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Homogeneous Besov and Triebel–Lizorkin spaces with complete set of indices are 
introduced in the general setting of a doubling metric measure space in the presence 
of a non-negative self-adjoint operator whose heat kernel has Gaussian localization 
and the Markov property. The main step in this theory is the development of 
distributions modulo generalized polynomials. Some basic properties of the general 
homogeneous Besov and Triebel–Lizorkin spaces are established, in particular, 
a discrete (frame) decomposition of these spaces is obtained.
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1. Introduction

The Littlewood–Paley theory of classical Besov and Triebel–Lizorkin spaces on Rd has been developed 
primarily by J. Peetre, H. Triebel, M. Frazier, and B. Jawerth, see [7,10,11,2–4]. This theory has been 
generalized and extended in all sorts of directions and settings. In [1,5], inhomogeneous Besov and Triebel–
Lizorkin spaces have been developed in the general setting of a metric measure space with the doubling 
property and in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian local-
ization and the Markov property. These spaces have been further generalized in [6]. Surprisingly this general 
theory develops in almost complete generality as in the classical setting on Rd.

In this article we focus on the homogeneous version of these spaces. More explicitly, we shall develop 
various aspects of the theory of homogeneous Besov and Triebel–Lizorkin spaces in the general setting 
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described below, including generalized polynomials associated to operators and the class of distributions 
modulo such polynomials, and the frame decomposition of distribution spaces.

We shall operate in the setting put forward in [1,5], which we describe next:
I. We assume that (M, ρ, μ) is a metric measure space satisfying the conditions: (M, ρ) is a locally compact 

metric space with distance ρ(·, ·) and μ is a positive Radon measure such that the following volume doubling 
condition is valid

0 < μ(B(x, 2r)) ≤ c0μ(B(x, r)) < ∞ for all x ∈ M and r > 0, (1.1)

where B(x, r) is the open ball centered at x of radius r and c0 > 1 is a constant. From above it follows that

μ(B(x, λr)) ≤ c0λ
dμ(B(x, r)) for x ∈ M, r > 0, and λ > 1, (1.2)

where d = log2 c0 > 0 is a constant playing the role of a dimension.
We also assume that μ(M) = ∞.
II. The main assumption is that the geometry of the space (M, ρ, μ) is related to an essentially self-

adjoint non-negative operator L on L2(M, dμ), mapping real-valued to real-valued functions, such that 
the associated semigroup Pt = e−tL consists of integral operators with (heat) kernel pt(x, y) obeying the 
conditions:
(a) Gaussian upper bound:

|pt(x, y)| ≤
C� exp{− c�ρ2(x,y)

t }[
μ(B(x,

√
t))μ(B(y,

√
t))

]1/2 for x, y ∈ M, t > 0. (1.3)

(b) Hölder continuity: There exists a constant α > 0 such that

∣∣pt(x, y) − pt(x, y′)
∣∣ ≤ C�

(ρ(y, y′)√
t

)α exp{− c�ρ2(x,y)
t }[

μ(B(x,
√
t))μ(B(y,

√
t))

]1/2 (1.4)

for x, y, y′ ∈ M and t > 0, whenever ρ(y, y′) ≤
√
t.

(c) Markov property: ∫
M

pt(x, y)dμ(y) = 1 for x ∈ M and t > 0. (1.5)

Above C�, c� > 0 are structural constants.
We also stipulate the following additional conditions on the geometry of M :

(d) Noncollapsing condition: There exists a constant c1 > 0 such that

inf
x∈M

μ(B(x, 1)) ≥ c1. (1.6)

(e) Reverse doubling condition: There exists a constant c2 > 1 such that

μ(B(x, 2r)) ≥ c2μ(B(x, r)) for x ∈ M and r > 0. (1.7)

This condition readily implies

μ(B(x, λr)) ≥ c3λ
d∗
μ(B(x, r)) for x ∈ M, r > 0, and λ > 1, (1.8)

where d∗ := log2 c2 ≤ d and c3 = c−1
2 .
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Observe that as shown in [1, Proposition 2.2] if M is connected, then the reverse doubling condition (1.7)
follows by the doubling condition (1.1). Therefore, the reverse doubling condition is not restrictive.

The above setting finds a natural realization in the general framework of strictly local regular Dirichlet 
spaces with a complete intrinsic metric, where it suffices to only verify the local Poincaré inequality and the 
global doubling condition on the measure and then the above general setting applies in full. In particular, 
this setting covers the cases of Lie groups or homogeneous spaces with polynomial volume growth, com-
plete Riemannian manifolds with Ricci curvature bounded from below and satisfying the volume doubling 
condition. Naturally, it contains the classical setting on R

n. For more details, see [1].
In this article we advance in several directions. In the general setting described above, we introduce spaces 

of distributions modulo generalized polynomials S ′/P and establish basic convergence results (§3). This is 
only possible in the noncompact case (μ(M) = ∞). It is also shown that S ′/P is a natural generalization 
of the tempered distributions modulo polynomials in the classical case on Rd. As a next step we show 
how the construction of frames from [1,5] can be adapted to the homogeneous setting (§4). In Section 5
we introduce two types of homogeneous Besov spaces Ḃs

pq, 
˙̃B
s

pq and Triebel–Lizorkin spaces Ḟ s
pq, 

˙̃F
s

pq with 
full sets of indices: s ∈ R, 0 < p, q < ∞ (q ≤ ∞ in the case of Besov spaces) and establish their frame 

decomposition using respective sequence spaces ḃspq, 
˙̃b
s

pq, and ḟs
pq, 

˙̃f
s

pq, by adaptation of the construction from 
the inhomogeneous case, developed in [1,5]. In Section 6 we present without proof some additional results 
on homogeneous Besov and Triebel–Lizorkin spaces that are easy to prove or straightforward adaptation of 
results in the inhomogeneous setting. To streamline our presentation we place the proofs of some assertions 
in Section 7.

The main purpose of the present article is to show that in the general setting described above it is 
possible to develop the theory of homogeneous Besov and Triebel–Lizorkin spaces, including their discrete 
(frame) decomposition, in almost complete generality as in the classical case on Rn. This allows to cover 
new settings such as the ones on Lie groups and Riemannian manifolds.
Notation: Throughout we shall denote |E| := μ(E) and 1E will stand for the characteristic function of 
E ⊂ M , ‖ · ‖p = ‖ · ‖Lp := ‖ · ‖Lp(M,dμ). S(R) will stand for the Schwartz class on R. Positive constants 
will be denoted by c, C, c1, c′, . . . and will be allowed to vary at every occurrence. The notation a ∼ b will 
stand for c1 ≤ a/b ≤ c2. We shall also use the standard notation a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2. Background

In this section we provide some basic ingredients for our theory, mainly developed in [1,5].

2.1. Some properties related to the geometry of the underlying space

To compare the volumes of balls with different centers x, y ∈ M and the same radius r we will use the 
inequality

|B(x, r)| ≤ c0

(
1 + ρ(x, y)

r

)d

|B(y, r)|, x, y ∈ M, r > 0. (2.1)

As B(x, r) ⊂ B(y, ρ(y, x) + r) the above inequality is immediate from (1.2).
The following simple inequalities are established in [5, Lemma 2.1]: If σ > d and δ > 0, then for any 

x, y ∈ M

∫ (
1 + δ−1ρ(x, u)

)−σ
dμ(u) ≤ c|B(x, δ)|, (2.2)
M
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∫
M

(
1 + δ−1ρ(x, u)

)−σ(1 + δ−1ρ(u, y)
)−σ

dμ(u) ≤ c|B(x, δ)|
(
1 + δ−1ρ(x, y)

)−σ+d
. (2.3)

The above inequality follows readily by the following more general assertion:

Lemma 2.1. Let σ1, σ2 > d and δ1, δ2 > 0, and

I :=
∫
M

dμ(u)(
1 + δ−1

1 ρ(x, u))σ1
(
1 + δ−1

2 ρ(y, u))σ2
(2.4)

Then for any x, y ∈ M

I ≤ c|B(x, δ1)|(
1 + δ−1

2 ρ(x, y))σ2
+ c|B(y, δ2)|(

1 + δ−1
1 ρ(x, y))σ1

(2.5)

and consequently

I ≤ c|B(x, δ1)|(
1 + δ−1

maxρ(x, y))(σ1−d)∧σ2
and I ≤ c|B(y, δ2)|(

1 + δ−1
maxρ(x, y))σ1∧(σ2−d) . (2.6)

Here δmax := δ1 ∨ δ2 and the constant c > 0 depends only on σ1, σ2, d, and c0.

The proof of this lemma is given in Section 7.

2.2. Functional calculus

First, observe that as L is a non-negative self-adjoint operator that maps real-valued to real-valued 
functions, then for any real-valued, measurable and bounded function f on R+ the operator f(L), defined 
by f(L) :=

∫∞
0 f(λ)dEλ, where Eλ, λ ≥ 0, is the spectral resolution associated with L, is bounded on L2, 

self-adjoint, and maps real-valued functions to real-valued functions. Furthermore, if f(L) is an integral 
operator, then its kernel f(L)(x, y) is real-valued and f(L)(y, x) = f(L)(x, y), in particular, pt(x, y) ∈ R

and pt(y, x) = pt(x, y).
We shall need the following result from the smooth functional calculus induced by the heat kernel, 

developed in [5].

Theorem 2.2. Suppose f ∈ CN (R), N ≥ d + 1, f is real-valued and even, and

|f (ν)(λ)| ≤ AN (1 + |λ|)−r for λ ∈ R and 0 ≤ ν ≤ N, where r > N + d.

Then f(δ
√
L), δ > 0, is an integral operator with kernel f(δ

√
L)(x, y) satisfying

∣∣f(δ
√
L)(x, y)

∣∣ ≤ cAN

(
1 + δ−1ρ(x, y)

)−N

(
|B(x, δ)||B(y, δ)|

)1/2 ≤
c′AN

(
1 + δ−1ρ(x, y)

)−N+d/2

|B(x, δ)| (2.7)

and

∣∣f(δ
√
L)(x, y) − f(δ

√
L)(x, y′)

∣∣ ≤ cAN

(ρ(y,y′)
δ

)α(1 + δ−1ρ(x, y)
)−N

(
|B(x, δ)||B(y, δ)|

)1/2 (2.8)

whenever ρ(y, y′) ≤ δ. Here α > 0 is from (1.4) and c, c′ > 0 are constants depending only on r, N , and the 
structural constants c0, C�, c�, α.

Moreover, 
∫

f(δ
√
L)(x, y)dμ(y) = f(0).
M
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Remark 2.3. Theorem 2.2 is established in [5, Theorem 3.4] in the case when 0 < δ ≤ 1. However, the same 
proof applies also to the case 0 < δ < ∞.

In the construction of frames we will utilize operators of the form ϕ(δ
√
L) generated by cutoff functions 

ϕ specified in the following

Definition 2.4. A real-valued function ϕ ∈ C∞(R+) is said to be an admissible cutoff function if ϕ �= 0, 
suppϕ ⊂ [0, 2], and ϕ(m)(0) = 0 for m ≥ 1. Furthermore, ϕ is said to be admissible of type (a), (b) or (c) if 
ϕ is admissible and in addition obeys the respective condition:

(a) ϕ(t) = 1, t ∈ [0, 1],
(b) suppϕ ⊂ [1/2, 2] or
(c) suppϕ ⊂ [1/2, 2] and 

∑
j∈Z

|ϕ(2−jt)|2 = 1 for t ∈ (0, ∞).

Observe that the even extension of any admissible function belongs to C∞(R).
The kernels of operators ϕ(δ

√
L) with sub-exponential space localization will be the main building blocks 

in constructing frames.

Theorem 2.5. ([5]) For any 0 < ε < 1 there exists an admissible cutoff function ϕ of any type, (a) or (b)
or (c), such that for any δ > 0

|ϕ(δ
√
L)(x, y)| ≤

c1 exp
{
− κ

(ρ(x,y)
δ

)1−ε}
(
|B(x, δ)||B(y, δ)|

)1/2 , x, y ∈ M, (2.9)

where c1, κ > 0 depend only on ε and the constants c0, C�, c� from (1.1)–(1.4). Furthermore, for every 
m ∈ N,

|[Lmϕ(δ
√
L)](x, y)| ≤

c2δ
−2m exp

{
− κ

(ρ(x,y)
δ

)1−ε
}

(
|B(x, δ)||B(y, δ)|

)1/2 , x, y ∈ M, (2.10)

with c2 > 0 depending on ε, c0, C�, c�, and m.

Remark 2.6. Observe that [Lmϕ(δ
√
L)](x, y) in (2.10) is the kernel of the operator Lmϕ(δ

√
L), however, it 

can be considered as Lm acting on the kernel ϕ(δ
√
L)(·, y) or Lm acting on ϕ(δ

√
L)(x, ·) as well. In fact the 

result is the same: For any x, y ∈ M

[Lmϕ(δ
√
L)](x, y) = Lm[ϕ(δ

√
L)(·, y)](x) = Lm[ϕ(δ

√
L)(x, ·)](y). (2.11)

This claim is immediate from the following more general result.

Proposition 2.7. Assume that F and G satisfy the hypotheses of Theorem 2.2 with m ≥ 3d/2 + 1 and let H
be a real-valued measurable function on R+ such that

F (λ) = H(λ)G(λ) for almost all λ ∈ R+. (2.12)

Then F (
√
L) and G(

√
L) are self-adjoint bounded on L2(M) operators, and H(

√
L) is a self-adjoint operator 

(defined densely in M) such that for all x ∈ M we have G(
√
L)(x, ·) ∈ D(H(

√
L)) and

F (
√
L)(x, y) = H(

√
L)

[
G(

√
L)(x, ·)

]
(y) for a.a. y ∈ M. (2.13)
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Above D(H(
√
L)) stands for the domain of H(

√
L) and F (

√
L)(x, y), G(

√
L)(x, y) are the kernels of the 

operators F (
√
L), G(

√
L).

Proof. We shall use the notation F := F (
√
L), G := G(

√
L), and H := H(

√
L), and for the kernels 

F (x, y) := F (
√
L)(x, y) and G(x, y) := G(

√
L)(x, y).

Observe that from that fact that the functions F , G, and H are real-valued and measurable it follows that 
(see e.g. [9]) the operators F , G, and H are self-adjoint. As F and G satisfy the hypotheses of Theorem 2.2, 
where m ≥ 3d/2 + 1, we have F (x, y) = F (y, x) and G(x, y) = G(y, x) for x, y ∈ M , and using (2.2)

sup
x∈M

∫
M

|F (x, y)|dμ(y) < ∞, sup
x∈M

∫
M

|G(x, y)|dμ(y) < ∞. (2.14)

Hence the operators F and G are bounded on L2(M). Also, by Theorem 2.2 and (2.2) it follows that

‖F (x, ·)‖2
2 =

∫
M

|F (x, y)|2dμ(y) ≤ c|B(x, 1)|−1, ∀x ∈ M. (2.15)

Furthermore, by Theorem 2.2, F (x, y) and G(x, y) are Hölder continuous as functions of x and y, that is,

∣∣F (x, y) − F (x′, y)
∣∣ ≤ c|B(x, δ)|−1ρ(x, x′)α

(
1 + ρ(x, y)

)−N+d/2
,

whenever ρ(x, x′) ≤ 1, and a similar estimate holds for G(x, y). This readily implies that F and G map 
L2(M) into C(M), the space of all continuous functions on M .

We claim that

G(x, ·) ∈ D(H∗) = D(H), ∀x ∈ M. (2.16)

To prove this we first observe that as is well known (see e.g. [9]) f ∈ D(H∗) if

∣∣∣ ∫
M

(Hg)(y)f(y)dμ(y)
∣∣∣ ≤ c‖g‖2, ∀g ∈ D̃(H),

for some constant c > 0, where D̃(H) is a dense subspace of D(H). By (2.12) we have Fg = (GH )g for all 
g ∈ D(H). From this and the fact that F and G map L2(M) into C(M) it follows that for every g ∈ D(H)

∫
M

F (x, y)g(y)dμ(y) =
∫
M

G(x, y)(Hg)(y)dμ(y), ∀x ∈ M. (2.17)

In turn, this and (2.15) yield

∣∣∣ ∫
M

(Hg)(y)G(x, y)dμ(y)
∣∣∣ ≤ ‖F (x, ·)‖2‖g‖2 ≤ c|B(x, 1)|−1/2‖g‖2, ∀x ∈ M.

Therefore, (2.16) holds true.
Using that the operator H is self-adjoint, (2.16), and the fact that G(x, y) is real-valued we obtain for 

every f ∈ D(H) and all x ∈ M
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(GH )f(x) =
∫
M

G(x, y)Hf(y)dμ(y) =
∫
M

Hf(y)G(x, y)dμ(y)

=
∫
M

f(y)H∗
(
G(x, ·)

)
(y)dμ(y) =

∫
M

H[G(x, ·)](y)f(y)dμ(y).

This and (2.17) imply that F (x, ·) = H[G(x, ·)](·) almost everywhere for all x ∈ M , as claimed. �
Maximal δ-nets

The construction of frames in our setting relies on a sequence of δ-nets. By definition X ⊂ M is a δ-net 
on M (δ > 0) if ρ(ξ, η) ≥ δ, ∀ξ, η ∈ X , and X ⊂ M is a maximal δ-net on M if X is a δ-net on M that 
cannot be enlarged.

Some basic properties of maximal δ-nets will be needed (see [1, Proposition 2.5]): A maximal δ-net on 
M always exists and if X is a maximal δ-net on M , then

M = ∪ξ∈XB(ξ, δ) and B(ξ, δ/2) ∩B(η, δ/2) = ∅ if ξ �= η, ξ, η ∈ X . (2.18)

Furthermore, X is countable and there exists a disjoint partition {Aξ}ξ∈X of M consisting of measurable 
sets such that

B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ∀ξ ∈ X . (2.19)

For future use we introduce the following notation for a given maximal δ-net X on M :

Bξ := B(ξ, δ), ξ ∈ X . (2.20)

2.3. Spectral spaces

Let Eλ, λ ≥ 0, be the spectral resolution associated with the self-adjoint positive operator L on L2 :=
L2(M, dμ). We let Fλ, λ ≥ 0, denote the spectral resolution associated with 

√
L, i.e. Fλ = Eλ2 . Then for 

any measurable and bounded function f on R+ the operator f(
√
L) is defined by f(

√
L) =

∫∞
0 f(λ)dFλ

on L2. For the spectral projectors we have Eλ = 1[0,λ](L) :=
∫∞
0 1[0,λ](u)dEu and

Fλ = 1[0,λ](
√
L) :=

∞∫
0

1[0,λ](u)dFu =
∞∫
0

1[0,λ](
√
u)dEu.

For any compact K ⊂ [0, ∞) the spectral space Σp
K is defined by

Σp
K := {f ∈ Lp : θ(

√
L)f = f for all θ ∈ C∞

0 (R+), θ ≡ 1 on K}.

In general, given a space Y of measurable functions on M we set

Σλ = Σλ(Y ) := {f ∈ Y : θ(
√
L)f = f for all θ ∈ C∞

0 (R+), θ ≡ 1 on [0, λ]}.

The next assertion relates different weighted Lp-norms of spectral functions.

Proposition 2.8. ([5]) Let 0 < p ≤ q ≤ ∞ and γ ∈ R. Then there exists a constant c > 0 such that

‖|B(·, λ−1)|γg(·)‖q ≤ c‖|B(·, λ−1)|γ+1/q−1/pg(·)‖p for g ∈ Σλ, λ > 0. (2.21)
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3. Distributions

The Besov and Triebel–Lizorkin spaces associated with the operator L are in general spaces of distribu-
tions.

3.1. Basic facts

In the setting of this article the class of test functions S = S(L) is defined (see [5]) as the set of all 
complex-valued functions φ ∈ ∩m≥1D(Lm) such that

Pm(φ) := sup
x∈M

(1 + ρ(x, x0))m max
0≤ν≤m

|Lνφ(x)| < ∞, ∀m ≥ 0. (3.1)

Here x0 ∈ M is selected arbitrarily and fixed once and for all. Note that S is a complete locally convex 
space with topology generated by the above sequence of norms, i.e. S is a Fréchet space, see [8].

Observe also that if φ ∈ S, then φ ∈ S, which follows from the fact that Lφ = Lφ, for L maps real-valued 
to real-valued functions.

As usual the space S ′ of distributions on M is defined as the set of all continuous linear functionals on 
S and the action of f ∈ S ′ on φ ∈ S will be denoted by 〈f, φ〉 := f(φ), which is consistent with the inner 
product on L2(M). Clearly, for any f ∈ S ′ there exist constants m ∈ Z+ and c > 0 such that

|〈f, φ〉| ≤ cPm(φ), ∀φ ∈ S. (3.2)

It is important to clarify the action of operators of the form ϕ(
√
L) on S ′. Observe that if the function ϕ ∈

S(R) is real-valued and even, then from Theorem 2.2 it follows that ϕ(
√
L)(x, ·) ∈ S and ϕ(

√
L)(·, y) ∈ S. 

Moreover, it is easy to see that ϕ(
√
L) maps continuously S into S.

Definition 3.1. We define ϕ(
√
L)f for any f ∈ S ′ by

〈ϕ(
√
L)f, φ〉 := 〈f, ϕ(

√
L)φ〉 for φ ∈ S. (3.3)

From above it follows that, ϕ(
√
L) maps continuously S ′ into S ′. Furthermore, if ϕ, ψ ∈ S(R) are 

real-valued and even, then

ϕ(
√
L)ψ(

√
L)f = ψ(

√
L)ϕ(

√
L)f, ∀f ∈ S ′. (3.4)

Proposition 3.2. Suppose ϕ ∈ S(R) is real-valued and even and let f ∈ S ′. Then

ϕ(
√
L)f(x) = 〈f, ϕ(

√
L)(x, ·)〉, x ∈ M. (3.5)

Moreover, ϕ(
√
L)f is a continuous and slowly growing function, namely, there exist constants m ∈ Z+ and 

c > 0, depending on f , such that

|ϕ(
√
L)f(x)| ≤ c(1 + ρ(x, x0))m, x ∈ M, and (3.6)

|ϕ(
√
L)f(x) − ϕ(

√
L)f(x′)| ≤ c(1 + ρ(x, x0))mρ(x, x′)α, if ρ(x, x′) ≤ 1. (3.7)

Here α > 0 is the constant from (1.4).

The proof of this proposition is deferred to Section 7.
We refer the reader to [5] for more details on distributions in the general setting of this article.
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3.2. Distributions modulo generalized polynomials

The homogeneous Besov and Triebel–Lizorkin spaces we consider in this article will be distributions 
modulo generalized polynomials.
Generalized polynomials. In the setting of this article, we define the set Pm of “generalized polynomials” of 
degree m (m ≥ 1) by

Pm := {g ∈ S ′ : Lmg = 0} (3.8)

and set P := ∪m≥1Pm. Clearly, g ∈ Pm if and only if 〈g, Lmφ〉 = 0 for all φ ∈ S.
We define an equivalence f ∼ g on S ′ by

f ∼ g ⇐⇒ f − g ∈ P.

We denote by S ′/P the set of all equivalence classes in S ′. To avoid unnecessary complicated notation we 
will make no difference between any two elements f1, f2 belonging to one and the same equivalence class in 
S ′/P.

It will be important that the null space of L contains no nontrivial test functions:

Proposition 3.3. Let N (L) := {f ∈ D(L) : Lf = 0}. Then

N (L) ∩ L2(M) = {0} and hence N (Lk) ∩ L2(M) = {0}, ∀k ∈ N.

Proof. Clearly, e−tu − 1 = − 
∫ t

0 ue−suds and, therefore, by functional calculus this implies e−tL − Id =
− 
∫ t

0 Le−sLds, t ≥ 0. In turn, from this it readily follows that e−tLf = f , ∀f ∈ N (L) ∩ L2(M). Therefore, 
for any f ∈ N (L) ∩ L2(M), x ∈ M , and t > 0

|f(x)| = |e−tLf(x)| ≤
∫
M

|f(y)||pt(x, y)|dμ(y) ≤ ‖f‖2

(∫
M

|pt(x, y)|2dμ(y)
)1/2

,

where we applied the Cauchy–Schwarz inequality. However, from (1.3) and (2.1) it readily follows that

|pt(x, y)| ≤ cσ|B(x, t)|−1(1 + t−1ρ(x, y)
)−σ for any σ > 0.

This estimate, applied with σ > d/2, and (2.2) yield

(∫
M

|pt(x, y)|2dμ(y)
)1/2

≤ c|B(x, t)|−1/2.

On the other hand, from (1.8) and the noncollapsing condition (1.6) it follows that |B(x, t)| ≥ ctd
∗ , t > 1. 

Putting the above together, we obtain ‖f‖∞ ≤ ct−d∗/2. Finally, letting t → ∞ this implies f = 0. �
The classes S∞ and S ′

∞. Denote by S∞ the set of all functions φ ∈ S such that for every k ≥ 1 there exists 
ωk ∈ S such that φ = Lkωk, that is, L−kφ ∈ S for all k ≥ 1. Note that from Proposition 3.3 it follows that 
ωk above is unique and hence L−kφ is well defined on S∞.

The topology in S∞ is defined by the sequence of norms

P�
m(φ) := sup (1 + ρ(x, x0))m max |Lνφ(x)|, m ≥ 0. (3.9)
x∈M −m≤ν≤m
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We denote by S ′
∞ the set of all continuous linear functional on S∞. As before the action of f ∈ S ′

∞ on 
φ ∈ S∞ will be denoted by 〈f, φ〉. Apparently, for any f ∈ S ′

∞ there exist constants m ∈ Z+ and c > 0 such 
that

|〈f, φ〉| ≤ cP�
m(φ), ∀φ ∈ S∞. (3.10)

Several remarks are in order:
(1) The following example shows that the class S∞ is sufficiently rich. Let θ ∈ S(R) be real-valued and 

even, and θ(ν)(0) = 0 for ν = 0, 1, . . . . Then for any k ≥ 1 we have λ−2kθ(λ) ∈ S(R), which implies that 
L−kθ(

√
L)φ ∈ S for each φ ∈ S and hence θ(

√
L)φ ∈ S∞, ∀φ ∈ S.

(2) Clearly, if φ ∈ S∞, then Lkφ ∈ S∞, ∀k ∈ Z.
(3) It is important to note that S∞ is a Fréchet space.
The latter assertion follows by the following

Proposition 3.4. The space S∞ is complete.

Proof. This proof is quite similar to the proof of the completeness of S, given in [5, Proposition 5.3]. We 
shall sketch it indicating only the differences.

Let {φj}j≥1 be a Cauchy sequence in S∞, that is, P�
m(φj − φn) → 0 as j, n → ∞ for all m ≥ 0. Just as 

in the proof of Proposition 5.3 in [5], it follows that

‖Lνφj − Lνφn‖2 → 0 as j, n → ∞, ∀ν ∈ Z,

and by the completeness of L2 there exist Ψν ∈ L2 such that ‖Lνφj − Ψν‖2 → 0 as j → ∞, ν ∈ Z.
Write φ := Ψ0. From the proof Proposition 5.3 in [5], it follows that φ ∈ S and Pm(φj −φ) → 0, ∀m ≥ 0, 

where Pm is from (3.1).
From ‖L−1φj − Ψ−1‖2 → 0, ‖LL−1φj − φ‖2 = ‖φj − φ‖2 → 0, and the fact that L being a self-adjoint 

operator is closed [8] it follows that Ψ−1 ∈ D(L) and LΨ−1 = φ. Hence, Ψ−1 = L−1φ. By the same token 
inductively it follows that Ψ−ν = L−νφ, ∀ν ≥ 1. Furthermore, just as in [5] we obtain

‖L−νφj − L−νφ‖∞ → 0 as j → ∞, ∀ν ≥ 1.

In turn, this along with the fact that P�
m(φj − φn) → 0 as j, n → ∞, and Pm(φj − φ) → 0 as j → ∞, 

∀m ≥ 0, leads to P�
m(φj − φ) → 0 as j → ∞, ∀m ≥ 0, which confirms the completeness of S∞. �

(4) Let ϕ ∈ S(R) be even and real-valued. Then

L−kϕ(
√
L)φ = ϕ(

√
L)L−kφ, ∀φ ∈ S∞, ∀k ≥ 1, (3.11)

and hence

ϕ(
√
L)φ ∈ S∞, ∀φ ∈ S∞. (3.12)

Moreover, ϕ(
√
L) maps S∞ into S∞ continuously.

Indeed, assuming that φ ∈ S∞ we know from above that L−kφ is well defined for any k ≥ 1 and L−kφ ∈ S. 
Hence

ϕ(
√
L)φ = ϕ(

√
L)LkL−kφ = Lkϕ(

√
L)L−kφ.
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However, as was alluded to earlier ϕ(
√
L) maps continuously the class S into S and hence ϕ(

√
L)L−kφ ∈ S. 

Therefore, (3.11) holds and as a consequence (3.12) holds as well. The almost exponential localization of 
the kernel ϕ(

√
L)(x, y) and (3.11) readily imply that the map ϕ(

√
L) : S∞ → S∞ is continuous.

(5) The action of operators of the form ϕ(
√
L) on S ′

∞, where ϕ ∈ S(R) is real-valued and even, needs some 
further clarification. Here the situation is somewhat similar to the one in the case of S ′ (see Definition 3.1
and Proposition 3.2).

Definition 3.5. We define ϕ(
√
L)f for any f ∈ S ′

∞ by

〈ϕ(
√
L)f, φ〉 := 〈f, ϕ(

√
L)φ〉 for φ ∈ S∞. (3.13)

From (4) above it follows that, ϕ(
√
L) maps continuously S ′

∞ into S ′
∞. In addition, if ϕ, ψ ∈ S(R) are 

real-valued and even, then

ϕ(
√
L)ψ(

√
L)f = ψ(

√
L)ϕ(

√
L)f, ∀f ∈ S ′

∞. (3.14)

Proposition 3.6. Let ϕ ∈ S(R) be real-valued and even and ϕ(ν)(0) = 0 for ν = 0, 1, . . . . Then for any 
f ∈ S ′

∞

ϕ(
√
L)f(x) = 〈f, ϕ(

√
L)(x, ·)〉, x ∈ M. (3.15)

Moreover, ϕ(
√
L)f is a continuous and slowly growing function, namely, there exist constants m ∈ Z+ and 

c > 0, depending on f , such that

|ϕ(
√
L)f(x)| ≤ c(1 + ρ(x, x0))m, x ∈ M, and (3.16)

|ϕ(
√
L)f(x) − ϕ(

√
L)f(x′)| ≤ c(1 + ρ(x, x0))mρ(x, x′)α, if ρ(x, x′) ≤ 1. (3.17)

Here α > 0 is the constant from (1.4).

The proof of this proposition is deferred to Section 7.

Proposition 3.7. The following identification is valid:

S ′/P = S ′
∞. (3.18)

Proof. Let F ∈ S ′/P and assume f1, f2 ∈ F . Then f1 = f2+g for some g ∈ P. Hence g ∈ Pm for some m ≥ 1, 
yielding 〈g, Lmω〉 = 0 for every ω ∈ S. Therefore, 〈g, φ〉 = 0 for every φ ∈ S∞ and hence 〈f1, φ〉 = 〈f2, φ〉 for 
every φ ∈ S∞. Thus, we can associate with F a unique bounded linear functional in S ′

∞ defined by 〈f, φ〉
∀φ ∈ S∞, using an arbitrary f ∈ F . Consequently, S ′/P ⊂ S ′

∞.
For the other direction, observe that by the Hahn–Banach theorem (see [8, Theorem V.3]) every linear 

functional f ∈ S ′
∞ can be extended to a bounded linear functional on S and the equivalence class, say, 

F ∈ S ′/P that contains this extension of f is the class we associate with f . Therefore, S ′
∞ ⊂ S ′/P. �

From Proposition 3.7 it follows that for a sequence {fj} ⊂ S ′/P and f ∈ S ′/P we have

fj → f in S ′/P if and only if 〈fj , φ〉 → 〈f, φ〉, ∀φ ∈ S∞. (3.19)

A basic convergence result is given in the following
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Proposition 3.8. Suppose ϕ ∈ S(R), ϕ is real-valued and even, and ϕ(0) = 1. Then for every φ ∈ S∞

φ = lim
t→0

ϕ(t
√
L)φ in S∞, (3.20)

and for every f ∈ S ′
∞

f = lim
t→0

ϕ(t
√
L)f in S ′

∞. (3.21)

The proofs of Proposition 3.8 is deferred to Section 7.
We now come to the main assertion in this section.

Theorem 3.9. Let Ψ ∈ C∞(R+), suppΨ ⊂ [b−1, b] with b > 1, Ψ be real-valued, and

∑
j∈Z

Ψ(b−jλ) = 1 for λ ∈ (0,∞). (3.22)

Then for any f ∈ S ′/P

f =
∑
j∈Z

Ψ(b−j
√
L)f in S ′/P, (3.23)

that is, for any f ∈ S ′
∞

lim
n,m→∞

m∑
j=−n

〈
Ψ(b−j

√
L)f, φ

〉
= 〈f, φ〉, ∀φ ∈ S∞. (3.24)

Proof. By duality (see (3.3)) it suffices to prove that for any φ ∈ S∞

lim
n,m→∞

m∑
j=−n

Ψ(b−j
√
L)φ = φ in S∞.

Write

ϕ(λ) :=
{

1, 0 ≤ λ ≤ 1,

Ψ(λ), λ > 1.

From the properties of Ψ it readily follows that ϕ ∈ C∞(R+), suppϕ ⊂ [0, b], and

m∑
j=−n

Ψ(b−jλ) = ϕ(b−mλ) − ϕ(bn+1λ), λ ∈ [0,∞), n,m ≥ 0.

Hence,

m∑
j=−n

Ψ(b−j
√
L) = ϕ(b−m

√
L) − ϕ(bn+1

√
L).

However, by Proposition 3.8 it follows that ϕ(b−m
√
L)φ → φ in S∞ as m → ∞ for every φ ∈ S∞ and it 

remains to show that
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ϕ(bn
√
L)φ → 0 in S∞ as n → ∞ for every φ ∈ S∞.

We have to show that for any m ≥ 0 and r ∈ Z

lim
n→∞

sup
x∈M

(1 + ρ(x, x0))m
∣∣Lrϕ(bn

√
L)φ(x)

∣∣ = 0, ∀φ ∈ S∞.

Choose k ≥ (m + 1)/2 and fix φ ∈ S∞. Denote ω := Lr−kφ, ω ∈ S∞. Therefore, it suffices to show that

lim
n→∞

sup
x∈M

(1 + ρ(x, x0))m
∣∣Lkϕ(bn

√
L)ω(x)

∣∣ = 0. (3.25)

Set η(λ) := λ2kϕ(λ). Assume n ≥ 0. Clearly, η(bn
√
L) = b2nkLkϕ(bn

√
L), implying the identity 

Lkϕ(bn
√
L) = b−2nkη(bn

√
L). Using the fact that η ∈ C∞(R+), supp η ⊂ [0, b], and η(2ν+1)(0) = 0 for 

ν ≥ 0 we apply Theorem 2.2 with N := m + 3d/2 + 1 to obtain

|Lkϕ(bn
√
L)ω(x)| ≤ cb−2nk

∫
M

|ω(y)|dμ(y)
|B(x, bn)|(1 + b−nρ(x, y))N−d/2

≤ cb−2nk sup
y∈M

(1 + ρ(y, x0))m+d+1|ω(y)|

× |B(x, bn)|−1
∫
M

dμ(y)
(1 + b−nρ(x, y))m+d+1(1 + ρ(y, x0))m+d+1

≤ cb−2nk sup
y∈M

(1 + ρ(y, x0))m+d+1|ω(y)||B(x, bn)|−1 |B(x, bn)|
(1 + b−nρ(x, x0))m+1

≤ cb−2nk sup
y∈M

(1 + ρ(y, x0))m+d+1|ω(y)| bnm

(1 + ρ(x, x0))m
.

Here for the former inequality we used Lemma 2.1. Consequently,

|Lkϕ(bn
√
L)ω(x)| ≤ cb−nP�

m+d+1(ω)(1 + ρ(x, x0))−m

≤ cb−nP�
m+d+1+|r−k|(φ)(1 + ρ(x, x0))−m,

where we used that k ≥ (m + 1)/2 and n ≥ 0. The above implies (3.25). �
3.3. Tempered distributions on Rd associated with L = −Δ

We next show that in the case when M = R
d and L = −Δ, with Δ being the Laplacian, the distributions 

modulo generalized polynomials S ′/P introduced in §3.2 are just the classical tempered distributions modulo 
polynomials on Rd. Therefore, our general setting covers the classical case on Rd.

Indeed, as is shown in [5, Proposition 5.6] the test functions S(L) in the setting M = R
d and L = −Δ

are just the test functions S(Rd) in the classical case with the same topology and, therefore, S ′(L) is the 
set of the classical tempered distributions S ′(Rd). On the other hand, if g ∈ S ′ and

Lmg = (−1)mΔmg = 0,

then applying the Fourier transform, defined by φ̂(ξ) :=
∫
Rd φ(x)e−2πix·ξdx for φ ∈ S, we infer

(4π2)m|ξ|2mĝ = 0.
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Therefore, the distribution ĝ is supported at the origin and hence g is an algebraic polynomial. This leads 
us to the conclusion that in this setting the set P defined in §3.2 is the set of all polynomials on Rd and 
hence S ′/P is the set of tempered distributions modulo polynomials on Rd.

4. Frames

Frames will play an important rôle in this study. Their construction will be an adaptation of the one in 
the inhomogeneous case from [5], see also [1]. Therefore, we shall only indicate the needed modifications in 
the construction from [5].
Construction of Frame # 1. We first apply Theorem 2.5 for the construction of a real-valued cutoff function 
Φ with the following properties: Φ ∈ C∞(R+), Φ(u) = 1 for u ∈ [0, 1], 0 ≤ Φ ≤ 1, supp Φ ⊂ [0, b], where 
b > 1 is a constant (see [5]), and such that Φ(δ

√
L) is an integral operator with kernel Φ(δ

√
L)(x, y) obeying 

(2.9)–(2.10). Set

Ψ(u) := Φ(u) − Φ(bu). (4.1)

Clearly, Ψ ∈ C∞(R+) and supp Ψ ⊂ [b−1, b]. By the properties of Φ(δ
√
L)(x, y) (from Theorem 2.5) it 

follows that the kernel Ψ(δ
√
L)(x, y) of the operator Ψ(δ

√
L) is of sub-exponential localization, that is,

|Ψ(δ
√
L)(x, y)| ≤

c
 exp
{
− κ

(ρ(x,y)
δ

)β}(
|B(x, δ)||B(y, δ)|)1/2

, ∀x, y ∈ M, (4.2)

and for any m ≥ 1

|[LmΨ(δ
√
L)](x, y)| ≤

cmδ−2m exp
{
− κ

(ρ(x,y)
δ

)β}(
|B(x, δ)||B(y, δ)|)1/2

, ∀x, y ∈ M. (4.3)

Here 0 < β < 1 is an arbitrary constant (as close to 1 as we wish) and κ > 0, c
, cm > 1 are constants 
depending on β, b, and the constants c0, C�, c� from (1.1)–(1.4); cm depends om m as well. Set

Ψj(u) := Ψ(b−ju), j ∈ Z. (4.4)

Clearly, Ψj ∈ C∞(R+), 0 ≤ Ψj ≤ 1, supp Ψj ⊂ [bj−1, bj+1], j ∈ Z, and
∑
j∈Z

Ψj(u) = 1 for u ∈ (0,∞).

Therefore, by Theorem 3.9 for any f ∈ S ′/P

f =
∑
j∈Z

Ψj(
√
L)f (convergence in S ′/P). (4.5)

The sampling Theorem 4.2 from [1] will play an important rôle in this construction. In particular, this 
theorem yields the following

Proposition 4.1. For any ε > 0 there exists a constant γ (0 < γ < 1) such that for any maximal δ-net X on 
M with δ := γλ−1, λ > 0, and a companion disjoint partition {Aξ}ξ∈X of M as in Subsection 2.1 consisting 
of measurable sets such that B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ X , we have

(1 − ε)‖f‖2
2 ≤

∑
ξ∈X

|Aξ||f(ξ)|2 ≤ (1 + ε)‖f‖2
2, ∀f ∈ Σ2

λ.
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At this point, we introduce a constant 0 < ε < 1 that will be specified later on. We use the above 
proposition to produce for each j ∈ Z a maximal δj-net Xj on M with δj := γb−j−2 and a disjoint partition 
{Aξ}ξ∈Xj

of M such that

(1 − ε)‖f‖2
2 ≤

∑
ξ∈Xj

|Aξ||f(ξ)|2 ≤ (1 + ε)‖f‖2
2, ∀f ∈ Σ2

bj+2 . (4.6)

Set X := ∪j∈ZXj , where equal points from different sets Xj will be regarded as distinct elements of X , and 
hence X can be used as an index set.

Frame # 1 {ψξ}ξ∈X is defined by

ψξ(x) := |Aξ|1/2Ψj(
√
L)(x, ξ), ξ ∈ Xj , j ∈ Z. (4.7)

Construction of Frame # 2. A dual frame {ψ̃ξ} will be constructed similarly as in [5] with properties similar 
to the properties of {ψξ}.

The first step in this construction is to introduce a cutoff function

Γ(u) = Φ(b−2u) − Φ(bu), (4.8)

where Φ is from the construction of Frame #1. Clearly, suppΓ ⊂ [b−1, b3] and Γ = 1 on [1, b2], implying 
Γ(u)Ψ1(u) = Ψ1(u).

The construction of Frame # 2 hinges on the following

Lemma 4.2. There exists a constant 0 < ε < 1 such that the following claim holds true. Given λ > 0, let X be 
a maximal δ-net on M , where δ := γλ−1b−3 with γ the constant from Proposition 4.1, and suppose {Aξ}ξ∈X
is a companion disjoint partition of M consisting of measurable sets such that B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), 
ξ ∈ X (see §2.1). Set ωξ := (1 + ε)−1|Aξ|. Then there exists a linear operator Tλ : L2(M) → L2(M) of the 
form Tλ = Id+Sλ such that:

(a)

‖f‖2 ≤ ‖Tλf‖2 ≤ 1
1 − 2ε‖f‖2, ∀f ∈ L2.

(b) Sλ is an integral operator with kernel Sλ(x, y) verifying

|Sλ(x, y)| ≤
c exp

{
− κ

2
(
λρ(x, y)

)β}(
|B(x, λ−1)||B(y, λ−1)|)1/2

, ∀x, y ∈ M. (4.9)

(c) Sλ(L2) ⊂ Σ2
[λb−1,λb3].

(d) For any f ∈ L2(M) such that Γ(λ−1
√
L)f = f we have

f =
∑
ξ∈X

ωξf(ξ)Tλ[Γλ(·, ξ)], (4.10)

where Γλ(·, ·) is the kernel of the operator Γλ := Γ(λ−1
√
L) with Γ from (4.8).

This lemma is simply Lemma 4.2 from [1] with the only difference that it is assumed that λ > 0 instead 
of λ ≥ 1; the proof is the same and will be omitted.

We use the above lemma to select the constant ε (0 < ε < 1) that was already used in the construction 
of Frame #1.
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Let Xj and {Aξ}ξ∈Xj
be as in the definition of Frame #1. Denote Γλj

:= Γ(b−j+1
√
L) for j ∈ Z with 

λj := bj−1, and let Tλj
= Id +Sλj

be the operator from Lemma 4.2, applied with λ = λj . The dual frame 
{ψ̃ξ}ξ∈X is defined by

ψ̃ξ(x) := cε|Aξ|1/2Tλj

[
Γλj

(·, ξ)
]
(x), ξ ∈ Xj , j ∈ Z, cε := (1 + ε)−1. (4.11)

In the next theorem we record the main properties of {ψξ}ξ∈X and {ψ̃ξ}ξ∈X .

Theorem 4.3. (a) Representation: For any f ∈ S ′/P,

f =
∑
ξ∈X

〈f, ψ̃ξ〉ψξ =
∑
ξ∈X

〈f, ψξ〉ψ̃ξ in S ′/P. (4.12)

(b) Space localization: For any 0 < κ̂ < κ/2, m ∈ Z, and any ξ ∈ Xj, j ∈ Z,

|Lmψξ(x)|, |Lmψ̃ξ(x)| ≤ cmb2jm|B(ξ, b−j)|−1/2 exp
{
− κ̂(bjρ(x, ξ))β

}
. (4.13)

(c) Spectral localization: ψξ ∈ Σp
[bj−1,bj+1] and ψ̃ξ ∈ Σp

[bj−2,bj+2] for ξ ∈ Xj, j ∈ Z, 0 < p ≤ ∞.
(d) Norms: For any ξ ∈ Xj, j ∈ Z,

‖ψξ‖p ∼ ‖ψ̃ξ‖p ∼ |B(ξ, b−j)| 1p− 1
2 for 0 < p ≤ ∞. (4.14)

(e) Frame: The system {ψ̃ξ} as well as {ψξ} is a frame for L2, namely, there exists a constant c > 0
such that

c−1‖f‖2
2 ≤

∑
ξ∈X

|〈f, ψ̃ξ〉|2 ≤ c‖f‖2
2, ∀f ∈ L2. (4.15)

Proof. The proof of parts (b)–(e) of this theorem is carried out just as the proof of the respective claims in 
Proposition 4.1 and Theorem 4.3 in [1].

We now focus on the proof of part (a). By duality to prove (4.12) it suffices show that for any φ ∈ S∞

φ =
∑
ξ∈X

〈φ, ψ̃ξ〉ψξ =
∑
ξ∈X

〈φ, ψξ〉ψ̃ξ in S∞.

However, by Theorem 3.9 for any φ ∈ S∞

φ =
∑
j∈Z

Ψj(
√
L)φ (convergence in S∞)

and hence we only have to show that for every φ ∈ S∞

Ψj(
√
L)φ =

∑
ξ∈Xj

〈φ, ψ̃ξ〉ψξ =
∑
ξ∈Xj

〈φ, ψξ〉ψ̃ξ (convergence in S∞).

The proof of these identities is a straightforward adaptation of the proof of Proposition 5.5 (c) from [5], 
where now the parameter m ∈ Z rather than m ≥ 0. We omit the details. This completes the proof. �
Remark 4.4. The construction of frames with the desired excellent space and spectral localization is partic-
ularly simple in the case when the spectral spaces Σ2

λ have the polynomial property under multiplication: 
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Let Fλ, λ ≥ 0, be the spectral resolution associated with the operator 
√
L. We say that the associated spectral 

spaces

Σ2
λ = {f ∈ L2 : Fλf = f}

have the polynomial property if there exists a constant a > 1 such that

Σ2
λ · Σ2

λ ⊂ Σ1
aλ, i.e. f, g ∈ Σ2

λ =⇒ fg ∈ Σ1
aλ. (4.16)

In this case, the scheme from [5], §4.4, can be adapted for the construction of a single frame {ψξ}ξ∈X with 
frame elements having the properties from Theorem 4.3, where in particular, the representation of each 
f ∈ S ′/P takes the form f =

∑
ξ∈X 〈f, ψξ〉ψξ with convergence in S ′/P. We omit the details.

5. Homogeneous Besov (B) and Triebel–Lizorkin (F) spaces

The inhomogeneous Besov and Triebel–Lizorkin spaces in the setting of this article are developed in [5]. 
Here we focus on the homogeneous version of these spaces.
Definition of homogeneous Besov and Triebel–Lizorkin spaces. To deal with possible anisotropic geometries 
we introduce two types of homogeneous Besov and Triebel–Lizorkin spaces (B- and F-spaces for short):

(i) Classical homogeneous B-spaces Ḃs
pq = Ḃs

pq(L) and F-spaces Ḟ s
pq = Ḟ s

pq(L), and
(ii) Nonclassical homogeneous B-spaces ˙̃B

s

pq = ˙̃B
s

pq(L) and F-spaces ˙̃F
s

pq = ˙̃F
s

pq(L).
Let the function ϕ ∈ C∞(R+) satisfy

suppϕ ⊂ [1/2, 2], |ϕ(λ)| ≥ c > 0 for λ ∈ [2−3/4, 23/4]. (5.1)

Then 
∑

j∈Z
|ϕ(2−jλ)| ≥ c > 0 for λ ∈ R+. Set ϕj(λ) := ϕ(2−jλ) for j ∈ Z.

Definition 5.1. Let s ∈ R and 0 < p, q ≤ ∞.
(a) The Besov space Ḃs

pq = Ḃs
pq(L) is defined as the set of all f ∈ S ′/P such that

‖f‖Ḃs
pq

:=
(∑

j∈Z

(
2js‖ϕj(

√
L)f(·)‖Lp

)q)1/q
< ∞. (5.2)

(b) The Besov space ˙̃B
s

pq = ˙̃B
s

pq(L) is defined as the set of all f ∈ S ′/P such that

‖f‖ ˙̃B
s

pq

:=
(∑

j∈Z

(
‖|B(·, 2−j)|−s/dϕj(

√
L)f(·)‖Lp

)q)1/q
< ∞. (5.3)

Definition 5.2. Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞.
(a) The Triebel–Lizorkin space Ḟ s

pq = Ḟ s
pq(L) is defined as the set of all f ∈ S ′/P such that

‖f‖Ḟ s
pq

:=
∥∥∥(∑

j∈Z

(
2js|ϕj(

√
L)f(·)|

)q)1/q∥∥∥
Lp

< ∞. (5.4)

(b) The Triebel–Lizorkin space ˙̃F
s

pq = ˙̃F
s

pq(L) is defined as the set of all f ∈ S ′/P such that

‖f‖ ˙̃F
s

pq

:=
∥∥∥(∑

j∈Z

(
|B(·, 2−j)|−s/d|ϕj(

√
L)f(·)|

)q)1/q∥∥∥
Lp

< ∞. (5.5)
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Above in both definitions the �q-norm is replaced by the sup-norm if q = ∞.

Several remarks are in order.

(1) Just as in Propositions 6.3 and 7.2 in [5] one shows that the above definitions of the spaces Ḃs
pq, 

˙̃B
s

pq, 
Ḟ s
pq, and ˙̃F

s

pq are independent of the particular selection of the function ϕ ∈ C∞(R+) obeying (5.1).

(2) In the definitions of the Ḃs
pq, 

˙̃B
s

pq, Ḟ s
pq, and ˙̃F

s

pq spaces above the role of the constant 2 can be 
played by an arbitrary b > 1, then e.g. 2js in (5.2) and (5.4) will be replaced by bjs. Similarly as in [5, 
Proposition 6.3] it can be shown that the resulting norms are equivalent to the ones from Definitions 5.1
and 5.2.

(3) It is easy to show that S∞ is continuously embedded in each of the spaces Ḃs
pq, 

˙̃B
s

pq, Ḟ s
pq, and ˙̃F

s

pq, 
that is, there exist constants m ≥ 0 and c > 0, depending on s, p, q, such that

‖φ‖Ḃs
pq

≤ cP�
m(φ), ∀φ ∈ S∞, (5.6)

and this inequality holds with Ḃs
pq replaced by ˙̃B

s

pq, Ḟ s
pq, or ˙̃F

s

pq.

(4) The continuous embedding of the homogeneous B- and F-spaces in S ′/P is more subtle and will be 
given in the following

Theorem 5.3. Each of the spaces Ḃs
pq, 

˙̃B
s

pq, Ḟ s
pq, and ˙̃F

s

pq is continuously embedded in S ′/P, that is, there 
exist constants m ≥ 0 and c > 0, depending on s, p, q, such that

|〈f, φ〉| ≤ c‖f‖Ḃs
pq
P�
m(φ), ∀f ∈ Ḃs

pq, ∀φ ∈ S∞, (5.7)

and similar inequalities hold for ˙̃B
s

pq, Ḟ s
pq, and ˙̃F

s

pq.

(5) By a standard argument the above assertion readily implies that the spaces Ḃs
pq, 

˙̃B
s

pq, Ḟ s
pq, and ˙̃F

s

pq

are complete and hence they are quasi-Banach spaces (Banach spaces if p, q ≥ 1).

We give the proof of the continuous embedding of the B- and F-spaces into S ′/P (Theorem 5.3) in 
Section 7 and omit the proofs of the other assertions from above.

Frame decomposition of homogeneous Besov and Triebel–Lizorkin spaces

One of the main result in [5] asserts that the inhomogeneous Besov and Triebel–Lizorkin spaces in the 
setting of this article can be characterized in terms of respective sequence norms of the frame coefficients 
of distributions.

The primary purpose of this section is to establish similar results for the homogeneous Besov and Triebel–
Lizorkin spaces, using the frames {ψξ}ξ∈X , {ψ̃ξ}ξ∈X from §4. As is §4 X := ∪j∈ZXj will denote the sets of 
the centers of the frame elements and {Aξ}ξ∈Xj

will be the associated partitions of M .
Our first step is to introduce the homogeneous sequence spaces ḃspq, 

˙̃b
s

pq, and ḟs
pq, 

˙̃f
s

pq, associated with the 
B- and F-spaces.

Definition 5.4. Let s ∈ R and 0 < p, q ≤ ∞.
(a) The space ḃspq is defined as the space of all complex-valued sequences a = {aξ}ξ∈X such that

‖a‖ḃspq :=
(∑
j∈Z

bjsq
[∑
ξ∈Xj

(
|B(ξ, b−j)|1/p−1/2|aξ|

)p]q/p)1/q
< ∞. (5.8)
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(b) The space ˙̃b
s

pq is defined as the space of all complex-valued sequences a = {aξ}ξ∈X such that

‖a‖ ˙̃b
s

pq

:=
(∑
j∈Z

[∑
ξ∈Xj

(
|B(ξ, b−j)|−s/d+1/p−1/2|aξ|

)p]q/p)1/q
< ∞. (5.9)

Definition 5.5. Suppose s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞.
(a) The space ḟs

pq is defined as the space of all complex-valued sequences a = {aξ}ξ∈X such that

‖a‖ḟs
pq

:=
∥∥∥(∑

j∈Z

bjsq
∑
ξ∈Xj

[
|aξ|1̃Aξ

(·)
]q)1/q∥∥∥

Lp
< ∞. (5.10)

(b) The space ˙̃f
s

pq is defined as the space of all complex-valued sequences a = {aξ}ξ∈X such that

‖a‖ ˙̃f
s

pq

:=
∥∥∥(∑

ξ∈X

[
|Aξ|−s/d|aξ|1̃Aξ

(·)
]q)1/q∥∥∥

Lp
< ∞. (5.11)

Here 1̃Aξ
:= |Aξ|−1/21Aξ

with 1Aξ
being the characteristic function of Aξ.

Above as usual the �p or �q norm is replaced by the sup-norm if p = ∞ or q = ∞.
In stating our results we shall use the “analysis” and “synthesis” operators defined by

Sψ̃ : f → {〈f, ψ̃ξ〉}ξ∈X and Tψ : {aξ}ξ∈X →
∑
ξ∈X

aξψξ. (5.12)

Here the roles of {ψξ} and {ψ̃ξ} can be interchanged.

Theorem 5.6. Let s ∈ R and 0 < p, q ≤ ∞. (a) The operators Sψ̃ : Ḃs
pq → ḃspq and Tψ : ḃspq → Ḃs

pq are bounded 
and Tψ ◦ Sψ̃ = Id on Ḃs

pq. Consequently, for f ∈ S ′/P we have f ∈ Ḃs
pq if and only if {〈f, ψ̃ξ〉}ξ∈X ∈ ḃspq. 

Moreover, if f ∈ Ḃs
pq, then ‖f‖Ḃs

pq
∼ ‖{〈f, ψ̃ξ〉}‖ḃspq and

‖f‖Ḃs
pq

∼
(∑

j∈Z

bjsq
[∑
ξ∈Xj

‖〈f, ψ̃ξ〉ψξ‖pp
]q/p)1/q

. (5.13)

(b) The operators Sψ̃ : ˙̃B
s

pq → ˙̃b
s

pq and Tψ : ˙̃b
s

pq → ˙̃B
s

pq are bounded and Tψ ◦ Sψ̃ = Id on ˙̃B
s

pq. Hence, 
f ∈ ˙̃B

s

pq ⇐⇒ {〈f, ψ̃ξ〉}ξ∈X ∈ ˙̃b
s

pq. Furthermore, if f ∈ ˙̃B
s

pq, then ‖f‖ ˙̃B
s

pq

∼ ‖{〈f, ψ̃ξ〉}‖ ˙̃b
s

pq

and

‖f‖ ˙̃B
s

pq

∼
(∑
j∈Z

[∑
ξ∈Xj

(
|B(ξ, b−j)|−s/d‖〈f, ψ̃ξ〉ψξ‖p

)p]q/p)1/q
. (5.14)

Above in (a) and (b) the roles of {ψξ} and {ψ̃ξ} can be interchanged.

Theorem 5.7. Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. (a) The operators Sψ̃ : Ḟ s
pq → ḟs

pq and Tψ : ḟs
pq → Ḟ s

pq

are bounded and Tψ̃ ◦ Sψ = Id on Ḟ s
pq. Consequently, f ∈ Ḟ s

pq if and only if {〈f, ψ̃ξ〉}ξ∈X ∈ ḟs
pq, and if 

f ∈ Ḟ s
pq, then ‖f‖Ḟ s

pq
∼ ‖{〈f, ψ̃ξ〉}‖ḟs

pq
. Furthermore,

‖f‖Ḟ s
pq

∼
∥∥∥(∑

bjsq
∑ [

|〈f, ψ̃ξ〉||ψξ(·)|
]q)1/q∥∥∥

Lp
. (5.15)
j∈Z ξ∈Xj
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(b) The operators Sψ̃ : ˙̃F
s

pq → ˙̃f
s

pq and Tψ : ˙̃f
s

pq → ˙̃F
s

pq are bounded and Tψ̃ ◦ Sψ = Id on ˙̃F
s

pq. Hence, 
f ∈ ˙̃F

s

pq if and only if {〈f, ψ̃ξ〉}ξ∈X ∈ ˙̃f
s

pq, and if f ∈ ˙̃F
s

pq, then ‖f‖ ˙̃F
s

pq

∼ ‖{〈f, ψ̃ξ〉}‖ ˙̃f
s

pq

. Furthermore,

‖f‖ ˙̃F
s

pq

∼
∥∥∥(∑

ξ∈X

[
|B(ξ, b−j)|−s/d|〈f, ψ̃ξ〉||ψξ(·)|

]q)1/q∥∥∥
Lp

. (5.16)

As before the roles of ψξ and ψ̃ξ can be interchanged.

The proofs of Theorems 5.6–5.7 are a straightforward adaptation of the proofs of Theorems 6.10 and 7.7 
in [5], where one uses Theorem 3.9 as well. We omit the details.

6. Further results

In this section we present without proof some additional results on homogeneous Besov and Triebel–
Lizorkin spaces in the setting of this article. Most of them have analogs for the respective inhomogeneous 
spaces with proofs that are straightforward adaptation of the ones in the inhomogeneous case.

6.1. Heat kernel characterization of homogeneous B- and F-spaces

Homogeneous Besov and Triebel–Lizorkin spaces can be equivalently defined in terms of the semi-group
e−tL, t > 0, similarly as in the case of inhomogeneous spaces (see [5]).

Definition 6.1. Let s ∈ R and m be the smallest positive integer grater than s.
(i) Let 1 ≤ p ≤ ∞ and 0 < q ≤ ∞ and f ∈ S ′/P. We set

‖f‖Ḃs
pq(H) :=

( ∞∫
0

[
t−s/2‖(tL)m/2e−tLf‖p

]q dt
t

)1/q
, (6.1)

‖f‖ ˙̃B
s

pq(H) :=
( ∞∫

0

‖|B(·, t1/2)|−s/d(tL)m/2e−tLf‖qp
dt

t

)1/q
, (6.2)

with the standard modification when q = ∞.
(ii) Let 1 < p < ∞ and 1 < q ≤ ∞ and f ∈ S ′/P. We set

‖f‖Ḟ s
pq(H) :=

∥∥∥(
∞∫
0

[
t−s/2|(tL)m/2e−tLf(·)|

]q dt
t

)1/q∥∥∥
q
, (6.3)

‖f‖ ˙̃F
s

pq(H) :=
∥∥∥(

∞∫
0

[
|B(·, t1/2)|−s/d|(tL)m/2e−tLf(·)|

]q dt
t

)1/q∥∥∥
q
, (6.4)

with the standard modification when q = ∞.

The following characterization of homogeneous B- and F -spaces is valid:

Theorem 6.2. Suppose s ∈ R and m > s, as above.
(a) If 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, then ‖ · ‖Ḃs

pq(H) and ‖ · ‖ ˙̃B
s

pq(H) are equivalent (quasi-)norms on Ḃs
pq

and ˙̃B
s

pq respectively.
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(b) If 1 < p < ∞ and 1 < q ≤ ∞, then ‖ · ‖Ḟ s
pq(H) and ‖ · ‖ ˙̃F

s

pq(H) are equivalent (quasi-)norms on Ḟ s
pq

and ˙̃F
s

pq respectively.

See Theorems 6.7 and 7.5 in [5].

6.2. Relationship between homogeneous and inhomogeneous B- and F-spaces

The inhomogeneous Besov and Triebel–Lizorkin spaces Bs
pq and F s

pq are introduced by Definitions 6.1 
and 7.1 in [5].

Just as in the classical case (see [4]), the following identification is valid:

Proposition 6.3. (i) Let s > 0, 1 ≤ p ≤ ∞ and 0 < q ≤ ∞. Then

Bs
pq = Lp ∩ Ḃs

pq.

(ii) Let s > 0, 1 ≤ p < ∞ and 0 < q ≤ ∞. Then

F s
pq = Lp ∩ Ḟ s

pq.

Furthermore, claims similar to (i)–(ii) above also hold for the nonclassical Besov and Triebel–Lizorkin spaces 
under the additional assumption supx∈M |B(x, 1)| < ∞.

The proof of this proposition is straightforward.

6.3. Potential spaces

As in the classical case on Rd (see [4]), there is a natural identification of Potential spaces associated to 
the operator L with respective Triebel–Lizorkin spaces.

Definition 6.4. Let s ∈ R and 1 ≤ p ≤ ∞. The potential space L̇p
s is defined as the set of all f ∈ S ′/P such 

that

‖f‖L̇p
s

:= ‖Ls/2f‖Lp < ∞. (6.5)

Theorem 6.5. The following identification holds:

L̇p
s = Ḟ s

p2, s ∈ R, 1 < p < ∞,

with equivalent norms, and in particular

Lp = Ḟ 0
p2, 1 < p < ∞.

See [5, Theorem 7.8].

7. Proofs

7.1. Proof of Lemma 2.1

To prove inequality (2.5) we set

M ′ := {u ∈ M : ρ(x, u) ≥ ρ(x, y)/2} and M ′′ := {u ∈ M : ρ(y, u) ≥ ρ(x, y)/2}.

Evidently, M ⊂ M ′ ∪M ′′ and hence I :=
∫

· · · ≤
∫

′ · · · +
∫

′′ · · · =: I ′ + I ′′.

M M M
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In estimating the first integral we use (2.2) and obtain

I ′ ≤ 2σ1

(1 + δ−1
1 ρ(x, y))σ1

∫
M

dμ(u)
(1 + δ−1

2 ρ(y, u))σ2
≤ c|B(y, δ2)|

(1 + δ−1
1 ρ(x, y))σ1

.

Just in the same way we get

I ′′ ≤ c|B(x, δ1)|
(1 + δ−1

2 ρ(x, y))σ2

and inequality (2.5) follows.
With no loss of generality we may assume that δ1 ≤ δ2, implying δmax = δ2. By (2.1) we have that 

|B(x, δ2)| ≤ c0(1 + δ−1
2 ρ(x, y))d|B(y, δ2)|. This coupled with (2.5) yields

I ≤ c|B(x, δ2)|(
1 + δ−1

2 ρ(x, y))σ2
+ c|B(y, δ2)|(

1 + δ−1
2 ρ(x, y))σ1

≤ c|B(y, δ2)|(
1 + δ−1

2 ρ(x, y))σ2−d
+ c|B(y, δ2)|(

1 + δ−1
2 ρ(x, y))σ1

,

which implies the right-hand side inequality in (2.6).
To prove the left-hand side inequality in (2.6) we consider two cases:
Case 1: δ−1

2 ρ(x, y) ≥ 1. Using (1.1) and (1.2) we get

|B(y, δ2)| ≤ c0(1 + δ−1
2 ρ(x, y))d|B(x, δ2)| ≤ c0(1 + δ−1

2 ρ(x, y))d(δ2/δ1)d|B(x, δ1)|

implying

|B(y, δ2)|
(1 + δ−1

1 ρ(x, y))σ1
≤ c(1 + δ−1

2 ρ(x, y))d(δ2/δ1)d|B(x, δ1)|
(δ−1

1 ρ(x, y))σ1

= c(1 + δ−1
2 ρ(x, y))d|B(x, δ1)|

(δ−1
2 ρ(x, y))d(δ−1

1 ρ(x, y))σ1−d
≤ c2d|B(x, δ1)|

(1 + δ−1
1 ρ(x, y))σ1−d

.

This along with (2.5) yield the left-hand side inequality in (2.6).
Case 2: δ−1

2 ρ(x, y) < 1. Then using (2.2)

I ≤
∫
M

dμ(u)
(1 + δ−1

1 ρ(x, u))σ1
≤ c|B(x, δ1)| ≤

c2σ1 |B(x, δ1)|
(1 + δ−1

2 ρ(x, y))σ2
,

which implies the left-hand side inequality in (2.6). �
7.2. Proof of Proposition 3.2 and Proposition 3.6

Since these two propositions are quite similar will only prove Proposition 3.6.
Let ϕ ∈ S(R) be real-valued and even and ϕ(ν)(0) = 0 for ν = 0, 1, . . . . Assume f ∈ S ′

∞. Then there 
exist constants m ∈ Z+ and c > 0 such that (3.10) holds. Let φ ∈ S∞. We have

ϕ(
√
L)φ(x) =

∫
M

ϕ(
√
L)(x, y)φ(y)dμ(y), x ∈ M.

To prove (3.15) we will interpret the above integral as a Bochner integral over the Banach space
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Vm := {g ∈ ∩−m≤ν≤mD(Lν) : ‖g‖Vm
:= P�

m(g) < ∞}, m > d/2,

with P�
m defined in (3.9), see e.g. [12], pp. 131-133. By Proposition 3.3 it readily follows that Vm is well 

defined. The completeness of the space Vm follows (just as in the proof of Proposition 3.4) by the fact that 
L being a self-adjoint operator is also closed. By the Hahn–Banach theorem the continuous linear functional 
f can be extended to Vm with the same norm.

Denote F (y) := ϕ(
√
L)(·, y)φ(y). We have

‖F (y)‖Vm
= max

−m≤ν≤m
sup
x∈M

(1 + ρ(x, x0))m|[Lνϕ(
√
L)](x, y)φ(y)|.

Set f(λ) := λ2νϕ(λ), −m ≤ ν ≤ m. From the properties of ϕ it follows that f ∈ S(R) and f is even. Then 
appealing to Theorem 2.2 we conclude that Lνϕ(

√
L) is an integral operator with a kernel satisfying the 

following inequality for any σ > 0

|[Lνϕ(
√
L)](x, y)| ≤ cσ|B(y, 1)|−1(1 + ρ(x, y))−σ, −m ≤ ν ≤ m.

We choose σ = m.
On the other hand, as φ ∈ S∞ in light of (3.9) we have |φ(y)| ≤ P�

� (φ)(1 + ρ(y, x0))−� for any � ≥ 0. We 
choose � ≥ m + 2d + 1. Putting these estimates together we get

‖F (y)‖Vm
≤ c max

−m≤ν≤m
sup
x∈M

P�
� (φ)(1 + ρ(x, x0))m

|B(y, 1)|(1 + ρ(x, y))m(1 + ρ(y, x0))m+2d+1

and using the obvious inequality 1 + ρ(x, x0) ≤ (1 + ρ(x, y))(1 + ρ(y, x0)) we obtain

‖F (y)‖Vm
≤ cP�

� (φ)|B(y, 1)|−1(1 + ρ(y, x0))−2d−1

≤ cP�
� (φ)|B(x0, 1)|−1(1 + ρ(y, x0))−d−1,

where for the last inequality we used (2.1). From the above and (2.2) it follows that 
∫
M

‖F (y)‖Vm
dμ(y) ≤

cP�
� (φ) < ∞. Now, applying the theory of Bochner’s integral we obtain

〈
f,

∫
M

ϕ(
√
L)(·, y)φ(y)dμ(y)

〉
=

∫
M

〈
f, ϕ(

√
L)(·, y)

〉
φ(y)dμ(y).

This coupled with (3.13) implies (3.15).
We next prove (3.17); the proof of (3.16) is simpler and will be omitted. By the fact that (3.10) holds for 

the given f for some constants m ∈ Z+ and c > 0 and using (3.15) we obtain, for x, x′ ∈ M ,

|ϕ(
√
L)f(x) − ϕ(

√
L)f(x′)| = |〈f, ϕ(

√
L)(x, ·) − ϕ(

√
L)(x′, ·)〉|

≤ cP�
m

(
ϕ(

√
L)(x, ·) − ϕ(

√
L)(x′, ·)

)
(7.1)

≤ c max
−m≤ν≤m

sup
y∈M

(1 + ρ(y, x0))m|[Lνϕ(
√
L)](x, y) − [Lνϕ(

√
L)](x′, y)|.

As above by Theorem 2.2, applied with f(λ) = λ2νϕ(λ), it follows that for any σ > 0 and −m ≤ ν ≤ m

|[Lνϕ(
√
L)](x, y) − [Lνϕ(

√
L)](x′, y)| ≤ cσ|B(x, 1)|−1ρ(x, x′)α(1 + ρ(x, y))−σ

provided ρ(x, x′) ≤ 1. We choose σ = m. We insert the above in (7.1) and arrive at (3.17). �
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7.3. Proof of Proposition 3.8

This proof hinges on the following

Lemma 7.1. Let σ > 0 and N ≥ σ + d +α/2 with α > 0 from (1.4). Then there exists a constant c > 0 such 
that for any φ ∈ S and x, y ∈ M

|φ(x) − φ(y)| ≤ cρ(x, y)αPN (φ)
[
(1 + ρ(x, x0))−σ + (1 + ρ(y, x0))−σ

]
. (7.2)

Here PN (φ) is from (3.1).

Proof. Choose ϕ0 ∈ C∞(R+) so that 0 ≤ ϕ0 ≤ 1, ϕ0(λ) = 1 for λ ∈ [0, 1], and suppϕ0 ⊂ [0, 2]. Let 
ϕ(λ) := ϕ0(λ) − ϕ0(2λ) and set ϕj(λ) := ϕ(2−jλ), j ≥ 1. Clearly, 

∑
j≥0 ϕj(λ) = 1 for λ ∈ R+ and hence 

φ =
∑∞

j=0 ϕj(
√
L)φ for φ ∈ S with the convergence in L∞ (see [5, Proposition 5.5]). Therefore,

φ(x) − φ(y) =
∞∑
j=0

(
ϕj(

√
L)φ(x) − ϕj(

√
L)φ(y)

)
, ∀x, y ∈ M, ∀φ ∈ S.

For j ≥ 1 we have

ϕj(
√
L)φ(x) − ϕj(

√
L)φ(y) = L−Nϕj(

√
L)LNφ(x) − L−Nϕj(

√
L)LNφ(y)

=
∫
M

(
[L−Nϕ(2−j

√
L)](x, z) − [L−Nϕ(2−j

√
L)](y, z)

)
LNφ(z)dμ(z). (7.3)

Let ω(λ) := λ−2Nϕ(λ). Then L−Nϕ(2−j
√
L) = 2−2jNω(2−j

√
L). Clearly, ω ∈ C∞ and suppω ⊂ [2−1, 2]. 

Hence by Theorem 2.2 it follows that there exists a constant cσ > 0 such that

∣∣[L−Nϕ(2−j
√
L)](x, z)

∣∣ ≤ cσ2−2jN

|B(x, 2−j)|
(
1 + 2jρ(x, z)

)σ+d
and (7.4)

∣∣[L−Nϕ(2−j
√
L)](x, z) − [L−Nϕ(2−j

√
L)](y, z)

∣∣ ≤ cσ2−2jN(
2jρ(x, y)

)α
|B(x, 2−j)|

(
1 + 2jρ(x, z)

)σ+d
, (7.5)

whenever ρ(x, y) ≤ 2−j .
Fix φ ∈ S. Then by (3.1) |LNφ(z)| ≤ PN (φ)(1 + ρ(z, x0))−N , z ∈ M .
Let ρ(x, y) ≤ 2−j . The above, (7.3), and (7.5) yield

|ϕj(
√
L)φ(x) − ϕj(

√
L)φ(y)|

≤ c2−j(2N−α)ρ(x, y)αPN (φ)
∫
M

dμ(z)
|B(x, 2−j)|(1 + 2jρ(x, z))σ+d(1 + ρ(z, x0))N

≤ c2−j(2N−d−α)ρ(x, y)αPN (φ)
∫
M

dμ(z)
|B(x, 1)|(1 + ρ(x, z))σ+d(1 + ρ(z, x0))σ+d

≤ c2−j(2N−d−α)ρ(x, y)αPN (φ)(
1 + ρ(x, x0)

)σ .

Here we used that |B(x, 1)| ≤ c02jd|B(x, 2−j)|, see (1.2), N ≥ σ + d, and (2.3).
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Let ρ(x, y) > 2−j . Using (7.4) and some of the ingredients from above we get

∣∣∣ ∫
M

[L−Nϕ(2−j
√
L)](x, z)LNφ(z)dμ(z)

∣∣∣

≤
∫
M

c2−2jNPN (φ)dμ(z)
|B(x, 2−j)|

(
1 + 2jρ(x, z)

)σ+d(1 + ρ(z, x0))N

≤ c2−j(2N−d−α)ρ(x, y)αPN (φ)
∫
M

dμ(z)
|B(x, 1)|(1 + ρ(x, z))σ+d(1 + ρ(z, x0))σ+d

≤ c2−j(2N−d−α)ρ(x, y)αPN (φ)(
1 + ρ(x, x0)

)σ .

Similarly

∣∣∣ ∫
M

[L−Nϕ(2−j
√
L)](y, z)LNφ(z)dμ(z)

∣∣∣ ≤ c2−j(2N−d−α)ρ(x, y)αPN (φ)(
1 + ρ(y, x0)

)σ .

Putting the above estimates together we get for all x, y ∈ M and j ≥ 1

|ϕj(
√
L)φ(x) − ϕj(

√
L)φ(y)| (7.6)

≤ c2−j(2N−d−α)ρ(x, y)αPN (φ)
[(

1 + ρ(x, x0)
)−σ +

(
1 + ρ(y, x0)

)−σ]
.

In the same way, we use that (7.4)–(7.5) hold for ϕ0(
√
L) with N = 0 to obtain

|ϕ0(
√
L)φ(x) − ϕ0(

√
L)φ(y)| ≤ cρ(x, y)αPN (φ)

[(
1 + ρ(x, x0)

)−σ +
(
1 + ρ(y, x0)

)−σ]
.

Summing up this estimate along with the estimates from (7.6) (2N > d + α) we arrive at (7.2). �
We now proceed with the proof of Proposition 3.8. Let ϕ ∈ S(R), ϕ be real-valued and even, and ϕ(0) = 1. 

It suffices to prove (3.20) only. Then (3.21) follows by duality. To prove (3.20) it suffices to show that for 
any m ≥ 0 and |ν| ≤ m

lim
δ→0

sup
x∈M

(1 + ρ(x, x0))m|Lν [φ− ϕ(δ
√
L)φ](x)| = 0, ∀φ ∈ S∞. (7.7)

Let m ≥ 0, |ν| ≤ m, and φ ∈ S∞. Choose σ > m + d + α and N ≥ σ + d + α/2, where α > 0 is from
(1.4). By Theorem 2.2

|ϕ(δ
√
L)(x, y)| ≤ cσ|B(x, δ)|−1(1 + δ−1ρ(x, y))−σ

and 
∫
M

ϕ(δ
√
L)(x, y)dμ(y) = ϕ(0) = 1. Therefore,

(1 + ρ(x, x0))m|Lν [φ− ϕ(δ
√
L)φ](x)|

= (1 + ρ(x, x0))m
∣∣∣ ∫ ϕ(δ

√
L)(x, y)[Lνφ(x) − Lνφ(y)]dμ(y)

∣∣∣

M
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≤ cσ(1 + ρ(x, x0))m
∫
M

|Lνφ(x) − Lνφ(y)|
|B(x, δ)|(1 + δ−1ρ(x, y))σ dμ(y)

= cσ(1 + ρ(x, x0))m
( ∫
B(x,1)

· · · +
∫

M\B(x,1)

· · ·
)
.

Here we used (3.11) in the case when ν < 1. As φ ∈ S∞, then Lνφ ∈ S and applying Lemma 7.1 we obtain

(1 + ρ(x, x0))m
∫

B(x,1)

|Lνφ(x) − Lνφ(y)|
|B(x, δ)|(1 + δ−1ρ(x, y))σ dμ(y)

≤ c(1 + ρ(x, x0))m
∫

B(x,1)

ρ(x, y)αP�
m+N (φ)

|B(x, δ)|(1 + δ−1ρ(x, y))σ(1 + ρ(x, x0))σ
dμ(y)

+ c(1 + ρ(x, x0))m
∫

B(x,1)

ρ(x, y)αP�
m+N (φ)

|B(x, δ)|(1 + δ−1ρ(x, y))σ(1 + ρ(y, x0))σ
dμ(y)

=: I1 + I2.

Here we used that PN (Lνφ) ≤ P�
m+N (φ) due to |ν| ≤ m, see (3.1) and (3.9). Now, we use that σ ≥ m, 

σ − α > d, and (2.2) to obtain

I1 ≤ cP�
m+N (φ)

∫
B(x,1)

ρ(x, y)α

|B(x, δ)|(1 + δ−1ρ(x, y))σ dμ(y)

≤ cP�
m+N (φ)

∫
M

δα

|B(x, δ)|(1 + δ−1ρ(x, y))σ−α
dμ(y) ≤ cδαP�

m+N (φ).

Evidently, 1 + ρ(x, x0) ≤ (1 + ρ(x, y))(1 + ρ(y, x0)) and assuming δ ≤ 1 we obtain

I2 ≤ cP�
m+N (φ)

∫
B(x,1)

ρ(x, y)α

|B(x, δ)|(1 + δ−1ρ(x, y))σ−m
dμ(y)

≤ cP�
m+N (φ)

∫
M

δα

|B(x, δ)|(1 + δ−1ρ(x, y))σ−m−α
dμ(y) ≤ cδαP�

m+N (φ).

Here we also used that σ > m + d + α and (2.2). Therefore, for any x ∈ M

(1 + ρ(x, x0))m
∫

B(x,1)

|Lνφ(x) − Lνφ(y)|
|B(x, δ)|(1 + δ−1ρ(x, y))σ dμ(y) ≤ cδαP�

m+N (φ). (7.8)

Since φ ∈ S∞ we have by (3.9) |Lνφ(z)| ≤ P�
m+N (φ)(1 + ρ(z, x0))−N , ∀z ∈ M . This leads to

(1 + ρ(x, x0))m
∫

M\B(x,1)

|Lνφ(x) − Lνφ(y)|
|B(x, δ)|(1 + δ−1ρ(x, y))σ dμ(y)

≤ cP�
m+N (φ)

∫ (1 + ρ(x, x0))m

|B(x, δ)|(1 + δ−1ρ(x, y))σ(1 + ρ(x, x0))N
dμ(y)
M\B(x,1)
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+ cP�
m+N (φ)

∫
M\B(x,1)

(1 + ρ(x, x0))m

|B(x, δ)|(1 + δ−1ρ(x, y))σ(1 + ρ(y, x0))N
dμ(y)

= J1 + J2.

Using that N > σ > m, σ > d + α, (2.2), and ρ(x, y) ≥ 1 for y ∈ M \B(x, 1), we get

J1 ≤ cP�
m+N (φ)

∫
M\B(x,1)

dμ(y)
|B(x, δ)|(1 + δ−1ρ(x, y))σ

≤ cP�
m+N (φ)

∫
M

δαdμ(y)
|B(x, δ)|(1 + δ−1ρ(x, y))σ−α

≤ cδαP�
m+N (φ).

To estimate J2 we use again that 1 + ρ(x, x0) ≤ (1 + ρ(x, y))(1 + ρ(y, x0)) and assuming δ ≤ 1 we obtain

J2 ≤ cP�
m+N (φ)

∫
M\B(x,1)

dμ(y)
|B(x, δ)|(1 + δ−1ρ(x, y))σ−m

≤ cP�
m+N (φ)

∫
M

δαdμ(y)
|B(x, δ)|(1 + δ−1ρ(x, y))σ−m−α

≤ cδαP�
m+N (φ).

Consequently,

(1 + ρ(x, x0))m
∫

M\B(x,1)

|Lνφ(x) − Lνφ(y)|
|B(x, δ)|(1 + δ−1ρ(x, y))σ dμ(y) ≤ cδαP�

m+N (φ).

This coupled with (7.8) leads to

sup
x∈M

(1 + ρ(x, x0))m|Lν [φ− ϕ(δ
√
L)φ](x)| ≤ cδαP�

m+N (φ),

implying (7.7), which in turn yields (3.20). �
7.4. Proof of Theorem 5.3

We shall only prove the continuous embedding of Ḃs
pq in S ′/P as stated in (5.7). The proof of the 

embedding of ˙̃B
s

pq, Ḟ s
pq, or ˙̃F

s

pq in S ′/P is similar. We shall proceed similarly as in the proof of Proposition 6.5 
in [5].

Let f ∈ S ′/P and φ ∈ S∞. Choose a real-valued function ϕ ∈ C∞
0 (R+) so that suppϕ ⊂ [2−1, 2] and ∑

j∈Z
ϕ2(2−jλ) = 1 for λ ∈ R+. Set ϕj(λ) := ϕ(2−jλ), j ∈ Z. Then 

∑
j∈Z

ϕ2
j (λ) = 1 for λ ∈ R+ and hence, 

using Theorem 3.9,

f =
∑
j∈Z

ϕ2
j (
√
L)f in S ′/P. (7.9)

Also, observe that {ϕj}j∈Z are just like the functions in the definition of Ḃs
pq (see Definition 5.2) and can 

be used to define an equivalent norm on Ḃs
pq as in (5.2). From (7.9) we get

〈f, φ〉 =
∑

〈ϕ2
j (
√
L)f, φ〉 =

∑〈
ϕj(

√
L)f, ϕj(

√
L)φ

〉
. (7.10)
j∈Z j∈Z
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We next estimate 
∣∣〈ϕj(

√
L)f, ϕj(

√
L)φ

〉∣∣ for j ∈ Z. We consider two cases.
Case 1: j ≥ 0. Choose m > |s| + 3d + d/p. We first estimate |ϕj(

√
L)φ(x)|. Set ω(λ) := λ−2mϕ(λ). Then 

ϕj(
√
L) = 2−2mjω(2−j

√
L)Lm and hence

ϕj(
√
L)φ(x) = 2−2mj

∫
M

ω(2−j
√
L)(x, y)Lmφ(y)dμ(y).

Clearly, ω ∈ C∞
0 (R+) and suppω ⊂ [1/2, 2]. Therefore, by Theorem 2.2

|ω(2−j
√
L)(x, y)| ≤ c|B(y, 2−j)|−1(1 + 2jρ(x, y))−m.

On the other hand, since φ ∈ S∞ we have by (3.9)

|Lmφ(y)| ≤ c(1 + ρ(y, x0))−mP�
m(φ).

Putting the above together we obtain

|ϕj(
√
L)φ(x)| ≤ c2−2mjP�

m(φ)
∫
M

dμ(y)
|B(y, 2−j)|(1 + 2jρ(x, y))m(1 + ρ(y, x0))m

.

By (1.2) and (2.1) it readily follows that

|B(x0, 1)| ≤ c0(1 + ρ(y, x0))d|B(y, 1)| ≤ c202jd(1 + ρ(y, x0))d|B(y, 2−j)|. (7.11)

Therefore,

|ϕj(
√
L)φ(x)| ≤ c2−j(2m−d)P�

m(φ)
∫
M

dμ(y)
|B(x0, 1)|(1 + ρ(x, y))m−d(1 + ρ(y, x0))m−d

≤ c2−j(2m−d)P�
m(φ)(1 + ρ(x, x0))−m+2d, j ≥ 0. (7.12)

Here for the last inequality we used (2.3) and that m > 2d.
We are now prepared to estimate the inner products in (7.10). We consider two subcases:
Case 1 (a): 1 < p ≤ ∞. Then applying Hölder’s inequality (1/p + 1/p′ = 1) we get

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ ∫
M

|ϕj(
√
L)f(x)||ϕj(

√
L)φ(x)|dμ(x)

≤ ‖ϕj(
√
L)f‖p‖ϕj(

√
L)φ‖p′ ≤ c2−js‖f‖Ḃs

pq
‖ϕj(

√
L)φ‖p′ .

Here we used that ‖ϕj(
√
L)f‖p ≤ 2−js‖f‖Ḃs

pq
, which follows from (5.2). On the other hand, from (7.12) it 

follows that

‖ϕj(
√
L)φ‖p′ ≤ c2−(2m−d)jP�

m(φ)
(∫
M

dμ(x)
(1 + ρ(x, x0))(m−2d)p′

)1/p′

≤ c′|B(x0, 1)|1/p′
2−j(2m−d)P�

m(φ),

where we used that (m − 2d)p′ > d and (2.2). Hence,

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ c2−j(2m−d+s)|B(x0, 1)|1−1/p‖f‖Ḃs P�
m(φ), j ≥ 0.
pq
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Summing up these estimates we get

∑
j≥0

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ c|B(x0, 1)|1−1/p‖f‖Ḃs
pq
P�
m(φ), (7.13)

where we used that 2m > d − s.
Case 1 (b): 0 < p ≤ 1. Setting γ := 1 − 1/p we have for j ≥ 0

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ ‖|B(·, 2−j)|−γϕj(
√
L)f‖1‖|B(·, 2−j)|γϕj(

√
L)φ‖∞.

As ϕj(
√
L)f ∈ Σ2j+1 , Proposition 2.8 yields

‖|B(·, 2−j)|−γϕj(
√
L)f‖1 ≤ c‖|B(·, 2−j)|−γ+1−1/pϕj(

√
L)f‖p (7.14)

= c‖ϕj(
√
L)f‖p ≤ c2−js‖f‖Ḃs

pq
.

On the other hand, by (7.12)

‖|B(·, 2−j)|γϕj(
√
L)φ‖∞ ≤ c2−j(2m−d)P�

m(φ) sup
x∈M

|B(x, 2−j)|1−1/p

(1 + ρ(x, x0))m−2d

and from (7.11) |B(x0, 1)| ≤ c202jd(1 + ρ(x, x0))d|B(x, 2−j)|, implying

‖|B(·, 2−j)|γϕj(
√
L)φ‖∞ ≤ c|B(x0, 1)|1−1/p2−j(2m−2d+d/p)P�

m(φ),

where we used that m − 2d ≥ d(1/p − 1). Therefore,

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ c2−j(2m+s−2d+d/p)|B(x0, 1)|1−1/p‖f‖Ḃs
pq
P�
m(φ), j ≥ 0.

Summing up these estimates we get

∑
j≥0

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ c|B(x0, 1)|1−1/p‖f‖Ḃs
pq
P�
m(φ), (7.15)

where we used that 2m > −s + 2d − d/p.
Case 2: j < 0. Choose m > |s| + 3d + d/p. Set ω(λ) := λ2mϕ(λ). Then ϕj(

√
L) = 22mjL−mω(2−j

√
L)

and using (3.11)

ϕj(
√
L)φ(x) = 22mjω(2−j

√
L)L−mφ(x) = 22mj

∫
M

ω(2−j
√
L)(x, y)L−mφ(y)dμ(y).

Clearly, ω ∈ C∞
0 (R+) and suppω ⊂ [1/2, 2]. Therefore, by Theorem 2.2

|ω(2−j
√
L)(x, y)| ≤ c|B(y, 2−j)|−1(1 + 2jρ(x, y))−m.

On the other hand, since φ ∈ S∞ we have

|L−mφ(x)| ≤ c(1 + ρ(x, x0))−mP�
m(φ).

From the above we obtain
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|ϕj(
√
L)φ(x)| ≤ c22mjP�

m(φ)
∫
M

dμ(y)
|B(y, 2−j)|(1 + 2jρ(x, y))m(1 + ρ(y, x0))m

.

By (2.1) |B(x, 2−j)| ≤ c0(1 + 2jρ(x, y))d|B(y, 2−j)| and hence

|ϕj(
√
L)φ(x)| ≤ c22mjP�

m(φ)
∫
M

dμ(y)
|B(x, 2−j)|(1 + 2jρ(x, y))m−d(1 + 2jρ(y, x0))m−d

≤ c22mjP�
m(φ)(1 + 2jρ(x, x0))−m+2d (7.16)

≤ c2j(m+2d)P�
m(φ)(1 + ρ(x, x0))−m+2d, j < 0.

Here for the former inequality we used (2.3) and that m > 2d.
To estimate the inner products in (7.10) we consider as before two subcases:
Case 2 (a): 1 < p ≤ ∞. Then applying Hölder’s inequality (1/p + 1/p′ = 1) we get

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ ∫
M

|ϕj(
√
L)f(x)||ϕj(

√
L)φ(x)|dμ(x)

≤ ‖ϕj(
√
L)f‖p‖ϕj(

√
L)φ‖p′ ≤ c2−js‖f‖Ḃs

pq
‖ϕj(

√
L)φ‖p′ .

Using (7.16) we obtain

‖ϕj(
√
L)φ‖p′ ≤ c2j(m+d)P�

m(φ)
(∫
M

dμ(x)
(1 + ρ(x, x0))(m−2d)p′

)1/p′

≤ c′|B(x0, 1)|1/p′
2j(m+d)P�

m(φ),

where we used that (m − 2d)p′ > d and (2.2). Hence,

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ c2j(m+d−s)|B(x0, 1)|1−1/p‖f‖Ḃs
pq
P�
m(φ), j < 0.

Summing up these estimates we get

∑
j<0

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ c|B(x0, 1)|1/p−1‖f‖Ḃs
pq
P�
m(φ), (7.17)

where we used that m > s − d.
Case 2 (b): 0 < p ≤ 1. Setting γ := 1 − 1/p we have for j ≥ 0

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ ‖|B(·, 2−j)|−γϕj(
√
L)f‖1‖|B(·, 2−j)|γϕj(

√
L)φ‖∞.

As ϕj(
√
L)f ∈ Σ2j+1 , Proposition 2.8 yields

‖|B(·, 2−j)|−γϕj(
√
L)f‖1 ≤ c‖|B(·, 2−j)|−γ+1−1/pϕj(

√
L)f‖p

= c‖ϕj(
√
L)f‖p ≤ c2−js‖f‖Ḃs

pq
.

On the other hand by (7.16)

‖|B(·, 2−j)|γϕj(
√
L)φ‖∞ ≤ c2j(m+2d)P�

m(φ) sup |B(x, 2−j)|1−1/p

m−2d .

x∈M (1 + ρ(x, x0))
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By (2.1) and the fact that j < 0 we get

|B(x0, 1)| ≤ c0(1 + ρ(x, x0))d|B(x, 1)| ≤ c0(1 + ρ(x, x0))d|B(x, 2−j)|.

Hence,

‖|B(·, 2−j)|γϕj(
√
L)φ‖∞ ≤ c|B(x0, 1)|1−1/p2j(m+2d)P�

m(φ),

where we used that m − 2d ≥ d(1/p − 1). Therefore,

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ c2j(m+2d−s)|B(x0, 1)|1−1/p‖f‖Ḃs
pq
P�
m(φ), j < 0.

Summing up these estimates we get
∑
j<0

∣∣〈ϕj(
√
L)f, ϕj(

√
L)φ

〉∣∣ ≤ c|B(x0, 1)|1−1/p‖f‖Ḃs
pq
P�
m(φ), (7.18)

where we used that m + 2d > s.
Clearly, estimates (7.13), (7.15), (7.17), and (7.18) imply (5.7). �
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