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Abstract

Rapidly decaying kernels and frames (needlets) in the context of tensor product Jacobi polynomials
are developed based on several constructions of multivariate C∞ cutoff functions. These tools are further
employed to the development of the theory of weighted Triebel–Lizorkin and Besov spaces on [−1,1]d . It is
also shown how kernels induced by cross product bases can be constructed and utilized for the development
of weighted spaces of distributions on products of multidimensional ball, cube, sphere or other domains.
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1. Introduction

The purpose of this article is to introduce and study Triebel–Lizorkin and Besov spaces on
the d-dimensional cube Qd = [−1,1]d with Jacobi weights and discuss the respective spaces
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on the product domains Bd2 × Qd1 , Bd1 × Bd2 with Bd being the unit ball in R
d as well as sets

of the form Qd1 × S
d2 , Sd1 × Bd2 , Qd1 × T d2 , Qd1 × R

d2 , Bd1 × R
d2+ , Qd1 × Bd2 × R

d3+ , etc.
Here S

d is the unit sphere in R
d+1, T d is the simplex in R

d , and R
d+ := [0,∞)d . In short, we

are interested in developing the theory of distribution spaces on some products of Qd1 , Bd2 , Sd3 ,
T d4 , Rd5 , or Rd6+ with weights. There are two important components of such undertaking: (i) the
spaces need to be properly defined and (ii) building blocks need to be constructed and used for
characterization of the spaces. We maintain that for both tasks tensor product orthogonal bases
should be used.

1.1. The principle distinction between the spaces on [−1,1]d and Bd

It seems to us natural to introduce weighted smoothness spaces on [−1,1]d or Bd with
weights by means of orthogonal polynomials. However, there is a surprising difference between
the orthogonal polynomial expansions on [−1,1]d and Bd which we would like to describe
next.

Let us first briefly review the definition of Triebel–Lizorkin and Besov spaces on Bd , given
in [14]. Denote by Vd

n the space of all polynomials of total degree n which are orthogonal to
lower degree polynomials in L2(Bd,wμ) with weight wμ(x) := (1 − ‖x‖2

2)
μ−1/2. The orthogo-

nal projector Projn : L2(Bd,wμ) �→ Vd
n can be written in the form

(Projn f )(x) =
∫
Bd

f (y)Pn(wμ;x, y)wμ(y)dy. (1.1)

To introduce weighted Triebel–Lizorkin (F -spaces) and Besov spaces (B-spaces) on Bd

(see [17,24] for the general idea), let

Φ0(x, y) := 1 and Φj(x, y) :=
∞∑

n=0

â

(
n

2j−1

)
Pn(wμ;x, y), j � 1, (1.2)

where â ∈ C∞[0,∞) is a cutoff function such that supp â ⊂ [ 1
2 ,2] and |â| � c > 0 on [3/5,5/3].

The weighted F -space F
s,q
p on Bd with s ∈ R, 0 < p < ∞, 0 < q � ∞, is defined as the

space of all distributions f on Bd such that

‖f ‖F
s,q
p

:=
∥∥∥∥∥
( ∞∑

j=0

(
2sj
∣∣Φj ∗ f (·)∣∣)q

)1/q∥∥∥∥∥
Lp(wμ)

< ∞, (1.3)

where Φj ∗ f (x) := 〈f,Φj (x, ·)〉 (as in (5.15)). The corresponding scale of weighted Besov
spaces B

s,q
p is defined via the (quasi-)norms

‖f ‖B
s,q
p

:=
( ∞∑

j=0

(
2sj
∥∥Φj ∗ f (·)∥∥

Lp(wμ)

)q)1/q

. (1.4)

We refer the reader to [14] for more detailed account of weighed F - and B-spaces on the ball.
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A “natural” attempt to introduce Triebel–Lizorkin and Besov spaces on [−1,1]d with weight

wα,β(x) :=
d∏

i=1

(1 − xi)
αi (1 + xi)

βi (1.5)

would be to use directly the same idea as above. Namely, for multi-indices α, β , ν the
d-dimensional tensor product Jacobi polynomials are defined by

P̃ (α,β)
ν (x) :=

d∏
j=1

P̃
(αj ,βj )
νj

(xj ). (1.6)

Set P̃
(α,β)
n (x, y) :=∑

|ν|=n P̃
(α,β)
ν (x)P̃

(α,β)
ν (y) and with â as in (1.2) define

Φ0(x, y) := 1 and Φj(x, y) :=
∞∑

n=0

â

(
n

2j−1

)
P̃ (α,β)

n (x, y), j � 1, (1.7)

which can be viewed as an analogue of the kernels from (1.2).
The next step would be to define weighted Triebel–Lizorkin and Besov spaces on [−1,1]d

with weight wα,β(x) exactly as in (1.3) and (1.4) using the kernels Φj(x, y) from (1.7). Such
a definition, however, is completely unacceptable due to the poor localization of the kernels
Φj(x, y) from (1.7). As is shown in [11] in the particular case of Legendre or Chebyshev polyno-
mials, kernels of the form (1.7) have no localization whatsoever for some points x, y ∈ [−1,1]d .
In contrast, the kernels Φj(x, y) from (1.2) decay rapidly away from the main diagonal in
Bd × Bd . Interestingly enough, the situation is quite the same on the interval [13], sphere [15],
simplex [11], and more surprisingly in the context of tensor product Hermite [20] and Laguerre
functions [12].

1.2. The remedy for the problem

It appears that the tensor product Jacobi polynomials are in a sense of a different nature com-
pared to orthogonal polynomials on the interval, ball or simplex as well as spherical harmonics
and tensor product Hermite and Laguerre functions. Truly multivariate cutoff functions need to
be employed. Our primary goal in this paper is to identify a natural class of cutoff functions
which will enable us to develop a meaningful theory of Triebel–Lizorkin and Besov spaces on
[−1,1]d with weight wα,β(x) via tensor product Jacobi polynomials.

The key is to consider multivariate cutoff functions Â with dyadic dilations covering the whole
spectrum and such that the kernels

Φj(x, y) :=
∑
ν∈Nd

0

Â

(
ν

2j−1

)
P̃ (α,β)

ν (x)P̃ (α,β)
ν (y) (1.8)

decay rapidly away from the main diagonal in [−1,1]d × [−1,1]d . It turns out that it suffices to
consider compactly supported C∞ cutoff functions Â : [0,∞)d �→ C which obey the following
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First Boundary Condition. For any t ∈ [0,∞)d which belongs to the coordinate planes, i.e. t of
the form t = (t1, . . . , tk−1,0, tk+1, . . . , td ) for some 1 � k � d ,

∂m

∂tmk
Â(t) = 0 for m = 1,2, . . . . (1.9)

Sometimes, instead of this condition it will be more convenient to use the following slightly
more restrictive but for certain purposes better and easier to deal with

Second Boundary Condition. There exists a constant c∗ > 0 such that for any τ ∈ [0,∞)d of
the form τ = (τ1, . . . , τk−1,0, τk+1, . . . , τd), 1 � k � d , Â(t) = constant for t ∈ [τ, τ + c∗ek]
with ek being the kth coordinate vector.

The point is that either of these conditions combined with Â being C∞ and compactly sup-
ported yields the rapid decay of the kernels Φj(x, y) from (1.8) (see Theorem 4.1). Then these
kernels can be deployed to the definition of weighted Triebel–Lizorkin and Besov spaces on
[−1,1]d by means of norms similar to the norms in (1.3)–(1.4).

As will be seen the weights

Wα,β(n;x) :=
d∏

i=1

(
1 − xi + n−2)αi+1/2(1 + xi + n−2)βi+1/2 (1.10)

will appear naturally in most estimates and results related to spaces on [−1,1]d with weight
wα,β(x). Moreover, the inhomogeneity created by wα,β(x) and the boundary of [−1,1]d leads
us to the introduction via Wα,β(·;·) of a fourth parameter ρ in the definition of weighted Triebel–
Lizorkin and Besov spaces on [−1,1]d . Thus we introduce F -spaces by the norms

‖f ‖F
sρ
pq

:=
∥∥∥∥∥
( ∞∑

j=0

[
2sjWα,β

(
2j ; ·)−ρ/d ∣∣Φj ∗ f (·)∣∣]q

)1/q∥∥∥∥∥
Lp(wα,β )

and B-spaces by the norms

‖f ‖B
sρ
pq

:=
( ∞∑

j=0

[
2sj
∥∥Wα,β

(
2j ; ·)−ρ/d

Φj ∗ f (·)∥∥
Lp(wα,β )

]q)1/q

(see Sections 7–8). This allows to use for different purposes various scales of weighted F - and
B-spaces on [−1,1]d . For instance, as will be seen the Besov spaces Bss

ττ appear naturally in
nonlinear approximation in Lp(wα,β).

As a next step we use kernels of the form (1.8) for the construction of building blocks
(needlets) {ϕξ }, {ψξ }. These are multiscale dual frames which enable us to characterize the
F - and B-space norms by the size of the needlet coefficients {〈f,ϕξ 〉} in appropriate sequence
norms. They can be viewed as an analogue of the ϕ-transform of Frazier and Jawerth [6–8].

The theory of weighted Triebel–Lizorkin and Besov spaces on [−1,1]d and needlet decom-
positions in dimensions d > 1 run parallel to their theory in dimension d = 1, developed in [13],
and on the ball [14]. Therefore, to spare the reader the repetition of well-established arguments
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we shall only exhibit the essential differences and refer for the rest to [13,14]. We shall place the
emphasis on the development of multivariable cutoff functions and the associated tensor prod-
uct Jacobi kernels which defer substantially from the ones in the univariate case and are the
main reason for writing this paper. We shall also discuss the main points of the development of
Triebel–Lizorkin and Besov spaces and needlets on products of [−1,1]d1 , Bd2 , Sd3 , Rd4 , or Rd5+
with weights as mentioned above.

This paper is part of a broader undertaking for development of spaces of distributions in non-
standard settings such as on the sphere [15], ball [14] as well as in the frameworks of Hermite [20]
and Laguerre [12] expansions. It is also closely related to the development of sub-exponentially
localized Jacobi and other kernels and needlets in [11].

1.3. Outline of the paper

A substantial part of the paper is devoted to the development of multivariate cutoff func-
tions and related tensor product Jacobi kernels. In Section 2 we review some basic results from
[11,13] and prove new results about admissible univariate cutoff functions and the localization of
the respective kernels induced by univariate Jacobi polynomials. In Section 3 we present several
constructions of multivariate admissible cutoff functions. We also construct cutoff functions of
“small” derivatives which enables us to develop tensor product kernels with sub-exponential
localization. In Section 4 the localization results of the corresponding tensor product Jacobi
polynomial are established. In Section 5 we give some auxiliary results concerning a maximal
operator and distributions on [−1,1]d . We also establish some Lp-multipliers for tensor product
Jacobi polynomial expansions. In Section 6 we utilize kernels associated to cutoff functions of
types (b) and (c) to the construction of frame elements (needlets). In Sections 7–8 we further use
these kernels to define “correctly” the weighted Triebel–Lizorkin and Besov spaces on [−1,1]d
with weight wα,β(x). We also establish needlet decomposition of the F - and B-spaces. Section 9
is devoted to nonlinear approximation from Jacobi needlets. In Section 10 we briefly consider
weighted spaces of distributions on Bd1 × [−1,1]d . In Section 11 we discuss various aspects of
distribution spaces on product domains and tensor product bases. In Appendix A we place the
lengthy proof of a lemma from Section 10.

Some useful notation. Throughout the paper (if not specified otherwise) we shall denote

‖f ‖p :=
( ∫

[−1,1]d

∣∣f (x)
∣∣pwα,β(x) dx

)1/p

, 0 < p < ∞,

and ‖f ‖∞ := ess supx∈[−1,1]d |f (x)|. For x ∈ R
d we shall use the norms ‖x‖ = ‖x‖∞ :=

maxi |xi |, ‖x‖2 := (
∑

i |xi |2)1/2, and |x| = ‖x‖1 := ∑
i |xi |. Πd

n will denote the set of all al-
gebraic polynomials of total degree � n in d variables. Positive constants will be denoted by c,
c1, c′, . . . and they may vary at every occurrence, a ∼ b will stand for c1a � b � c2a.

2. Localized Jacobi kernels induced by univariate cutoff functions

Here we introduce the notion of admissible univariate cutoff functions and review the localiza-
tion properties of the associated kernels induced by Jacobi polynomials established in [11,13,18].
We also obtain some new localization results.
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2.1. Admissible univariate cutoff functions

Definition 2.1. A function â ∈ C∞[0,∞) is said to be admissible if supp â ⊂ [0,2] and
â(m)(0) = 0 for m � 1. Furthermore, â is said to be admissible of type (a), (b) or (c) if â is
admissible and in addition obeys the respective condition:

(a) â(t) = 1, t ∈ [0,1],
(b) supp â ⊂ [1/2,2], or
(c) supp â ⊂ [1/2,2] and

∑∞
j=0 |â(2−j t)|2 = 1 for t ∈ [1,∞).

We next introduce sets of C∞ functions with “small” derivatives. As a tool for measuring the
derivatives’ growth we use functions L satisfying the conditions:

L : [0,∞) �→ [1,∞) is monotone increasing, L(0) = 1 and

M = M(L) := 1 +
∞∫

0

dt

(t + 1)L(t)
< ∞. (2.1)

Typical examples of functions L satisfying (2.1) are L0,ε(t) := (1 + t)ε , ε > 0, and

L�,ε(t) := ln(e + t) · · · ln · · · ln︸ ︷︷ ︸
�−1

(exp · · · exp︸ ︷︷ ︸
�−1

1 + t)
[
ln · · · ln︸ ︷︷ ︸

�

(exp · · · exp︸ ︷︷ ︸
�

1 + t)
]1+ε

, (2.2)

where � ∈N and 0 < ε � 1. Evidently, M(L�,ε)� c(�)ε−1.

We shall use the standard notation Dk
j := ∂k

∂xk
j

.

Definition 2.2. Let L satisfy (2.1). Given constants γ, γ̃ > 0 and d � 1, we define S(d,L;γ, γ̃ )

to be the set of all functions Â ∈ C∞[0,∞)d , such that ‖Â‖∞ � γ and

1

k!
∥∥Dk

j Â
∥∥∞ � γ

(
γ̃L(k − 1)

)k
, ∀k ∈N, 1 � j � d. (2.3)

The next statement asserts the existence of admissible univariate cutoff functions with “small”
derivatives.

Theorem 2.3. Let L and M be given by (2.1). Then the sets S(1,L;1,2M), S(1,L;2,4M) and
S(1,L;8,8M) contain admissible cutoff functions â of types (a), (b), and (c), respectively, (see
Definition 2.1) with values in [0,1].

Proof. We shall proceed quite similarly as in the proof of Theorem 3.1 in [11]. We let χδ :=
1
2δ

1[−δ,δ] and select δj := 1
(j+1)L(j)

for j � 0. Apparently

∞∑
j=0

δj � 1 +
∞∫

dt

(t + 1)L(t)
= M.
0
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We define

ϕm := χδ0 ∗ · · · ∗ χδm and ϕ(t) := lim
m→∞ϕm(t).

Just as in [10, Theorem 1.3.5] we have ϕ ∈ C∞, ϕ � 0, suppϕ ⊂ [−M,M] and

∥∥ϕ(k−1)
∥∥∞ � 1∏k−1

j=0 δj

� k!L(k − 1)k for k � 1.

Furthermore, since
∫
R

χδ = 1, we have
∫
R

ϕ = 1 and 0 � ϕ � 1/2.
We now set ψ(t) := 2Mϕ(2Mt) and define g(t) := π

2

∫ t

−∞ ψ(s) ds. Evidently, g ∈ C∞(R),

suppg′ ⊂ [− 1
2 , 1

2 ], g(t) + g(−t) = π
2 for t ∈ R, 0 � g � π/2, ‖g′‖∞ � (π/2)‖ψ‖∞ � (π/2)M

and

∥∥g(k)
∥∥∞ � π

2

∥∥ψ(k−1)
∥∥∞ � π

2
(2M)kk!L(k − 1)k for k � 2. (2.4)

Apparently â(t) := 2
π
g( 3

2 − t) is an admissible function of type (a) and â belongs
to S(1,L;1,2M). Also â(t) − â(2t) is an admissible function of type (b) belonging to
S(1,L;2,4M).

To construct an admissible function of type (c) we write φ(t) := sing(t), t ∈ R. From above,
we have φ(t)2 + φ(−t)2 = 1 for t ∈R. We define

â(t) :=

⎧⎪⎨
⎪⎩

φ(2t − 3
2 ) if t ∈ [ 1

2 ,1],
φ( 3

2 − t) if t ∈ (1,2],
0 if R \ [ 1

2 ,2].

We claim that â is an admissible cutoff function of type (c) and â ∈ S(1,L;8,8M). All required
conditions on â are trivial to verify but the estimate

1

k!
∥∥â(k)

∥∥∞ � 8
(
8ML(k − 1)

)k
, k � 1. (2.5)

Let t0 ∈ (− 1
2 , 1

2 ) and set gk(t) := ∑k
j=0

(t−t0)
j

j ! g(j)(t0). It is easy to see that φ(k)(t0) =
[singk](k)(t0) and since singk(z) is an entire function, by the Cauchy formula,

φ(k)(t0) = k!
2πi

∫
C

singk(z)

(z − t0)k+1
dz, (2.6)

where C := {z ∈ C: |z − t0| = r} with r = 1
4ML(k−1)

. By (2.4) we have for z ∈ C and k � 1

∣∣gk(z)
∣∣� π

2

(
1 + M

4ML(k − 1)
+

k∑ (2M)jj !L(j − 1)j

j ![4ML(k − 1)]j
)
� π

2

(
1 + 1

4
+

k∑ 1

2j

)
= 7π

8

j=2 j=2



1154 K. Ivanov et al. / Journal of Functional Analysis 263 (2012) 1147–1197
and hence |singk(z)| � (e7π/8 + e−7π/8)/2 < 8 for z ∈ C. From this and (2.6) we get

∣∣φ(k)(t0)
∣∣� 8k![4ML(k − 1)

]k
,

which implies (2.5). �
Remark 2.4. Theorem 2.3 is sharp in the sense that if

∫∞
0

dt
(t+1)L(t)

= ∞, then there is no admis-
sible cutoff function â belonging to S(1,L;γ, γ̃ ) for any γ, γ̃ > 0. The argument is precisely
the same as in [11, Remark 3.2].

2.2. Localized kernels induced by Jacobi polynomials

The Jacobi polynomials P
(α,β)
n , n = 0,1, . . . , form an orthogonal basis for the weighted space

L2([−1,1],wα,β) with weight wα,β(t) := (1− t)α(1+ t)β . For various technical reasons we shall

assume that α,β � −1/2. The Jacobi polynomials are traditionally normalized by P
(α,β)
n (1) =(

n+α
n

)
. It is well known that [23, (4.3.3)]

1∫
−1

P (α,β)
n (t)P (α,β)

m (t)wα,β(t) dt = δn,mh(α,β)
n ,

where

h(α,β)
n = 2α+β+1

(2n + α + β + 1)

Γ (n + α + 1)Γ (n + β + 1)

Γ (n + 1)Γ (n + α + β + 1)
. (2.7)

Hence

P̃ (α,β)
n = (

h(α,β)
n

)−1/2
P (α,β)

n (2.8)

is the nth degree Jacobi polynomial normalized in L2([−1,1],wα,β).
We are interested in kernels of the form

Lα,β
n (x, y) =

∞∑
j=0

â

(
j

n

)
P̃

(α,β)
j (x)P̃

(α,β)
j (y), (2.9)

for smooth cutoff functions â : [0,∞) �→ C.
In [18] (see also [1]) it was proved that the kernels L

α,β
n (x, y) decay rapidly away from the

main diagonal in [−1,1]2 for compactly supported C∞ cutoff functions â which are constants
around t = 0. It was also proved in [11] that for such cutoff functions with “small” derivatives
the localization of these kernels is sub-exponential. Furthermore, it was shown that the behavior
of â at t = 0 plays a critical role for the localization of L

α,β
n (x, y), in particular, the fact that â is

C∞ and compactly supported does not guarantee rapid decay of the kernels L
α,β
n (x, y).
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Here we extend that localization result from [18] to smooth cutoff functions â with multiple
zeros of their first derivatives at t = 0. To give this result we need the quantities: wα,β(0;x) := 1
and

wα,β(n;x) := (
1 − x + n−2)α+1/2(1 + x + n−2)β+1/2

, n � 1. (2.10)

We shall also use the distance ρ(x, y) := |arccosx − arccosy| on [−1,1].

Theorem 2.5. Let â ∈ C3k−1[0,∞) for some integer k � 1, supp â ⊂ [0,2], and â(m)(0) = 0 for
m = 1,2, . . . ,3k − 1. Then there exists a constant c > 0 of the form c = c(k,α,β)‖â(3k−1)‖∞
such that the kernels from (2.9) satisfy

∣∣Lα,β
n (x, y)

∣∣� c
n√

wα,β(n;x)
√

wα,β(n;y)

(
1 + nρ(x, y)

)−k
, x, y ∈ [−1,1]. (2.11)

Consequently, if â is an admissible cutoff function, then the above estimate holds for any k � 1.

As in [18] estimate (2.11) follows by the localization of L
α,β
n (x,1) given in the next theorem.

Denote Qα,β
n (x) := L

α,β
n (x,1). It is readily seen that (see e.g. [18])

Qα,β
n (x) = c�

∞∑
j=0

â

(
j

n

)
(2j + α + β + 1)Γ (j + α + β + 1)

Γ (j + β + 1)
P

(α,β)
j (x), (2.12)

where c� := 2−α−β−1Γ (α + 1)−1.

Theorem 2.6. Let â be as in Theorem 2.5 and α � β � −1/2. Then for any r � 0

∣∣∣∣ dr

dxr
Qα,β

n (cos θ)

∣∣∣∣� c
n2α+2r+2

(1 + nθ)k
, 0 � θ � π. (2.13)

Here c is of the form c = c(k, r,α)‖â(3k−1)‖∞.

Proof. We shall proceed quite similarly as in the proof of Theorem 4.2 in [11] and, therefore,
we shall use some notation and facts from that proof.

We shall only prove (2.13) for r = 0; then in general (2.13) follows by using Markov’s in-
equality as in [11].

We trivially have (see (4.8) in [11]) |Qα,β
n (cos θ)| � cn2α+2, which gives (2.13) (r = 0) for

0 � θ � 1/n.
The following identity is crucial in estimating |Qα,β

n (cos θ)| [23, (4.5.3)]:

n∑
ν=0

(2ν + α + k + β + 1)Γ (ν + α + k + β + 1)

Γ (ν + β + 1)
P (α+k,β)

ν (x)

= Γ (n + α + k + 1 + β + 1)
P (α+k+1,β)

n (x). (2.14)

Γ (n + β + 1)
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We define A0(t) := (2t + α + β + 1)â( t
n
) and inductively

Ak+1(t) := Ak(t)

2t + α + k + β + 1
− Ak(t + 1)

2t + α + k + β + 3
, k � 0. (2.15)

We apply summation by parts k times starting from (2.12) and using every time (2.14) and (2.15)
to obtain

Qα,β
n (x) = c�

∞∑
j=0

Ak(j)
Γ (j + α + k + β + 1)

Γ (j + β + 1)
P

(α+k,β)
j (x). (2.16)

Observe first that A1(t) = â( t
n
) − â( t+1

n
) = 1

n

∫ 1
0 â′( t+s

n
) ds and hence A

(m)
1 (t) = 1

nm+1 ×∫ 1
0 â(m+1)( t+s

n
) ds, which leads to

∣∣A(m)
1 (t)

∣∣� 1

nm+1

∥∥â(m+1)
∥∥

L∞[ t
n
, t+1

n
].

On the other hand, since â(�)(0) = 0 for � = 1,2, . . . ,3k − 1, then by Taylor’s theorem

∣∣â(m+1)(z)
∣∣� z2k−1

(2k − 1)!
∥∥â(2k+m)

∥∥
L∞[0,z] whenever m + 1 � k, z > 0. (2.17)

Therefore,

∣∣A(m)
1 (t)

∣∣� 1

nm+1

(
t + 1

n

)2k−1∥∥â(2k+m)
∥∥

L∞[0, t+1
n

], m + 1 � k, t > 0. (2.18)

We next estimate |A(m)
l (t)| by induction on l. We claim that

∣∣A(m)
l (t)

∣∣� c

(t + 1)m+2l−1

(
t + l

n

)2k−1

max
2k���2k+m+l−1

∥∥â(�)
∥∥

L∞[0, t+l
n

] (2.19)

if m + l � k, m � 0, l � 1, and 0 � t � 2n, where c = c(l,m), and hence, using (2.17),

∣∣Ak(t)
∣∣� c(k)

(t + 1)2k−1

(
t + k

n

)2k−1

max
2k���3k−1

∥∥â(�)
∥∥

L∞[0, t+k
n

]

� c(k)

n2k−1

∥∥â(3k−1)
∥∥∞. (2.20)

Indeed, estimate (2.18) gives (2.19) for l = 1. Suppose (2.19) holds for some l � 1 and all m� 0
such that m + l � k. Then by (2.15) Al+1(t) = − ∫ 1

0 G′
l(t + s) ds with Gl(t) := Al(t)

2t+α+l+β+1 and

hence A
(m)
l+1(t) = − ∫ 1

0 G
(m+1)
l (t + s) ds. We have

G
(m+1)
l (t) =

m+1∑(
m + 1

ν

)
A

(ν)
l (t)

(−2)m+1−ν(m + 1 − ν)!
(2t + α + l + β + 1)m+2−ν
ν=0
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and using the inductive assumption

∣∣A(m)
l+1(t)

∣∣� c max
2k���2k+m+l

∥∥â(�)
∥∥

L∞[0, t+l+1
n

]

×
m+1∑
ν=0

1

(t + 1)ν+2l−1

(
t + l + 1

n

)2k−1 1

(t + 1)m+2−ν

� c

(t + 1)m+2l+1

(
t + l + 1

n

)2k−1

max
2k���2k+m+l

∥∥â(�)
∥∥

L∞[0, t+l+1
n

],

which confirms (2.19).
We next prove (2.13) (r = 0) for 1/n � θ � π/2. By (2.7) it readily follows that h

(α+k,β)
n �

c2k/n and it is well known that (see e.g. (4.18) in [11])

∣∣P (α+k,β)
n (cos θ)

∣∣� c

n1/2θk+α+1/2
, 0 < θ � π/2.

We use the above and (2.20) in (2.16) to obtain for 1/n � θ � π/2

∣∣Qα,β
n (cos θ)

∣∣� c
∥∥â(3k−1)

∥∥∞
2n∑

j=1

jα+k

n2k−1j1/2θk+α+1/2
� c

∥∥â(3k−1)
∥∥∞

n2α+2

(nθ)k+α+1/2
.

Hence, estimate (2.13) (with r = 0) holds for 1/n � θ � π/2.
Let π/2 < θ � π − 1/n. Similarly as in [11]

∣∣P (α+k,β)
n (cos θ)

∣∣� c2knβ, π/2 � θ � π − 1/n.

Combining this with (2.16) and (2.20) we get for π/2 � θ � π − 1/n

∣∣Qα,β
n (cos θ)

∣∣� c
∥∥â(3k−1)

∥∥∞n−2k+1
2n∑

j=1

jβ+α+k � c
∥∥â(3k−1)

∥∥∞
nα+β+2

nk
,

which implies (2.13).
In the case π − 1/n � θ � π estimate (2.13) follows from the above estimate exactly as

in [11]. This completes the proof of estimate (2.13) in the case r = 0. �
Estimate (2.11) can be improved for admissible cutoff functions which are constant around

t = 0 and have “small” derivatives as in Theorem 2.3:

Theorem 2.7. Let L and M be as in (2.1). Suppose â is an admissible cutoff function of type
(a), (b) or (c) which belongs to S(1,L;γ, γ̃M) for some γ, γ̃ > 0 (see Theorem 2.3). Then the
kernels from (2.9) satisfy

∣∣Lα,β
n (x, y)

∣∣� cn√
w (n;x)

√
w (n;y)

exp

{
− c̃nρ(x, y)

L(nρ(x, y))

}
(2.21)
α,β α,β
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for x, y ∈ [−1,1], where c̃ = c′/γ̃M with c′ > 0 being an absolute constant and c depends
continuously only on α, β , γ, γ̃ and M .

In particular, the above result holds for L�,ε(t) from (2.2) with M = c(�)ε−1.

For the proof of this theorem one first uses Theorem 2.3 to prove the following estimate for
the kernels from (2.12) with â from above∣∣∣∣ dr

dxr
Qα,β

n (cos θ)

∣∣∣∣� cn2α+2r+2 exp

{
− c̃nθ

L(nθ)

}
, 0 � θ � π,

and then proceeds exactly as in the proof of Theorem 4.1 in [11]. The proofs are nearly identical
to the ones in [11] and will be omitted.

Remark 2.8. Theorem 2.7 remains true if we require that â ∈ S(1,L;γ, γ̃M), supp â ⊂ [0,2],
and â be a constant on [0, δ] for a fixed δ ∈ (0,1). Then c and c′ will depend on δ as well.
However, we are not aware if Theorem 2.7 holds for admissible cutoff functions which are not
constants around t = 0. The method of proof of Theorem 2.6 does not give such a result for all
admissible cutoff functions.

In [11] results similar to Theorem 2.7 are proved on the sphere, ball, simplex and in the context
of Hermite and Laguerre functions with L replaced by L�,ε . We would like to point out here that
with the same proofs these results hold for a general function L as above.

We shall need

Lemma 2.9. There exists a constant c depending only on α,β such that

∣∣P̃ (α,β)
n (x)

∣∣� c√
wα,β(n;x)

, x ∈ [−1,1], n� 1. (2.22)

Proof. For x ∈ [−1 + n−2,1 − n−2], using

wα,β(n;x)� 2α+β+1(1 − x)α+1/2(1 + x)β+1/2,

we get (2.22) from the inequality

sup
x∈[−1,1]

(1 − x)α+1/2(1 + x)β+1/2
∣∣P̃ (α,β)

n (x)
∣∣2 � 2e

π

(
2 +

√
α2 + β2

)
established in [5, Theorem 1]. For the remaining x estimate (2.22) follows from above invoking
Theorem 8.4.8 in [4, p. 108]. �

The next theorem shows that the kernels L
α,β
n from (2.9) are Lip 1 with respect to the distance

ρ(·,·).

Theorem 2.10. Let â ∈ C3k−1[0,∞) for some k > 2α + 2β + 5, supp â ⊂ [0,2], and â(r)(0) = 0
for r = 1,2, . . . ,3k − 1. Then for any x, y, ξ ∈ [−1,1] such that ρ(x, ξ) � c∗n−1, n� 1, c∗ > 0,
the kernel L

α,β
n from (2.9) satisfies
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∣∣Lα,β
n (x, y) − Lα,β

n (ξ, y)
∣∣� cn2ρ(x, ξ)√

wα,β(n;x)
√

wα,β(n;y)

(
1 + nρ(x, y)

)−σ
, (2.23)

where σ = k − 2α − 2β − 5 and c depends only on k, α, β , c∗, and ‖â(3k−1)‖∞. Consequently,
if â is an admissible cutoff function, then the above estimate holds for any σ > 0.

The proof of this theorem for α,β > −1/2 utilizes estimate (2.13) and is identical with the
proof of Theorem 2.2 in [13]. The limit cases α = −1/2 or β = −1/2 are treated as in the proof
of [11, Theorem 4.1]. We omit the details.

3. Multivariate cutoff functions

As was explained in the introduction, cutoff functions in d-variables will play a prominent
role in the development of weighted F - and B-spaces on [−1,1]d . In this section we introduce
two kinds of admissible d-dimensional cutoff functions and give several constructions of such
functions.

3.1. Admissible d-dimensional cutoff functions

To define multivariate cutoff functions we need to introduce some convenient notation. Given
1 � k � d we define projk : Rd → R

d by

projk(t1, . . . , td) := (t1, . . . , tk−1,0, tk+1, . . . , td ). (3.1)

We also denote by Bp the part of the unit ball of the standard �p(Rd) norm contained in the first
octant, i.e.

Bp := {
t ∈ [0,∞)d : ‖t‖p � 1

}
, 1 � p � ∞.

Definition 3.1. A cutoff function Â ∈ C∞[0,∞)d is said to be admissible of first kind or simply
admissible if supp Â ⊂ [0,2]d and Â obeys the First Boundary Condition, introduced in Sec-
tion 1.2, i.e. for any t ∈ [0,∞)d of the form t = projk t for some 1 � k � d we have Dm

k Â(t) = 0
for m = 1,2, . . . .

Furthermore, Â is said to be of type (a), (b), or (c) if in addition

(a) Â(t) = 1 for t ∈ B1,
(b) Â(t) = 0 for t ∈ 1

2B1, or

(c) Â is of type (b) and
∑∞

j=0 |Â(2−j t)|2 = 1 for t ∈ [0,∞)d \ [0,1)d .

Definition 3.2. A cutoff function Â ∈ C∞[0,∞)d is said to be admissible of second kind and
type (a), (b), or (c) if supp Â ⊂ [0,2]d , Â(t) = Â(projk t) for every t = (t1, . . . , td) ∈ [0,∞)d

such that tk � 1
2‖t‖∞ and

(a) Â(t) = 1 if t ∈ B1,
(b) Â(t) = 0 if t ∈ 1

2B1, or

(c) Â is of type (b) and
∑∞ |Â(2−j t)|2 = 1 for t ∈ [0,∞)d \ [0,1)d .
j=0
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We first note that if Â is admissible of second kind, then for all τ ∈ [0,∞)d such that τ =
projk τ for some 1 � k � d , the function Â(t) is a constant on the segment t ∈ [τ, τ + 1

4d−2ek],
i.e. Â obeys the Second Boundary Condition from Section 1.2 with constant c∗ = 1

4d−2 . Indeed,

if ‖τ‖∞ � 1
2d−1 , then

‖t‖1 = ‖τ‖1 + tk �
d − 1

2d − 1
+ 1

4d − 2
= 1

2

and Â(t) = Â(τ ) because Â(t) = 1 or Â(t) = 0 for t ∈ 1
2B1. If ‖τ‖∞ � 1

2d−1 , then tk � 1
4d−2 �

1
2‖τ‖∞ = 1

2‖t‖∞ and we have Â(t) = Â(τ ) by the definition. Consequently, any admissible
cutoff function of second kind is admissible of first kind as well.

Note also that in dimension d = 1 the set of admissible cutoff functions of first kind and
type (a) coincides with the set of admissible cutoff functions of second kind and type (a); the
same is true for cutoff functions of types (b) and (c).

Remark 3.3. As was explained in the introduction the fact that the admissible cutoff functions
satisfy the First Boundary Condition (see Section 1.2) is crucial for the rapid decay of the as-
sociated tensor product Jacobi polynomial kernel from (2.9); this will be established in the next
section.

An important reason for introducing admissible cutoff functions of second kind is that such
cutoff functions with “small” derivatives (Section 3.4, Section 3.6) allow to construct tensor
product Jacobi polynomial kernel of sub-exponential localization (see Theorems 4.2 and 10.5),
while as for now we are unable to achieve such localization with admissible cutoff functions of
first kind.

It is easy to construct admissible cutoff functions of type (a) as products of univariate cutoff
functions of type (a).

Lemma 3.4. Let âj , j = 1, . . . , d , be admissible univariate functions of type (a). Then

Â(t) =
d∏

j=1

âj (tj ) (3.2)

is an admissible d-dimensional cutoff function of second kind and type (a).

Proof. By the definition evidently Â ∈ C∞[0,∞)d , supp Â ⊂ 2B∞ and Â(t) = 1 if t ∈
B∞ ⊃ B1. Furthermore, Â(t) = Â(projk t) for all t ∈ [0,∞)d such that ‖t‖∞ < 2 and tk � 1.
This and supp Â ⊂ 2B∞ imply Â(t) = Â(projk t) for all t = (t1, . . . , td) ∈ [0,∞)d such that
tk � 1

2‖t‖∞. �
The construction of admissible cutoff functions of type (b) is straightforward using admissible

cutoff functions of type (a):
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Lemma 3.5. If Â1, Â2 are admissible of type (a) (any kind), then

Â(t) = Â1(t) − Â2(2t) (3.3)

is admissible of type (b).

For the definition of F - and B-spaces on [−1,1]d we shall utilize admissible cutoff func-
tions Â of type (b) with the property that the dyadic dilations of supp Â essentially cover the
whole spectrum. More precisely, we shall need admissible functions Â, which obey the follow-
ing dyadic covering condition:

for any t ∈ [0,∞)d with ‖t‖∞ = 1 there is 0 < γ � 1 such that

inf
λ∈[γ,2γ ]

∣∣Â(λt)
∣∣� c > 0. (3.4)

Note that this condition yields
∑∞

j=0 |Â(2−j t)| � c > 0 for t ∈ [0,∞)d \B∞ which justifies our
terminology.

From the constructions of admissible cutoff functions below it will be clear that it is easy to
construct admissible functions Â of type (b) which satisfy condition (3.4).

The following lemma will be instrumental in the development of F - and B-spaces.

Lemma 3.6. For any admissible function Â of first or second kind and type (b) satisfying the
dyadic covering condition (3.4) there exists an admissible function B̂ of type (b) (and the same
kind) such that

∞∑
j=0

Â
(
2−j t

)
B̂
(
2−j t

)= 1 for t ∈ [0,∞)d\B∞. (3.5)

Proof. We shall only prove this lemma for an admissible function of second kind, since the case
of first kind cutoff functions is easier.

We define B̂(t) := 0 for t ∈ 1
2B1 and t ∈ [0,∞)d\2B∞. For the remaining t ∈ [0,∞)d we set

B̂(t) := Â(t)∑∞
j=−∞ |Â(2−j t)|2 . (3.6)

For every t ∈ [0,∞)d the sum in the denominator of (3.6) is non-zero on account of property (3.4)
and contains no more that 2 + log2 d non-zero terms. Hence B̂ ∈ C∞[0,∞)d . On the other
hand, for t ∈ [0,∞)d\B∞ we have 2−j t /∈ 2B∞ for j < 0 and the sum in the denominator
of (3.6) reduces to j � 0. Hence (3.5) is trivially satisfied. Finally, if t ∈ [0,∞)d and tk � 1

2‖t‖∞
for some 1 � k � d , then 2−j tk � 1

2‖2−j t‖∞ for j ∈ Z and Â(2−j t) = Â(projk(2
−j t)), which

implies B̂(t) = B̂(projk t). �
The construction of admissible cutoff functions of type (c) will require some care. We shall

give several constructions of cutoff functions below.
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3.2. Construction of admissible cutoff functions via quasi-norms

One approach for constructing admissible d-dimensional cutoff functions is based on the fol-
lowing lemma.

Lemma 3.7. Suppose the function N : Rd → R is in C∞(Rd\{0}) and for t ∈R
d obeys

N (αt) = αN (t), α > 0, (3.7)

‖t‖∞ �N (t) � ‖t‖1, (3.8)

N (t) =N (projm t) provided |tm| � 1

2
‖t‖∞, m = 1, . . . , d. (3.9)

If â is an admissible univariate function of type (a), (b) or (c), then Â(t) = â(N (t)) is an
admissible d-dimensional function of second kind and type (a), (b) or (c), respectively.

The proof of this lemma is straightforward.
A simple way to construct a function N satisfying the conditions of Lemma 3.7 is the follow-

ing. Let ĉ be an even real-valued function, whose restriction on [0,∞) is an admissible univariate
function of type (a), satisfying 0 � ĉ � 1. For d ∈N and t ∈R

d\{0} set

N (t) :=
d∑

m=1

|tm|
d∏

j=1

ĉ

(
tj

tm

)
, (3.10)

where ĉ( τ
0 ) := 0 for every real τ , including τ = 0. For t = 0 by continuity we set N (0) = 0.

Given t �= 0 let k be such that ‖t‖∞ = |tk|. If |tm| � 1
2‖t‖∞, then |tk/tm| � 2 and hence

ĉ(
tk
tm

) = 0. Observing also that ĉ(
tj
tm

) = 1 if |tj | � |tm| we see that (3.10) can be rewritten as

N (t) =
∑

1�m�d, |tm|> 1
2 ‖t‖∞

|tm|
∏

1�j�d, |tj |>|tm|
ĉ

(
tj

tm

)
. (3.11)

As indicated the mth term in the above sum vanishes if |tm| � 1
2‖t‖∞ and hence it belongs

to C∞(Rd\{0}). Therefore, N ∈ C∞(Rd\{0}). From (3.10) it readily follows that N satisfies
condition (3.7). If m is such that |tm| � 1

2‖t‖∞, then |tm| does not participate in the right-hand
side of (3.11) and hence N satisfies (3.9). The inequality N (t) � ‖t‖1 follows from 0 � ĉ � 1.
Finally, if ‖t‖∞ = |tk|, then from (3.11) and 0 � ĉ � 1 we get N (t)� |tk| = ‖t‖∞ and thus (3.8)
is also satisfied. Thus, we have proved

Corollary 3.8. Let N be given by (3.10), where ĉ is an even real-valued function, whose re-
striction on [0,∞) is an admissible univariate function of type (a), satisfying 0 � ĉ � 1. If â is
an admissible univariate function of type (a), (b) or (c), then Â(t) = â(N (t)) is an admissible
d-dimensional function of second kind and type (a), (b) or (c), respectively.
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3.3. Construction of admissible d-dimensional cutoff functions via norms

From (3.10)–(3.11) it follows that N is a quasi-norm. A necessary and sufficient condition for
N to be a norm is the convexity of the unit ball B = {t : N (t) � 1}.

The construction of the boundary ∂B = {t : N (t) = 1} of the unit ball of a norm N satisfying
the conditions of Lemma 3.7 can be carried out by induction on the dimension. First, one gets
the boundaries of the d − 1-dimensional unit balls on every coordinate hyperplane. Second, one
extends them into the first octant by line segments of length 1

2 . Third, one completes the surface
of the unit ball boundary in the first octant by convex C∞ blending. Finally, one extends it by
symmetry to the remaining octants and defines the norm from the ball in a standard way.

If instead of convex C∞ blending in the above scheme it is used a C∞ blending satisfy-
ing (3.8), then one obtains a quasi-norm N satisfying all conditions of Lemma 3.7. We shall not
further elaborate on this construction.

3.4. Construction of admissible cutoff functions via quasi-norms with “small” derivatives

In analogy to Theorem 2.3 we construct here admissible d-dimensional cutoff functions with
“small” derivatives. In this construction we shall utilize classes of C∞ functions of this type:

R(a, b,F ;γ, γ̃ ) :=
{
f ∈ C∞[a, b]: 1

k!
∥∥f (k)

∥∥
L∞[a,b] � γ

(
γ̃ F (k)

)k
, ∀k ∈ N

}
,

where F is a given positive non-decreasing function defined at least on N, and γ, γ̃ > 0 are
parameters independent of k. Obviously, the sum and the product of two functions from such
classes also belong to a class like that (as the parameters γ, γ̃ may vary). More importantly, the
composition of two functions also belongs to such a class as the following lemma shows.

Lemma 3.9. Let F(v) > 0 for v ∈ [1,∞) and let lnF(v)v be convex on [1,∞). If f ∈
R(a1, b1,F ;γ1, γ̃1), g ∈ R(a2, b2,F ;γ2, γ̃2) and the range of f is in [a2, b2], then g ◦ f ∈
R(a1, b1,F ;γ2, γ̃1(γ1γ̃2F(1) + 1)). Here g ◦ f is the composition of g and f .

Proof. In order to find an estimate for Dk(g ◦ f ) we apply Faà di Bruno’s formula in the form

1

k!D
k(g ◦ f ) =

∑
m∈Mk

|m|!
m1! . . .mk!

(D|m|g) ◦ f

|m|!
k∏

j=1

(
Djf

j !
)mj

, (3.12)

where Mk = {m ∈ N
k
0:
∑k

j=1 jmj = k}. Note that
∑k

j=1 jmj = k implies that at most O(
√

k )

of mj can be non-zero. We assume that (·)0 = 1 in the product in (3.12) even if the argument is
zero.

Applying the estimates on the derivatives of f and g we get from (3.12)

1

k!
∥∥Dk(g ◦ f )

∥∥∞ �
∑

m∈Mk

|m|!
m1! . . .mk!γ2

(
γ̃2F

(|m|))|m| k∏
j=1

γ
mj

1

(
γ̃1F(j)

)jmj

= γ2γ̃
k
1

k∑
(γ1γ̃2)

nF (n)n
∑ n!

m1! . . .mk!
k∏

F(j)jmj . (3.13)

n=1 m∈Mk, |m|=n j=1
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Now, from the convexity of v lnF(v) we get

� lnF(�) + j lnF(j) � lnF(1) + (� + j − 1) lnF(� + j − 1), ∀�, j > 1. (3.14)

If in a multi-index m we increase m1 and m�+j−1 by 1 and decrease m� and mj by 1, then the
quantities

∑k
j=1 jmj and

∑k
j=1 mj remain unchanged. Observing that this operation decreases∑k

j=2 mj by 1 and applying inductively (3.14) we obtain that among all m ∈ Mk with |m| = n

the largest value of the product
∏k

j=1 F(j)jmj is attained for m1 = n − 1, mk−n+1 = 1, and
mj = 0 if j �= 1 and j �= k − n + 1, i.e.

k∏
j=1

F(j)jmj � F(1)n−1F(k − n + 1)k−n+1. (3.15)

For the rigorous proof of estimate (3.15) one should take into account the following properties of
the multi-indices m ∈ Mk with |m| = n: (i) if mj � 1, then j � k − n + 1; (ii) if

∑k
j=2 mj = 1,

then mk−n+1 = 1; (iii) if mj � 1 and m� � 1 for 1 < j < �, then j + � − 1 � k − n + 1; (iv) if
mj � 2 for 1 < j , then 2j − 1 � k − n + 1. Note also that (3.15) is trivial for n = k.

Using (3.15) and

∑
m∈Mk, |m|=n

n!
m1! . . .mk! =

(
k − 1

n − 1

)

(see e.g. [21, Section 5.5]) in (3.13) and further applying (3.14) with � = n, j = k − n + 1 we
finally get

1

k!
∥∥Dk(g ◦ f )

∥∥∞ � γ2γ̃
k
1

k∑
n=1

(γ1γ̃2)
nF (n)n

(
k − 1

n − 1

)
F(1)n−1F(k − n + 1)k−n+1

� γ2γ̃
k
1 F(k)k

k∑
n=1

(
k − 1

n − 1

)
F(1)n(γ1γ̃2)

n

= γ2γ̃
k
1 F(k)kγ1γ̃2F(1)

(
γ1γ̃2F(1) + 1

)k−1

� γ2
[
γ̃1
(
γ1γ̃2F(1) + 1

)
F(k)

]k
. �

We shall utilize Lemma 3.9 to the composition of admissible cutoff functions with “small”
derivatives in the sense of Definition 2.2 (see Theorem 2.3), where L obeys an additional con-
vexity condition. Namely, we shall assume that

L satisfies (2.1) and (t + 1) lnL(t) is convex on [0,∞). (3.16)

The functions L0,ε and L�,ε from (2.2) are examples of functions L satisfying this condition.
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Theorem 3.10. Let L satisfy (3.16) and let M be given by (2.1). Then the set

S
(
d,L;8,10d(2d − 1)M

(
8(d + 2)M + 1

))
contains an admissible cutoff function Â, 0 � Â � 1, of second kind and any type: (a), (b) or (c)
(see Definition 3.2).

Proof. Set Â(t) = â(N (t)), where â ∈ S(1,L;8,8M), 0 � â � 1, is an admissible function
of any type (a), (b) or (c) from Theorem 2.3 and N = Nd is given by (3.10) with ĉ|[0,∞) ∈
S(1,L;1,2M), 0 � ĉ � 1, being an admissible function of type (a) from Theorem 2.3. Then Â

is an admissible multivariate cutoff function of the same type as â according to Corollary 3.8.
Moreover, 0 � Â� 1.

In estimating Dk
j Â(t1, . . . , td) we may assume without loss of generality that j = d . Further,

we consider only

1

4d − 2
� td � 2, (3.17)

because Dk
dÂ(t1, . . . , td) = 0 if 0 � td < 1

4d−2 or td > 2.
In order to apply Lemma 3.9 with g = â and f = N (as a function of td ) we need upper

bounds for Dk
dN (t1, . . . , td ). From (3.10) we write

N (t) =:
d∑

m=1

Fm(t), Fm(t) := tm

d∏
j=1

ĉ

(
tj

tm

)
.

Then for m = 1, . . . , d − 1 we have

Dk
dFm(t) = (

Dkĉ
)( td

tm

)
t1−k
m

d−1∏
j=1

ĉ

(
tj

tm

)
,

which on account of (3.17) and since Dkĉ(τ ) = 0 for τ /∈ [1,2] and 0 � ĉ � 1 implies

1

k!
∣∣Dk

dFm(t)
∣∣� (

8(2d − 1)ML(k − 1)
)k (3.18)

for all (t1, . . . , td−1) ∈ [0,∞)d−1. Using the formulas for derivatives of a product we get

Dk
dFd(t) = tdDk

d

(
d−1∏
j=1

ĉ

(
tj

td

))
+ kDk−1

d

(
d−1∏
j=1

ĉ

(
tj

td

))

= td
∑

|m|=k

k!
m1! . . .md−1!

d−1∏
j=1

D
mj

d

(
ĉ

(
tj

td

))

+
∑ k!

m1! . . .md−1!
d−1∏

D
mj

d

(
ĉ

(
tj

td

))
. (3.19)
|m|=k−1 j=1
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For 1 � tj /td � 2 the function tj /td of td belongs to S(1,L;2,2(2d −1)). Hence, by Lemma 3.9
with F(v) = L(v − 1) it follows that ĉ(tj /td) ∈ S(1,L;1,10(2d − 1)M). Using this and (3.17)
in (3.19) we get

1

k!
∣∣Dk

dFd(t)
∣∣� 2

∑
|m|=k

d−1∏
j=1

(
10(2d − 1)ML(mj − 1)

)mj

+
∑

|m|=k−1

d−1∏
j=1

(
10(2d − 1)ML(mj − 1)

)mj

� 3

( ∑
|m|=k

1

)(
10(2d − 1)ML(k − 1)

)k
� 3

(
10d(2d − 1)ML(k − 1)

)k
. (3.20)

We recall that the terms in (3.20) with mj = 0 are considered equal 1. Now, combining (3.18)
and (3.20) we get for all (t1, . . . , td−1) ∈ [0,∞)d−1 and td as in (3.17)

1

k!
∣∣Dk

dN (t)
∣∣� (d + 2)

(
10d(2d − 1)ML(k − 1)

)k
, (3.21)

i.e. N ∈ S(d,L;d + 2,10d(2d − 1)M). Now, Lemma 3.9 with F(v) = L(v − 1), g = â, f =N
and (3.21) prove the theorem. �
Remark 3.11. The arguments from the above proof also imply that (2.3) holds for the mixed
derivatives of order k. However, Theorem 3.10 is sufficient for our purposes in this paper.

Remark 3.12. In Definition 3.2 B1 can be replaced by B∞, but this will lead to some complica-
tions in the construction of admissible functions by semi-norms, as well as bigger constants in
Theorem 3.10.

For L = L�,ε the admissible multivariate cutoff function in Theorem 3.10 is from the class
S(d,L�,ε;γ0, γ̃0/ε

2), where the second parameter is of order ε−2 and not of order ε−1 as in the
univariate case. This is due to the method of construction via composition of two functions from
S(1,L�,ε;γ, γ̃ /ε). The composition necessarily belongs to S(1,L�,ε;γ0, γ̃0/ε

2) unless better
estimates for the derivatives are known. A different construction that leads to a smaller value of
the second parameter is given in Sections 3.5–3.6.

3.5. Construction of admissible cutoff functions by univariate products

Another natural approach for constructing admissible d-dimensional cutoff functions resem-
bles the construction of d-dimensional wavelets from univariate father wavelets.
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From Lemmas 3.4–3.5 we immediately get

Lemma 3.13. Let â1,j , â2,j , j = 1, . . . , d , be admissible univariate functions of type (a). Then

B̂(t) =
d∏

j=1

â1,j (tj ) −
d∏

j=1

â2,j (2tj ) (3.22)

is an admissible d-dimensional cutoff function of second kind and type (b).

In the univariate case all admissible functions of type (c) are among the admissible functions
of type (b) constructed via (3.22). Unfortunately, in dimensions d � 2 representation (3.22) does
not provide any admissible d-dimensional function of type (c). In order to get such cutoff func-
tions we employ two other one-dimensional techniques.

Lemma 3.14. Let Â be given by (3.2) with âj satisfying 0 � âj (t) � 1. We define a cutoff function
Ĉ in two ways, namely,

Ĉ(t) :=

⎧⎪⎨
⎪⎩

1 − Â2(2t), t ∈ B∞,

Â(t)

√
2 − Â2(t), t ∈ 2B∞\B∞,

0, t /∈ 2B∞,

(3.23)

or

Ĉ(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t ∈ 1
2B∞,

cos(π
2 Â(2t)), t ∈ B∞\ 1

2B∞,

sin(π
2 Â(t)), t ∈ 2B∞\B∞,

0, t /∈ 2B∞.

(3.24)

Then the function Ĉ � 0 from (3.23) or (3.24) is admissible of second kind and type (c).

The proof of this lemma is straightforward.

Remark 3.15. The cutoff functions constructed in this subsection satisfy a stronger form of
Definition 3.2 with B1 replaced by B∞.

3.6. Construction of admissible cutoff functions from univariate products with “small”
derivatives

The admissible cutoff functions from univariate products from Section 3.5 allow better esti-
mates on the derivatives than those in Section 3.4.

Theorem 3.16. Let L satisfy (3.16) and let M be given by (2.1). Let γ, γ̃ > 0 be such that the
set S(1,L;γ, γ̃M) contains an admissible univariate cutoff function â, 0 � â(t) � 1, of type (a)
according to Theorem 2.3.
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(a) If Â is defined by (3.2) with âj = â, then Â is an admissible cutoff function of second kind
and type (a) and Â ∈ S(d,L;γ, γ̃M).

(b) If B̂ is defined by (3.22) with â1,j = â1,j = â, then B̂ is an admissible cutoff function of
second kind and type (b) and B̂ ∈ S(d,L;2γ,2γ̃M).

(c) If Ĉ is defined by (3.24) with Â from (3.2), where âj = â, then Ĉ is admissible of second
kind and type (c) and Ĉ ∈ S(d,L;1, (πγ + 2)γ̃M).

Proof. It is established in Lemmas 3.4, 3.13 and 3.14 that Â, B̂, Ĉ are admissible cutoff func-
tions of the respective type. The fact that Â ∈ S(d,L;γ, γ̃M) follows immediately by (3.2),
0 � â(t) � 1 and Definition 2.2. Also B̂ ∈ S(d,L;2γ,2γ̃M) follows by (3.22) and Defini-
tion 2.2, as the constant 2γ̃ replaces γ̃ because of the multiplier 2 in the arguments of the
functions in the second product in (3.22).

To find bounds on the derivatives of Ĉ(t) for 1/2 � ‖t‖∞ � 2 we fix 1 � j � d . Consider
Ĉ(t) = (g ◦ f )(tj ) as a function of tj ∈ [1/2,1], where for ‖t‖∞ � 1 we set f (tj ) = â(2tj ) and
g(x) = cos(λx) with λ = π

2

∏d
m=1,m �=j â(2tm) and for 1 < ‖t‖∞ � 2 we set f (tj ) = â(tj ) and

g(x) = sin(λx) with λ = π
2

∏d
m=1,m �=j â(tm). We apply Lemma 3.9 as f ∈ S(1,L;γ,2γ̃M),

g ∈ S(1,L;1,π/2) and get g ◦ f ∈ S(1,L;1, (πγ + 2)γ̃M).
If tj ∈ [1,2] we use f (tj ) = â(tj ) and g(x) = sin(λx) with λ = π

2

∏d
m=1,m �=j â(tm). We

apply Lemma 3.9 as f ∈ S(1,L;γ, γ̃M) and g ∈ S(1,L;1,π/2) to obtain g ◦ f ∈ S(1,L;1,

(πγ /2 + 1)γ̃M). Consequently, in all cases Ĉ ∈ S(d,L;1, (πγ + 2)γ̃M). �
Remark 3.17. In cases (a) and (b) of Theorem 3.16 it suffices to require L to satisfy (2.1) instead
of (3.16).

4. Localized tensor product Jacobi polynomial kernels

Denote by P̃
(αj ,βj )
n (1 � j � d) the nth degree Jacobi polynomial normalized in L2([−1,1],

wαj ,βj
), see Section 2.2. Then for multi-indexes α = (α1, . . . , αd) and β = (β1, . . . , βd) the

d-dimensional tensor product Jacobi polynomials are defined by

P̃ (α,β)
ν (x) :=

d∏
j=1

P̃
(αj ,βj )
νj

(xj ). (4.1)

Recall our standing assumption: αj ,βj � −1/2. Evidently, {P̃ (α,β)
ν }ν∈Nd

0
is an orthonormal basis

for the weighted space L2([−1,1]d ,wα,β) with wα,β being the product Jacobi weight defined
in (1.5).

We are interested in kernels of the form

Λn(x, y) :=
∑
ν∈Nd

Â

(
ν

n

)
P̃ (α,β)

ν (x)P̃ (α,β)
ν (y), x, y ∈ [−1,1]d . (4.2)
0
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Define

Wα,β(n;x) :=
d∏

j=1

wαj ,βj
(n;xj ), (4.3)

where wαj ,βj
(n;xj ) is given in (2.10). We shall also use the distance on [−1,1]d defined by

ρ(x, y) = max
1�j�d

|arccosxj − arccosyj |. (4.4)

Theorem 4.1. Suppose Â ∈ C3k−1[0,∞)d for some k � 1, supp Â ⊂ [0,2]d , and for any
t ∈ [0,2]d of the form t = (t1, . . . , t�−1,0, t�+1, . . . , td), 1 � � � d , i.e. t = proj� t , Â satisfies
Dm

� Â(t) = 0 for m = 1,2, . . . ,3k − 1. Then the kernels from (4.2) satisfy

∣∣Λn(x, y)
∣∣� cnd√

Wα,β(n;x)
√

Wα,β(n;y)

(
1 + nρ(x, y)

)−k
, x, y ∈ [−1,1]d . (4.5)

Here the constant c depends on k, d , α, β and ‖D3k−1
� Â‖∞, � = 1, . . . , d , but not on x, y and n.

Consequently, for an admissible cutoff function Â the above estimate holds for any k > 0.

Proof. Without loss of generality we may assume that ρ(x, y) = |arccosxd − arccosyd |. We
write Λn from (4.2) as

Λn(x, y) =
2n−1∑
ν1=0

· · ·
2n−1∑

νd−1=0

[ ∞∑
νd=0

Â

(
ν1

n
, . . . ,

νd

n

)
P̃ (αd ,βd )

νd
(xd)P̃ (αd ,βd )

νd
(yd)

]

×
d−1∏
j=1

P̃
(αj ,βj )
νj

(xj )

d−1∏
j=1

P̃
(αj ,βj )
νj

(yj ). (4.6)

For any ν1, . . . , νd−1 we estimate the inner sum in (4.6) by using Theorem 2.5. We get∣∣∣∣∣
∞∑

νd=0

Â

(
ν1

n
, . . . ,

νd

n

)
P̃ (αd ,βd )

νd
(xd)P̃ (αd ,βd )

νd
(yd)

∣∣∣∣∣
� cn√

wαd,βd
(n;xd)

√
wαd,βd

(n;yd)

(
1 + nρ(x, y)

)−k
. (4.7)

For the Jacobi polynomials from the outer products we apply (2.22), αj ,βj �−1/2, and use that
νj < 2n to obtain

∣∣P̃ (αj ,βj )
νj

(t)
∣∣� c√

wαj ,βj
(νj ; t) �

c√
wαj ,βj

(n; t) , t = xj , yj . (4.8)

Combining the above two estimates and the fact that the total number of terms in the outer sums
in (4.6) is (2n)d−1 proves the theorem. �
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We next show that estimate (4.5) can be improved for cutoff functions of “small” derivatives
given by Theorem 3.10 or Theorem 3.16.

Theorem 4.2. Let Â be an admissible cutoff function of second kind which belongs to
S(d,L;γ, γ̃M) with L and M as in (2.1) and γ, γ̃ > 0 (see Definition 2.2). Then the kernels
from (4.2) satisfy

∣∣Λn(x, y)
∣∣� cnd√

Wα,β(n;x)
√

Wα,β(n;y)
exp

{
− c̃nρ(x, y)

L(nρ(x, y))

}
(4.9)

for x, y ∈ [−1,1]d . Here c̃ = c′/γ̃M with c′ > 0 being an absolute constant and the constant
c > 0 depends on d , M , α, β , γ and γ̃ , but not on x, y and n.

The proof of Theorem 4.2 is the same as the proof of Theorem 4.1 with the role of Theorem 2.5
played by Theorem 2.7 and Remark 2.8.

The next theorem shows that the kernels Λn(x, y) from (4.2) are Lip 1 in x and y with respect
to the distance ρ(·,·); it is needed for our further development.

Theorem 4.3. Under the hypotheses of Theorem 4.1 with k > 2 maxi{αi +βi}+5 for all x, y, ξ ∈
[−1,1]d such that ρ(x, ξ)� c∗n−1, n� 1, c∗ > 0, the kernel Λn from (4.2) satisfies

∣∣Λn(x, y) − Λn(ξ, y)
∣∣� cnd+1ρ(x, ξ)√

Wα,β(n;x)
√

Wα,β(n;y)

(
1 + nρ(x, y)

)−σ
, (4.10)

where σ = k − 2 maxi{αi + βi} − 5 and c > 0 depends only on k, d,α,β , c∗, and ‖D3k−1
� Â‖∞,

� = 1, . . . , d . Therefore, for an admissible cutoff function Â the above estimate holds for any
σ > 0.

Proof. Apparently it suffices to prove estimate (4.10) for all ξ ∈ [−1,1]d of the form ξ = x +δei

such that ρ(x, x + δei)� c∗n−1 and 1 � i � d with ei being the ith coordinate vector.
As in the proof of Theorem 4.1, we may assume that ρ(x, y) = |arccosxd − arccosyd | =:

ρd(x, y). Assuming that ξ = x + δei is as above, we consider two cases for i.

Case 1: i = d . Then we have

Λn(x, y) − Λn(x + δed, y)

=
2n−1∑
ν1=0

· · ·
2n−1∑

νd−1=0

[ ∞∑
νd=0

Â

(
ν1

n
, . . . ,

νd

n

)(
P̃ (αd ,βd )

νd
(xd) − P̃ (αd ,βd )

νd
(xd + δ)

)
P̃ (αd ,βd )

νd
(yd)

]

×
d−1∏
j=1

P̃
(αj ,βj )
νj

(xj )

d−1∏
j=1

P̃
(αj ,βj )
νj

(yj ).

Applying Theorem 2.10 to the inner sum we get
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∣∣∣∣∣
∞∑

νd=0

Â

(
ν1

n
, . . . ,

νd

n

)(
P̃ (αd ,βd )

νd
(xd) − P̃ (αd ,βd )

νd
(xd + δ)

)
P̃ (αd ,βd )

νd
(yd)

∣∣∣∣∣
� cn2ρ(x, x + δei)√

wαd,βd
(n;xd)

√
wαd,βd

(n;yd)

(
1 + nρd(x, y)

)−σ
.

For the Jacobi polynomials P̃
(αj ,βj )
νj

(xj ) and P̃
(αj ,βj )
νj

(yj ) from the outer products we apply esti-
mates (4.8) and combining these with the above we arrive at (4.10).

Case 2: i �= d . Let x, x + δei ∈ [−1,1]d and ρ(x, x + δei) � c∗n−1. We have

Λn(x, y) − Λn(x + δei, y)

=
2n−1∑
ν1=0

· · ·
2n−1∑

νd−1=0

[ ∞∑
νd=0

Â

(
ν1

n
, . . . ,

νd

n

)
P̃ (αd ,βd )

νd
(xd)P̃ (αd ,βd )

νd
(yd)

]

×
d−1∏

j=1, j �=i

P̃
(αj ,βj )
νj

(xj )
(
P̃ (αi ,βi )

νi
(xi) − P̃ (αi ,βi )

νi
(xi + δ)

) d−1∏
j=1

P̃
(αj ,βj )
νj

(yj ). (4.11)

As is well known that d
dt

[P (α,β)
m (t)] = m+α+β+1

2 P
(α+1,β+1)

m−1 (t) (see [23, (4.21.7)]). Combining

this with estimate (2.22) from Lemma 2.9 and h
(α,β)
m ∼ h

(α,β)

m−1 ∼ m−1 (see (2.7)) give

∣∣∣∣ d

dt
P̃ (α,β)

m (t)

∣∣∣∣� cm√
wα+1,β+1(m − 1, t)

� cm√
wα,β(m, t)(

√
1 − t2 + m−1)

.

We use this to obtain for θ, θ ′ ∈ [0,π] with |θ − θ ′|� c∗m−1, m� 2,

∣∣P̃ (α,β)
m (cos θ) − P̃ (α,β)

m

(
cos θ ′)∣∣� cm|cos θ − cos θ ′|√

wα,β(m, cos θ)(sin θ + m−1)

�
cm sin | θ−θ ′

2 | sin | θ+θ ′
2 |√

wα,β(m, cos θ)(sin θ + m−1)

� cm|θ − θ ′|√
wα,β(m, cos θ)

. (4.12)

Note that (4.12) is trivial for m = 0,1. Therefore,

∣∣P̃ (αi ,βi )
νi

(xi) − P̃ (αi ,βi )
νi

(xi + δ)
∣∣� cνiρ(x, x + δei)√

wαi,βi
(νi , xi)

� cnρ(x, ξ)√
wαi,βi

(n, xi)
. (4.13)

Now, we use (4.7) to estimate the inner sum in (4.11), (4.8) to estimate the Jacobi polynomials

P̃
(αj ,βj )
νj

(xj ) (j �= i) and P̃
(αj ,βj )
νj

(yj ) from the outer products in (4.11), and we also use (4.13)
to obtain again (4.10). Here as in Case 1 we took into account that the number of terms in the
outer sums is (2n)d−1. �
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Lower bound estimates for the Lp-norms of the kernels Λn(x, y) in x or y can also be easily
derived from the corresponding results in dimension one.

Proposition 4.4. Let Â be admissible and |Â(t)| � c > 0 for t ∈ [1,1 + δ]d , δ > 0. Then for
n� 1/δ ∫

[−1,1]d

∣∣Λn(x, y)
∣∣2wα,β(y) dy � cndWα,β(n;x)−d , x ∈ [−1,1]d , (4.14)

where c > 0 depends only on δ, α, β , and d .

Proof. By the definition of Λn(x, y) in (4.2) and the orthogonality of the Jacobi polynomials, it
follows that ∫

[−1,1]d

∣∣Λn(x, y)
∣∣2wα,β(y) dy =

∑
ν∈Nd

0

∣∣Â(ν/n)
∣∣2[P̃ (α,β)

ν (x)
]2

�
∑

ν∈[n,n+δn]d

∣∣Â(ν/n)
∣∣2[P̃ (α,β)

ν (x)
]2

� c

d∏
i=1

n+�δn�∑
νi=n

[
P̃ (αi ,βi )

νi
(xi)

]2

and the stated lower bound follows from the respective result in the univariate case, given in [13,
Proposition 2.4]. �

The rapidly decaying polynomial kernels Λn(x, y) from (4.2) can be utilized as in the uni-
variate case [13, Proposition 2.6] for establishing Nikolski type inequalities:

Proposition 4.5. For 0 < q � p � ∞ and g ∈ Πd
n ,

‖g‖p � cn(2d+2
∑d

i=1 min{0,max{αi ,βi }})(1/q−1/p)‖g‖q, (4.15)

furthermore, for any s ∈ R,

∥∥Wα,β(n; ·)sg(·)∥∥
p
� cnd(1/q−1/p)

∥∥Wα,β(n; ·)s+1/p−1/qg(·)∥∥
q
. (4.16)

5. Additional auxiliary results

5.1. The maximal inequality

We let Mt (0 < t < ∞) be the maximal operator defined by

Mt f (x) := sup
I�x

(
1

μ(I)

∫ ∣∣f (y)
∣∣twα,β(y) dy

)1/t

, x ∈ [−1,1]d , (5.1)
I



K. Ivanov et al. / Journal of Functional Analysis 263 (2012) 1147–1197 1173
where the sup is over all boxes (rectangles) I ⊂ [−1,1]d with sides parallel to the coordinate
axes containing x. Here μ(E) := ∫

E
wα,β(y) dy.

We denote by B(ξ, r) the “ball” (box) centered at ξ ∈ [−1,1]d of radius r > 0 with respect to
the distance ρ(·,·) on [−1,1]d , i.e.

B(ξ, r) := {
x ∈ [−1,1]d : ρ(x, ξ) < r

}
. (5.2)

We next show that for 0 < δ � π

μ
(
B(y, δ)

)∼ δd

d∏
i=1

(√
1 − y2

i + δ
)2γi+1

, γi :=
{

αi if 0 � yi � 1,

βi if − 1 � yi < 0.
(5.3)

Let yi =: cosφi , 0 � φi � π , and ϕ′
i := max{φi − δ,0}, ϕ′′

i := min{φi + δ,π}. Evidently

μ
(
B(y, δ)

)=
d∏

i=1

cosϕ′
i∫

cosϕ′′
i

(1 − xi)
αi (1 + xi)

βi dxi

=
d∏

i=1

ϕ′′
i∫

ϕ′
i

(1 − cos θi)
αi (1 + cos θi)

βi sin θi dθi

∼ δd

d∏
i=1

(sinφi + δ)2γi+1 = δd

d∏
i=1

(√
1 − y2

i + δ
)2γi+1

,

which confirms (5.3).
By (5.3) it follows that μ(B(y,2δ)) � cμ(B(y, δ)), i.e. μ is a doubling measure on [−1,1]d

and, therefore, the Fefferman–Stein vector-valued maximal inequality is valid (see [22]): As-
suming that 0 < p < ∞, 0 < q � ∞ and 0 < t < min{p,q}, then for any sequence of functions
{fk}∞k=1 on [−1,1]d ,

∥∥∥∥∥
( ∞∑

k=1

∣∣Mt fk(·)
∣∣q)1/q∥∥∥∥∥

p

� c

∥∥∥∥∥
( ∞∑

k=1

∣∣fk(·)
∣∣q)1/q∥∥∥∥∥

p

. (5.4)

We need to estimate (Mt1B(y,δ))(x). Such estimates readily follow by (5.3) and the respective
univariate result in [13, Lemma 2.7].

Lemma 5.1. Let y ∈ [−1,1]d and 0 < r � π , and suppose γi , i = 1, . . . , d , are defined as
in (5.3). Then for any x ∈ [−1,1]d

(Mt1B(y,r))(x) ∼
d∏(

1 + ρ(yj , xj )

r

)−1/t(
1 + ρ(yj , xj )

r + ρ(yj ,1)

)−(2γj +1)/t

(5.5)

j=1
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and hence

(Mt1B(y,r))(x) � c

d∏
j=1

(
1 + ρ(yj , xj )

r

)−(2γj +2)/t

� c

(
1 + ρ(y, x)

r

)−(2|γ |+2d)/t

. (5.6)

Here ρ(yj , xj ) := |arccosyj − arccosxj | and ρ(y, x) is defined in (4.4).

We also want to record the following useful inequality which follows easily from the case
d = 1, proved in [13, (2.22)]:

Wα,β(n;x) � cWα,β(n;y)
(
1 + nρ(x, y)

)d+2
∑d

i=1 max{αi ,βi }, (5.7)

for x, y ∈ [−1,1]d and n� 1, where Wα,β(n;x) is from (4.3).

5.2. Distributions on [−1,1]d

Here we introduce and give some basic facts about distributions on [−1,1]d . We shall use as
test functions the set D := C∞[−1,1]d , where the topology is induced by the semi-norms

|φ|μ := ∥∥Dμφ(t)
∥∥∞ for all multi-indices μ. (5.8)

Observe that the tensor product Jacobi polynomials {P̃ (α,β)
ν } belong to D and more importantly

the test functions φ ∈ D can be completely characterized by the coefficients of their Jacobi ex-
pansions. Denote

Nk(φ) := sup
ν∈Nd

0

(|ν| + 1
)k∣∣〈φ, P̃ (α,β)

ν

〉∣∣, (5.9)

where 〈f,g〉 := ∫
[−1,1]d f (x)g(x)wα,β(x) dx.

Lemma 5.2.

(i) φ ∈ D if and only if |〈φ, P̃
(α,β)
ν 〉| = O((|ν| + 1)−k) for all k.

(ii) For every φ ∈ D we have φ = ∑
ν∈Nd

0
〈φ, P̃

(α,β)
ν 〉P̃ (α,β)

ν , where the convergence is in the

topology of D.
(iii) The topology in D can be equivalently defined by the norms Nk(·), k � 0.

The proof of this lemma is easy and similar to the proof of Lemma 2.8 in [13].
The space D′ of distributions on [−1,1]d is defined as the set of all continuous linear func-

tionals on D. The pairing of f ∈D′ and φ ∈D will usually be denoted by 〈f,φ〉 := f (φ). As will
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be shown it is in a sense consistent with the inner product 〈f,g〉 in L2(wα,β). We shall need the
representation of distributions from D′ in terms of Jacobi polynomials.

Lemma 5.3.

(i) A linear functional f on D belongs to D′ if and only if there exists k � 0 such that

∣∣f (φ)
∣∣= ∣∣〈f,φ〉∣∣� ckNk(φ) for all φ ∈D. (5.10)

(ii) For any f ∈D′ there exist constants c > 0 and k � 0 such that

∣∣f (P̃ (α,β)
ν

)∣∣= ∣∣〈f, P̃ (α,β)
ν

〉∣∣� ck

(|ν| + 1
)k

for all ν ∈N
d
0 , and (5.11)

f (φ) = lim
n→∞〈Sn,φ〉 =

∑
ν∈Nd

0

〈
f, P̃ (α,β)

ν

〉〈
φ, P̃ (α,β)

ν

〉
for φ ∈D, (5.12)

where Sn :=∑
|ν|�n〈f, P̃

(α,β)
ν 〉P̃ (α,β)

ν and the series converges absolutely.

(iii) For any sequence {cν}ν∈Nd
0

satisfying |cν | � A(|ν| + 1)� for ν ∈ N
d
0 and some constants A

and �, the sequence

sn :=
∑

|ν|�n

cνP
(α,β)
ν

converges in D′ as n → ∞ to some distribution F ∈ D′ such that 〈F, P̃
(α,β)
ν 〉 = cν for

ν ∈N
d
0 .

Proof. Part (i) of the lemma follows by the definition of D′ and Lemma 5.2 as in the classical
case.

Estimate (5.11) is immediate from (5.10) and (5.9). Further, we have for φ ∈D

lim
n→∞〈Sn,φ〉 = lim

n→∞f

( ∑
|ν|�n

〈
φ, P̃ (α,β)

ν

〉
P (α,β)

ν

)
= f (φ),

which confirms (5.12). Here we used Lemma 5.2, (ii).
To prove part (iii), we observe that 〈sn,φ〉 = ∑

|ν|�n cν〈φ, P̃
(α,β)
ν 〉 for φ ∈ D and using the

assumption and Lemma 5.2 we get |cν ||〈φ, P̃
(α,β)
ν 〉|� c(|ν|+1)�−k for an arbitrary k � 0. There-

fore, the series
∑

ν∈Nd
0
cν〈φ, P̃

(α,β)
ν 〉 converges absolutely and hence

F(φ) := lim
n→∞〈sn,φ〉 =

∑
ν∈Nd

0

cν

〈
φ, P̃ (α,β)

ν

〉
, φ ∈D, (5.13)

is a well-defined linear functional. We claim that F is bounded. Indeed, for φ ∈ D
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∣∣F(φ)
∣∣� ∑

ν∈Nd
0

|cν |
∣∣〈φ, P̃ (α,β)

ν

〉∣∣� A
∑
ν∈Nd

0

(|ν| + 1
)�∣∣〈φ, P̃ (α,β)

ν

〉∣∣
� AN�+d+1(φ)

∑
ν∈Nd

0

(|ν| + 1
)−d−1 � cN�+d+1(φ),

which shows that F ∈ D′.
Finally, F(P̃

(α,β)
ν ) = limn→∞〈sn,φ〉 = cν is immediate by (5.13). �

To simplify our notation, we introduce the following “convolution”: For functions
Φ : [−1,1]d × [−1,1]d → C and f : [−1,1]d →C, we define

Φ ∗ f (x) :=
∫

[−1,1]d
Φ(x, y)f (y)wα,β(y) dy (5.14)

and extend it to D′ by duality, i.e. assuming that f ∈ D′ and Φ : [−1,1]d ×[−1,1]d → C is such
that Φ(x,y) belongs to D as a function of y, we define Φ ∗ f by

Φ ∗ f (x) := 〈
f,Φ(x, ·)〉. (5.15)

Here on the right f acts on Φ(x,y) as a function of y.

5.3. Lp-multipliers

We shall need Lp-multipliers for tensor product Jacobi polynomial expansions. Since we can-
not find any such multipliers in the literature we next derive simple but non-optimal multipliers
satisfying the First Boundary Condition (Section 1.2) of a certain order.

Theorem 5.4. Let m ∈ Cr [0,∞)d for r sufficiently large (r > 6 maxi{αi + βi} +
6
∑

i max{αi,βi} + 6d + 20 will do) and suppose m satisfies the following condition: For any
t ∈ [0,∞)d of the form t = (t1, . . . , t�−1,0, t�+1, . . . , td), 1 � � � d , we have Ds

�m(t) = 0 for
s = 1,2, . . . , r . Also, assume∣∣Dτm(t)

∣∣� c
(
1 + ‖t‖∞

)−|τ |
for t ∈ [0,∞)d and |τ | � r, (5.16)

with c > 0 independent of t . Then the operator Tmf :=∑
ν∈Nd

0
m(ν)〈f, P̃

(α,β)
ν 〉P̃ (α,β)

ν is bounded

on Lp(wα,β) for 1 < p < ∞.

Proof. We shall utilize a standard decomposition of unity argument. Let Ĉ be an admissible
cutoff function of type (c). Then B̂ = |Ĉ|2 � 0 is admissible of type (b) and

∑∞
j=0 B̂(2−j t) = 1

for t ∈ [0,∞)d \ [0,1)d . We define Φ0(x, y) := m(0)P̃
(α,β)

0 (x)P̃
(α,β)

0 (y) and

Φj(x, y) :=
∑
ν∈Nd

0

B̂

(
ν

2j−1

)
m(ν)P̃ (α,β)

ν (x)P̃ (α,β)
ν (y), j � 1.

Set K(x,y) :=∑
Φj(x, y).
j�0
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We shall show that K(x,y) is well defined for x �= y and |K(x,y)| � cV (x, y)−1, where
V (x, y) := μ(B(y,ρ(x, y))), and furthermore K(x,y) obeys the following Hörmander condi-
tion ∫

M\B(y,2δ)

∣∣K(x,y) − K(x, ȳ)
∣∣dμ(x)� c, whenever ȳ ∈ B(y, δ), (5.17)

for all y ∈ M and δ > 0. To this end it suffices to show that

∣∣K(x,y) − K(x, ȳ)
∣∣� c

ρ(y, ȳ)

ρ(x, ȳ)
V (x, ȳ)−1, (5.18)

whenever ρ(x, ȳ) � 2ρ(y, ȳ), see [2,22].
For the proof of (5.18), fix x, y, ȳ ∈ [−1,1]d , x �= ȳ, and define

γi :=
{

αi if 0 � ȳi � 1,

βi if − 1 � ȳi < 0.

By (5.3) it follows that

V (x, ȳ) ∼ ρ(x, ȳ)d
d∏

i=1

(√
1 − ȳ2

i + ρ(x, ȳ)
)2γi+1

. (5.19)

Let Âj (t) := B̂(t)m(2j−1t). We have supp B̂ ⊂ [0,2]d \ 1
2B1 and by (5.16) one gets

|Dτ [m(2j−1t)]| � c for t ∈ [0,2]d \ 1
2B1 and |τ | � r , where the constant c > 0 is indepen-

dent of j . Therefore, ‖Dτ Âj‖∞ = ‖Dτ [B̂(·)m(2j−1·)]‖∞ � c for |τ | � r with c > 0 inde-
pendent of j . Now, it is evident that Âj satisfies the assumptions of Theorem 4.3 for some
k > 2 maxi{αi + βi} + 2

∑
i max{αi,βi} + 2d + 6 and hence, using also (5.7), we get

∣∣Φj(x, y) − Φj(x, ȳ)
∣∣� c2j (d+1)ρ(y, ȳ)

Wα,β(2j , ȳ)(1 + 2j ρ(x, ȳ))σ
(5.20)

if ρ(y, ȳ) � 2−j , where σ = k − 2 maxi{αi + βi} − 5.
If ρ(y, ȳ) > 2−j and ρ(x, ȳ) � 2ρ(y, ȳ) (hence ρ(x, y) � ρ(y, ȳ) and ρ(x, ȳ) � 2ρ(x, y) �

3ρ(x, ȳ)), then estimate (5.20) follows by Theorem 4.1 applied separately to Φj(x, y) and
Φj(x, ȳ) and using (5.7). Therefore, (5.20) holds whenever ρ(x, ȳ) � 2ρ(y, ȳ).

Let 2−j1−1 � ρ(x, ȳ) < 2−j1 . Then using Φ0(x, y) = Φ0(x, ȳ) we write

∣∣K(x,y) − K(x, ȳ)
∣∣ � j1∑

j=1

∣∣Φj(x, y) − Φj(x, ȳ)
∣∣+ ∞∑

j=j1+1

∣∣Φj(x, y) − Φj(x, ȳ)
∣∣

=: F1 + F2.

For F1 we have using (5.20) and (5.19)



1178 K. Ivanov et al. / Journal of Functional Analysis 263 (2012) 1147–1197
F1 �
cρ(y, ȳ)∏d

i=1

(√
1 − ȳ2

i + 2−j1

)2γi+1

j1∑
j=1

2j (d+1) � cρ(y, ȳ)2j1(d+1)∏d
i=1

(√
1 − ȳ2

i + 2−j1

)2γi+1

� cρ(y, ȳ)

ρ(x, ȳ)d+1
∏d

i=1

(√
1 − ȳ2

i + ρ(x, ȳ)
)2γi+1

� c
ρ(y, ȳ)

ρ(x, ȳ)
V (x, ȳ)−1.

To estimate F2 we first observe that
(√

1 − ȳ2
i + 2−j

)
(1 + 2j−j1) �

√
1 − ȳ2

i + 2−j1 . Then,

using again (5.20) and (5.19), we get

F2 � cρ(y, ȳ)

∞∑
j=j1+1

2j (d+1)∏d
i=1

(√
1 − ȳ2

i + 2−j
)2γi+1

(1 + 2j−j1)σ

� cρ(y, ȳ)

∞∑
j=j1+1

2j (d+1)∏d
i=1

(√
1 − ȳ2

i + 2−j1

)2γi+1
(1 + 2j−j1)σ−2

∑
i γi−d

� cρ(y, ȳ)2j1(d+1)∏d
i=1

(√
1 − ȳ2

i + 2−j1

)2γi+1

∞∑
j=j1+1

2−(j−j1)(σ−2
∑

i γi−2d−1)

� cρ(y, ȳ)

ρ(x, ȳ)d+1
∏d

i=1

(√
1 − ȳ2

i + ρ(x, ȳ)
)2γi+1

� c
ρ(y, ȳ)

ρ(x, ȳ)
V (x, ȳ)−1,

where we used that σ > 2
∑

i γi + 2d + 1. The above estimates of F1 and F2 yield (5.18) and
hence the kernel K(x,y) satisfies the Hörmander condition (5.17).

The estimate ∣∣K(x,y)
∣∣�∑

j�0

∣∣Φj(x, y)
∣∣� cV (x, y)−1, x �= y, (5.21)

follows similarly as above from

∣∣Φj(x, y)
∣∣� c2jd

Wα,β(2j , y)(1 + 2j ρ(x, y))σ
,

which is a consequence of Theorem 4.1, using (5.7). We omit the details.
By Parseval’s identity ‖Tmf ‖2 � c‖f ‖2 for f ∈ L2(ωα,β). Using this and (5.21), a standard

argument yields that K(x,y) is the kernel of the operator Tm. Also, as indicated in Section 5.1,
the measure has the doubling property (see (5.3)). Therefore, Tm is a generalized Calderón–
Zygmund operator and hence Tm is bounded on Lp(ωα,β), 1 < p < ∞ (see [2,22]). The proof is
complete. �
6. Construction of building blocks (needlets)

The construction of frames (needlets) on [−1,1]d has two basic components: (i) a Calderón
type decomposition formula and (ii) a cubature formula.
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6.1. Cubature formula and subdivision of [−1,1]d

For the construction of needlets we shall employ the Gaussian quadrature formula on
[−1,1] with weight wα,β(t) := (1 − t)α(1 − t)β . Given j � 0, denote by ξm =: cos θm,

m = 1,2, . . . ,2j+1, the zeros of the Jacobi polynomial P
(α,β)

2j+1 ordered so that 0 < θ1 < · · · <

θ2j+1 < π and set

X α,β
j := {

ξm: 1 � m� 2j+1}.
It is well known that uniformly (see [9])

θ1 ∼ 2−j , π − θ2j+1 ∼ 2−j , θm+1 − θm ∼ 2−j , and hence θm ∼ m2−j . (6.1)

As is well known [23] the zeros of the Jacobi polynomial P
(α,β)

2j+1 serve as knots of the Gaussian
quadrature ∫

[−1,1]
f (t)wα,β(t) dt ∼

∑
ξ∈X α,β

j

cξ f (ξ), (6.2)

which is exact for all algebraic polynomials that are of degree 2j+2 − 1. Furthermore, the coef-
ficients cξ are all positive and satisfy (see e.g. [16])

cξ ∼ 2−jwα,β(ξ)
(
1 − ξ2)1/2

. (6.3)

Tiling of [−1,1]. With {ξm} as above we write

Iξm := [(
ξm+1 + ξm

)
/2,

(
ξm−1 + ξm

)
/2
]
, m = 2,3, . . . ,2j+1 − 1, and

Iξ1 := [(
ξ2 + ξ1)/2,1

]
, I

ξ2j+1 := [−1,
(
ξ2j+1 + ξ2j+1−1)/2

]
.

We define

Iα,β
j := {

Iξm : 1 � m� 2j+1}.
For multi-indices α = (α1, . . . , αd), β = (β1, . . . , βd) and j � 0, 1 � i � d , we denote by

X αi ,βi

j the zeroes of the Jacobi polynomial P
(αi ,βi )

2j+1 and write

Xj := X α1,β1
j × · · · ×X αd ,βd

j . (6.4)

Now, for ξ = (ξ1, . . . , ξd) ∈ Xj we set cξ := cξ1 · · · cξd
, where cξi

is the corresponding coefficient
of the Gaussian quadrature (6.2) with α = αi and β = βi . Evidently, the cubature formula∫

d

f (x)wα,β(x) dx ∼
∑
ξ∈Xj

cξ f (ξ) (6.5)
[−1,1]
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is exact for all polynomials in d-variables of degree 2j+2 − 1 in each variable and by (6.3) the
coefficients {cξ } are positive and satisfy

cξ ∼ 2−djWα,β

(
2j ; ξ), (6.6)

where Wα,β(2j ; ξ) is defined in (4.3).

Tiling of [−1,1]d . For ξ = (ξ1, . . . , ξd) ∈ Xj , we write

Iξ := Iξ1 × · · · × Iξd
, Iξi

∈ Iαi ,βi

j . (6.7)

Evidently, [−1,1]d =⋃
ξ∈Xj

Iξ and the interiors of the tiles {Iξ }ξ∈Xj
do not overlap.

With B(y, r) defined in (5.2) it easily follows from the univariate case that there exist con-
stants c1, c2 > 0 such that

B
(
ξ, c12−j

)⊂ Iξ ⊂ B
(
ξ, c22−j

)
, ξ ∈ Xj . (6.8)

By (5.3) it follows that

μ(Iξ ) :=
∫
Iξ

wα,β(x) dx ∼ 2−jWα,β

(
2j ; ξ)∼ cξ , ξ ∈ Xj , j � 0. (6.9)

The next lemma is of an independent interest and is instrumental in the subsequent develop-
ment.

Lemma 6.1. Suppose P ∈ Πd
2j , ξ ∈ Xj , j � 0, and let x′, x′′ ∈ [−1,1]d be such that ρ(x′, ξ) �

c�2−j , ρ(x′′, ξ)� c�2−j . Then for any σ > 0

∣∣P (x′)− P
(
x′′)∣∣� c2j ρ

(
x′, x′′) ∑

η∈Xj

|P(η)|
(1 + 2j ρ(ξ, η))σ

,

where c > 0 depends only on σ , α, β , d , and c�.

The proof of this lemma is merely a repetition of the proof of the univariate result in [13,
Lemma 9.2] and will be omitted.

6.2. Needlets on [−1,1]d

The construction of needlet systems is now standard and follows a well-established scheme.
We begin with two cutoff functions Â, B̂ of type (b) which satisfy (see Lemma 3.6):

∞∑
j=0

Â
(
2−j t

)
B̂
(
2−j t

)= 1, t ∈ [0,∞)d \B∞. (6.10)

We define Φ0(x, y) = Ψ0(x, y) := P̃0(x)P̃0(y),
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Φj(x, y) :=
∑
ν∈Nd

0

Â

(
ν

2j−1

)
P̃ν(x)P̃ν(y), j � 1, and (6.11)

Ψj (x, y) :=
∑
ν∈Nd

0

B̂

(
ν

2j−1

)
P̃ν(x)P̃ν(y), j � 1. (6.12)

Let Xj be the set of knots of cubature formula (6.5), defined in (6.4), and let {cξ } be its coeffi-
cients. We define the j th level needlets by

ϕξ (x) := c1/2
ξ Φj (x, ξ) and ψξ(x) := c1/2

ξ Ψj (x, ξ), ξ ∈ Xj . (6.13)

We write X :=⋃∞
j=0 Xj , where equal points from different levels Xj are considered as distinct

elements of X , so that X can be used as an index set. We define the analysis and synthesis needlet
systems Φ and Ψ by

Φ := {ϕξ }ξ∈X , Ψ := {ψξ }ξ∈X . (6.14)

Theorem 4.1 and (5.7) imply that the needlets decay rapidly, namely,

∣∣ϕξ (x)
∣∣, ∣∣ψξ (x)

∣∣� cσ 2jd/2√
Wα,β(2j ; ξ)

(
1 + 2j ρ(ξ, x)

)−σ
, x ∈ [−1,1]d, ∀σ. (6.15)

We next give estimates on the norms of the needlets, which can be proved exactly as in the case
d = 1, upon using (6.15) and the lower bound estimate from Proposition 4.4: For 0 < p � ∞,

‖ϕξ‖p ∼ ‖ψξ‖p ∼ ‖1̃Iξ ‖p ∼
(

2dj

Wα,β(2j ; ξ)

)1/2−1/p

, ξ ∈ Xj . (6.16)

Here 1̃Iξ := μ(Iξ )
−1/21Iξ with 1E being the characteristic function of the set E. Moreover, there

exist constants c∗, c� > 0 such that

‖ϕξ‖L∞(B(ξ,c∗2−j )),‖ψξ‖L∞(B(ξ,c∗2−j )) � c�
(

2dj

Wα,β(2j ; ξ)

)1/2

. (6.17)

The needlet decomposition of D′ and Lp follows as in the univariate case (see [13, Proposi-
tion 3.1]) by the definition of needlets and their superb localization.

Proposition 6.2.

(i) For f ∈ D′, we have

f =
∞∑

j=0

Ψj ∗ Φj ∗ f in D′, and (6.18)

f =
∑

〈f,ϕξ 〉ψξ in D′. (6.19)

ξ∈X
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(ii) If f ∈ Lp(wα,β), 1 � p �∞, then (6.18)–(6.19) hold in Lp(wα,β). Moreover, if 1 < p < ∞,
then the convergence in (6.18)–(6.19) is unconditional.

Remark 6.3.

(i) Select Â � 0 a cutoff function of type (c) (see Definition 3.1). Then choosing B̂ = Â in
the construction of needlets in (6.10)–(6.13) we obtain ϕξ = ψξ . Consequently, (6.19)
becomes f = ∑

ξ∈X 〈f,ψξ 〉ψξ and it is easy to prove that (see e.g. [13]) ‖f ‖2 =
(
∑

ξ∈X |〈f,ψξ 〉|2)1/2 for f ∈ L2(wα,β), which shows that Ψ is a tight frame for L2(wα,β).

(ii) If Â � 0 is an admissible cutoff function of second kind and type (c) (see Definition 3.2)
which belongs to S(d,L;γ, γ̃M), then Theorem 4.2 implies sup-exponential localization of
the needlets, namely,

∣∣ψξ (x)
∣∣� c2jd/2√

Wα,β(2j ; ξ)

exp

{
− c̃2j ρ(ξ, x)

L(2j ρ(ξ, x))

}
, x ∈ [−1,1]d . (6.20)

7. Weighted Triebel–Lizorkin spaces on [−1,1]d

We next utilize the general idea of using spectral or orthogonal decompositions (see e.g.
[17,24]) to introduce weighted Triebel–Lizorkin spaces on [−1,1]d . The theory of these spaces
is entirely parallel to their theory in the univariate case, developed in [13]. Therefore, we shall
only state the main results, provide the important ingredients and refer the reader to [13] for the
proofs.

Given an admissible cutoff function Â of type (b) (see Definition 3.1) satisfying the dyadic
covering condition (3.4) we define a sequence of kernels {Φj } by Φ0(x, y) := P̃0(x)P̃0(y) and

Φj(x, y) :=
∑
ν∈Nd

0

Â

(
ν

2j−1

)
P̃ν(x)P̃ν(y), j � 1. (7.1)

Definition 7.1. For s, ρ ∈ R, 0 < p < ∞, and 0 < q � ∞ the weighted Triebel–Lizorkin space
F

sρ
pq := F

sρ
pq(wα,β) is defined as the set of all f ∈D′ such that

‖f ‖F
sρ
pq

:=
∥∥∥∥∥
( ∞∑

j=0

[
2sjWα,β

(
2j ; ·)−ρ/d ∣∣Φj ∗ f (·)∣∣]q

)1/q∥∥∥∥∥
p

< ∞ (7.2)

with the usual modification when q = ∞.

Note that the above definition is independent of the choice of Â as long as Â is an admissible
function of type (b), satisfying (3.4) (see Theorem 7.3 below).

Also, F
sρ
pq is a (quasi-)Banach space which is continuously embedded in D′, i.e. there exist k

and c > 0 such that

∣∣〈f,φ〉∣∣� c‖f ‖ sρ Nk(φ) for all f ∈ F sρ , φ ∈D.
Fpq pq
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We next introduce the sequence spaces f
sρ
pq associated to F

sρ
pq . Here we assume that {Xj }∞j=0

and X := ⋃∞
j=0 Xj are the sets of points from the definition of needles with associated neigh-

borhoods {Iξ }, given in (6.7).

Definition 7.2. Suppose s, ρ ∈ R, 0 < p < ∞, and 0 < q � ∞. Then f
sρ
pq is defined as the space

of all complex-valued sequences h := {hξ }ξ∈X such that

‖h‖f
sρ
pq

:=
∥∥∥∥∥
( ∞∑

j=0

2sjq
∑
ξ∈Xj

[|hξ |Wα,β

(
2j ; ξ)−ρ/d 1̃Iξ (·)

]q)1/q∥∥∥∥∥
p

< ∞ (7.3)

with the usual modification for q = ∞. Here as before 1̃Iξ := μ(Iξ )
−1/21Iξ .

The “analysis” and “synthesis” operators associated to the needlet systems Φ , Ψ are defined
by

Sϕ : f → {〈f,ϕξ 〉
}
ξ∈X and Tψ : {hξ }ξ∈X →

∑
ξ∈X

hξψξ . (7.4)

As in [13] one shows that the operator Tψ is well defined on f
sρ
pq , namely, for any h ∈ f

sρ
pq ,

Tψh :=∑
ξ∈X hξψξ converges in D′. Moreover, the operator Tψ : f sρ

pq → D′ is continuous, i.e.
there exist constants k > 0 and c > 0 such that

∣∣〈Tψh,φ〉∣∣� cNk(φ)‖h‖f
sρ
pq

for all h ∈ f sρ
pq, φ ∈D. (7.5)

Our main result in this section asserts that the weighted F -spaces can be characterized by the
needlet coefficients of the distributions.

Theorem 7.3. Let s, ρ ∈ R, 0 < p < ∞ and 0 < q � ∞. The operators Sϕ : F
sρ
pq → f

sρ
pq and

Tψ : f
sρ
pq → F

sρ
pq are bounded and Tψ ◦ Sϕ = Id on F

sρ
pq . Consequently, f ∈ F

sρ
pq if and only if

{〈f,ϕξ 〉}ξ∈X ∈ f
sρ
pq . Furthermore,

‖f ‖F
sρ
pq

∼ ∥∥{〈f,ϕξ 〉
}∥∥

f
sρ
pq

∼
∥∥∥∥∥
( ∞∑

j=0

2sjq
∑
ξ∈Xj

[∣∣〈f,ϕξ 〉
∣∣Wα,β

(
2j ; ξ)−ρ/d ∣∣ψξ (·)

∣∣]q)1/q∥∥∥∥∥
p

. (7.6)

In addition, the definition of F
sρ
pq is independent of the particular selection of the type (b) cutoff

function Â satisfying (3.4).

To us the spaces F ss
pq are more natural than the spaces F

sρ
pq with ρ �= s since they embed

“correctly” with respect to the smoothness index s.
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Proposition 7.4. Let 0 < p < p1 < ∞, 0 < q,q1 � ∞, and −∞ < s1 < s < ∞. Then we have
the continuous embedding

F ss
pq ⊂ F s1s1

p1q1
if s/d − 1/p = s1/d − 1/p1. (7.7)

The proof of this proposition is quite similar to the proof of the respective embedding result
on Bd in [14, Proposition 4.11] and will be omitted.

We have the following identification of spaces F 00
p2.

Proposition 7.5. We have

F 00
p2 ∼ Lp(wα,β), 1 < p < ∞,

with equivalent norms. Consequently, for any f ∈ Lp(wα,β), 1 < p < ∞,

‖f ‖p ∼
∥∥∥∥∥
( ∞∑

j=0

∑
ξ∈Xj

(∣∣〈f,ϕξ 〉
∣∣∣∣ψξ (·)

∣∣)2

)1/2∥∥∥∥∥
p

.

The proof of this proposition uses the multipliers from Theorem 5.4 and can be carried out
exactly as in the case of spherical harmonic expansions in [15, Proposition 4.3]. We omit it.

8. Weighted Besov spaces on [−1,1]d

To define weighted Besov spaces on [−1,1]d we use again the sequence of kernels {Φj } intro-
duced in (7.1) with Â a cutoff function of type (b) obeying (3.4). We shall keep the development
of these spaces short since the proofs of the results are the same as in the univariate case, given
in [13].

Definition 8.1. Let s, ρ ∈R and 0 < p,q � ∞. The weighted Besov space B
sρ
pq := B

sρ
pq(wα,β) is

defined as the set of all f ∈ D′ such that

‖f ‖B
sρ
pq

:=
( ∞∑

j=0

(
2sj
∥∥Wα,β

(
2j ; ·)−ρ/d

Φj ∗ f (·)∥∥
p

)q)1/q

< ∞, (8.1)

where the �q -norm is replaced by the sup-norm if q = ∞.

Note that as in the case of weighted Triebel–Lizorkin spaces the above definition is inde-
pendent of the particular choice of Â and B

sρ
pq is a (quasi-)Banach space which is continuously

embedded in D′.
We next introduce the sequence spaces b

sρ
pq associated to B

sρ
pq . To this end we use some of the

notation established in the previous section.

Definition 8.2. Let s, ρ ∈ R and 0 < p,q � ∞. Then b
sρ
pq is defined to be the space of all

complex-valued sequences h := {hξ }ξ∈X such that
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‖h‖b
sρ
pq

:=
( ∞∑

j=0

2j (s−d/p+d/2)q

[ ∑
ξ∈Xj

(
Wα,β

(
2j ; ξ)−ρ/d+1/p−1/2|hξ |

)p]q/p
)1/q

(8.2)

is finite, with the usual modification for p = ∞ or q = ∞.

The analysis and synthesis operators Sϕ and Tψ defined in (7.4) play an important role here.
As for weighted Triebel–Lizorkin spaces the operator Tψ is well defined on b

sρ
pq , i.e. for any

h ∈ b
sρ
pq , Tψh := ∑

ξ∈X hξψξ converges in D′. Also, the operator Tψ : b
sρ
pq → D′ is continu-

ous.
The following characterization of weighted Besov spaces is the main result of this section.

Theorem 8.3. Let s, ρ ∈ R and 0 < p,q � ∞. Then the operators Sϕ : B
sρ
pq → b

sρ
pq and

Tψ : b
sρ
pq → B

sρ
pq are bounded and Tψ ◦ Sϕ = Id on B

sρ
pq . Consequently, for f ∈ D′ we have

that f ∈ B
sρ
pq if and only if {〈f,ϕξ 〉}ξ∈X ∈ b

sρ
pq . Moreover,

‖f ‖B
sρ
pq

∼ ∥∥{〈f,ϕξ 〉
}∥∥

b
sρ
pq

∼
( ∞∑

j=0

2sjq

[ ∑
ξ∈Xj

(
Wα,β

(
2j ; ξ)−ρ/d∥∥〈f,ϕξ 〉ψξ

∥∥
p

)p]q/p
)1/q

.

In addition, the definition of B
sρ
pq is independent of the particular selection of the type (b) cutoff

function Â satisfying (3.4).

The parameter ρ in the definition of B
sρ
pq allows to consider various scales of weighted Besov

spaces. The spaces Bs0
pq can be regarded as “classical” Besov spaces. However, to us more natural

are the spaces Bss
pq (ρ = s) which in contrast to Bs0

pq , first, embed “correctly” with respect to the
smoothness index s, and secondly, the right smoothness spaces in nonlinear n-term weighted
approximation from needles are defined in terms of spaces Bss

pq (see Section 9 below).

Proposition 8.4. Let 0 < p � p1 � ∞, 0 < q � q1 � ∞, and −∞ < s1 � s < ∞. Then we have
the continuous embedding

Bss
pq ⊂ Bs1s1

p1q1
if s/d − 1/p = s1/d − 1/p1. (8.3)

This proposition is an immediate consequence of estimate (4.16).

9. Application of weighted Besov spaces to nonlinear approximation

We now consider nonlinear n-term approximation for a needlet system {ψη}η∈X with
ϕη = ψη, defined as in (6.11)–(6.14) with B̂ = Â, Â � 0, i.e. Â � 0 is a first or second kind
admissible cutoff function of type (c) (see Definitions 3.1–3.2). Then {ψη} are real-valued.

Let Σn be the nonlinear set of all functions g of the form g = ∑
ξ∈Λ aξψξ , where Λ ⊂X ,

#Λ � n, and Λ is allowed to vary with g. Denote by σn(f )p the error of best Lp(wα,β)-
approximation to f ∈ Lp(wα,β) from Σn, i.e.

σn(f )p := inf
g∈Σn

‖f − g‖p.

We consider approximation in Lp(wα,β), 0 < p < ∞.
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Assume 0 < p < ∞, s > 0, and 1/τ := s/d + 1/p and denote briefly Bs
τ := Bss

ττ . By Theo-
rem 8.3 and (6.16) it follows that

‖f ‖Bs
τ
∼
( ∑

ξ∈X

∥∥〈f,ψξ 〉ψξ

∥∥τ

p

)1/τ

. (9.1)

Exactly as in [15, Proposition 6.1] this leads to the embedding of Bs
τ into Lp(wα,β), which plays

an important role in the proof of the main result of this section:

Theorem 9.1 (Jackson estimate). If f ∈ Bs
τ , then

σn(f )p � cn−s/d‖f ‖Bs
τ
, n� 1, (9.2)

where c > 0 depends only on s, p, and Â.

The proofs of this theorem can be carried out exactly as the proofs of the Jackson estimate in
[15, Theorem 6.2]. We omit it.

It is an important open problem to prove the companion to (9.2) Bernstein estimate: If g ∈ Σn

and 1 < p < ∞, then

‖g‖Bs
τ
� cns/d‖g‖p. (9.3)

If true this estimate would enable one to characterize the rates (approximation spaces) of nonlin-
ear n-term approximation in Lp(wα,β) (1 < p < ∞) from needlet systems.

10. Weighted Triebel–Lizorkin and Besov spaces on Bd1 × [−1,1]d2

Our aim is to briefly describe how the theory of weighted spaces of distributions on the product
set Bd1 × [−1,1]d2 can be developed via tensor product orthogonal polynomials.

10.1. Localized kernels for orthogonal polynomials on the ball

Localized polynomial kernels on the unit ball Bd in R
d have been developed in [19] and

utilized in [14] to the development of Triebel–Lizorkin and Besov spaces on Bd with weight

wμ(x) := (
1 − ‖x‖2

2

)μ−1/2
, μ � 0.

Here, we compile all needed results from [14,19] and give some new facts.
Denote by Vn the set of all polynomials of degree n in d variables which are orthogonal to the

lower degree polynomials in L2(Bd,wμ) and let Pn(wμ,x, y) be the kernel of the orthogonal
projector Projn : L2(Bd,wμ) → Vn, i.e.

(Projn f )(x) =
∫
Bd

f (y)Pn(wμ;x, y)wμ(y)dy. (10.1)

An explicit representation of the reproducing kernel Pn(wμ,x, y) is given in [25]:
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Pn(wμ;x, y) = cμ

n + λ

λ

1∫
−1

Cλ
n

(
t (x, y;u)

)(
1 − u2)μ−1

du, μ > 0, (10.2)

where

t (x, y;u) := 〈x, y〉 + u

√
1 − ‖x‖2

2

√
1 − ‖y‖2

2 and λ := μ + d − 1

2
.

For an admissible univariate cutoff function â (see Definition 2.1), denote

Lμ
n (x, y) :=

∞∑
j=0

â

(
j

n

)
Pj (wμ;x, y). (10.3)

Analogues of Theorems 4.1 and 4.2 on Bd are established in [19]. Denote

Wμ(n;x) :=
(√

1 − ‖x‖2
2 + n−1

)2μ

, and (10.4)

ρ(x, y) := arccos
(
〈x, y〉 +

√
1 − ‖x‖2

2

√
1 − ‖y‖2

2

)
, (10.5)

which is a distance on Bd .

Theorem 10.1. Given an admissible univariate cutoff function â, for any σ > 0 there exists a
constant c > 0 such that

∣∣Lμ
n (x, y)

∣∣� cnd√
Wμ(n;x)

√
Wμ(n;y)

(
1 + nρ(x, y)

)−σ
, x, y ∈ Bd. (10.6)

Furthermore, for any x, y, ξ ∈ Bd such that ρ(x, ξ) � c∗n−1

∣∣Lμ
n (x, y) − Lμ

n (ξ, y)
∣∣� cnd+1ρ(x, ξ)√

Wμ(n;x)
√

Wμ(n;y)

(
1 + nρ(x, y)

)−σ
. (10.7)

This theorem was established in [19, Theorem 4.2 and Proposition 4.7] in the case of admis-
sible cutoff functions â which are constant around t = 0. Its proof hinges on the localization of
the kernels Qα,β

n from (2.12). Due to Theorem 2.6 now Theorem 10.1 holds for admissible cutoff
functions â in the sense of Definition 2.1 with the proof from [19].

We shall need two additional estimates with the first being the analogue of Lemma 2.9 on Bd .

Lemma 10.2. For x, y ∈ Bd ,

∣∣Pn(wμ;x, y)
∣∣� cnd−1√

Wμ(n;x)
√

Wμ(n;y)
. (10.8)
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Proof. The proof of this lemma relies on the following estimate that follows from Theorem 3.1
in [3]: If a and b are constants such that |a| + |b|� 1, then

∣∣∣∣∣
1∫

−1

Cλ
n(au + b)

(
1 − u2)μ−1

du

∣∣∣∣∣� cn2λ−2μ−1 (|a| + n−1√1 − |a| − |b| + n−2)−μ

(1 + n
√

1 − |a| − |b|)λ−μ
.

Denote briefly A(x) :=
√

1 − ‖x‖2
2. We apply the above inequality with a = A(x)A(y) and b =

〈x, y〉. Setting ‖x‖2 =: cos θ and ‖y‖2 =: cosφ, 0 � θ,φ � π , we have

1 − |a| − |b| � 1 − ‖x‖2 · ‖y‖2 −
√

1 − ‖x‖2
2

√
1 − ‖y‖2

2 = 1 − cos(θ − φ)

= 2 sin2 θ − φ

2
� c(θ − φ)2 � c(sin θ − sinφ)2 = c

(
A(x) − A(y)

)2
,

and hence

∣∣Pn(wμ;x, y)
∣∣� cn2λ−2μ

(
A(x)A(y) + n−1

∣∣A(x) − A(y)
∣∣+ n−2)−μ

. (10.9)

Here we used that (1 + n
√

1 − |a| − |b| )λ−μ � 1. Now, from A(x),A(y) � 0 it easily follows
that

A(x)A(y) + n−1
∣∣A(x) − A(y)

∣∣+ n−2 ∼ (
A(x) + n−1)(A(y) + n−1). (10.10)

This coupled with (10.9) yields (10.8). �
The next lemma gives an analogue of estimate (4.12) on the ball.

Lemma 10.3. For any x, y, ξ ∈ Bd such that ρ(x, ξ)� c∗n−1,

∣∣Pn(wμ;x, y) − Pn(wμ; ξ, y)
∣∣� cndρ(x, ξ)√

Wμ(n;x)
√

Wμ(n;y)
, (10.11)

where the constant c > 0 depends only on μ, d , and c∗.

The proof of this lemma is somewhat lengthy and will be given in Appendix A.

10.2. Localized cross product basis kernels

We consider orthogonal polynomials on Bd1 × [−1,1]d2 with weight

wμ,α,β(x) := wμ

(
x′)wα,β

(
x′′), x = (

x′, x′′), x′ ∈ Bd1 , x′′ ∈ [−1,1]d2,

where wμ(x′) := (1 − ‖x′‖2
2)

μ−1/2, μ � 0, and wα,β(x′′) := ∏d2
j=1 wαj ,βj

(x′′
j ) with αj ,βj �

−1/2 as in (1.5).
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Denote by Vn the set of all algebraic polynomials of degree n in d1 variables which are or-
thogonal to the lower degree polynomials in L2(Bd1 ,wμ) and let Pn(wμ,x′, y′) be the kernel of
the orthogonal projector Projn : L2(Bd1 ,wμ) → Vn, see (10.1)–(10.2).

We are interested in kernels of the form

Λn(x, y) :=
∑

(j,ν)∈N0×N
d2
0

Â

(
j

n
,
ν

n

)
Pj

(
wμ;x′, y′)P̃ (α,β)

ν

(
x′′)P̃ (α,β)

ν

(
y′′). (10.12)

Here Â ∈ C∞[0,∞)1+d2 is an admissible cutoff function in the sense of Definition 3.1 and
P̃

(α,β)
ν are the tensor product Jacobi polynomials defined as in (4.1). To estimate the localization

of Λn(x, y) we need the weight

Wμ,α,β(n;x) := Wμ

(
n;x′)Wα,β

(
n;x′′), (10.13)

where Wμ(n;x′) is defined as in (10.4) and Wα,β(n;x′′) as in (4.3). We also need the distance
ρ∗(x, y) on Bd1 × [−1,1]d2 defined by

ρ∗(x, y) := max
{
ρ
(
x′, y′), max

1�j�d2

∣∣arccosx′′
j − arccosy′′

j

∣∣},
where ρ(x′, y′) is the distance on Bd1 defined as in (10.5).

We now give the localization of the kernels Λn(x, y) from (10.12):

Theorem 10.4. If Â ∈ C∞[0,∞)1+d2 is an admissible cutoff function in the sense of Defini-
tion 3.1, then for any σ > 0 there exists a constant c > 0 such that

∣∣Λn(x, y)
∣∣� cnd1+d2√

Wμ,α,β(n;x)
√

Wμ,α,β(n;y)

(
1 + nρ∗(x, y)

)−σ (10.14)

for x, y ∈ Bd1 × [−1,1]d2 .

This theorem is an immediate consequence of Theorems 4.1, 10.1, and Lemma 10.2. (see the
proof of Theorem 4.1).

The analogue of Theorem 4.2 reads as follows:

Theorem 10.5. Let Â be an admissible cutoff function which belongs to the class S(d2 + 1,

L;γ, γ̃M) for some L and M as in (2.1) and γ, γ̃ > 0 (see Definition 2.2). Then the kernels
from (10.12) satisfy

∣∣Λn(x, y)
∣∣� cnd1+d2√

Wμ,α,β(n;x)
√

Wμ,α,β(n;y)
exp

{
− c̃nρ∗(x, y)

L(nρ∗(x, y))

}
(10.15)

for x, y ∈ Bd1 × [−1,1]d2 . Here c̃ = c′/γ̃M , where c′ > 0 is an absolute constant.
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Here the argument is the same as for the proof of Theorem 4.2 (see the proof of Theorem 4.1)
using Theorem 4.2 and [11, Theorem 6.1].

An analogue of Theorem 4.3 is also valid:

Theorem 10.6. If Â ∈ C∞[0,∞)1+d2 is an admissible cutoff function, then for any σ > 0 and
for all x, y, ξ ∈ Bd1 × [−1,1]d2 such that ρ(x, ξ) � c∗n−1, n � 1, c∗ > 0, the kernel Λn from
(10.12) satisfies

∣∣Λn(x, y) − Λn(ξ, y)
∣∣� cnd1+d2+1ρ(x, ξ)√

Wμ,α,β(n;x)
√

Wμ,α,β(n;y)

(
1 + nρ(x, y)

)−σ
, (10.16)

where c > 0 depends only on σ,d,α,β , c∗, and Â.

The proof of this theorem is quite similar to the proof of Theorem 4.3 and relies on Theo-
rems 4.3, 10.1, and Lemma 10.3.

10.3. Construction of needlets on Bd1 × [−1,1]d2

An important component of our theory is the construction of frames on Bd1 × [−1,1]d2 . To
this end one uses a Caldeón type formula based on localized kernels as the kernels in (10.12) and
a cubature formula. A cubature formula on Bd1 × [−1,1]d2 exact for sufficiently large degree
polynomials can be constructed as product of the cubature formula on Bd1 from [19, §5] and the
cubature on [−1,1]d2 from Section 6.1. Once the components are in place, the construction is
carried out exactly as in Section 6.2. We skip the details.

10.4. Spaces of distributions on Bd1 × [−1,1]d2

It is natural to use as test functions the set D := C∞(Bd1 × [−1,1]d2), where the topology
is defined by the semi-norms |φ|μ := ‖Dμφ‖∞ for all multi-indices μ. Just as in the case of
tensor product Jacobi polynomials (Section 5.2) the test functions φ ∈D can be characterized by
their cross polynomial expansions on Bd1 × [−1,1]d2 . The space D′ of distributions on Bd1 ×
[−1,1]d2 is defined as the set of all continuous linear functionals on D.

For an admissible cutoff function Â : [0,∞)1+d2 �→ C of type (b) obeying condition (3.4) we
define Φ0(x, y) := P0(wμ;x′, y′)P̃ (α,β)

0 (x′′)P̃ (α,β)

0 (y′′) and

Φj(x, y) :=
∑

(m,ν)∈N0×N
d2
0

Â

(
m

2j−1
,

ν

2j−1

)
Pm

(
wμ;x′, y′)P̃ (α,β)

ν

(
x′′)P̃ (α,β)

ν

(
y′′), j � 1.

Then the weighted Triebel–Lizorkin space F
sρ
pq := F

sρ
pq(wμ,α,β) with s, ρ ∈ R, 0 < p < ∞,

and 0 < q � ∞, is defined as the set of all f ∈ D′ such that

‖f ‖F
sρ
pq

:=
∥∥∥∥∥
( ∞∑[

2sjWμ,α,β

(
2j ; ·)−ρ/(d1+d2)

∣∣Φj ∗ f (·)∣∣]q
)1/q∥∥∥∥∥ < ∞ (10.17)
j=0 p
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with the usual modification when q = ∞. Here Φj ∗ f is defined as in (5.15) and ‖ · ‖p is the
weighted Lp(wμ,α,β) norm on Bd1 × [−1,1]d2 .

The weighted Besov space B
sρ
pq := B

sρ
pq(wμ,α,β) with s, ρ ∈ R and 0 < p,q � ∞, is defined

as the set of all f ∈ D′ such that

‖f ‖B
sρ
pq

:=
( ∞∑

j=0

[
2sj
∥∥Wμ,α,β

(
2j ; ·)−ρ/(d1+d2)Φj ∗ f (·)∥∥

p

]q)1/q

< ∞, (10.18)

where the �q -norm is replaced by the sup-norm if q = ∞.
Without going into further details, we note that the theory of Triebel–Lizorkin and Besov

space on Bd1 × [−1,1]d2 with weight wμ,a,b(x) can be further developed in analogy to the
spaces on [−1,1]d from Sections 7–8. Also, needlets on Bd1 ×[−1,1]d2 can be deployed for the
decomposition of the F - and B-spaces on Bd1 × [−1,1]d2 as in Sections 7–8. The point is that
all ingredients needed for this theory are either in place or can easily be developed.

11. Discussion

Although this paper is mainly concerned with weighted Triebel–Lizorkin and Besov space on
[−1,1]d it is one of our goals to show how the theory of F - and B-spaces can be developed on
products of [−1,1]d1 , Bd2 , Sd3 , T d4 , Rd5 , or Rd6+ with weights. For Bd1 × [−1,1]d2 a sketch of
the main ingredients of the theory was given in the previous section. We believe that the most
natural way to define and develop this sort of spaces is via orthogonal decompositions, where
kernels like the ones from (2.9), (4.2) or (10.12) play a prominent role.

We would like to turn again our attention to the fundamental question of what kind of cutoff
functions Â can be used in the case of cross product bases. As was already mentioned in the
introduction, as for univariate Jacobi polynomials (see (2.9)) univariate cutoff functions â induce
rapidly decaying kernels on the sphere [15], ball [14], simplex [11], and in the context of ten-
sor product Hermite [20] and Laguerre functions [12]. Note that cutoff functions â which are
constants around t = 0 are sufficient for the development of the theory in these cases. However,
as was already seen truly multivariate cutoff functions Â need to be used in the case of product
Jacobi polynomials or cross product bases. Moreover, the localization of the respective kernels
depends on the behavior of Â at the boundary of [0,∞)d , i.e. at the coordinate planes. This is
intimately related to the impact of the behavior of the univariate cutoff functions â at t = 0 on the
localization of the kernels on the interval, ball, sphere, etc. This behavior appears as a boundary
condition on Â and becomes an important issue.

The key observation is that (as in Theorem 2.5) the localization results given in the theorems
described below hold under the condition that the compactly supported C∞ univariate cutoff
function â satisfies

â(m)(0) = 0 for m = 1,2, . . . .

These are: (1) Theorem 4.2 in [19] on the ball, (2) Theorem 2.2 in [15] on the sphere, (3) The-
orem 7.1 in [11] on the simplex, (4) Corollary 1 in [20] for tensor product Hermite functions,
(5) Theorems 3.2, 3.7, 3.8 in [12] for tensor product Laguerre functions. The proofs of these
results utilize the scheme of the proof of Theorem 2.5 with very little variations and will be omit-
ted. Consequently, the cross product basis kernels induced by an admissible cutoff function Â
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(see Definition 3.1) obtained from any combination of the above mentioned bases on [−1,1]d1 ,
Bd2 , Sd3 , T d4 , Rd5 , or Rd6+ will decay rapidly as in Theorems 4.1, 10.4. Further modifications
and extensions as in Theorems 4.2, 4.3, 10.5, 10.6 are also almost automatic.

The construction of needlets on products of two or more of the sets [−1,1]d1 , Bd2 , Sd3 , T d4 ,
R

d5 , or Rd6+ follows easily the pattern of the construction on [−1,1]d from Section 6, based on
tensor product basis kernels and product cubature formulas.

The ensuing program for developing weighted Triebel–Lizorkin and Besov spaces on products
of sets as above can be carried out as for the spaces on [−1,1]d developed in this article.

Appendix A. Proof of Lemma 10.3.

For μ = 0 the expression of Pn(wμ;x, y) in (10.2) simplifies considerably as μ → 0; the
integral becomes a sum of two terms, as shown in [25]. This case is easier than the case μ > 0.
We omit its proof.

Assume μ > 0. The proof hinges on the following lemma which is an immediate consequence
of Lemma 3.5 in [3].

Lemma A.1. Suppose μ > 0, 0 < |a| < 1, η ∈ C∞[−1,1] with suppη ⊂ [− 1
2 ,1]. If |b|� 1−|a|,

then

∣∣∣∣∣
1∫

−1

Cλ
n(at + b)η(t)(1 − t)μ−1 dt

∣∣∣∣∣� cn2λ−2μ−1

|a|μ(1 + n
√

1 − |a + b| )λ−μ
.

The proof of Lemma 10.3 will be divided into two parts.

Case 1: A(x)A(y) � 16c∗(n−1ρ(x, y) + n−2), where c∗ is the constant from the hypothesis of
Lemma 10.3. We shall need the following estimate for Gegenbauer polynomials, which follows
from (2.22):

∣∣Cλ
n(t)

∣∣� cn2λ−1(1 + n
√

1 − t2
)−λ

, t ∈ [−1,1]. (A.1)

Denote by Iu the interval with end points t (x, y;u) and t (ξ, y;u). Then using the identity
d
dt

Cλ
n(t) = 2λCλ+1

n−1(t) [23, (4.7.27)], we obtain

E := ∣∣Pn(wμ;x, y) − Pn(wμ; ξ, y)
∣∣

� cn

1∫
−1

∣∣Cλ
n

(
t (x, y;u)

)− Cλ
n

(
t (ξ, y;u)

)∣∣(1 − u2)μ−1
du

� cn

1∫
−1

∥∥Cλ+1
n−1

∥∥
L∞(Iu)

∣∣t (x, y;u) − t (ξ, y;u)
∣∣(1 − u2)μ−1

du. (A.2)

By (A.1) it follows that
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∥∥Cλ+1
n−1

∥∥
L∞(Iu)

� cn2λ+1[(1 + n

√
1 − t (x, y;u)2

)−λ−1

+ (
1 + n

√
1 − t (ξ, y;u)2

)−λ−1]
. (A.3)

If t (x, y;u) � 0, then

1 − t (x, y;u)2 � 1 − t (x, y;u) � 1 − 〈x, y〉 − A(x)A(y)

= 1 − cosρ(x, y) = 2 sin2(ρ(x, y)/2
)
�
(
2/π2)ρ(x, y)2,

and similarly if t (x, y;u) < 0, then

1 − t (x, y;u)2 � 1 + t (x, y;u)� 1 + 〈x, y〉 − A(x)A(y)

= 1 − 〈x,−y〉 − A(x)A(−y) �
(
2/π2)ρ(x,−y)2.

The above estimates along with (A.3) and ρ(x, ξ) � c∗n−1 yield

∥∥Cλ+1
n−1

∥∥
L∞(Iu)

� cn2λ+1(1 + nρ(x, y)
)−λ−1

if t (x, y;u) � 0, and∥∥Cλ+1
n−1

∥∥
L∞(Iu)

� cn2λ+1(1 + nρ(x,−y)
)−λ−1 if t (x, y;u) < 0.

We use these inequalities in (A.2) to obtain

E � cn2λ+2

1∫
−1

|t (x, y;u) − t (ξ, y;u)|
(1 + nρ(x, y))λ+1

(
1 − u2)μ−1

du

+ cn2λ+2

1∫
−1

|t (x, y;u) − t (ξ, y;u)|
(1 + nρ(x,−y))λ+1

(
1 − u2)μ−1

du

=: E1 + E2.

To estimate E1 and E2 we shall need the inequality

∣∣A(x) − A(y)
∣∣� ρ(x, y), x, y ∈ Bd, (A.4)

given in [19, Lemma 4.1] with a factor
√

2 on the right. To establish this inequality, we may
assume (by rotation) that x = (x1,0, . . . ,0), x1 � 0. Observe that the left-hand side of (A.4)
depends only on ‖x‖2 and ‖y‖2, while the minimum of ρ(x, y) over all y ∈ Bd such that ‖y‖2 =
constant occurs when y = (y1,0, . . . ,0), y1 � 0. This leads us to the conclusion that it suffices
to prove (A.4) in dimension d = 1 only. But in this case (A.4) is trivial.

Inequality (A.4) implies

A(y) + n−1 � A(x) + n−1 + ρ(x, y) �
(
A(x) + n−1)(1 + nρ(x, y)

)
. (A.5)

On the other hand, by (10.10), (A.4), and our assumption it follows that
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(
A(x) + n−1)(A(y) + n−1)� c

(
A(x)A(y) + n−1

∣∣A(x) − A(y)
∣∣+ n−2)

� cn−2(1 + nρ(x, y)
)
. (A.6)

This along with (A.5) gives

A(y)2 �
(
A(x) + n−1)(A(y) + n−1)(1 + nρ(x, y)

)
� cn−2(1 + nρ(x, y)

)2
. (A.7)

As in [19, p. 136] we have using (A.4)

∣∣t (x, y;u) − t (ξ, y;u)
∣∣� ∣∣cosρ(x, y) − cosρ(ξ, y)

∣∣+ |1 − u|A(y)ρ(x, ξ)

� ρ(x, ξ)
(
ρ(x, y) + ρ(ξ, y)

)+ A(y)ρ(x, ξ). (A.8)

Combining this with (A.7) and ρ(x, ξ)� cn−1 we get

∣∣t (x, y;u) − t (ξ, y;u)
∣∣� cn−1ρ(x, ξ)

(
1 + nρ(x, y)

)
.

This estimate coupled with (A.6) leads to

E1 � cndρ(x, ξ)
n2μ

(1 + nρ(x, y))μ
� cndρ(x, ξ)

(A(x) + n−1)μ(A(y) + n−1)μ
. (A.9)

To estimate E2 we observe that t (x, y;u) = −t (x,−y;−u) and hence

∣∣t (x, y;u) − t (ξ, y;u)
∣∣= ∣∣t (x,−y;−u) − t (ξ,−y;−u)

∣∣.
Consequently, E2 can be estimated exactly as E1 with the same bound as in (A.9). These two
estimates yield (10.11).

Case 2: A(x)A(y) > 8c∗(n−1ρ(x, y) + n−2). In this case by (10.10) and (A.4) it readily follows
that

A(x)A(y) ∼ (
A(x) + n−1)(A(x) + n−1). (A.10)

Let η+ be a C∞ function such that η+(u) = 1 for 1
2 � u � 1, and η+(u) = 0 for −1 � u� − 1

2 .
Define η−(u) := 1 − η+(u). Then on account of (10.2), we can write

Pn(wμ;x, y) = P +
n (wμ;x, y) + P −

n (wμ;x, y),

where

P ±
n (wμ;x, y) := cμ

n + λ

λ

1∫
Cλ

n

(
t (x, y;u)

)
η±(u)

(
1 − u2)μ−1

du.
−1
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Since t (x, y;−u) = −t (x,−y;u) and Cλ
n(−t) = (−1)nCλ

n(t), we only need to prove (10.11) for
P +

n (wμ; ·,·). We write t (x, y;u) as

t (x, y;u) = B(x, y) + A(x)A(y)(u − 1) with B(x, y) := cosρ(x, y).

In going further, we have

P +
n (wμ;x, y) − P +

n (wμ; ξ, y) = J1 + J2, (A.11)

where

J1 := cμ

n + λ

λ

1∫
−1

[
Cλ

n

(
B(x, y) + A(x)A(y)(u − 1)

)

− Cλ
n

(
B(ξ, y) + A(x)A(y)(u − 1)

)]
η+(u)

(
1 − u2)μ−1

du,

J2 := cμ

n + λ

λ

1∫
−1

[
Cλ

n

(
B(ξ, y) + A(x)A(y)(u − 1)

)

− Cλ
n

(
B(ξ, y) + A(ξ)A(y)(u − 1)

)]
η+(u)

(
1 − u2)μ−1

du.

To estimate |J1|, we again use d
ds

Cλ
n(s) = 2λCλ+1

n−1 (s) to write

J1 = 2cμ(n + λ)

B(x,y)∫
B(ξ,y)

1∫
−1

Cλ+1
n−1

(
s + A(x)A(y)(u − 1)

)
η+(u)

(
1 − u2)μ−1

duds.

We estimate the inner integral above using Lemma A.1 with η(t) = η+(t)(1 + t)μ−1, b = s −
A(x)A(y) and a = A(x)A(y). We get

|J1|� c
n2(λ+1)−2μ

[A(x)A(y)]μ
∣∣∣∣∣

B(x,y)∫
B(ξ,y)

1

(1 + n
√

1 − |s| )λ+1−μ
ds

∣∣∣∣∣.
As in (A.8)∣∣B(x, y) − B(ξ, y)

∣∣� ρ(x, ξ)
(
ρ(x, y) + ρ(ξ, y)

)
� cρ(x, ξ)

(
ρ(x, y) + n−1).

On the other hand 1 − B(x, y) = 1 − cosρ(x, y) � cρ(x, y)2 and similarly 1 − B(ξ, y) �
cρ(ξ, y)2. Therefore,

|J1| � c
nd+1

[A(x)A(y)]μ
(ρ(x, y) + n−1)ρ(x, ξ)

(1 + nmin{ρ(x, y), ρ(ξ, y)})λ+1−μ
� cndρ(x, ξ)

[A(x)A(y)]μ , (A.12)

where we used that ρ(x, y) � ρ(ξ, y) + ρ(x, ξ)� ρ(ξ, y) + c∗n−1.
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To estimate |J2|, we again use d
ds

Cλ
n(s) = 2λCλ+1

n−1 (s) to express J2 as

−2cμ(n + λ)A(y)

A(x)∫
A(ξ)

1∫
−1

Cλ+1
n−1

(
B(ξ, y) + sA(y)(u − 1)

)
η+(u)(1 + u)μ−1(1 − u)μ duds.

We estimate the inner integral by using Lemma A.1 with η(t) = η+(t)(1 + t)μ−1, b = B(ξ, y) −
sA(y), a = sA(y), and λ, μ replaced by λ + 1, μ + 1 to obtain

|J2| � cn2(λ+1)−2(μ+1)

A(y)μ(1 + n
√

1 − B(ξ, y) )λ−μ

∣∣∣∣∣
A(x)∫

A(ξ)

s−μ−1 ds

∣∣∣∣∣
and using that |A(x) − A(ξ)| � √

2ρ(x, ξ) (see (A.4))

|J2|� cnd−1ρ(x, ξ)

A(y)μ min{A(x)μ+1,A(ξ)μ+1} . (A.13)

By the same token and since by assumption ρ(x, ξ)� c∗n−1 we have

A(ξ) � A(x) − ∣∣A(x) − A(ξ)
∣∣� A(x) − √

2ρ(x, ξ)� A(x) − √
2c∗n−1.

If A(x) � 2
√

2c∗n−1, then from above A(ξ) � A(x)/2. These two estimates and (A.13) im-
ply that |J2| has the bound of |J1| from (A.12), and using (A.10) estimate (10.11) holds for
|P +

n (wμ;x, y) − P +
n (wμ; ξ, y)|.

Let A(x) < 2
√

2c∗n−1. We claim that A(y) < 4
√

2c∗n−1. Indeed, suppose A(y) �
4
√

2c∗n−1. Then A(y) � A(x)/2 and using (A.4), we get

√
2ρ(x, y)�

∣∣A(x) − A(y)
∣∣� A(y) − A(x) �A(y)/2

and hence A(x)A(y) > 8c∗n−1ρ(x, y) � 2
√

2c∗n−1A(y) yielding A(x) > 2
√

2c∗n−1, that is a
contradiction. Therefore, A(x)A(y) < 16c∗n−2. Thus A(x), A(y) obey the conditions of Case 1
and hence estimate (10.11) holds true. This completes the proof of Lemma 10.3.
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