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Abstract The aim of this paper is to construct sup-exponentially localized kernels and
frames in the context of classical orthogonal expansions, namely, expansions in Jacobi poly-
nomials, spherical harmonics, orthogonal polynomials on the ball and simplex, and Hermite
and Laguerre functions.
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1 Introduction

Orthogonal expansions have been recently used for the construction of kernels and frames
(needlets) with localization better than the reciprocal of any polynomial in non-standard set-
tings such as on the sphere, interval and ball with weights, and in the context of Hermite and
Laguerre expansions. The main purpose of this article is to show that the rapid decay of that
sort of kernels and needlets can be improved to sub-exponential. In order to best present our
results, it is perhaps suitable first to exhibit and illustrate the main principles and ideas which
guided us in this undertaking.
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1.1 Localization principle

Here we briefly revisit the “localization principle” described in [18]. Let (E, µ) be a mea-
sure space with E a metric space and suppose that there is an orthogonal decomposition
L2(E, µ) = ⊕∞

n=0 Vn, where Vn are finite dimensional subspaces. Let Pn be the kernel of
the orthogonal projector Projn : L2(E, µ) → Vn , i.e.

(Projn f )(x) =
∫

E

Pn(x, y) f (y)dµ(y), f ∈ L2(E, µ).

We are interested in kernels of the form

Ln(x, y) :=
∞∑

j=0

â

(
j

n

)

Pj (x, y), (1.1)

where the cutoff function â is compactly supported and in C∞. For all our purposes it suffices
to only consider cutoff functions obeying the following definition:

Definition 1.1 A function â ∈ C∞[0,∞) (â ≥ 0 if needed) is said to be admissible of type
(a), (b) or (c) if it obeys the conditions:

(a) supp â ⊂ [0, 2] and â(t) = 1, t ∈ [0, 1]; or
(b) supp â ⊂ [1/2, 2]; or
(c) supp â ⊂ [1/2, 2] and |â(t)|2 + |â(t/2)|2 = 1 for t ∈ [1, 2].
Note that (c) is a subcase of (b). We list it separately as the additional requirement in (c)
plays an essential role in our construction of tight frames.

The localization principle put forward in [18] says that for all “natural orthogonal sys-
tems” the kernels {Ln(x, y)} decay at rates faster than any inverse polynomial rate away
from the main diagonal y = x in E × E with respect to the distance in E . This principle
is very well-known in the case of the trigonometric system (and the Fourier transform) and
not so long ago was established for spherical harmonics [15,16], Jacobi polynomials [1,17],
orthogonal polynomials on the ball [18], and Hermite and Laguerre functions [2,4,9,19].

Surprisingly, however, the localization principle as formulated above fails to be true for
tensor product Jacobi polynomials and, in particular, for tensor product Legendre or Cheby-
shev polynomials, as will be shown in Sect. 10.

To grasp the notion of rapidly decaying kernels of form (1.1) let us illustrate them in the
simple case of Chebyshev polynomials. Denote by T̃n , n = 0, 1, . . . , the weighted-L2-nor-
malized Chebyshev polynomials of first kind. Then for an admissible cutoff function â the
kernels from (1.1) take the form

Ln(x, y) :=
∞∑

j=0

â

(
j

n

)

T̃ j (x)T̃ j (y) (1.2)

and satisfy (Sect. 2)

|Ln(x, y)| ≤ cσ n(1 + nρ(x, y))−σ , x, y ∈ [−1, 1], (1.3)

for arbitrarily large σ > 0 but the constant cσ depends on sigma; here ρ is the distance
ρ(x, y) := | arccos x − arccos y|. The above estimate suggests that the localization of
Ln(x, y) can eventually be improved to a localization of exponential type. This kind of
problems will be the main focus of this paper.
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1.2 General scheme for construction of frames from kernels

The main application of the kernels Ln(x, y) defined in (1.1) is to the construction of frames
of rapidly decaying elements (needlets). We now briefly describe the main elements of this
construction.

• Semi-continuous Calderón type decomposition.

Suppose â is an admissible cutoff function of type (c) in the sense of Definition 1.1. Then∑∞
ν=0 |â(2−ν t)|2 = 1, t ∈ [1,∞). In the general setup of Sect. 1.1, define

L0(x, y) := P0(x, y) and L j (x, y) :=
∞∑

ν=0

â
( ν

2 j−1

)
Pν(x, y), j = 1, 2, . . . ,

and denote briefly (L j ∗ f )(x) := ∫E L j (x, y) f (y)dµ(y). The following decomposition
follows readily from the conditions on â

f =
∞∑

j=0

L j ∗ L j ∗ f for f ∈ L2(E, µ). (1.4)

• Discretization via cubature formulas.

Suppose that there is a cubature formula
∫

E

f dµ ∼
∑

ξ∈X j

cξ f (ξ) (1.5)

with X j ⊂ E and cξ > 0, which is exact for all functions f of the form f = gh with

g, h ∈⊕22 j

ν=0 Vν . Cubature formula (1.5) allows to rewrite (1.4) in the form

f (x) =
∞∑

j=0

∑

ξ∈X j

c1/2
ξ L j (ξ, x)

∫

E

f (y)c1/2
ξ L j (ξ, y)dy. (1.6)

• Definition of frame elements (needlets). Now the frame elements are defined by

ψξ (x) := c1/2
ξ · L j (ξ, x) for ξ ∈ X j , j = 0, 1, . . . . (1.7)

We write X := ∪∞
j=0X j , where equal points from different levels X j are considered as

distinct points of X , so that we can use X as an index set in the definition of the needlet
system

� := {ψξ }ξ∈X .

From (1.6) and the definition of {ψξ } it readily follows that

f =
∑

ξ∈X
〈 f, ψξ 〉ψξ in L2(E, µ) and ‖ f ‖L2(E,µ) =

⎛

⎝
∑

ξ∈X
|〈 f, ψξ 〉|2

⎞

⎠

1/2

,

i.e. � is a tight frame for L2(E, µ).
From Definition (1.7) it is clear that the frame elements ψξ inherit the rapid decay of

the kernels L j if this is the case. The superb localization of the building blocks {ψξ } is the
reason for calling them needlets. The rapid decay of needlets makes them a powerful tool
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for decomposition of spaces of functions and distributions in various settings. The above
scheme has already been utilized for construction of needlets and needlet decomposition of
L p , Sobolev, and the more general Triebel–Lizorkin and Besov spaces in the frameworks
of spherical harmonics [15,16], Jacobi polynomials [12,17], orthogonal polynomials on the
ball [13,18], and Hermite and Laguerre functions [4,9,19].

1.3 Sub-exponentially localized wavelets, kernels, and needlets

Dziubański and Hernández [3] constructed band-limited wavelets of sub-exponential decay.
More precisely, they showed that for any ε > 0 there exists a C∞ mother wavelet ψ such
that its Fourier transform ψ̂ is compactly supported on R and

|ψ(x)| ≤ cε exp{−|x |1−ε}, x ∈ R, (1.8)

with cε a constant depending on ε. They also showed that in this estimate ε > 0 cannot be
removed. However, as will be shown in Sect. 2, the localization of ψ can be improved to
|ψ(x)| ≤ c exp{− c′|x |

ln(1+|x |)1+ε } and beyond.
Our aim in this paper is to construct kernels and needlets with similar (sub-exponential)

localization in the context of Jacobi polynomials, spherical harmonics, orthogonal polyno-
mials on the d-dimensional ball and simplex with weights, and d-dimensional Hermite and
Laguerre functions.

For instance, we shall show that for any ε > 0 there exists an admissible cutoff function â
of type (a), (b) or (c) in the sense of Definition 1.1 such that the kernels Ln(x, y) from (1.2)
satisfy (see Theorem 2.1 below)

|Ln(x, y)| ≤ cn exp

{

− cεnρ(x, y)

[ln(e + nρ(x, y))]1+ε

}

, x, y ∈ [−1, 1]. (1.9)

Evidently, this estimate yields (1.3). The above estimate can be further improved by replacing
the term [ln(e + nρ(x, y))]1+ε by any product of the form

ln(e + nρ(x, y)) · · · ln · · · ln︸ ︷︷ ︸
�

(

exp · · · exp
︸ ︷︷ ︸

�

1 + nρ(x, y)

)

×
[

ln · · · ln︸ ︷︷ ︸
�+1

(

exp · · · exp
︸ ︷︷ ︸

�+1

1 + nρ(x, y)

)]1+ε
, � > 1. (1.10)

Estimate (1.9) leads to the following localization of the j th level Chebyshev needlets |ψξ (x)|
≤ c2 j/2 exp

{
− cε2 jρ(x,ξ)

[ln(e+2 jρ(x,ξ))]1+ε
}
, which can be further improved as above. We shall also

show that the above estimates are sharp in the sense that ε > 0 cannot be removed.
We would like to emphasize that according to the localization principle kernels of the form,

e.g. (1.2) are rapidly decaying for an arbitrary admissible cutoff function â, while the sub-
exponential localization of these kernels is only possible for exceptional cutoff functions â.
One of the main steps in constructing kernels and frames of sub-exponential localization is the
construction of admissible cutoff functions â, most importantly ones of type (c), with deriva-
tives obeying ‖â(k)‖∞ ≤ c̃(c̃/ε)kkk(ln k)k(1+ε), k ≥ 3 (Theorem 3.1). Although we employ
various techniques for proving our results, the proof of the sub-exponential localization of
Jacobi kernels plays a prominent role in this paper.
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An outline of this paper is as follows:
In Sect. 2 we clarify the impact of the behavior of the cutoff functions around zero on

the localization of the respective kernels in the simplest case of Chebyshev polynomials. We
also illustrate the notion of sub-exponential localization of kernels in the case of Chebyshev
polynomials. In Sect. 10 we show that the localization principle described in Sect. 1.1 is no
longer valid in the case of tensor product Chebyshev or Legendre polynomials (d = 2) and
products of Chebyshev and Legendre polynomials. In Sect. 3 we construct admissible cutoff
functions of “small” derivatives. Sections 4, 5, 6, 7, 8, and 9 are devoted to the construction of
sub-exponentially localized kernels and needlets in the context of Jacobi polynomials, spher-
ical harmonics, orthogonal polynomials on the ball and simplex, and Hermite and Laguerre
functions.

Throughout this paper we shall use the following notation: For x ∈ R
d we shall use the

norms ‖x‖ = ‖x‖∞ := maxi |xi |, ‖x‖2 := (
∑

i |xi |2)1/2, and |x | = ‖x‖1 := ∑i |xi |.
Positive constants will be denoted by c, c1, c′, . . . and they may vary at every occurrence,
A ∼ B will stand for c1 A ≤ B ≤ c2 A. Also, �x� will denote the largest integer not exceed-
ing x .

2 Localization principle and sub-exponential localization: simple examples

We first would like to clarify the impact of the behavior of the cutoff function â at t = 0 on
the localization properties of kernels as in (1.1). To this end, we shall use the simple example
of normalized Chebyshev polynomials of first kind on [−1, 1] defined by

T̃n(x) := √2/π cos n arccos x for n ≥ 1 and T̃0 := √1/π.

As is well-known {T̃n}n≥0 is an orthonormal basis for L2([−1, 1], (1 − x2)−1/2). We are
interested in the localization of the kernels Ln(x, y), defined in (1.2) with â ∈ C∞[0,∞)

and, say, supp â ⊂ [0, 2]. Setting x =: cos θ and y =: cosφ, we have

Ln(cos θ, cosφ) = 2

π

⎛

⎝â(0)/2 +
∞∑

j=1

â

(
j

n

)

cos jθ cos jφ

⎞

⎠ = 1

π
(Fn(θ − φ)+ Fn(θ + φ)),

where Fn(θ) := â(0)/2 +∑∞
j=1 â( j

n ) cos jθ. Let â be the even extension of â, i.e. â(t) :=
â(−t) for t < 0. Then

Fn(θ) = 1

2

∑

j∈Z

â

(
j

n

)

ei jθ (2.1)

and the question of localization of Ln(x, y) reduces to the localization of the trigonometric
polynomial Fn(θ) around θ = 0.

It is easy to see (see the proof of Theorem 2.1 below) that if â ∈ C∞
R, then for any σ > 0

there exists a constant cσ > 0 such that

|Fn(θ)| ≤ cσ
n

(1 + n|θ |)σ , θ ∈ [−π, π], (2.2)

which readily leads to

|Ln(x, y)| ≤ cσ
n

(1 + nρ(x, y))σ
∀σ > 0, (2.3)
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where ρ(x, y) is the distance on [−1, 1] defined by ρ(x, y) := | arccos x − arccos y|. The
point is that the localization from (2.3) is not possible if the even extension of â to R is not
in C∞. The precise argument is that (2.3) holds for y = 1 if and only if (2.2) is true. In
turn (2.2) is valid if and only if â ∈ C∞. This last claim can be justified as follows: Let f
be defined with Fourier transform f̂ (ξ) := â(ξ/n)eiξ t . Then f (y) = na (n(y + t)) and the
Poisson summation formula

∑

j∈Z

g(2π j) = (2π)−1
∑

j∈Z

ĝ( j)

⎛

⎝ĝ(ξ) :=
∫

R

g(t)e−iξ t dt

⎞

⎠ (2.4)

gives

Fn(t) := 1

2

∑

j∈Z

â

(
j

n

)

ei j t = πn
∑

j∈Z

a (n(t + 2π j)) . (2.5)

Hence, the inverse Fourier transform a of â, has to be in the Schwartz class, which is only
possible if â ∈ C∞. For this it suffices to have â(k)(0) = 0 for k ≥ 1. For other orthogonal
systems (see below), however, it is not completely clear what behavior of â at t = 0 would
lead to rapid decay of the respective kernels and needlets.

In concluding, it is evident that the behavior of the cutoff function â at t = 0 is important
and not every compactly supported C∞[0,∞) function â will give rise to rapidly decaying
kernels Ln(x, y). For our purposes, however, it suffices to restrict the selection of cutoff
functions â to compactly supported C∞[0,∞) functions which are constants in a neigh-
borhood of t = 0, which automatically resolves the issue about the behavior of â at t = 0
(Definition 1.1).

Secondly, we want to illustrate with the next theorem the notion of a sub-exponential
localization of kernels of type (1.1) on the simple example of Chebyshev polynomials of first
kind.

Theorem 2.1 For any 0 < ε ≤ 1 there exists an admissible cutoff function â of type (a) or
(b) or (c) such that the kernels Ln(x, y) from (1.2) satisfy

|Ln(x, y)| ≤ cn exp

{

− c′εnρ(x, y)

[ln(e + nρ(x, y))]1+ε

}

, x, y ∈ [−1, 1], (2.6)

where c′ > 0 is an absolute constant and c depends only on ε.

Proof A key ingredient in this proof is the existence of an admissible cutoff function â of an
arbitrary type such that

‖â(k)‖∞ ≤ c̃(c̃/ε)kkk(ln k)k(1+ε) for k ≥ 3, (2.7)

where c̃ > 0 is an absolute constant (see Theorem 3.1 below). Denote again by â the even
extension of â on R.

Set x =: cos θ and y =: cosφ. Exactly as above

Ln(cos θ, cosφ) = 1

π
(Fn(θ − φ)+ Fn(θ + φ)), (2.8)

where Fn is defined in (2.1) and also (2.5) holds. Note that Fn(θ) is a 2π-periodic trigono-
metric polynomial of degree < 2n. Evidently,

t�a(t) = i�

2π

∫

R

â(�)(ξ)eiξ t dξ,
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and hence |t |�|a(t)| ≤ ‖â(�)‖∞ as supp â ⊂ [−2, 2]. This for � = 0 and � = k gives

|a(t)| ≤ 2k ‖â(k)‖∞ + ‖â‖∞
(1 + |t |)k ≤ c(2c̃/ε)kkk(ln k)k(1+ε)

(1 + |t |)k , k ≥ 3,

on account of (2.7). Combining this with (2.5) gives

|Fn(θ)| ≤ cn(2c̃/ε)kkk(ln k)k(1+ε)∑

j∈Z

1

(1 + n|θ + 2π j |)k

≤ cn
(2c̃/ε)kkk(ln k)k(1+ε)

(1 + n|θ |)k = cn

(
(2c̃/ε)k(ln k)(1+ε)

1 + n|θ |

)k

. (2.9)

We next use the above to show that

|Fn(θ)| ≤ cn exp

{

− c′εn|θ |
[ln(e + n|θ |)]1+ε

}

, |θ | ≤ π. (2.10)

Indeed, if 1 + n|θ | ≤ 6e(2c̃/ε)[ln(e + n|θ |)]1+ε, then (2.10) follows from the obvious
estimate |Fn(θ)| ≤ 2n.

Suppose 1 + n|θ | > 6e(2c̃/ε)[ln(e + n|θ |)]1+ε. Choosing k :=
⌊

1+n|θ |
2e(2c̃/ε)[ln(e+n|θ |)]1+ε

⌋

one easily shows that k ≥ 3 and (2c̃/ε)k(ln k)1+ε
1+n|θ | ≤ e−1, and (2.10) follows by (2.9).

Note that θ , φ from (2.8) obey 0 ≤ θ, φ ≤ π . We use (2.10) to estimate |Fn(θ − φ)|.
If θ + φ ≤ π , then we use (2.10) and that θ + φ ≥ |θ − φ| to estimate |Fn(θ + φ)|.
If θ + φ > π , then 0 < 2π − θ − φ ≤ π and since Fn is 2π-periodic and even, we have

Fn(θ + φ) = Fn(2π − θ − φ). We now use 2π − θ − φ ≥ |θ − φ| and (2.10) to estimate
|Fn(θ + φ)| = |Fn(2π − θ − φ)|. Putting together these estimates, we get

|Ln(cos θ, cosφ)| ≤ 1

π
(|Fn(θ − φ)|+|Fn(θ + φ))|) ≤ cn exp

{

− c′εn|θ − φ|
[ln(e + n|θ − φ|)]1+ε

}

,

which implies (2.6). ��

As a byproduct of the above proof we get the following localization result for trigonomet-
ric polynomials. For a compactly supported cutoff function â consider the trigonometric
polynomial

Ln(θ) :=
∑

j∈Z

â

(
j

n

)

ei jθ . (2.11)

Theorem 2.2 For any 0 < ε ≤ 1 there exists a C∞ cutoff function â �≡ 0 supported on
[−2, 2] such that the polynomial Ln(θ) from (2.11) satisfies

|Ln(θ)| ≤ cn exp

{

− c′εn|θ |
[ln(e + n|θ |)]1+ε

}

, θ ∈ [−π, π], (2.12)

where c′ > 0 is an absolute constant and c depends only on ε.

The construction of â is as above and the proof of (2.12) is exactly the same as the proof
of (2.10) above. We omit it.
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Several remarks are in order. Estimate (2.12) can be slightly improved, namely, the term
[ln(e +n|θ |)]1+ε in (2.12) can be replaced by ln(e +n|θ |)[ln ln(ee +n|θ |)]1+ε or, in general,
by any product of the form

ln(e + n|θ |) · · · ln · · · ln︸ ︷︷ ︸
�

(exp · · · exp
︸ ︷︷ ︸

�

1 + n|θ |)
(

ln · · · ln︸ ︷︷ ︸
�+1

(

exp · · · exp
︸ ︷︷ ︸

�+1

1 + n|θ |
))1+ε

(2.13)

with � ≥ 1.
Estimate (2.6) can also be improved in a similar fashion (see Theorem 4.1 below).
Note also that in these cases inequality (2.12) is trivially true for ε = 0.
On the other hand, Theorem 2.2 is sharp in the sense that (2.12) cannot be replaced by an

estimate of this type

|Ln(θ)| ≤ c|Ln(0)|e−c′ϕ(n|θ |), θ ∈ [−π, π], (2.14)

with ϕ of the form ϕ(t) = t ln(e + t)−1 or ϕ(t) = t ln(e + t)−1 ln ln(ee + t)−1 or etc. This
follows by Example 2.2 in [8], which implies that the inequality

∞∫

1

ϕ(t)

t2 dt < ∞ (2.15)

is a necessary condition for the validity of (2.14) for an appropriate polynomial Ln of degree n.
A similar observation applies to Theorem 2.1 as well.

Our third point is that the sub-exponential localization of the wavelet from (1.8), estab-
lished in [3], can be improved as follows.

Theorem 2.3 For any 0 < ε ≤ 1 there exists a bandlimited orthogonal wavelet ψ such that

|ψ(x)| ≤ c exp

{

− c′ε|x |
[ln(e + |x |)]1+ε

}

, x ∈ R, (2.16)

where c′ > 0 is an absolute constant and c depends only on ε. Furthermore, the term
[ln(e + |x |)]1+ε can be replaced by a product similar to the one in (2.13) above.

Proof In essence, this proof is contained in the proof of Theorem 2.1. So, we only outline
it here. Choose â ≥ 0 to be the admissible function of type (c) from the proof Theorem 3.1
below and such that its derivatives obey (2.7). Let us now denote again by â the even exten-
sion of â to all of R and set θ(ξ) := â( 3

4π ξ). From the properties of â (see Theorem 3.1) it
readily follows that the function ψ with Fourier transform

ψ̂(ξ) := θ(ξ)e−iξ/2 = â

(
3

4π
ξ

)

e−iξ/2

is a band limited orthogonal wavelet [14]. It remains to show that ψ obeys (2.16). Indeed,
we have

ψ(x) = 1

2π

∫

R

â

(
3

4π
ξ

)

e−iξ/2eixξdξ,

123



Sub-exponentially localized kernels and frames induced by orthogonal expansions

which implies

(x − 1/2)�ψ(x) = 1

2π

(
3i

4π

)� ∫

R

â(�)
(

3

4π
ξ

)

ei(x−1/2)ξdξ ∀�.

Similarly as in the proof of Theorem 2.1, this and (2.7) yield

|ψ(x)| ≤ c

(
(2c̃/ε)k(ln k)(1+ε)

1 + |x |

)k

, k ≥ 3,

and one completes the proof by choosing k appropriately. ��
Finally, we remark that estimate (2.16) is sharp in the sense that it cannot be replaced by

an estimate of the form |ψ(x)| ≤ c exp{− c′|x |
ln(e+|x |) }. To see this, we shall use the argument

we used to prove the sharpness of estimate (2.12). Precisely as in (2.5) with a(t) replaced by
ψ(x) (using the Poisson summation formula (2.4)), we have

φn(x) :=
∑

j∈Z

ψ̂

(
j

n

)

ei j x = 2πn
∑

j∈Z

ψ (n(x + 2π j)) .

Note that since ψ̂ is compactly supported, then φn from above is a trigonometric polyno-
mial of degree O(n). Assuming now that |ψ(x)| ≤ c exp{− c′|x |

ln(e+|x |) } leads to |φn(x)| ≤
cn exp

{
− c′n|x |

ln(e+n|x |)
}
. But this is impossible since the condition given in (2.14) and (2.15)

would be violated.

3 Construction of C∞ cutoff functions

The present section lays down some of the ground work that will be needed for the con-
struction of sup-exponentially localized kernels and needlets. Admissible cutoff functions of
“small” derivatives will be needed.

Theorem 3.1 Let 0 < ε ≤ 1. Then there exists an admissible cutoff function â of any type:
(a), (b) or (c)(Definition 1.1) such that 0 ≤ â ≤ 1,

‖â(k)‖∞ ≤ c̃(c̃/ε)kkk(ln k)k(1+ε), k ≥ 3, and ‖â(k)‖∞ ≤ c̃(c̃/ε)kkk, k = 1, 2.

(3.1)

where c̃ > 1 is an absolute constant (e.g. c̃ = 88). Moreover, â(k)(1) = 0 for k ≥ 1.
Furthermore, there exists an admissible function â of type (a), (b) or (c) such that the

above estimates still hold with the term (ln k)k(1+ε) replaced by (ln k)k(ln ln k)k(1+ε) or, in
general, by a product of the form (ln k)k · · · (ln · · · ln︸ ︷︷ ︸

�

k)k(ln · · · ln︸ ︷︷ ︸
�+1

k)k(1+ε) with � ≥ 1, for

sufficiently large k and c̃ depending on �.

Proof We first construct a C∞ bump h of “small" derivatives. To this end let χδ := 1
2δ1[−δ,δ]

and choose δ0 = δ1 := 1 and δ j := 1
j (ln j)1+ε if j ≥ 2. Note that

∞∑

j=0

δ j ≤ 2 + 1

2
+ 1

3
+

∞∫

3

dt

t (ln t)1+ε < 3 + 1

ε(ln 3)ε
≤ 4

ε
.
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We define

hm := χδ0 ∗ · · · ∗ χδm and h(t) := lim
m→∞ hm(t).

It is easy to see that [7, Theorem 1.3.5] h ∈ C∞, h ≥ 0, supp h ⊂ (− 4
ε
, 4
ε

)
and

‖h(k)‖∞ ≤ 1
∏k

j=0 δ j
≤ kk(ln k)k(1+ε) for k ≥ 3.

Also, since
∫

R
χδ = 1, we have

∫
R

h = 1.
Our second step is to rescale h, namely, we define hε(t) := 8

ε
h
( 8t
ε

)
.

We next apply standard wavelet techniques. We first integrate hε, i.e. we define g(t) :=
π
2

∫ t
−∞ hε(s)ds. Evidently, g ∈ C∞, 0 ≤ g ≤ π/2, supp g′ ⊂ (− 1

2 ,
1
2 ), g(t) + g(−t) = π

2

for t ∈ R, ‖g(k)‖∞ ≤ π
2 (

8
ε
)k+1 for 0 ≤ k ≤ 3, and

‖g(k+1)‖∞ ≤ π

2
‖h(k)ε ‖∞ ≤ π

2

(
8

ε

)k+1

kk(ln k)k(1+ε) for k ≥ 3. (3.2)

Observe that â(t) := 2
π
g( 3

2 − t) is an admissible function of type (a).
In order to construct an admissible function â of type (c) and, hence, of type (b)we define

φ(t) := sin g(t), t ∈ R. From above, φ(t)2 + φ(−t)2 = 1 for t ∈ R. We now set

â(t) :=
⎧
⎨

⎩

φ(2t − 3
2 ) if t ∈ [ 1

2 , 1],
φ( 3

2 − t) if t ∈ (1, 2],
0 if R\[ 1

2 , 2],
and claim that â has the properties of an admissible function of type (c). All of them are easy
to verify but (3.1), which needs some care. Here we use some ideas from [3]. Fix t0 ∈ (− 1

2 ,
1
2 )

and let gk(t) :=∑k
j=0

(t−t0) j

j ! g( j)(t0) - the kth degree Taylor polynomial of g centered at t0.

Apparently, φ(k)(t0) = [sin gk](k)(t0) and since sin gk(z) is an entire function, by the Cauchy
formula,

φ(k)(t0) = k!
2π i

∫

γ

sin gk(z)

(z − t0)k+1 dz, (3.3)

where γ := {z ∈ C : |z− t0| = r} with r = 1
2e(8/ε)(ln k)1+ε . By Stirling’s formula n! > (n/e)n

and using (3.2) we have for z ∈ γ and k ≥ 3

|gk(z)| ≤
k∑

j=0

1

j !
π

2

(
8

ε

) j j j (ln k) j (1+ε)

[2e(8/ε)(ln k)1+ε] j
≤ π

2

k∑

j=0

1

2 j
< π

and, therefore, | sin gk(z)| ≤ eπ for z ∈ γ . We use this in (3.3) to obtain

|φ(k)(t0)| ≤ k!
2π

eπ2π
[
2e(8/ε)(ln k)1+ε]k ≤ eπ (44/ε)kkk(ln k)k(1+ε),

which implies (3.1). Here we used that k! ≤ kk .
For the construction of â which satisfies (3.1) with (ln k)k(1+ε) replaced by a product

of the form (ln k)k · · · (ln · · · ln︸ ︷︷ ︸
�

k)k(ln · · · ln︸ ︷︷ ︸
�+1

k)k(1+ε) one proceeds as above with obvious

modifications. ��
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Remark 3.2 Theorem 3.1 cannot be improved in the sense that ε in the exponent in (3.1) can-
not be removed (replaced by ε = 0). Indeed, by the Denjoy–Carleman theorem
[7, Theorem 1.3.8] one has that if â ∈ C∞ on a given interval and

∥
∥
∥â(k)

∥
∥
∥∞ ≤ ck+1 Mk, k = 0, 1, . . . ,

then the divergence of the series
∑∞

j=0 1/L j with L j = infk≥ j M1/k
k yields that â is quasi-

analytic [7, Definition 1.3.7.]. Having in mind that the cutoff functions are not quasi-ana-
lytic we conclude that the above inequalities cannot be true with Mk = [k ln(e + k)]k or
Mk = [k ln(e + k) · · · ln · · · ln︸ ︷︷ ︸

�

(exp · · · exp
︸ ︷︷ ︸

�

1 + k)]k, in general.

4 Sub-exponentially localized kernels and frames induced by Jacobi polynomials

The Jacobi polynomials {P(α,β)n }n≥0, form an orthogonal basis for the weighted space
L2([−1, 1], wα,β) with weight wα,β(t) := (1 − t)α(1 + t)β , α, β > −1. They are tradi-

tionally normalized by P(α,β)n (1) = (n+α
n

)
. It is well known that [21, (4.3.3)]

1∫

−1

P(α,β)n (t)P(α,β)m (t)wα,β(t)dt = δn,mh(α,β)n ,

where

h(α,β)n = 2α+β+1

(2n + α + β + 1)

�(n + α + 1)�(n + β + 1)

�(n + 1)�(n + α + β + 1)
. (4.1)

We are interested in kernels of the form

Lα,βn (x, y) =
∞∑

j=0

â

(
j

n

)(
h(α,β)j

)−1
P(α,β)j (x)P(α,β)j (y), (4.2)

where â is an admissible cutoff function in the sense of Definition 1.1. In [17] it is proved
that this sort of kernels decay rapidly away from the main diagonal in [−1, 1]d × [−1, 1]d .
Our aim here is to show that for suitable admissible cutoff functions â the localization of
Lα,βn (x, y) can be improved to sub-exponential.

To state our result, we need the quantity

wα,β(n; x) := (1 − x + n−2)α+1/2 (
1 + x + n−2)β+1/2

. (4.3)

We shall also use again the distance ρ(x, y) := | arccos x − arccos y| on [−1, 1].
Theorem 4.1 Let α, β ≥ −1/2 and 0 < ε ≤ 1. Then for any admissible cutoff function â
obeying inequality (3.1) in Theorem 3.1 the kernels from (4.2) satisfy the following inequality
for x, y ∈ [−1, 1]

∣
∣Lα,βn (x, y)

∣
∣ ≤ cn
√
wα,β(n; x)

√
wα,β(n; y)

exp

{

− c�nρ(x, y)

[ln(e + nρ(x, y))]1+ε

}

, (4.4)

where c� = c′ε with c′ > 0 an absolute constant, and c depends only on α, β, and ε.
Furthermore, for an appropriate cutoff function â the term [ln(e + nρ(x, y))]1+ε above

can be replaced by any product of the form (1.10).
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For the proof of Theorem 4.1 and the respective localization results on the sphere (Theo-
rem 5.1) and ball (Theorem 6.1), we first need to establish the sub-exponential localization
of Lα,βn (x, 1). Set

Qα,β
n (x) := Lα,βn (x, 1) =

∞∑

j=0

â

(
j

n

)(
h(α,β)j

)−1
P(α,β)j (1)P(α,β)j (x). (4.5)

It is easy to see that

Qα,β
n (x) = c�

∞∑

j=0

â

(
j

n

)
(2 j + α + β + 1)�( j + α + β + 1)

�( j + β + 1)
P(α,β)j (x), (4.6)

where c� := 2−α−β−1�(α + 1)−1.

Theorem 4.2 Let α ≥ β ≥ −1/2 and 0 < ε ≤ 1. Assume that the cutoff function â in (4.5)
is given by Theorem 3.1. Then we have

∣
∣
∣
∣

dr

dxr
Qα,β

n (cos θ)

∣
∣
∣
∣ ≤ cn2α+2r+2 exp

{

− c�nθ

[ln(e + nθ)]1+ε

}

, 0 ≤ θ ≤ π, (4.7)

where c� = c′ε with c′ > 0 an absolute constant and c = c′′8r with c′′ > 0 depending only
on α, β, and ε.

Moreover, for an appropriate cutoff function â of type (a), (b), or (c) from Theorem 3.1
the above estimate holds with the term [ln(e + nθ)]1+ε replaced by any product of the form
(2.13).

Proof We first prove (4.7) for r = 0. We obtain a trivial estimate by simply using that
�( j + a)/�( j + 1) ∼ ja−1 and ‖P(α,β)n ‖L∞[−1,1] ≤ cnα with c = c(α, β) [21, (7.32.6)].
We get

∣
∣Qα,β

n (cos θ)
∣
∣ ≤ c

2n∑

j=0

j2α+1 ≤ cn2α+2, (4.8)

which implies (4.7) (r = 0) for 0 ≤ θ ≤ 1/n.
A key role in proving a nontrivial estimate on |Qα,β

n (cos θ)| will play the identity [21,
(4.5.3)]:

n∑

ν=0

(2ν + α + k + β + 1)�(ν + α + k + β + 1)

�(ν + β + 1)
P(α+k,β)
ν (x)

= �(n + α + k + 1 + β + 1)

�(n + β + 1)
P(α+k+1,β)

n (x). (4.9)

Applying summation by parts to the sum in (4.6) (using (4.9) with k = 0), we get

Qα,β
n (x) = c�

∞∑

j=0

[

â

(
j

n

)

− â

(
j + 1

n

)]
�( j + α + 1 + β + 1)

�( j + β + 1)
P(α+1,β)

j (x).

(4.10)

We now define the sequence of functions (Ak(t))∞k=0 by

A0(t) := (2t + α + β + 1)â

(
t

n

)
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and inductively

Ak+1(t) := Ak(t)

2t + α + k + β + 1
− Ak(t + 1)

2t + α + k + β + 3
, k ≥ 0. (4.11)

Notice that

A1(t) := â

(
t

n

)

− â

(
t + 1

n

)

(4.12)

and hence supp Ak ⊂ [n/2 − k, 2n] ⊂ [n/4, 2n] if 1 ≤ k ≤ n/4.
Applying summation by parts k times starting from (4.6) (using every time (4.9)), we

arrive at the identity:

Qα,β
n (x) = c�

∞∑

j=0

Ak( j)
�( j + α + k + β + 1)

�( j + β + 1)
P(α+k,β)

j (x). (4.13)

We next show that for all 1 ≤ k ≤ n/4 and m ≥ 0

‖A(m)k ‖∞ ≤ c̃12k−1(ec̃/ε)k+m(k + m)1/2(m + 1)k−13mm!n−2k−m+1

×[ln(k + m + 2)](k+m)(1+ε), (4.14)

where c̃ > 1 and ε are as in Theorem 3.1 and (a)r := a(a + 1) · · · (a + r − 1). In particular,

‖Ak‖∞ ≤ c̃(12ec̃/ε)kk1/2(k − 1)![ln(k + 2)]k(1+ε)n−2k+1

≤ c̃(12ec̃/ε)kkk[ln(k + 2)]k(1+ε)n−2k+1 for 1 ≤ k ≤ n/4. (4.15)

To make the proof of (4.14) more transparent, we denote

Bm
k := n2k+m−1

3mm!
∥
∥
∥A(m)k

∥
∥
∥∞ .

Then (4.14) is the same as

Bm
k ≤ c̃12k−1(ec̃/ε)k+m(k + m)1/2(m + 1)k−1[ln(k + m + 2)](k+m)(1+ε). (4.16)

We shall proceed by induction on k. By (4.12) and Theorem 3.1 it follows that

‖A(m)1 ‖∞ ≤ n−m−1‖â(m+1)‖∞
≤ c̃(c̃/ε)m+1(m + 1)m+1[ln(m + 3)](m+1)(1+ε)n−m−1.

But by Stirling’s formula it follows that (m + 1)m+1 < (m + 1)−1/2em+1(m + 1)! and hence
from above

Bm
1 ≤ c̃(ec̃/ε)m+1(m + 1)1/2[ln(m + 3)](m+1)(1+ε),

which shows that (4.16) holds for k = 1 and m ≥ 0.
Suppose (4.16) holds for some 1 ≤ k ≤ n/4 and all m ≥ 0. We shall show that it holds

with k replaced by k + 1 and for all m ≥ 0. Denote Gk(t) := Ak (t)
2t+α+k+β+1 .

Then by (4.11) A(m)k+1(t) = − ∫ 1
0 G(m+1)

k (t + s)ds and evidently

G(m+1)
k (t) =

m+1∑

ν=0

(
m + 1

ν

)

A(ν)k (t)
(−2)m+1−ν(m + 1 − ν)!

(2t + α + k + β + 1)m+2−ν .
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Therefore,

‖A(m)k+1‖∞ ≤ ‖G(m+1)
k ‖∞ ≤

m+1∑

ν=0

(
m + 1

ν

)

‖A(ν)k ‖∞
2m+1−ν(m + 1 − ν)!
(n − k)m+2−ν

≤ 2
m+1∑

ν=0

(m + 1)!3m+1−ν

ν!nm+2−ν ‖A(ν)k ‖∞,

where we used that since k ≤ n/4 we have n − k > 3n/4. It is readily seen that the above is
the same as

Bm
k+1 ≤ 6(m + 1)

m+1∑

ν=0

Bνk .

We now use the inductive assumption (see (4.16)) to obtain the following upper bound for
Bm

k+1:

6(m + 1)
m+1∑

ν=0

c̃12k−1(ec̃/ε)k+ν(k + ν)1/2(ν + 1)k−1[ln(k + ν + 2)](k+ν)(1+ε)

≤ 6c̃12k−1(k + m + 1)1/2(m + 1)k[ln(k + m + 3)](k+m+1)(1+ε)
m+1∑

ν=0

(ec̃/ε)k+ν .

For the last sum above we have

m+1∑

ν=0

(ec̃/ε)k+ν < (ec̃/ε)k+m+2

ec̃/ε − 1
< 2(ec̃/ε)k+m+1

using that ec̃/ε > 2. Putting the above estimates together we get

Bm
k+1 ≤ c̃12k(ec̃/ε)k+m+1(k + m + 1)1/2(m + 1)k[ln(k + m + 3)](k+m+1)(1+ε),

which shows that (4.16) holds when k is replaced by k +1. Therefore, (4.16) and hence (4.14)
hold for all 1 ≤ k ≤ n/4 and m ≥ 0.

We shall need the following estimate for Jacobi polynomials [6, Theorem 1]: For α, β ≥
−1/2 and n ≥ 1,

sup
x∈[−1,1]

(1 − x)α+1/2(1 + x)β+1/2|P(α,β)n (x)|2 ≤ 2e

π

(

2 +
√

α2 + β2

)

h(α,β)n ,

(4.17)

where h(α,β)n is from (4.1).
We next prove (4.7) (r = 0) for 1/n ≤ θ ≤ π/2. By (4.1) it readily follows that h(α+k,β)

n ≤
c2k/n. Using this, (4.17), and the obvious inequality 1 − cos θ = 2 sin2 θ/2 ≥ (2/π)2θ2 for
0 ≤ θ ≤ π/2, we infer

∣
∣
∣P(α+k,β)

n (cos θ)
∣
∣
∣ ≤ ck1/22k/2(π/2)k

n1/2θk+α+1/2 ≤ cπk

n1/2θk+α+1/2 , 0 < θ ≤ π/2. (4.18)
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We now use this and (4.15) in (4.13) to obtain for 1/n ≤ θ ≤ π/2 and 1 ≤ k ≤ n/4

|Qα,β
n (cos θ)| ≤ c(12ec̃/ε)kkk[ln(k + 2)]k(1+ε)n−2k+1

∑

n/2−k< j<2n

πk( j + k)α+k

j1/2θk+α+1/2

≤ c(27πec̃/ε)kkk[ln(k + 2)]k(1+ε) n2α+2

(nθ)k+α+1/2

≤ cn2α+2
(

cεk[ln(k + 2)]1+ε

nθ

)k

, cε := 27πec̃/ε. (4.19)

Here we used that �( j + α + k + β + 1)/�( j + β + 1) ≤ c( j + k)α+k .
If nθ < 2ecε[ln(e + nθ)]1+ε , then (4.7) (in the case r = 0) follows by (4.8) with

c� = (2ecε)−1. Assume that nθ ≥ 2ecε[ln(e + nθ)]1+ε and choose k :=
⌊

nθ
ecε[ln(e+nθ)]1+ε

⌋
.

Evidently, k ≤ n/4. We claim that

cεk[ln(k + 2)]1+ε

nθ
≤ e−1, (4.20)

Indeed, by the definition of k we have k ≤ nθ
ecε[ln(e+nθ)]1+ε and then (4.20) follows by the

obvious inequality k +2 ≤ e+nθ . Combining (4.20) with (4.19) leads to (4.7) for r = 0 with
c� = (ecε)−1. Therefore, (4.7) (r = 0) holds for 1/n ≤ θ ≤ π/2 with c� = (2ecε)−1 = c′ε.

Let now π/2 < θ ≤ π − 1/n. Similarly as in the proof of estimate (4.18) we use that
1 + cos θ = 2 sin2 π−θ

2 ≥ (2/π)2(π − θ)2 for π/2 ≤ θ ≤ π to obtain

∣
∣
∣P(α+k,β)

n (cos θ)
∣
∣
∣ ≤ c2k

n1/2(π − θ)β+1/2 ≤ c2knβ, π/2 ≤ θ ≤ π − 1/n.

Combining this with (4.13) and (4.15) we get

∣
∣Qα,β

n (cos θ)
∣
∣ ≤ c(12ec̃/ε)kkk[ln(k + 2)]k(1+ε)n−2k+1

∑

n/2−k< j<2n

2knβ( j + k)α+k

≤ c(54ec̃/ε)kkk[ln(k + 2)]k(1+ε)n−k+α+β+2

≤ cnα+β+2
(

cεk[ln(k + 2)]1+ε

n

)k

, cε := 54ec̃/ε.

Exactly as above this leads to the estimate

∣
∣Qα,β

n (cos θ)
∣
∣ ≤ cnα+β+2 exp

{

− c�n

[ln(e + n)]1+ε

}

, π/2 ≤ θ ≤ π − 1/n, (4.21)

and, since α ≥ β, estimate (4.7) (r = 0) holds in this case as well.
Finally, let π − 1/n ≤ θ ≤ π . In this case (4.7) follows easily from (4.21). Indeed, as is

well known for any polynomial P ∈ �n one has

|P(x)| ≤ ‖P‖L∞[−1,1]Tn(x) ≤ ‖P‖L∞[−1,1]
(

x +
√

x2 − 1
)n
, x ≥ 1,

where Tn is the nth degree Chebyshev polynomial of first kind, and hence

|P(x)| ≤ ‖P‖L∞[−1,1]
(

1 + 2
√

x − 1
)n

for 1 ≤ x ≤ 5/4.
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By changing variables we obtain

|P(t)| ≤ ‖P‖L∞[a,b]
(

1 + 23/2
√
(t − b)/(b − a)

)n
, b ≤ t ≤ b + (b − a)/8.

(4.22)

If t := − cos θ , then t ∈ [0, cos 1
n ] for θ ∈ [π − 1/n, π]. On the other hand, cos 1

n =
1 − 2 sin2 1

n ≥ 1 − 2/n2. Hence

∥
∥Qα,β

n (−·)∥∥L∞[0,1−2/n2] ≤ ∥∥Qα,β
n (cos ·)∥∥L∞[π/2,π−1/n] . (4.23)

Since Qα,β
n ∈ �2n , then we can apply (4.22) on the interval [a, b] = [0, 1 − 2/n2] to obtain

using (4.23)
∥
∥Qα,β

n (cos ·)∥∥L∞[π−1/n,π ] ≤ ∥∥Qα,β
n (−·)∥∥L∞[1−2/n2,1]

≤ ∥∥Qα,β
n (−·)∥∥L∞[0,1−2/n2]

(

1 + 23/2
√

(2/n2)/(1 − 2/n2)

)2n

≤ (1 + 25/2/n)2n
∥
∥Qα,β

n (cos ·)∥∥L∞[π/2,π−1/n]
≤ c
∥
∥Qα,β

n (cos ·)∥∥L∞[π/2,π−1/n] ,

provided 2/n2 ≤ (1/8)(1−2/n2)which is the same as n ≥ 5 (the case n < 5 is trivial). Com-
bining the above with (4.21) implies that the estimate in (4.21) holds for π − 1/n ≤ θ ≤ π

as well, but perhaps with a different constant c. This completes the proof of estimate (4.7)
when r = 0.

For r ≥ 1, estimate (4.7) is an easy consequence of Markov’s inequality: If Q ∈ �m , then
‖Q′‖L∞[a,b] ≤ 2m2(b − a)−1‖Q‖L∞[a,b]. Indeed, substituting x = cos θ shows that (4.7)
with r = 0 is the same as

|Qα,β
n (x)| ≤ cn2α+2

E(arccos x)
, where E(θ) := exp

{
c�nθ

[ln(e + nθ)]1+ε

}

. (4.24)

It is easy to see that the function E(θ) is increasing on [0, π] and hence 1/E(arccos x) is
also increasing on [−1, 1]. Note that Qα,β

n ∈ �2n and by Markov’s inequality we have, for
x ∈ [0, 1],

∣
∣
∣
∣

d

dx
Qα,β

n (x)

∣
∣
∣
∣ ≤ 8n2(1 + x)−1‖Qα,β

n ‖L∞[−1,x] ≤ 8n2 cn2α+2

E(arccos x)
,

where we used (4.24) and the monotonicity of 1/E(arccos x). Iterating we get

∣
∣
∣
∣

dr

dxr
Qα,β

n (x)

∣
∣
∣
∣ ≤ c8r n2r n2α+2

E(arccos x)
, r ≥ 1,

which yields (4.7) for 0 ≤ θ ≤ π/2.
To estimate |(d/dx)r Qα,β

n (x)| for x ∈ [−1, 0) one applies Markov’s inequality on [−1, 0]
which leads readily to the same estimate with a different constant c�.

We finally observe that one proves estimate (4.7) with [ln(e + nθ)]1+ε replaced by a
product of the form (2.13) exactly as above using the respective estimate for |â(k)(t)| from
Theorem 3.1. The proof of Theorem 4.2 is complete. ��
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Proof of Theorem 4.1 We shall use the notation and scheme of the proof of Theorem 2 in [17].
Consider first the case when α > β > −1/2. By the product formula of Jacobi polynomials
[10] (α > β > −1/2), one has

P(α,β)n (x)P(α,β)n (y)

P(α,β)n (1)
= cα,β

π∫

0

1∫

0

P(α,β)n (t (x, y, r, ψ))dm(r, φ), (4.25)

where

t (x, y, r, ψ) = 1
2 (1 + x)(1 + y)+ 1

2 (1 − x)(1 − y)r2 + r
√

1 − x2
√

1 − y2 cosψ − 1,

the integral is against

dm(r, φ) = (1 − r2)α−β−1r2β+1(sinψ)2βdrdψ,

and the constant cα,β is selected so that cα,β
∫ π

0

∫ 1
0 1 dm(r, φ) = 1. Therefore, as in [17,

(2.16)] we have

Lα,βn (x, y) = cα,β

π∫

0

1∫

0

Qα,β
n (t (x, y, r, ψ))dm(r, ψ). (4.26)

Evidently, if t = cos θ with 0 ≤ θ ≤ π , then θ ∼ sin θ/2 ∼ √
1 − t . Consequently, estimate

(4.7) implies

∣
∣Qα,β

n (t)
∣
∣ ≤ cn2α+2 exp

{

− c′εn
√

1 − t

[ln(e + n
√

1 − t)]1+ε

}

, −1 ≤ t ≤ 1. (4.27)

Precisely as for the proof of (2.18) in [17], this yields

∣
∣Lα,βn (cos θ, cosφ)

∣
∣ ≤ cn2α+2 exp

{

− c′εn|θ − φ|
[ln(e + n|θ − φ|)]1+ε

}

, 0 ≤ θ, φ ≤ π. (4.28)

But exp

{
− 1

2 c′εt
[ln(e+t)]1+ε

}

≤ c(1 + t)−3α−3β−2, t > 0, for a sufficiently large constant c > 0,

and hence (4.28) implies

∣
∣Lα,βn (cos θ, cosφ)

∣
∣ ≤ cn2α+2

(1 + n|θ − φ|)3α+3β+2 exp

{

−
1
2 c′εn|θ − φ|

[ln(e + n|θ − φ|)]1+ε

}

.

(4.29)

Just as in the proof of estimate (2.14) in [17] we use this estimate to prove (4.4) with c� = c′/2.
We skip the further details.

In the case when α = β = −1/2 (the case of Chebyshev polynomials of first kind),
estimate (4.4) was already proved in Theorem 2.1.

In the case when α = β > −1/2, as in [17] and above, one uses the product formula for
Gegenbauer polynomials and (4.29) to prove estimate (4.4). We omit the details.

Finally, let α > β = −1/2. Evidently, for a continuous function f on [−1, 1]

lim
µ→−1+

∫ π
0 f (cos θ)(sin θ)µdθ
∫ π

0 (sin θ)µdθ
= f (1)+ f (−1)

2
.
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On the other hand, limβ→−1/2 P(α,β)n (x) = P(α,−1/2)
n (x) uniformly on every compact inter-

val, and in particular on [−1, 1], since as is well know the coefficients of P(α,β)n converge
to the respective coefficients of P(α,−1/2)

n as β → −1/2. Therefore, passing to the limit in
(4.25) as β → −1/2 the product formula of Jacobi polynomials takes the form

P(α,−1/2)
n (x)P(α,−1/2)

n (y)

P(α,−1/2)
n (1)

= 1

2
cα

1∫

0

[
P(α,−1/2)

n (t (x, y, r, 0))+ P(α,−1/2)
n (t (x, y, r, π))

]
dm(r),

(4.30)

where dm(r) = (1 − r2)α−1/2dr and cα
∫ 1

0 dm(r) = 1. Using this product formula, one
can carry over the entire proof of Theorem 2 in [20] in the case when α > β = −1/2. In a
similar fashion, one uses (4.29) and (4.30) to prove estimate (4.4) whenever α > β = −1/2.
We skip the details.

Due to symmetry, in all other cases for α, β estimate (4.4) follows from the cases consid-
ered above. ��

Sub-exponentially localized needlets induced by Jacobi polynomials. Given j ≥ 0 let X j be

the set of all zeros of the Jacobi polynomial P(α,β)m of degree m := 2 j and let {cξ }ξ∈X j be the
coefficients of the Gaussian quadrature formula on [−1, 1], which is exact for all polynomials
of degree 2m − 1 (cf. (1.5)). Suppose â is an admissible cutoff function of type (c) obeying
(3.1). According to the general scheme from Sect. 1.2 the j th level needlets are defined by

ψξ (x) := c1/2
ξ Lα,βn (ξ, x), ξ ∈ X j ,

where Lα,βn with n := 2 j−1 is the kernel defined in (4.2). The needlet system� := {ψξ } is a
tight frame for L2([−1, 1], wα,β) and it is easy to see that the j th level needlet inherit from

the kernel Lα,βn the localization:

|ψξ (x)| ≤ c2 j/2
√
wα,β(2 j ; ξ)

exp

{

− c′ε2 jρ(x, ξ)

[ln(e + 2 jρ(x, ξ))]1+ε

}

, ξ ∈ X j . (4.31)

Here we used the notation from Theorem 4.1. This is an improvement compared with the
localization of the Jacobi needlets constructed in [12,17].

5 Sub-exponentially localized kernels and frames on the sphere

Denote by Hn the space of all spherical harmonics of degree n on the d-dimensional unit
sphere S

d in R
d+1. As is well known [20] the kernel of the orthogonal projector onto Hn is

given by

Pn(ξ · η) = n + λ

λωd
Cλ

n (ξ · η), (5.1)

where λ := d−1
2 , ωd := ∫

Sd 1dσ is the hypersurface area of S
d , and ξ · η stands for the inner

product of ξ, η ∈ S
d . Here Cλ

n is the Gegenbauer polynomial of degree n normalized with
Cλ

n (1) = (n+2λ−1
n

)
[5, p. 174].

123
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Our aim is to construct sub-exponentially localized kernels of the form

Ln(ξ · η) =
∞∑

j=0

â

(
j

n

)

P j (ξ · η), (5.2)

where â is a C∞ cutoff function.
Denote by ρ(ξ, η) := arccos(ξ · η) the geodesic distance between ξ, η ∈ S

d on S
d .

Theorem 5.1 Let 0 < ε ≤ 1. Then for any admissible cutoff function â obeying inequality
(3.1) in Theorem 3.1 the kernels from (5.2) satisfy

|Ln(ξ · η)| ≤ cnd exp

{

− c�nρ(ξ, η)

[ln(e + nρ(ξ, η))]1+ε

}

, ξ, η ∈ S
d , (5.3)

where c� = c′ε with c′>0 an absolute constant and c > 0 depends only on d and ε. More-
over, for an appropriate cutoff function â the above estimate can be improved similarly as in
Theorem 4.1.

Proof By (4.6) with α = β = λ− 1/2 (λ := (d − 1)/2) we get

Qλ−1/2,λ−1/2
n (t) = c�

∞∑

j=0

â

(
j

n

)
( j + λ)�( j + 2λ)

�( j + λ+ 1/2)
P(λ−1/2,λ−1/2)

j (t),

where c� := 2−2λ+1�(λ+1/2)−1. On the other hand, using the relation between Gegenbauer
and Jacobi polynomials [21, (4.7.1)] we have

Cλ
n (t) = �(λ+ 1/2)

�(2λ)

�(n + 2λ)

�(n + λ+ 1/2)
P(λ−1/2,λ−1/2)

n (t). (5.4)

Therefore, Ln(t) = c(d)Qλ−1/2,λ−1/2
n (t) and hence estimate (5.3) follows immediately from

Theorem 4.2. ��
Sub-exponentially localized needlets on the sphere. As in [16] for the construction of the j th
level needlets on S

d we use a cubature formula with nodes in X j ⊂ S
d consisting of O(2 jd)

almost uniformly distributed points on the sphere and positive coefficients {cξ }ξ∈X j of size
cξ ∼ 2− jd , which is exact for all spherical harmonics of degree ≤ 2 j+1 (for more details, see
[16]). Then choosing an admissible cutoff function â of type (c) satisfying (3.1), we define

ψξ (x) := c1/2
ξ Ln(ξ · x), ξ ∈ X j ,

where Ln with n := 2 j−1 is the kernel defined in (5.2). Setting X := ∪ j≥0X j , we define the
needlet system by � := {ψξ }ξ∈X . This is a tight frame for L2(Sd) and Theorem 5.1 implies
the sub-exponential localization of the spherical needlets:

∣
∣ψξ (x)

∣
∣ ≤ c2 jd/2 exp

{

− c′ε2 jρ(x, ξ)

[ln(e + 2 jρ(x, ξ))]1+ε

}

, x ∈ S
d , ξ ∈ X j . (5.5)

Here, ρ(x, ξ) is the geodesic distance between x, ξ ∈ S
d . This is a natural improvement of

the localization of the needlets constructed in [16].
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6 Sub-exponentially localized kernels and frames on the ball

Here, we consider orthogonal polynomials on the unit ball Bd := {x ∈ R
d : ‖x‖2 < 1} in

R
d (d > 1) with weight

wµ(x) := (1 − ‖x‖2
2

)µ−1/2
, µ ≥ 0.

We shall use the notation and results from [18]. Denote by Vd
n the space of all polynomials

of total degree n which are orthogonal to lower degree polynomials in L2(Bd , wµ). As is
shown in [24], if µ > 0 the orthogonal projector Projn : L2(Bd , wµ) �→ Vd

n can be written
in the form

(Projn f )(x) =
∫

Bd

f (y)Pn(wµ; x, y)wµ(y)dy, (6.1)

where

Pn(wµ; x, y) = cµ,d
λ+ n

λ

1∫

−1

Cλ
n

(

〈x, y〉 + u
√

1 − ‖x‖2
2

√
1 − ‖y‖2

2

)

(1 − u2)µ−1du.

Here 〈x, y〉 is the Euclidean inner product in R
d , Cλ

n is the nth degree Gegenbauer polynomial,
and

λ = µ+ d − 1

2
.

In the case µ = 0 the kernel Pn(wµ; x, y) is simpler [18].
As before, we are interested in the construction of sup-exponentially localized kernels of

the form

Lµn (x, y) =
∞∑

j=0

â

(
j

n

)

Pj (wµ; x, y), x, y ∈ Bd , (6.2)

where â is a C∞ cutoff function. As in [18], we shall need the following distance on Bd :

ρ(x, y) := arccos

{

〈x, y〉 +
√

1 − ‖x‖2
2

√
1 − ‖y‖2

2

}

(6.3)

and the quantity

Wµ(n; x) :=
(√

1 − ‖x‖2
2 + n−1

)2µ

.

Theorem 6.1 Let 0 < ε ≤ 1. Then for any admissible cutoff function â obeying inequality
(3.1) in Theorem 3.1 the kernels from (6.2) satisfy

|Lµn (x, y)| ≤ cnd

√
Wµ(n; x)

√
Wµ(n; y)

exp

{

− c�nρ(x, y)

[ln(e + nρ(x, y))]1+ε

}

, (6.4)

where c� = c′ε with c′ > 0 an absolute constant, and c depends only on µ, d, and ε.
Moreover, for an appropriate cutoff function â the term [ln(e + nρ(x, y))]1+ε above can

be replaced by any product of the form (1.10).
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Proof Assume µ > 0 (the case µ = 0 is easer). From (6.1) it follows that

Lµn (x, y) = c(µ, d)

1∫

−1

Qλ
n

(

〈x, y〉 + u
√

1 − ‖x‖2
2

√
1 − ‖y‖2

2

)

(1 − u2)µ−1du, (6.5)

where Qλ
n(t) := ∑∞

j=0 â
(

j
n

)
j+λ
λ

Cλ
j (t). Combining identities (5.4) and (4.6) gives

Qλ−1/2,λ−1/2
n (t) = cQλ

n(t). Therefore, by (4.27) we get

∣
∣Qλ

n(t)
∣
∣ ≤ cn2λ+1 exp

{

− c′εn
√

1 − t

[ln(e + n
√

1 − t)]1+ε

}

, −1 ≤ t ≤ 1, (6.6)

and since exp
{ −(c′/2)εu

ln(e+u)1+ε
}

≤ c(1 + u)−3µ−1 for sufficiently large constant c > 0

∣
∣Qλ

n(t)
∣
∣ ≤ cn2λ+1

(1 + n
√

1 − t)3µ+1
exp

{

−
1
2 c′εn

√
1 − t

[ln(e + n
√

1 − t)]1+ε

}

. (6.7)

Now, just as in the proof of Theorem 4.2 in [18], we use estimates (6.6) and (6.7) to obtain
(6.4). ��

Sub-exponentially localized needlets on the ball. For any j ≥ 0 we shall utilize the cubature
formula on Bd from [18] with nodes in X j ⊂ Bd consisting of O(2 jd) almost uniformly
distributed points on Bd with respect to the distance ρ(·, ·) defined in (6.3) and with positive
coefficients {cξ }ξ∈X j , which is exact for algebraic polynomials of degree 2 j+1. The second
step is to select an admissible cutoff function â of type (c) as in Theorem 6.1. Then we define

ψξ (x) := c1/2
ξ Lµn (ξ, x), ξ ∈ X j ,

where Lµn with n := 2 j−1 is the kernel from (6.2). Set X := ∪ j≥0X j . Then we define the
needlet system on the ball Bd by � := {ψξ }ξ∈X . The sub-exponential localization of the
needlets on the ball follows by Theorem 6.1:

|ψξ (x)| ≤ c2 j/2
√

Wµ(2 j ; ξ)
exp

{

− c′ε2 jρ(x, ξ)

[ln(e + 2 jρ(x, ξ))]1+ε

}

, x ∈ Bd , ξ ∈ X j . (6.8)

This is an improvement in comparison with the localization of the needlets in [19].

7 Sub-exponentially localized kernels and frames on the simplex

Here, we consider orthogonal polynomials on the simplex

T d = {x ∈ R
d : x1 ≥ 0, . . . , xd ≥ 0, 1 − |x |1 ≥ 0}, |x |1 := x1 + · · · + xd ,

in R
d (d ≥ 1) with weight function

wκ(x) = x
κ1− 1

2
1 · · · x

κd− 1
2

d (1 − |x |1)κd+1− 1
2 , κi ≥ 0.

Denote by Vd
n the space of all polynomials of total degree n that are orthogonal to lower

degree polynomials in L2(T d , wκ). As is shown in [23] the orthogonal projector Projn :
L2(T d , wκ) �→ Vd

n can be written in the form
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(Projn f )(x) =
∫

T d

f (y)Pn(wκ ; x, y)wκ(y)dy, (7.1)

where, if all κi > 0,

Pn(wκ ; x, y) = c(κ, d)
2n + λκ

λκ

∫

[−1,1]d+1

Cλκ
2n (z(x, y, t))

d+1∏

i=1

(1 − t2
i )
κi −1dt. (7.2)

Here

z(x, y, t) := √
x1 y1t1 + · · · + √

xd yd td + √
xd+1 yd+1td+1 (7.3)

with xd+1 := 1−‖x‖1 and yd+1 := 1−‖y‖1, Cλ
n is the nth degree Gegenbauer polynomial,

and

λκ := |κ| + d − 1

2
, |κ| := κ1 + · · · + κd+1.

If some κi = 0, then the identity in (7.2) holds with the integral in ti replaced according to
the limit relation [23]

lim
κ→0

1∫

−1

f (t)(1 − t2)κ−1dt
/ 1∫

−1

(1 − t2)κ−1dt = f (1)+ f (−1)

2
.

We are interested in kernels of the form

Lκn(x, y) =
∞∑

j=0

â

(
j

n

)

Pj (wκ ; x, y), x, y ∈ T d , (7.4)

where â is a C∞ cutoff function. Our aim is to show that for any admissible cutoff function
â the kernels Lκn(x, y) decay rapidly away from the main diagonal in T d × T d and for any
cutoff function â from Theorem 3.1 the decay is sub-exponential.

In analogy with the kernels on the ball, we shall need the distance ρ(·, ·) on T d defined
by

ρ(x, y) := arccos
{√

x1 y1 + · · · + √
xd yd + √

xd+1 yd+1
}

and the quantity

Wκ (n; x) :=
d+1∏

i=1

(xi + n−2)κi , xd+1 := 1 − ‖x‖1.

Given x, y ∈ T d , set a j := √
x j =: cos θ j and b j := √

y j =: cosφ j , where 0 ≤ θ j , φ j ≤
π/2. Applying the Cauchy-Schwartz inequality we get, for 1 ≤ j ≤ d ,

d∑

i=1

ai bi +
√

1 − a2
1 − · · · − a2

d

√
1 − b2

1 − · · · − b2
d ≤ a j b j +

√
1 − a2

j

√
1 − b2

j .

Hence,

ρ(x, y) ≥ arccos(cos θ j cosφ j + sin θ j sin φ j ) = arccos(cos(θ j − φ j )),
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which yields ρ(x, y) ≥ |θ j − φ j | and as a consequence

|√x j − √
y j | ≤ ρ(x, y), 1 ≤ j ≤ d + 1. (7.5)

Our localization results take the form:

Theorem 7.1 Let â be an admissible cutoff function according to Definition 1.1. Then for
any σ > 0 there exists a constant cσ depending on σ , |κ|, and d such that the kernels from
(7.4) satisfy

|Lκn(x, y)| ≤ cσ nd

√
Wκ (n; x)

√
Wκ (n; y)

(1 + nρ(x, y))−σ , x, y ∈ T d . (7.6)

The next theorem show that for suitable cutoff functions â the localization of the kernels
Lκn(x, y) can be improved to sub-exponential.

Theorem 7.2 Suppose 0 < ε ≤ 1 and let â in (7.4) be an admissible cutoff function obeying
inequality (3.1) in Theorem 3.1. Then

|Lκn(x, y)| ≤ cnd

√
Wκ (n; x)

√
Wκ (n; y)

exp

{

− c�nρ(x, y)

[ln(e + nρ(x, y))]1+ε

}

, (7.7)

where c� = c′ε with c′ > 0 an absolute constant, and c depends only on κ , d, and ε.
As elsewhere in this article, for an appropriate cutoff function â estimate (7.7) can be

improved by replacing the term [ln(e + nρ(x, y))]1+ε by any product of logarithms as in
(1.10).

We shall only present the proof of Theorem 7.2 since the proof of Theorem 7.1 follows
along the same lines but is simpler.

Proof of Theorem 7.2 For a given 0 < ε ≤ 1, let â be the cutoff function from Theorem 3.1.
Consider the case when κi > 0 for 1 ≤ i ≤ d + 1 (the case when some κi ’s are zeros is
treated in the same way with appropriate modifications). We begin with the relation

Cλ
2n(x) = �(n + λ)�( 1

2 )

�(λ)�(n + 1
2 )

P
(λ− 1

2 ,− 1
2 )

n (2x2 − 1),

which follows readily combining identities (4.1.5) and (4.7.1) in [21]. This allows us to
express Lκn(x, y) in terms of the univariate kernel Qα,β

n from (4.5) and (4.6), namely,

Lκn(x, y) = c(κ, d)
∫

[−1,1]d+1

Qλκ− 1
2 ,− 1

2
n

(
2z(x, y, t)2 − 1

) d+1∏

i=1

(
1 − t2

i

)κi −1
dt.

Let θ(x, y, t) := arccos(2z(x, y, t)2 − 1) with z(x, y, t) given by (7.3). We use the fact that

1 − z(x, y, t)2 = 1

2
(1 − cos θ(x, y, t)) = sin2 θ(x, y, t)

2
∼ θ(x, y, t)2

and apply estimate (4.27) for Qα,β
n with α = κ − 1/2, β = −1/2 to obtain

|Lκn(x, y)| ≤ cn2λκ+1
∫

[−1,1]d+1

exp

{
−c′εn

√
1 − z(x, y, t)2

[ln(e + n
√

1 − z(x, y, t)2)]1+ε

}
d+1∏

i=1

(1 − t2
i )
κi −1dt.
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Evidently,

1 − z(x, y, t)2 ≥ 1 − |z(x, y, t)| ≥ 1 − √
x1 y1|t1| − · · · − √

xd+1 yd+1|td+1|

and using the symmetry of the integrand with respect to t ∈ [−1, 1]d+1, we get

|Lκn(x, y)| ≤ cn2λκ+1
∫

[0,1]d+1

exp

{
−c′εn

√
1 − z(x, y, t)

[
ln
(
e + n

√
1 − z(x, y, t)

)]1+ε

}
d+1∏

i=1

(1 − t2
i )
κi −1dt.

Furthermore, we have the lower bound estimate

1 − z(x, y, t) ≥ 1 − √
x1 y1 − · · · − √

xd+1 yd+1 = 1 − cos ρ(x, y)

= 2 sin2 ρ(x, y)

2
≥ 2

π2 ρ(x, y)2,

which enables us to deduce the estimate

|Lκn(x, y)| ≤ cn2λκ+1 exp

{

−
1
2 c′εnρ(x, y)

[ln(e + nρ(x, y))]1+ε

}

× 1

(1 + nρ(x, y))|κ|

∫

[0,1]d+1

1
[
1 + n

√
1 − z(x, y, t)

]γ

d+1∏

i=1

(1 − t2
i )
κi −1dt,

(7.8)

where γ = 2|κ| + d + 1. Here we used that exp
{ −(c′/2)εu

ln(e+u)1+ε
}

≤ c(1 + u)−|κ|−γ , u ≥ 0, for

sufficiently large constant c > 0. From the definition of z(x, y, t), we have

1 − z(x, y, t) = 1 − cos ρ(x, y)+
d+1∑

i=1

√
xi yi (1 − ti ) ≥

d+1∑

i=1

√
xi yi (1 − ti ).

Denote by J the integrals in (7.8). From above, we have

J ≤
∫

[0,1]d+1

∏d+1
i=1 (1 − t2

i )
κi −1dt

(

1 + n
[∑d+1

i=1
√

xi yi (1 − ti )
]1/2
)γ =: Id+1(γ )

and our next goal is to estimate Id+1(γ ). To this end we first establish the following inequality
for A > 0, B ≥ 0, γ ≥ 2κ + 1, κ > 0:

1∫

0

(1 − t2)κ−1dt
(
1 + n

√
B + A(1 − t)

)γ ≤ cn−2κ

Aκ
(

1 + n
√

B
)γ−2κ−1 . (7.9)

123
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Indeed, substituting s = n2 A(1 − t), we see that

1∫

0

(1 − t2)κ−1dt
(
1 + n

√
B + A(1 − t)

)γ ≤ 2κ−1

(An2)κ

An2∫

0

sκ−1ds
(

1 + √
n2 B + s

)γ

≤ 2κ−1

(An2)κ (1 + n
√

B)γ−2κ−1

∞∫

0

sκ−1ds

(1 + √
s)2κ+1

≤ cn−2κ

Aκ
(

1 + n
√

B
)γ−2κ−1 .

We now set B := 1 + n
∑d

i=1
√

xi yi ti and A := √
xd+1 yd+1, and apply inequality (7.9) to

the integral in Id+1(γ ) with respect to td+1. We get

Id+1(γ ) ≤ cn−2κd+1

(
√

xd+1 yd+1)κd+1

∫

[0,1]d

∏d+1
i=1 (1 − t2

i )
κi −1dt

(

1 + n
[∑d

i=1
√

xi yi (1 − ti )
]1/2
)γ−2κd+1−1

= cn−2κd+1

(
√

xd+1 yd+1)κd+1
Id(γ − 2κd+1 − 1).

Iterating this we obtain

Id+1(γ ) ≤ cn−2|κ|
∏d+1

i=1 (
√

xi yi )κi
.

One the other hand, we trivially have Id+1(γ ) ≤ 1 and hence

Id+1(γ ) ≤ cn−2|κ|
∏d+1

i=1

(√
xi yi + n−2

)κi
.

Therefore,

J

(1 + nρ(x, y))|κ|
≤ cn−2|κ|

(1 + nρ(x, y))|κ|
∏d+1

i=1

(√
xi yi + n−2

)κi
. (7.10)

The simple inequality

(a + n−1)(b + n−1) ≤ 3(ab + n−2)(1 + n|a − b|), a, b ≥ 0, n ≥ 1,

and (7.5) imply
√

xi + n−2
√

yi + n−2 ≤ (√xi + n−1) (√yi + n−1)

≤ 3
(√

xi yi + n−2) (1 + n|√xi − √
yi |
)

≤ 3
(√

xi yi + n−2) (1 + nρ(x, y)).

This coupled with (7.10) gives

J

(1 + nρ(x, y))|κ|
≤ cn−2|κ|

√
Wκ (n; x)

√
Wκ (n; y)

.

and inserting the above in (7.8) leads to (7.7). ��
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Sub-exponentially localized needlets on the simplex. Needlet systems on the simplex T d

have not been developed yet. To this end one should follow the well established scheme from
e.g. [16–19]. The main ingredient of this development are Theorems 7.1 and 7.2 from above,
which provide the needed localization results. Since some other elements of this theory are
not completely developed yet we shall not speculate here and leave the subject open.

8 Sub-exponentially localized kernels and frames induced by Hermite functions

The Hermite polynomials are defined by

Hn(t) = (−1)net2 dn

dtn

(
e−t2
)
, n = 0, 1, . . . .

These polynomials are orthogonal on R with weight e−t2
. We will denote by hn the L2-nor-

malized Hermite functions, i.e.

hn(t) := (2nn!√π)−1/2
Hn(t)e

−t2/2.

Then the d-dimensional Hermite functions Hα(x) are defined by

Hα(x) := hα1(x1) · · · hαd (xd), x = (x1, . . . , xd),

where α = (α1, . . . , αd) ∈ N
d
0 . Denoting by Projn the orthogonal projector onto Vn :=

span {Hα : |α| = n}, we have

(Projn f )(x) =
∫

Rd

f (y)Hn(x, y)dy with Hn(x, y) :=
∑

|α|=n

Hα(x)Hα(y).

It was shown in [19] that for admissible cutoff functions â the kernels

Ln(x, y) :=
∞∑

j=0

â

(
j

n

)

H j (x, y) (8.1)

decay rapidly away from the main diagonal in R
d × R

d . Our goal here is to show that for
a suitable admissible cutoff functions â the localization of Ln(x, y) can be improved to
sup-exponential.

Theorem 8.1 Let 0 < ε ≤ 1 and assume that â in (8.1) is an admissible cutoff function
obeying inequality (3.1) in Theorem 3.1. Then

|Ln(x, y)| ≤ cnd/2 exp

{

− c�n1/2‖x − y‖
[ln(e + n1/2‖x − y‖)]1+ε

}

, x, y ∈ R
d , (8.2)

where c� = c′ε with c′ > 0 an absolute constant, and c depends only on d and ε. Recall that
‖x‖ := max j |x j |.

As before, for a suitable cutoff function â the term [ln(e + n1/2‖x − y‖)]1+ε above can
be replaced by any product of multiple logarithmic terms as in (1.10).

Furthermore, for some constant c′′ > 0

|Ln(x, y)| ≤ ce−c′′ max{‖x‖2,‖y‖2} if max{‖x‖, ‖y‖} ≥ (8n + 2)1/2. (8.3)
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Proof As is well known [22, Lemma 1.5.1] for some constants γ, c > 0

|hn(t)| ≤ e−γ t2
for t ≥ (4n + 2)1/2 and ‖hn‖∞ ≤ cn−1/12 ≤ c,

which readily yields (8.3). In turn (8.3) immediately implies (8.2) in the case when max{‖x‖,
‖y‖} ≥ (8n + 2)1/2.

To obtain a nontrivial estimate on |Ln(x, y)| we follow the approach from [19]. Let
A(x)j := − ∂

∂x j
+ x j . Then the following identity holds (see the proof of Theorem 1 in [19]):

2k(x j − y j )
k Ln(x, y) =

∑

k/2≤l≤k

cl,k

∞∑

ν=0

�l â
(ν

n

) (
A(y)j − A(x)j

)2l−k
Hν(x, y), (8.4)

where�l â( νn ) is the lth forward difference applied to the sequence {â( νn )}∞ν=0, and the coef-
ficients cl,k are given by

cl,k = (−1)k−l4k−l(2k − 2l − 1)!!
(

k

2l − k

)

= (−1)k−l2k−l k!
(k − l)!(2l − k)! . (8.5)

Identity (8.4) follows from Lemma 3.2.3 in [22]; the constants cl,k are given explicitly
in [19].

Let us assume that 3 ≤ k ≤ n/4. Using the estimate [22, Lemma 3.2.2]

Hn(x, x) ≤ cnd/2−1, x ∈ R
d , (8.6)

one can follow the proof of Theorem 2.2 in [19] to show that

∣
∣
∣
∣

(
A(y)j − A(x)j

)2l−k
Hν(x, y)

∣
∣
∣
∣ ≤ c(2ν + 4l − 2k)(2l−k)/2

×
2l−k∑

i=0

(
2l − k

i

)

(ν + i)(
d
2 −1)/2(ν + 2l − k + i)(

d
2 −1)/2

≤ 2(2l−k)/2(ν + 2l − k)(2l−k+d−2)/2
2l−k∑

i=0

(
2l − k

i

)

≤ 23(2l−k)/2(ν + 2l − k)(2l−k+d−2)/2

≤ 23k/2(ν + k)(2l−k+d−2)/2.

Evidently,
∣
∣�l â

(
ν
n

)∣
∣ ≤ n−l‖â(l)‖∞ and �l â( νn ) = 0 if 0 ≤ ν ≤ n/2 − l or ν ≥ 2n. Using

the above and the representation of cl,k from (8.5) in (8.4) we obtain

2k |x j − y j |k |Ln(x, y)| ≤ c23k/2
∑

k/2≤l≤k

2n∑

ν=n/2−k

(ν + k)(2l−k+d−2)/2|cl,k |n−l‖â(l)‖∞

≤ c22k3k+dn(d−k)/2
∑

k/2≤l≤k

k!
(k − l)!(2l − k)! ‖â(l)‖∞,
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where we used that ν + k ≤ 2n + n/4 < 3n. This along with estimate (3.1) in Theorem 3.1
leads to

2k |x j − y j |k |Ln(x, y)| ≤ c(12)kn(d−k)/2
∑

k/2≤l≤k

k!
(k − l)!(2l − k)! (c̃/ε)

l ll(ln l)l(1+ε)

≤ cn(d−k)/2(12c̃/ε)k(ln k)k(1+ε)k!
∑

k/2≤l≤k

kl

(k − l)!(2l − k)! .

(8.7)

We next establish the following estimate for the last sum above:

∑

k/2≤l≤k

kl

(k − l)!(2l − k)! ≤ 2(2e2)k . (8.8)

To prove this we split the sum into two sums. For k/2 ≤ l ≤ 3k/4, by Stirling’s formula, we
have (k − l)! ≥ [(k − l)/e]k−l ≥ [k/(4e)]k−l and hence

∑

k/2≤l≤3k/4

kl

(k − l)!(2l − k)! ≤ (4e)k/2
∑

k/2≤l≤3k/4

k2l−k

(2l − k)!

≤ (4e)k/2
∞∑

m=0

km

m! = (4e3)k/2,

whereas for 3k/4 < l ≤ k, we have (2l − k)! ≥ [k/(2e)]2l−k , and hence

∑

3k/4<l≤k

kl

(k − l)!(2l − k)! ≤ (2e)k
∑

3k/4<l≤k

kk−l

(k − l)! ≤ (2e2)k,

and (8.8) follows. Substituting (8.8) in (8.7) we get

2k |x j − y j |k |Ln(x, y)| ≤ cn(d−k)/2ck
εkk(ln k)k(1+ε), 1 ≤ j ≤ d,

where cε = 24e2c̃/ε ≥ 24e2; we used that k! ≤ kk . Therefore,

|Ln(x, y)| ≤ cnd/2
(

cεk(ln k)1+ε

n1/2‖x − y‖
)k

, 3 ≤ k ≤ n/4. (8.9)

We use (8.6) and the Cauchy-Schwartz inequality to obtain the following trivial estimate

|Ln(x, y)| ≤ c
2n∑

j=0

⎛

⎝
∑

|α|= j

|Hα(x)|2
⎞

⎠

1/2⎛

⎝
∑

|α|= j

|Hα(x)|2
⎞

⎠

1/2

= c
2n∑

j=0

H j (x, x)1/2H j (y, y)1/2 ≤ cnd/2. (8.10)

Let max{‖x‖, ‖y‖} ≤ (8n + 2)1/2. From (8.10) it follows immediately that estimate (8.2)
holds if n1/2‖x − y‖ ≤ 3cε[ln(e + n1/2‖x − y‖)]1+ε.

Assume now that n1/2‖x − y‖ > 3cε[ln(e + n1/2‖x − y‖)]1+ε and choose

k :=
⌊

n1/2‖x − y‖
cε[ln(e + n1/2‖x − y‖)]1+ε

⌋

.

123



Sub-exponentially localized kernels and frames induced by orthogonal expansions

Then 3 ≤ k ≤ n/4 as ‖x − y‖ ≤ 2(8n+2)1/2 and evidently cεk(ln k)1+ε
n1/2‖x−y‖ ≤ e−1.Now, estimate

(8.2) follows by (8.9) with c� = c−1
ε = ε(24e2c̃)−1. ��

Sub-exponentially localized needlets in the context of Hermite functions. For this construc-
tion, we shall utilize the cubature formula from [19] with nodes in X j ⊂ R

d consisting of
O(4 jd) points on R

d obtained as a product of nodal sets of univariate Gaussian quadrature
formulas and with positive coefficients {cξ }ξ∈X j , which is exact for functions in

⊕N
m=0 Vm

with N := c4 j+1 (for more details, see [19]). As before, we choose an admissible cutoff
function â of type (c) obeying (3.1) and define

ψξ (x) := c1/2
ξ Ln(ξ, x), ξ ∈ X j ,

where Ln(x, y) with n := 4 j−1 is the kernel from (8.1). Setting X := ∪ j≥0X j we define the
Hermite needlet system by � := {ψξ }ξ∈X . The sub-exponential localization of the Hermite
needlets is inherited from Theorem 8.1: For ξ ∈ X j , j ≥ 0,

|ψξ (x)| ≤ c2 jd exp

{

− c′ε2 j‖x − ξ‖
[ln(e + 2 j‖x − ξ‖)]1+ε

}

, x ∈ R
d , (8.11)

and

|ψξ (x)| ≤ ce−c′′‖x‖2
if ‖x‖ ≥ c∗2 j (8.12)

for an appropriate constant c∗. This is an improvement compared with the localization of the
needlets from [19].

9 Sub-exponentially localized kernels and frames induced by Laguerre functions

The Laguerre polynomials, defined by

Lαn (t) = 1

n! t−αet dn

dtn

(
tn+αe−t) , α > −1, n = 0, 1, . . . .

are orthogonal on R+ = (0,∞) with weight tαe−t . There are three types of Laguerre func-
tions considered in the literature [22], defined by

Fα
n (t) :=

(
2�(n + 1)

�(n + α + 1)

)1/2

e−t2/2 Lαn (t
2), (9.1)

Lαn (t) :=
(

�(n + 1)

�(n + α + 1)

)1/2

e−t/2tα/2 Lαn (t), (9.2)

and

Mα
n (t) := (2t)1/2Lαn (t2). (9.3)

It is well known that {Fα
n }n≥0 is an orthonormal basis for the weighed space L2(R+, t2α+1),

while {Lαn }n≥0 and {Mα
n }n≥0 are orthogonal bases for L2(R+). Here we only consider the

Laguerre functions {Fα
n } for α ≥ 0. Analogous results for {Lαn }n≥0 and {Mα

n }n≥0 follow
immediately as in [9].

The d-dimensional tensor product Laguerre functions associated to {Fα
n } are defined by

Fα
ν (x) := Fα1

ν1
(x1) · · · Fαd

νd
(xd), x = (x1, . . . , xd),
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where ν = (ν1, . . . , νd) ∈ N
d
0 and α = (α1, . . . , αd). The kernel of the orthogonal projector

onto Vn := span{Fα
ν : |ν| = n} is given by

Fα
n (x, y) :=

∑

|ν|=n

Fα
ν (x)Fα

ν (y).

As elsewhere in this paper, we are interested in constructing sup-exponential localized
kernels of the form

Lαn (x, y) :=
∞∑

j=0

â

(
j

n

)

Fα
j (x, y), x, y ∈ R

d+, (9.4)

where â is an admissible cutoff function (see Definition 1.1). Note that in [9] it is proved that
for admissible cutoff functions â the kernels Lαn (x, y) have faster than the reciprocal of any
polynomial decay away from the main diagonal in R

d+ × R
d+.

We shall use some of the notation and results from [9]. Recall our standing notation for
norms in R

d : ‖x‖ := maxi |xi |, ‖x‖2 := (
∑

i |xi |2)1/2, and |x | = ‖x‖1 :=∑i |xi |. We shall
also need the quantity

Wα(n; x) :=
d∏

j=1

(x j + n−1/2)2α j +1, x ∈ R
d+.

Theorem 9.1 Let 0 < ε ≤ 1 and assume that â in (9.4) is an admissible cutoff function
obeying inequality (3.1) in Theorem 3.1. Then for x, y ∈ R

d+,

|Lαn (x, y)| ≤ cnd/2

√
Wα(n; x)

√
Wα(n; y)

exp

{

− c′εn1/2‖x − y‖
[ln(e + n1/2‖x − y‖)]1+ε

}

, (9.5)

where c′ > 0 is a constant depending only on d and α, and c depends on d, α, ε.
As in similar situations before, for an appropriate cutoff function â the term [ln(e +

n1/2‖x − y‖)]1+ε above can be replaced by any product of multiple logarithms as in (1.10).
In addition, for some constant c′′ > 0

|Lαn (x, y)| ≤ ce−c′′ max{‖x‖2,‖y‖2} if max{‖x‖, ‖y‖} ≥ (12n + 3‖α‖ + 3)1/2. (9.6)

Besides Theorem 3.1 a main new ingredient in the proof of this theorem will be the
following result for Laguerre polynomials:

Proposition 9.2 For n ≥ 1 and −1/2 ≤ α ≤ n, we have

|Lαn (t)|e−t/2 ≤ c2α(n/t)α/2, 0 < t < ∞, (9.7)

where c > 0 is an absolute constant. The lower bound −1/2 for α can be replaced by any
constant α0 > −1 but c will depend on α0.

Proof We shall utilize some estimates on |Lαn (t)| established in [11]. As is shown in [11,
Theorem 2] for α ≥ 24 and n ≥ 1

max
0<t≤ 2(α+1)2

2n+α+1

tα+1e−t [Lαn (t)]2 < 650
�(n + α + 1)

�(n + 1)

(α + 1)4/3

n1/6(n + α + 1)5/6
. (9.8)

For the next estimate, let us denote briefly

sn := √
n + α + 1 + √

n and qn := √
n + α + 1 − √

n.
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Then, for α ≥ 24 and n ≥ 35 [11, Theorem 4],

tα+1e−t [Lαn (t)]2 < 680
�(n + α + 1)

�(n + 1)

t
√
(t − q2

n )(s
2
n − t)

for t ∈ (q2
n , s2

n ). (9.9)

We shall consider several cases for α, n, and t .
Case 1. −1/2 ≤ α < 24 and n ≥ 1 or 1 ≤ n < 35 (then α ≤ n < 35). In this case,
estimate (9.7) (0 < t < ∞) follows from the standard estimate in [21, §8.22] with a constant
depending on α (see also [22, Lemma 1.5.3] or [19, 2.12]).
Case 2. n ≥ 35, 24 ≤ α ≤ n, and 0 < t ≤ 1/n. A standard upper bound for |Lαn (t)| (α ≥ 0)
is given by (see e.g. [11, (3)])

|Lαn (t)|e−t/2 ≤ (α + 1)n
n! = �(n + α + 1)

�(α + 1)�(n + 1)
, 0 < t < ∞. (9.10)

Note that by Stirling’s formula �(t + 1) ∼ (t/e)t
√

t on [1,∞) and hence

�(n + α + 1)

�(n + 1)
≤ c

((n + α)/e)n+α√n + α

(n/e)n
√

n
≤ c2αnα, (9.11)

where c > 0 is an absolute constant. Using this in (9.10) we get

|Lαn (t)|e−t/2 ≤ cnα ≤ c(n/t)α/2, 0 < t ≤ 1/n,

which gives (9.7) in the case under consideration.

Case 3. n ≥ 35, 24 ≤ α ≤ n, and 1
n < t ≤ 2(α+1)2

2n+α+1 . From (9.8) and (9.11) we get

e−t [Lαn (t)]2 ≤ c(α + 1)4/3

n1/6(n + α + 1)5/6
2αnα

tα+1 ≤ cα4/32α

nt

(n

t

)α ≤ cα4/32α
(n

t

)α
,

which implies (9.7).

Case 4. 2(α+1)2

2n+α+1 < t ≤ n. We have q2
n <

(α+1)2

4n < 1
2

2(α+1)α

2n+α+1 and s2
n > 4n. We use these and

(9.11) in (9.9) to obtain

tαe−t [Lαn (t)]2 ≤ c2αnα
√
(t − q2

n )(s
2
n − t)

≤ c2αnα√
n/(n + α + 1)

≤ c2αnα,

which again gives (9.7). The proof of the proposition is complete. ��

Proof of Theorem 9.1 Note first that from Lemma 1.5.3 in [22] or [21, §8.22] it follows that

|Lαn (t)|e−t/2 ≤ cnα for t ≥ 0 and |Lαn (t)|e−t/2 ≤ ce−γ n for t ≥ 3N/2, (9.12)

where γ > 0 is a constant and N := 4n + 2α + 2. These immediately lead to the estimates
[9]:

‖Fα
n ‖∞ ≤ cnα/2 and |Fα

n (t)| ≤ ce−γ ′t2
for t ≥ (3N/2)1/2, (9.13)

which readily imply (9.6). In turn estimate (9.6) obviously implies that (9.5) holds if max{‖x‖,
‖y‖} ≥ (12n + 3‖α‖ + 3)1/2.

The proof of (9.5), when max{‖x‖, ‖y‖} < (12n + 3‖α‖ + 3)1/2, will rely on the devel-
opments in [9], where in particular it is shown that Lαn (x, y) has the representation (see
[9, (8.3)–(8.4)])
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Lαn (x, y) = c
∫

[0,π ]d

Kα
n

(

‖x‖2
2 + ‖y‖2

2 + 2
d∑

i=1

xi yi cos θi

)

×
d∏

i=1

jαi −1/2(xi yi cos θi ) sin2αi θi dθ, (9.14)

where jα(t) := t−α Jα(t)with Jα(t) being the Bessel function, and the kernel Kα
n is given by

Kα
n (t) =

∞∑

m=0

�k+1â
(m

n

)
L |α|+k+d

m (t)e−t/2. (9.15)

Here k ≥ 0 is arbitrary and the finite difference �k+1 is with respect to m.
We claim that Kα

n satisfies the estimate

|Kα
n (t)| ≤ cn|α|+d exp

{

− c�(nt)1/2

[ln(e + (nt)1/2)]1+ε

}

, t ≤ 4d(12n + 3‖α‖ + 3),

(9.16)

where c� = c′ε with c′ > 0 independent of ε.
Suppose t ≤ 4d(12n + 3α + 3) and let 2 ≤ k ≤ n/4. Evidently, we have

∣
∣�k+1â

(
ν
n

)∣
∣ ≤

n−k−1‖â(k+1)‖∞ and�k+1â( νn ) = 0 if 0 ≤ ν ≤ n/2−k −1 or ν ≥ 2n. From these, estimate
(3.1) from Theorem 3.1, and (9.7) it follows that

|Kα
n (t)| ≤ c

∑

n/2−k−1<m<2n

1

nk+1

(
4m

t

)(|α|+k+d)/2

‖â(k+1)‖∞

≤ cn−k
(

8n

t

)(|α|+k+d)/2

(c̃/ε)k+1(k + 1)k+1[ln(k + 1)](k+1)(1+ε)

≤ cn|α|+d
(

8

nt

)(|α|+d−1)/2 [cε(k + 1)[ln(k + 1)]1+ε

(nt)1/2

]k+1

, (9.17)

where cε = 64c̃/ε, c̃ ≥ 1.
Exactly as above, but using the first estimate in (9.12) instead of (9.7) and (9.15) with

k = 0 we get

|Kα
n (t)| ≤ c

∑

n/2−1<m<2n

n−1m|α|+d‖â′‖∞ ≤ cn|α|+d . (9.18)

Suppose (nt)1/2 ≥ 2c�cε[ln(e + √
nt)]1+ε , where c� := (12d(5 + ‖α‖))1/2, and choose

k :=
⌊ √

nt

c�cε[ln(e + √
nt)]1+ε

⌋

− 1.

Then 3 ≤ k + 1 ≤ n/4 as t ≤ 4d(12n + 3‖α‖ + 3) ≤ (c�)2n, and it is easy to see that
cε(k+1)[ln(k+1)]1+ε√

nt
≤ e−1. Hence, by (9.17) it follows that (9.16) holds with c� = (c�cε)−1,

where we used that nt ≥ (c�cε)2.
If (nt)1/2 < c�cε[ln(e + √

nt)]1+ε , then (9.16) is immediate from (9.18). This completes
the proof of (9.16).

To prove (9.5), we will use (9.16) with t = ‖x‖2
2 + ‖y‖2

2 + 2
∑d

i=1 xi yi cos θi . Evi-
dently, t ≥ ‖x − y‖2 and t ≤ d(‖x‖ + ‖y‖)2 ≤ 4d(12n + 3‖α‖ + 3) as in (9.16). Also,
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exp

{
− 1

2 c�x
[ln(e+x)]1+ε

}

≤ c(1 + x2)−2|α|−d , x > 0, where c > 0 is a sufficiently large constant.

Therefore, from (9.16) it follows that

|Kα
n (t)| ≤ cn|α|+d exp

{

−
1
2 c�n1/2‖x − y‖

[ln(e + n1/2‖x − y‖)]1+ε

}(
1

1 + nt

)τ

with τ = 2|α|+ d . Combining this with (9.14) and the fact that | jα−1/2(t)| ≤ cα for t ∈ R+,
α ≥ 0 [9] we arrive at the estimate

|Lαn (x, y)| ≤ cn|α|+d exp

{

−
1
2 c�n−1/2‖x − y‖

[ln(e + n1/2‖x − y‖)]1+ε

}

×
∫

[0,π ]d

∏d
i=1 sin2αi θi dθ

[
1 + n

(
‖x‖2

2 + ‖y‖2
2 + 2

∑d
i=1 xi yi cos θi

)]τ .

Denote the last integral above by J . We now estimate J quite similarly as in the proof of
Theorem 3.2 in [9]. Substituting θi := π − ti and using that 1 − cos t = 2 sin2 t

2 ∼ t2 we get

J ≤ c
∫

[0,π ]d

∏d
i=1 t2αi dt

[
1 + n

(
‖x − y‖2 +∑d

i=1 xi yi t2
i

)]τ

≤ c
∫

[0,π ]�

∏�
i=1 t2αi dt

[
1 + n

(
‖x − y‖2 +∑�

i=1 xi yi t2
i

)]τ , 0 ≤ � ≤ d.

For a fixed 1 ≤ � ≤ d denote α′ := (α1, . . . , α�). Then substituting ui = ti (xi yi )
1/2 above,

we get

J ≤ c

n|α′|∏�
i=1(xi yi )αi +1/2

�∏

i=1

π(xi yi )
1/2

∫

0

du
[
1 + n(‖x − y‖2 +∑�

i=1 u2
i )
]τ−|α′| ,

where we used |α′| terms from the denominator to cancel the numerator. We now enlarge the
domain of integration to R

� and use spherical coordinates to bound the product of integrals
above by

∞∫

0

r�−1dr
[
1 + n(‖x − y‖2 + r2)

]τ−|α′| ≤ c

n�/2
(
1 + n‖x − y‖2

)τ−|α′|−�/2 ,

where we used that τ := 2|α| + d > |α| + d/2. Therefore, we have for 0 ≤ � ≤ d (the case
� = 0, |α′| := 0, is trivial)

n|α|+d/2 J ≤ cn|α|+d/2

n|α′|+�/2∏�
i=1(xi yi )αi +1/2

(
1 + n‖x − y‖2

)τ−|α|−d/2

≤ c
∏�

i=1(xi yi )αi +1/2
∏d

i=�+1(n
−1)αi +1/2

(
1 + n1/2‖x − y‖)|α|+d/2 ,

which readily implies

n|α|+d/2 J ≤ c
∏�

i=1(xi yi + n−1)αi +1/2
(
1 + n1/2‖x − y‖)|α|+d/2 .
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Using now the simple inequalities

(xi + n−1/2)(yi + n−1/2) ≤ 3(xi yi + n−1)(1 + n1/2‖x − y‖), 1 ≤ i ≤ d,

we obtain

n|α|+d/2 J ≤ c√
Wα(n; x)

√
Wα(n; y)

and estimate (9.5) follows. ��
Sub-exponentially localized needlets induced by Laguerre functions. The construction here
is similar as in previous sections, in particular, see the case of Hermite functions. We start
with the cubature formula from [9] with nodes in X j ⊂ R

d+ consisting of O(4 jd) points
in R

d obtained as product of the nodal sets of univariate Gaussian quadrature formulas on
R+ and with positive coefficients {cξ }ξ∈X j , which is exact for functions in

⊕N
m=0 Vm with

N := c4 j+1 [9]. We next choose an admissible cutoff function â of type (c) obeying (3.1)
and then define

ψξ (x) := c1/2
ξ Lαn (ξ, x), ξ ∈ X j ,

where Lαn (x, y) with n := 4 j−1 is the kernel from (9.4). Notice that here the dilation on the
frequency side is by a factor of 4. Setting X := ∪ j≥0X j , we define the Laguerre needlet
system by� := {ψξ }ξ∈X . The sub-exponential localization of the Laguerre needlets follows
by Theorem 9.1 and takes the form: For ξ ∈ X j , j ≥ 0,

|ψξ (x)| ≤ c2 jd

√
Wα(n; ξ) exp

{

− c′ε2 j‖x − ξ‖
[ln(e + 2 j‖x − ξ‖)]1+ε

}

, x ∈ R
d+, (9.19)

and

|ψξ (x)| ≤ ce−c′′‖x‖2
if ‖x‖ ≥ c∗2 j (9.20)

for an appropriate constant c∗. This is a natural improvement of the localization of the needlets
from [9].

10 The localization principle from Sect. 2 fails for product Jacobi polynomials

In this section, we show that in contrast to the cases considered in previous sections surpris-
ingly the localization principle described in Sect. 2 is no longer valid for 2-d tensor product
Legendre or Chebyshev polynomials and products of Legendre and Chebyshev polynomials.

The nth degree Legendre polynomial Pn is defined by

Pn(x) := 1

n!2n

(
d

dx

)n

(x2 − 1)n

and it is known that Pn(1) = 1, Pn(−1) = (−1)n and
∫ 1
−1 P2

n (x)dx = (n + 1/2)−1. Denote

P̃n := (n + 1/2)1/2 Pn and note that {P̃n}n≥0 is an orthonormal basis for L2[−1, 1].
The 2-d tensor product Legendre polynomials are defined by

P̃ν(x) := P̃ν1(x1)P̃ν2(x2), ν = (ν1, ν2), x = (x1, x2).
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For an admissible univariate cutoff function â ≥ 0 (see Definition 1.1) define

Ln(x, y) :=
∞∑

m=0

â
(m

n

)
P̃m(x, y), where P̃m(x, y) :=

∑

|ν|=m

P̃ν(x)P̃ν(y). (10.1)

Here |ν| := ν1 + ν2 and x, y ∈ [−1, 1]2. In more detail

P̃m(x, y) =
∑

ν1+ν2=m

(ν1 + 1/2)(ν2 + 1/2)Pν1(x1)Pν2(x2)Pν1(y1)Pν2(y2).

In order to show that Ln(x, y) has very poor localization at some points in [−1, 1]2×[−1, 1]2,
which are away from the main diagonal, we fix y = (1, 1). Using that Pn(−1) = (−1)n one
easily verifies the identity

P̃m(1,−1, 1, 1) =
m∑

j=0

(−1) j ( j + 1/2)(m − j + 1/2) = (1 + (−1)m)/8. (10.2)

Indeed, for odd m this follows from the symmetry of the terms in the sum and in the case
m = 2k it follows by simple manipulations from the case m = 2k − 1.

By (10.1) and (10.2) it follows that

Ln(1,−1, 1, 1) = 1

4

∞∑

j=0

â

(
2 j

n

)

= n

8

∞∫

0

â(t)dt + â(0)

8
+ O(n−1),

which shows that Ln(x, y) has no localization whatsoever for x = (1,−1), y = (1, 1).
The behavior of the sequence {Ln(x, (1, 1))}∞n=0 is similar when x is any other point on the
lines {(x1, 1)} and {(1, x2)}. However, the kernels Ln(x, y) are very well localized in a large
portion of [−1, 1]2 × [−1, 1]2.

It is slightly more complicated to show that the situation is quite the same for Chebyshev
polynomials. In this case (10.1) holds with

P̃m(x, y) = 4

π2

m∑

j=0

(

1 − δ j,0

2

)(

1 − δ j,m

2

)

Tj (x1)Tm− j (x2)Tj (y1)Tm− j (y2),

where Tn(v) = cos n arccos v and δ j,k is the Kronecker delta (see the definition of Chebyshev
polynomials given in Sect. 2). Using that Tn(−1) = (−1)n one easily verifies the identity

P̃m(1,−1, 1, 1) = 4

π2

m∑

j=0

(

1 − δ j,0

2

)(

1 − δ j,m

2

)

(−1)m− j = δm,0

π2 .

Hence

Ln(1,−1, 1, 1) = â(0)

π2 ,

which implies that there is no localization for cutoff functions of type (a) in Definition 1.1.
The above identity is inconclusive for cutoff functions â of type (b) and (c). In fact, for

every such â and every segment

{x(t) = (1 − 2t cos θ, 1 − 2t sin θ) : t ∈ [0,min{sec θ, csc θ}]}
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with fixed θ ∈ [0, π/2] the sequence {Ln(x(t), (1, 1))}∞n=0 has excellent localization when
t increases. This localization, however, is not uniform over θ ∈ [0, π/2] and even {Ln(x,
(1, 1))}∞n=0 is not localized at all for x ∈ [−1, 1]2! In order to demonstrate this fact we
consider the function Fn(x1) = Ln(x1,−1, 1, 1). Straightforward calculations give

Fn(x1) = â(0)

π2 −
∞∑

j=1

2

π2 â

(
j

n

)

sin( j arccos x1) tan

(
1

2
arccos x1

)

.

In particular, Fn is an algebraic polynomial of degree at most �n, where supp â ⊂ [0, �]. The
above identity implies for its derivative

F ′
n(1) = 4

π2

∞∑

j=1

j

2
â

(
j

n

)

= 2n2

π2

∞∫

0

t â(t)dt + O(1).

Now, because of
∫∞

0 t â(t)dt > 0, Markov’s inequality implies that

‖Fn‖L∞[−1,1] > const,

which validates our assertion.
Another example is the weight (1−x2

1 )
−1/2 in [−1, 1]2, which is associated with products

of Chebyshev and Legendre polynomials. In this case (10.1) holds with

P̃m(x, y) = 2

π

m∑

j=0

(

1 − δ j,0

2

)(

m − j + 1

2

)

Tj (x1)Tm− j (x2)Pj (y1)Pm− j (y2).

Now

P̃m(1,−1, 1, 1) = 2

π

m∑

j=0

(

1 − δ j,0

2

)(

m − j + 1

2

)

(−1)m− j = (−1)m

2π

and hence

Ln(1,−1, 1, 1) = â(0)

4π
+ O(n−1).

As for tensor products of Chebyshev polynomials the localization of the cutoff functions
of type (a) is ruled out by this argument, but for those of types (b) and (c) we consider the
derivative of the function Fn(x1) = Ln(x1,−1, 1, 1). Here we have

F ′
n(1) = 2

π

∞∑

j=1

j

2

(

â

(
2 j − 1

n

)

+ â

(
2 j

n

))

= n2

2π

∞∫

0

t â(t)dt + n

4π

∞∫

0

â(t)dt + O(1)

and hence

‖Fn‖L∞[−1,1] > const.

The above facts lead us to the conclusion that one cannot expect good localization of
kernels of the form (10.1) for tensor product Jacobi polynomials or cross product bases. This
kind of bases apparently have completely different nature compared to, e.g. orthogonal poly-
nomials on the simplex (Sect. 7) and the ball (Sect. 6), or multivariate Hermite and Laguerre
functions (Sects. 8, 9) for which the localization principle is valid.

In the case of tensor product Jacobi polynomials truly multivariate cutoff functions need
to be employed. This sort of cutoff functions and the associated kernels and needlets will be
developed in a follow up paper.
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