c∗ sufficiently small it follows that {c∗θξ }ξ∈ X is a family
of smooth atoms. � 
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8 Spectral Multipliers

We next utilize almost diagonal operators (Sect. 6) and smooth molecules (Sect. 7)
to establish the boundedness of spectral multipliers of Mihlin type on homogeneous
Triebel–Lizorkin spaces.

Theorem 8.1 Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Suppose m ∈ C�(R) for some
� > J+ d/2 with J := d/min{1, p, q}, m is even and real-valued, and

sup
λ∈R+

|λνm(ν)(λ)| < ∞, 0 ≤ ν ≤ �. (8.1)

Then the operator m(
√

L) is bounded on Ḟs
pq , that is,

‖m(
√

L) f ‖Ḟs
pq
≤ c‖ f ‖Ḟs

pq
, ∀ f ∈ Ḟ s

pq .

Here m(
√

L) f for f ∈ Ḟ s
pq is defined by

m(
√

L) f :=
∑

ξ∈ X
〈 f , ψ̃ξ 〉m(

√
L)ψξ (convergence in S′/P), (8.2)

that is,
〈m(

√
L) f , φ〉 :=

∑

ξ∈ X
〈 f , ψ̃ξ 〉〈m(

√
L)ψξ , φ〉, ∀φ ∈ S∞, (8.3)

where the series converges absolutely. The motivation for the above definition is the
fact that for any f ∈ S′/P one has f = ∑

η∈ X〈 f , ψ̃η〉ψη in S′/P (Theorem 4.3).

Proof Let f ∈ Ḟ s
pq , s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. We first show that the series

in (8.2) converges absolutely and hence m(
√

L) f is well defined. Suppose the point
x0 from the definition of distributions in Sect. 3.1 belongs to Aξ0 for some ξ0 ∈ X0.
We claim that any test function φ ∈ S∞ is a constant multiple of a smooth analysis
and synthesis molecule centered at ξ0 (Sect. 7.1). Indeed, by (3.1) it follows that for
any ν ≥ 0 and σ > 0

|Lνφ(x)| ≤ c
(
1+ ρ(x, x0)

)−σ ≤ c
(
1+ ρ(x, ξ0)

)−σ

and the claim follows.
We next show that there exists a constant c� > 0 such that {c�m(

√
L)ψξ }ξ∈ X is a

family of smooth synthesis molecules. We shall carry out the proof of this claim just
as in the proof of the first part of Lemma 7.2. Write

mξ (x) := c�m(
√

L)ψξ (x) = c�|Aξ |1/2[m(
√

L)�(b− j
√

L)](x, ξ), ξ ∈ X j ,
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where we used (4.8) and Remark 2.5. Let g(u) := u2νm(b j u)�(u) for an arbitrary
ν ≥ 0. Clearly,

Lνm(
√

L)�(b− j
√

L) = b2ν j g(b− j
√

L),

g ∈ C�(R+), supp g ⊂ [b−1, b], and for 0 ≤ n ≤ �

|g(n)(u)| ≤ c max
0≤r≤n

|m(r)(b j u)|b jr ≤ c max
0≤r≤�

sup
λ∈R+

|λνm(ν)(λ)| ≤ c < ∞.

Then by Theorem 2.2, applied to g, it follows that

|[Lνm(
√

L)�(b− j
√

L)](x, ξ)| ≤ cbν j |B(ξ, b− j )|−1
(1+ b jρ(x, ξ))�−d/2 .

Since � > J + d/2 we may choose M so that J < M ≤ � − d/2. Now, using that
|Aξ | ∼ |B(ξ, b− j )| ∼ |Bξ | for ξ ∈ X j we arrive at

|Lνmξ (x)| = |c�Lνm(
√

L)ψξ (x)|

≤ cc��(ξ)−2ν |Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M

, ξ ∈ X j , 0 ≤ ν ≤ N .

This shows that {mξ } obey (7.2)–(7.3) if the constant c� is sufficiently small.
Assume s ≤ J and let ξ ∈ X j . Define

bξ (x) := c�L−K m(
√

L)ψξ (x) = c�|Aξ |1/2[L−K m(
√

L)�(b− j
√

L)](x, ξ).

Hence

L K bξ (x) = c�m(
√

L)ψξ (x) = mξ (x).

Assuming that 0 ≤ ν ≤ K , K = !( J− s)/2"+1, we consider the following function
h(u) := u2(ν−K )m(b j u)�(u). Clearly

Lν−K m(
√

L)�(b− j
√

L) = b−2 j(K−ν)h(b− j
√

L),

h ∈ C�(R+) and supp g ⊂ [b−1, b]. Furthermore, for 0 ≤ n ≤ �

|h(n)(u)| ≤ c max
0≤r≤n

|m(r)(b j u)|b jr ≤ c max
0≤r≤�

sup
λ∈R+

|λνm(ν)(λ)| ≤ c < ∞.

As before we chooseM so that J < M ≤ �− d/2. Then by Theorem 2.2, applied to
h, we infer

|Lνbξ (x)| ≤ cc�|Aξ |1/2b−2 j(K−ν)

|B(ξ, b− j )|(1+ b jρ(ξ, x))�−d/2 ≤
cc��(ξ)2(K−ν)|Bξ |−1/2
(1+ �(ξ)−1ρ(x, ξ))M

.
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This shows that mξ := c�m(
√

L)ψξ verifies (7.5) if c� ≤ c−1. Therefore, if the
constant c� is sufficiently small {mξ } is a family of smooth synthesis molecules.

Given φ ∈ S∞ write

dξ0η := 〈m(
√

L)ψη, φ〉.

From above we know that there exists a constant c� > 0 such that {c�m(
√

L)ψη}η∈ X
is a family of smooth synthesis molecules for ḟ s

pq , and φ is a smooth analysis molecule

for ḟ s
pq . Then applying Lemma 7.3 we conclude that there exist constants c, δ > 0

such that

|dξ0η| ≤ cωδ(ξ0, η), ∀η ∈ X,

where ωδ(ξ, η) is defined in (6.5).
On the other hand, by Theorem 5.6, for any f ∈ Ḟ s

pq the sequence {〈 f , ψ̃η〉}
belongs to ḟ s

pq and hence {|〈 f , ψ̃η〉|} ∈ ḟ s
pq . From this and the boundedness of the

operator with matrix {ωδ(ξ, η)} on ḟ s
pq it follows that

∑

η∈ X
|〈m(

√
L)ψη, φ〉||〈 f , ψ̃η〉| < ∞.

Thus the absolute convergence of the series in (8.3) is established.
By Theorem 5.6 it follows that to prove the theorem it suffices to show that for any

f ∈ Ḟ s
pq ∥

∥(〈m(
√

L) f , ψξ

〉)∥∥
ḟ s

pq
≤ c‖(〈 f , ψ̃ξ 〉)‖ ḟ s

pq
. (8.4)

Let f ∈ Ḟ s
pq . Then by (8.3)

〈m(
√

L) f , ψξ 〉 =
∑

η∈ X
〈 f , ψ̃η〉〈m(

√
L)ψη, ψξ 〉, ξ ∈ X. (8.5)

Let A be the operators with matrix

(aξη)ξ,η∈ X := (〈m(
√

L)ψη, ψξ 〉)ξ,η∈ X.

From above we know that there exists a constant c� > 0 such that {c�m(
√

L)ψη}η∈ X
is a family of smooth synthesis molecules for ḟ s

pq . Also, by Lemma 7.2 there exists a
constant c∗ > 0 such that {c∗ψξ }ξ∈ X is a family of smooth analysis molecules. Then
by Lemma 7.3 and Theorem 6.3 it follows that the operator A is bounded on ḟ s

pq .

Let f ∈ Ḟ s
pq . By the boundedness of the operator A : ḟ s

pq → ḟ s
pq and (8.5) we

infer

∥∥(〈m(
√

L) f , ψξ 〉)
∥∥

ḟ s
pq
= ∥∥A(〈 f , ψ̃η〉)

∥∥
ḟ s

pq
≤ c

∥∥(〈 f , ψ̃η〉)
∥∥

ḟ s
pq

,

which verifies (8.4). � 
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Remark 8.2 Several clarifying remarks about spectral multipliers are in order.

(a) Spectral multipliers like the ones from Theorem 8.1 can be established for the

spaces ˙̃Fs

pq , where the condition � > J+d/2 is replaced by � > J+d/2+|s|.
(b) Theorem 8.1 also holds for Besov spaces Ḃs

pq and with the above replacement to
˙̃Bs

pq , where J := d/min{1, p}.
(c) If we restrict the hypotheses of Theorem 8.1 to the case when (M, ρ, μ) is an

Ahlfors d-regular space, meaning that there exists a constant c4 ≥ 1 such that

c−14 rd ≤ |B(x, r)| ≤ c4rd , ∀x ∈ M, ∀r > 0, (8.6)

then it suffices to assume that � > J as in [15] rather than � > J + d/2. (The
only difference in the proof is that when applying Theorem 2.2 to g we may use
that |B(x, b− j )| ∼ |B(ξ, b− j )|, which makes the difference.)We omit the further
details.

9 Atomic andMolecular Decompositions in the Inhomogeneous Case

Inhomogeneous Besov and Triebel–Lizorkin spaces in the general setting, described
in Sect. 1, have been developed in [24]. An advantage of the inhomogeneous spaces
over the homogeneous spaces is that they are defined also in the case when the set M
is compact, like the sphere, ball, and more general compact Riemannian manifolds.
On the other hand, this theory is more coherent in the homogeneous case.

We next briefly indicate how the atomic and molecular decompositions developed
so far should be changed in the inhomogeneous case. Generally speaking in the inho-
mogeneous case the frequencies corresponding to eigenvalues 0 ≤ λ ≤ 1 are grouped
together. Thus, in the definitions of inhomogeneousBesov andTriebel–Lizorkin spaces
(Definitions 5.1–5.2) the terms ϕ j (

√
L) f , j ≤ 0, are replace by one term ϕ0(

√
L) f ,

where ϕ0 ∈ C∞(R+) is such that suppϕ0 ⊂ [0, 2] and |ϕ0(λ)| > 0 on [0, 23/4]. The
frames are of the form {ψξ }ξ∈ X and {ψ̃ξ }ξ∈ X, where X = ∪ j≥0 X j , hence, in the
definition of the inhomogeneous Besov and Triebel–Lizorkin sequence spaces spaces
sets X j are involved with j ≥ 0. It should be pointed out that the convergence in
the inhomogeneous case is simpler than the one in the homogeneous case. For more
details, see [24].

The definition of almost diagonal operators in the inhomogeneous case is the same
as in the homogeneous case, but j ≥ 0. Further, the definitions of smooth synthesis
and analysis molecules mξ and m̃ξ for ξ ∈ X j , j ≥ 1, are the same as in the
homogeneous case (Sects. 7.1, 7.2), but for ξ ∈ X0 (the zero level) Condition (iii) on
mξ and m̃ξ is dropped. The same modification is applied for the definition of smooth
atoms. All theorems about molecular and atomic decompositions established in the
homogeneous case in Sect. 7 hold in the inhomogeneous case as well with almost
identical proofs. The spectral multipliers established in Theorem 8.1 are the same as
in the inhomogeneous case. We refrain from providing further details here.
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Appendix

Proof of Lemma 2.8

The proof of Lemma 2.8 relies on the following two lemmata:

Lemma 9.1 Let X be a δ−net on M and 0 < δ ≤ δ�. Then

#{ X ∩ B(x, δ�)} ≤ c06
d (

δ�/δ
)d

, ∀x ∈ M . (9.1)

Here c0 is the constant from (1.1).

Proof It is easily seen that if ξ ∈ X∩B(x, δ∗), then B(ξ, δ) ⊂ B(x, 2δ�) ⊂ B(ξ, 3δ�).
Therefore, for every η ∈ X ∩ B(x, δ�)

∑

ξ∈ X∩B(x,δ�)

|B(ξ, δ/2)| ≤ |B(x, 2δ�)| ≤ |B(η, 3δ�)| ≤ c06
d (

δ�/δ
)d |B(η, δ/2)|,

where for the last inequality we used (1.2). Summing up the above inequalities over
all η ∈ X ∩ B(x, δ�) leads to (9.1). � 
Lemma 9.2 Suppose σ > d and let X be a δ−net on M, δ > 0. Then for any x ∈ M
and δ� ≥ δ

∑

ξ∈ X

(
1+ ρ(x, ξ)

δ�

)−σ ≤ c06d2σ

1− 2d−σ

(δ�

δ

)d
. (9.2)

Proof Set �0 := {ξ ∈ X : ρ(x, ξ) ≤ δ�} and

� j := {ξ ∈ X : 2 j−1δ� < ρ(x, ξ) ≤ 2 jδ�}, j ≥ 1.

Then using Lemma 9.1 we get

∑

ξ∈ X

(
1+ ρ(x, ξ)

δ�

)−σ ≤
∑

j≥0

∑

ξ∈� j

(
1+ ρ(x, ξ)

δ�

)−σ

≤
∑

j≥0
#{ X ∩ B(x, 2 jδ�)}2−( j−1)σ

≤ c06
d2σ (δ�/δ)d

∑

j≥0
2− j(σ−d)

≤ c06d2σ

1− 2d−σ

(δ�

δ

)d
,

which confirms (9.2). � 
Proof of Lemma 2.8 Under the hypotheses of Lemma 2.8, denote by � the quantity on
the left in (2.15) and set
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X′ := {ξ ∈ X : ρ(x, ξ) ≥ ρ(x, y)/2} and X′′ := {ξ ∈ X : ρ(y, ξ) > ρ(x, y)/2}.

Then � ≤ ∑
ξ∈ X′ · · · +

∑
ξ∈ X′′ · · · =: �′ +�′′. To estimate �′′ we use Lemma 9.2

and obtain

�′′ ≤ c

(1+ δ−12 ρ(x, y))σ

∑

ξ∈ X

1

(1+ δ−11 ρ(y, ξ))σ
≤ c(δ1/δ)d

(1+ δ−12 ρ(x, y))σ
.

To estimate �′ we consider two cases.
Case 1: δ−12 ρ(x, y) ≥ 1. Just as above we obtained

�′ ≤ c

(1+ δ−11 ρ(x, y))σ

∑

ξ∈ X

1

(1+ δ−12 ρ(y, ξ))σ
≤ c(δ2/δ)d

(1+ δ−11 ρ(x, y))σ

and using that δ−12 ρ(x, y) ≥ 1

�′ ≤ c(δ2/δ1)d(δ1/δ)
d

(δ−11 ρ(x, y))σ
= c(δ1/δ)d

(δ−12 ρ(x, y))d(δ−11 ρ(x, y))σ−d

≤ c(δ1/δ)d

(δ−12 ρ(x, y))σ
≤ c2σ (δ1/δ)

d

(1+ δ−12 ρ(x, y))σ
.

Case 2: δ−12 ρ(x, y) < 1. We use Lemma 9.2 to obtain

�′ ≤
∑

ξ∈ X

1

(1+ δ−11 ρ(x, ξ))σ
≤ c(δ1/δ)

d ≤ c2σ (δ1/δ)
d

(1+ δ−12 ρ(x, y))σ
.

Putting the above estimates together we arrive at (2.15). � 

Proof of Theorem 6.3

We shall carry out the proof of this theorem only for the spaces ḟ s
pq and ˙̃bs

pq ; the proof

in the case of the spaces ˙̃f s

pq and ḃs
pq is similar and will be omitted.

We need two lemmata.

Lemma 9.3 Let 0 < t ≤ 1 and M > d/t . Then for any sequence of complex numbers
{hη}η∈ Xm , m ∈ Z, we have for x ∈ Aξ , ξ ∈ X,

∑

η∈ Xm

|hη|
(
1+ ρ(ξ, η)

max{�(ξ), �(η)}
)−M

≤ cmax
{

b(m− j)d/t , 1
}
Mt

( ∑

η∈ Xm

|hη|1Aη

)
(x),

where the constant c > 0 depends only on t,M, and the constant c0 from (1.1).
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This is Lemma 7.1 in [10].
We shall also need the well known Hardy inequalities, given in the following

Lemma 9.4 Let γ > 0, 0 < q < ∞, b > 1, and am ≥ 0 for m ∈ Z. Then

( ∑

j∈Z

( ∑

m≥ j

b−(m− j)γ am

)q)1/q

≤ c

( ∑

m∈Z
aq

m

)1/q

(9.3)

and (∑

j∈Z

( ∑

m≤ j

b−( j−m)γ am

)q)1/q

≤ c

( ∑

m∈Z
aq

m

)1/q

, (9.4)

where the constant c > 0 depends on γ, q, b.

The proof of the Hardy inequalities is standard and simple; we omit it.
Assume that the hypotheses of Theorem 6.3 are valid for ḟ s

pq , that is, A is an
operator with matrix (aξη)ξ,η∈ X such that for some δ > 0

‖A‖δ := sup
ξ,η∈ X

|aξη|
ωξη(δ)

≤ c < ∞, (9.5)

where ωξη(δ) is defined in (6.5). Also, let h = {hξ }ξ∈ X ∈ ḟ s
pq . We next prove the

estimate
‖Ah‖ ḟ s

pq
≤ c‖A‖δ‖h‖ ḟ s

pq
. (9.6)

We only consider the case: q < ∞; the case when q = ∞ is easier and we omit it.
We have (Ah)ξ = ∑

η∈ X aξηhη. (By the proof below it follows that the series
converges absolutely.) Using this in the definition of ‖ · ‖ ḟ s

pq
in (5.9), we have

‖Ah‖ ḟ s
pq
:=

∥∥∥∥

( ∑

ξ∈ X

[
�(ξ)−s |(Ah)ξ |1̃Aξ (·)

]q)1/q∥∥∥∥
L p

≤
∥
∥∥∥

( ∑

ξ∈ X

[
�(ξ)−s

∑

η∈ X
|aξη||hη|1̃Aξ (·)

]q)1/q∥
∥∥∥

L p
≤ c(�1 +�2),

where

�1 :=
∥∥∥∥

( ∑

ξ∈ X

[
�(ξ)−s

∑

�(η)≤�(ξ)

|aξη||hη|1̃Aξ (·)
]q)1/q∥∥∥∥

L p
and

�2 :=
∥∥
∥∥

( ∑

ξ∈ X

[
�(ξ)−s

∑

�(η)>�(ξ)

|aξη||hη|1̃Aξ (·)
]q)1/q∥∥

∥∥
L p

.
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To estimate �1 we use (9.5). By (6.5) we have whenever �(η) ≤ �(ξ)

|aξη| ≤ c‖A‖δ

(
�(η)

�(ξ)

) J+δ−s( |Aξ |
|Aη|

)1/2(
1+ ρ(ξ, η)

�(ξ)

)− J−δ

.

Set Fξ (x) := �(ξ)−s |Aξ |−1/21Aξ (x) and choose t so that 0 < t < min{1, p, q} and
J+ δ − d/t > 0. Then we have

‖A‖−1δ �1 ≤ c

∥∥
∥∥

( ∑

ξ∈ X

[ ∑

�(η)≤�(ξ)

(
�(η)

�(ξ)

) J+δ−s( |Aξ |
|Aη|

)1/2

×
(
1+ ρ(ξ, η)

�(ξ)

)− J−δ

|hη|Fξ (·)
]q)1/q∥∥∥∥

L p

= c

∥∥∥∥

(∑

j∈Z

∑

ξ∈ X j

[ ∑

m≥ j

b( j−m)( J+δ)
∑

η∈ Xm

(
�(η)

�(ξ)

)−s( |Aξ |
|Aη|

)1/2

× |hη|
(
1+ b jρ(ξ, η)

)− J−δ

Fξ (·)
]q)1/q∥∥∥∥

L p
.

We now apply Lemma 9.3, the Hardy inequality (9.3), and the maximal inequality
(2.17) to obtain

‖A‖−1δ �1 ≤ c

∥∥∥∥

(∑

j∈Z

∑

ξ∈ X j

[ ∑

m≥ j

b( j−m)( J+δ−d/t)

× Mt

( ∑

η∈ Xm

(
�(η)

�(ξ)

)−s( |Aξ |
|Aη|

)1/2

|hη|1Aη

)
(·)Fξ (·)

]q)1/q∥∥∥
∥

L p

≤ c

∥∥∥∥

(∑

j∈Z

[ ∑

m≥ j

b( j−m)( J+δ−d/t)Mt

( ∑

η∈ Xm

|hη|Fη

)]q)1/q∥∥∥∥
L p

≤ c

∥∥∥∥

(∑

j∈Z

[
Mt

( ∑

ξ∈ X j

|hξ |Fξ

)]q)1/q∥∥∥∥
L p

≤ c

∥∥∥
∥

(∑

j∈Z

[ ∑

ξ∈ X j

|hξ |Fξ

]q)1/q∥∥∥
∥

L p
≤ c‖h‖ ḟ s

pq
.

To estimate�2 we use again Lemma 9.3, the Hardy inequality (9.4) instead of (9.4),
and the maximal inequality (2.17). The estimates for �1 and �2 imply (9.6).

We next proceed with the proof of the estimate

‖Ah‖ ˙̃bs

pq
≤ c‖A‖δ‖h‖ ˙̃bs

pq
. (9.7)
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Here we assume that A is an operator with matrix {aξη}ξη∈ X obeying (9.5) for
some constants δ, c > 0, where ωξη(δ) is defined in (6.6). We also assume that

h = {hξ }ξ∈ X ∈ ˙̃bs

pq . We consider the case when p, q < ∞; the cases when p = ∞
or q = ∞ are easier to handle and we omit the details.

We know that |B(ξ, b− j )| ∼ |Aξ | ∼ |Bξ | for ξ ∈ X j and by Definition 5.3 it
follows that

‖h‖ ˙̃bs

pq
∼

(∑

j∈Z

∥∥
∥∥

∑

ξ∈ X j

|Aξ |−s/d |hξ |1̃Aξ (·)
∥∥
∥∥

q

L p

)1/q

, 1̃Aξ := |Aξ |−1/21Aξ .

(9.8)
We have (Ah)ξ = ∑

η∈ X aξηhη and using (9.8)

‖Ah‖ ˙̃bs

pq
≤ c

( ∑

j∈Z

∥∥∥∥
∑

ξ∈ X j

|Aξ |−s/d |(Ah)ξ |1̃Aξ (·)
∥∥∥∥

q

L p

)1/q

≤ c

( ∑

j∈Z

∥∥∥
∥

∑

ξ∈ X j

|Aξ |−s/d
∑

η∈ X
|aξη||hη|1̃Aξ (·)

∥∥∥
∥

q

L p

)1/q

≤ c(�1 +�2),

where

�1 :=
( ∑

j∈Z

∥
∥∥∥

∑

ξ∈ X j

|Aξ |−s/d
∑

�(η)≤�(ξ)

|aξη||hη|1̃Aξ (·)
∥
∥∥∥

q

L p

)1/q

and

�2 :=
( ∑

j∈Z

∥∥∥∥
∑

ξ∈ X j

|Aξ |−s/d
∑

�(η)>�(ξ)

|aξη||hη|1̃Aξ (·)
∥∥∥∥

q

L p

)1/q

.

We shall only estimate�1. Using that ‖A‖δ < ∞, see (6.6)–(6.7), it readily follows
that whenever �(η) ≤ �(ξ)

|aξη| ≤ c‖A‖δ

(
�(η)

�(ξ)

) J+δ( |Aξ |
|Aη|

)s/d+1/2(
1+ ρ(ξ, η)

�(ξ)

)− J−δ

.

Denote briefly Fξ := |Aξ |−s/d−1/21Aξ (·) and choose t so that d/t = J+ δ/2. Then
0 < t < min{1, p} and J+ δ − d/t > 0. We have

‖A‖−1δ

∥∥∥∥
∑

ξ∈ X j

|Aξ |−s/d
∑

�(η)≤�(ξ)

|aξη||hη|1̃Aξ (·)
∥∥∥∥

L p

≤ c

∥∥∥∥
∑

ξ∈ X j

∑

�(η)≤�(ξ)

(
�(η)

�(ξ)

) J+δ( |Aξ |
|Aη|

)s/d+1/2(
1+ ρ(ξ, η)

�(ξ)

)− J−δ

|hη|Fξ (·)
∥∥∥∥

L p

= c

∥∥∥∥
∑

ξ∈ X j

∑

m≥ j

b( j−m)( J+δ)
∑

η∈ Xm

( |Aξ |
|Aη|

)s/d+1/2
|hη|

(
1+ b jρ(ξ, η)

)− J−δ

Fξ (·)
∥∥∥∥

L p
.
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We now apply Lemma 9.3 and the maximal inequality (2.17) to obtain

‖A‖−1δ

∥∥∥
∥

∑

ξ∈ X j

|Aξ |−s/d
∑

�(η)≤�(ξ)

|aξη||hη|1̃Aξ (·)
∥∥∥
∥

L p

≤ c

∥∥∥∥
∑

ξ∈ X j

∑

m≥ j

b( j−m)( J+δ−d/t)Mt

( ∑

η∈ Xm

( |Aξ |
|Aη|

)s/d+1/2
|hη|1Aη

)
(·)Fξ (·)

∥∥∥∥
L p

= c

∥∥∥∥
∑

m≥ j

b( j−m)δ/2Mt

( ∑

η∈ Xm

|hη|Fη

)
(·)

∥∥∥∥
L p

≤ c

∥∥
∥∥

∑

m≥ j

b( j−m)δ/2
∑

η∈ Xm

|hη|Fη(·)
∥∥
∥∥

L p
.

Consider the case when p ≥ 1. Then applying the Hardy inequality (9.3) we get

‖A‖−1δ �1 =
( ∑

j∈Z

∥∥∥∥
∑

ξ∈ X j

|Aξ |−s/d
∑

�(η)≤�(ξ)

|aξη||hη|1̃Aξ (·)
∥∥∥∥

q

L p

)1/q

≤ c

( ∑

j∈Z

∥∥∥∥
∑

m≥ j

b( j−m)δ/2
∑

η∈ Xm

|hη|Fη(·)
∥∥∥∥

q

L p

)1/q

≤ c

( ∑

j∈Z

[ ∑

m≥ j

b( j−m)δ/2
∥∥∥∥

∑

η∈ Xm

|hη|Fη(·)
∥∥∥∥

L p

]q)1/q

≤ c

( ∑

m∈Z

∥∥∥
∥

∑

η∈ Xm

|hη|Fη(·)
∥∥∥
∥

q

L p

)1/q

≤ c‖h‖ ˙̃bs

pq
.

Now, let 0 < p < 1. Then applying the p-triangle inequality and the Hardy inequality
(9.3) we get

‖A‖−1δ �1 =
⎛

⎝
∑

j∈Z

∥∥∥∥
∑

ξ∈ X j

|Aξ |−s/d
∑

�(η)≤�(ξ)

|aξη||hη|1̃Aξ (·)
∥∥∥∥

q

L p

⎞

⎠

1/q

≤ c

⎛

⎝
∑

j∈Z

∥∥∥
∥

∑

m≥ j

b( j−m)δ/2
∑

η∈ Xm

|hη|Fη(·)
∥∥∥
∥

q

L p

⎞

⎠

1/q

≤ c

⎛

⎝
∑

j∈Z

[ ∑

m≥ j

b( j−m)pδ/2
∥∥∥
∥

∑

η∈ Xm

|hη|Fη(·)
∥∥∥
∥

p

L p

]q/p
⎞

⎠

1/q

≤ c

⎛

⎝
∑

m∈Z

∥∥∥
∥

∑

η∈ Xm

|hη|Fη(·)
∥∥∥
∥

q

L p

⎞

⎠

1/q

≤ c‖h‖ ˙̃bs

pq
.
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We similarly estimate �2 and get the same bound. The estimates for �1 and �2
yield (9.7). � 
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