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Abstract
Gravimetric quantities are commonly represented in terms of high degree surface or solid spherical harmonics. After
EGM2008, such expansions routinely extend to spherical harmonic degree 2190, which makes the computation of gravi-
metric quantities at a large number of arbitrarily scattered points in space using harmonic synthesis, a very computationally
demanding process. We present here the development of an algorithm and its associated software for the efficient and precise
evaluation of gravimetric quantities, represented in high degree solid spherical harmonics, at arbitrarily scattered points in
the space exterior to the surface of the Earth. The new algorithm is based on representation of the quantities of interest in
solid ellipsoidal harmonics and application of the tensor product trigonometric needlets. A FORTRAN implementation of
this algorithm has been developed and extensively tested. The capabilities of the code are demonstrated using as examples
the disturbing potential T , height anomaly ζ , gravity anomaly �g, gravity disturbance δg, north–south deflection of the
vertical ξ , east–west deflection of the vertical η, and the second radial derivative Trr of the disturbing potential. After a
pre-computational step that takes between 1 and 2h per quantity, the current version of the software is capable of computing
on a standard PC each of these quantities in the range from the surface of the Earth up to 544km above that surface at speeds
between 20,000 and 40,000 point evaluations per second, depending on the gravimetric quantity being evaluated, while the
relative error does not exceed 10−6 and the memory (RAM) use is 9.3GB.

Keywords Solid spherical harmonics · Ellipsoidal harmonics · Evaluation at scattered points · Needlets · Fast computation

1 Introduction

Global gravitational models (GGM) are mathematical
approximations of the external gravitational potential of an
attracting body, like the Earth. It is essential that such models
would permit the rigorous evaluation of quantities related to
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that potential (gravimetric quantities), anywhere on or above
the surface of the body, given the position of the evaluation
point (Pavlis 2011). Although geodesists have variously con-
sidered and studied the representation of the gravitational
potential using point masses (Sünkel 1981, 1983), finite
element methods (Meissl 1981; Baker 1988) and splines
(Sünkel 1984; Jekeli 2005), these approaches have seen only
limited application in the representation of (especially) the
“static” (i.e., the time-averaged) gravitational field of the
Earth. Spherical harmonic functions have prevailed as the
standard form used for the representation of the gravitational
potential globally, from the very early days of global deter-
minations, to the present. Indeed, the set of coefficients of a
spherical harmonic expansion of the gravitational potential
has become pretty much synonymous to a GGM.

The evaluation of model-implied gravimetric quantities
at points residing over certain geometric surfaces, like the
surface of a sphere or of an ellipsoid of revolution, can be
done efficiently, even for large number of points, by inter-
polating from a pre-computed grid of these quantities. The
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formation of the required grid can be done very efficiently,
using computational methods like those of Rizos (1979)
and Colombo (1981). However, the computation of model-
implied gravimetric quantities over a large number of points
that are randomly scattered in the 3-dimensional space on
or above the surface of the Earth is considerably more com-
plicated, essentially due to the fact that the radial distances
of such points vary randomly. There are several types of
applications requiring the evaluation of various gravimetric
quantities from a high resolution GGM, over large numbers
of points that are randomly scattered in 3-dimensional space.
Such point sets may be located on or close to the Earth’s
topography, on the trajectory of an airplane or a missile, or
on the orbit of an artificial satellite. The gravimetric quan-
tities required over such point sets depend on the particular
application and include height anomalies, gravity anomalies,
gravity disturbances, deflections of the vertical, and one or
more of the components of the gravitational tensor. Although
such evaluation can be done rigorously using point-wise
harmonic synthesis (Holmes and Pavlis 2008), this requires
significant computational effort, especially when the maxi-
mum degree and order of the gravitational model is very high
(e.g., exceeds 2000), as is the case after the development and
release of the EGM2008 model that extends to degree 2190
(Pavlis et al. 2012).

To address this problem, Rapp (1997) used a Taylor series
approach, truncated to the linear gradient term, which was
deemed adequate for gravitationalmodels complete to degree
and order 360. Hirt (2012) used Taylor expansion up to order
3, Hirt and Kuhn (2012) increased the order to 6, while
Balmino at al. (2012) studied the Taylor expansion up to
order 60. Bucha and Janák (2014) also studied the expansion
up to high orders and presented software for spherical har-
monic synthesis at points residing “horizontally" over regular
grids (latitude, longitude), whose “vertical" coordinate traces
an irregular surface (e.g., the topography). Their publicly
available software implements the algorithms developed by
Fukushima (2012) for the numerical computation of spheri-
cal harmonics of arbitrary degree and order by extending the
exponent of floating point numbers and is independent of the
harmonic synthesis code that Holmes and Pavlis (2008) also
made publicly available, thus enabling inter-comparison of
results. Hirt et al. (2016) used the Bucha and Janák (2014)
software for expansions to degree and order 21,600, over a
regular horizontal grid that traces vertically the topography.
Moazezi et al. (2016) presented another approach for fast and
efficient synthesis over randomly scattered points, both hor-
izontally and vertically. Eshagh and Abdollahzadeh (2010)
presented a semi-vectorization technique for harmonic anal-
ysis and synthesis of gravity gradient values residing on
regular grids on the sphere. Eshagh and Abdollahzadeh
(2012) also presented the irregular semi-vectorization tech-

nique for the efficient synthesis of gravity gradients on an
elevationmodel (i.e., again over a regular horizontal grid that
traces vertically the topography). In these papers, the evalu-
ation points are located at (irregular) surfaces approximating
the Earth’s topography, which actually reduces the evalua-
tion to a combination as Taylor series of a few 2-dimensional
problems.

There are several other methods, known as
‘non-equispaced FFT’, for fast evaluation at many points on
a sphere of quantities represented in surface spherical har-
monics using their coefficients. For example, such methods
are developed in (Mohlenkamp 1999; Kunis and Potts 2003;
Reuter et al. 2009; Seljebotn 2012; Tygert 2010). For more
details, see the introduction in (Ivanov and Petrushev 2015).

This article presents an alternative approach to address
the problem of precise and efficient evaluation of model-
implied gravimetric quantities over a large number of points
that are randomly scattered in the 3-dimensional space on or
above the surface of the Earth, from a GGM that extends to
very high degree.Our approachwas developedwith economy
of computer memory usage, as well as computational speed
in mind, and was tested in the evaluation of the following
gravimetric quantities:

– Disturbing potential T
– Height anomaly ζ

– Gravity anomaly �g
– Gravity disturbance δg
– North–south deflection of the vertical ξ
– East–west deflection of the vertical η
– Second radial derivative of the disturbing potential Trr .

In future versions of our software, wemay include additional
gravimetric quantities (e.g., the elements of the full gravi-
tational tensor) as well as quantities related to the Earth’s
magnetic field.

In global gravitational models like EGM2008 (Pavlis et al.
2012), all these gravimetric quantities are represented in solid
spherical harmonics extending todegree 2190.Note thatmost
of these quantities are not harmonic functions but can be rep-
resented as the product of a slowly varying smooth function
κ and a high degree harmonic function F (or a sum of such
products). More explicitly, we are interested in fast evalu-
ation of quantities G that can be represented in geocentric
spherical coordinates (r , θ, λ), where r is geocentric radial
distance, θ is the geocentric colatitude (900 minus geocentric
latitude), and λ is longitude, in the form:

G(r , θ, λ) = κ(r , θ)F(r , θ, λ), (1)
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where

F(r , θ, λ) =
N∑

n=0

(a

r

)n+1

×
n∑

m=0

(ānm cosmλ + b̄nm sinmλ
)

P̄nm(cos θ) (2)

and κ(r , θ) is an easy to compute smooth function, which
means that κ(r , θ) can be approximated with high accu-
racy (e.g., 10−9) from low-degree (e.g., degree ≤ 10) solid
spherical harmonics. Here N = 2190, a is a scaling fac-
tor associated with the coefficients {ānm, b̄nm} that is usually
chosen to be numerically equal to the semimajor axis of the
adopted reference ellipsoid, {P̄nm} are the fully normalized
associated Legendre functions, and {ānm, b̄nm} are known
coefficients. Recall that

P̄nm(x) = qnm(1 − x2)m/2 dm

dxm
Pn(x),

where Pn is the usual nth degree Legendre polynomial and

qn0 = √
2n + 1;

qnm =
√

2(2n + 1)
(n − m)!
(n + m)! , m = 1, . . . , n.

The problem comes down to fast evaluation of prod-
ucts κ(r , θ)F(r , θ, λ) as in (1)–(2) given the coefficients
{ānm, b̄nm} of F(r , θ, λ) at arbitrary (scattered) points in the
space on or above the surface of the Earth with prescribed
precision, measured as relative or absolute error.

There is amore or less “standard” algorithm that is utilized
by the HARMONIC_SYNTH software (Holmes and Pavlis
2008) and made available by NGA at http://earth-info.nga.
mil/GandG/wgs84/gravitymod/new_egm/new_egm.html and
whose function is documented in http://earth-info.nga.mil/
GandG/wgs84/gravitymod/new_egm/README.txt. This
method proceeds by computing directly the values of the
quantity of interest from its spherical harmonic coefficients
by utilization of three term recurrences in stable directions
for computing the values of the associated Legendre func-
tions at many points. Here the difficulty stems from the fact
that there are very few stable algorithms for accurate eval-
uation of the associated Legendre functions and all of them
have to overcome underflow or overflow for degrees above
1000 or so (the HARMONIC_SYNTH software can handle
expansions of degree and order up to 2700). A big advantage
of this method over other methods is that it can be applied for
evaluation of quantities represented in surface or solid spher-
ical harmonics. Its main drawback is that it is very slow and
practically unusable for evaluation at many scattered points.
For instance, its implementation on a regular PC computes at

most 50 values per second. This means that it takes an hour
to compute 180,000 values.

Our goal is to develop an accurate stable algorithm for
evaluation of gravimetric quantities at arbitrary scattered
points in the space above the surface of the Earth that can
perform at the highest possible speed. The presumption is
that each gravimetric quantity of interest will be evaluated
many times at many (millions) points. To achieve this, we
propose here a method that proceeds in two steps:

Step 1 Given a function G(r , θ, λ) as in (1)–(2) with its
coefficients {ānm, b̄nm} it evaluates G at all points of regular
gridsX j on a carefully selected family of confocal ellipsoids
with the first ellipsoid positioned just under the geoid and the
rest at certain distances above the geoid (see e.g., Tables 3
and 4).
Step2Given the values ofG on regular gridsX j on these con-
focal ellipsoids, it evaluates G at arbitrary (scattered) points
in the external space with prescribed accuracy.

For Step 1 we first convert representation (2) from solid
spherical harmonics to solid ellipsoidal harmonics and then
use the “standard” harmonic synthesis algorithm in combi-
nation with fast Fourier transform (FFT). This method is
sufficiently efficient when computing the values of quantities
at regular grid points. Step 1 is a pre-computational step that
is done once and for all and the computational time for its
execution is not so critical.

Our realization of Step 2 relies on the application of tensor
product trigonometric needlets. Usually, the term “needlets"
is used to denote highly localized band limited kernels on
the unit sphere that reproduce spherical harmonics of cer-
tain degrees. These are also zonal (radial) functions that
have the form of needles, which is the reason for calling
them “needlets". For more details, see (Ivanov and Petrushev
2015).

In this article,weutilize products of univariate trigonomet-
ric needlets. Our method is based on the fact that ellipsoidal
harmonics can naturally be extended as bivariate trigonomet-
ric polynomials in ellipsoidal coordinates, see Sect. 3.4.1.
The trigonometric needlets are kernels of the form

KN (x) = 1 + 2
∑

1≤n<(1+τ)N

φ
( n

N

)
cos nx,

where φ is an infinitely differentiable function on [0,∞)

(φ ∈ C∞[0,∞)) such that φ(t) = 1 on [0, 1] and φ(t) = 0
on [1+ τ,∞) for some τ > 0. Clearly, the integral operator
with kernelKN (x − y) reproduces the trigonometric polyno-
mials of degree N (see (25)) and, therefore, tensor products
of such kernels reproduce trigonometric polynomials in two
variables. Furthermore, after discretization of the respective
operator by a cubature formula, using regular grid points,
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and truncation (see (27)), it becomes an excellent tool for
approximation of bivariate trigonometric polynomials.

The superb localization of the kernels KN (x) around
x = 0 (see (26)) plays a decisive role in the application
of the trigonometric needlets to fast evaluation of quantities
represented in solid spherical or ellipsoidal harmonics. For
a detailed account of trigonometric needlets, we refer the
reader to the article (Ivanov and Petrushev 2016), see also
Sect. 3.4.1 below.

The value of the quantity G to be evaluated at an arbitrary
point in the external space is computed by using tensor prod-
uct trigonometric needlets at appropriate points on ellipsoids
near that point and an appropriate polynomial interpolation in
the ellipsoidal surface normal direction. A detailed descrip-
tion of this method is given in Sect. 3 below.

The testing of the software realization of our method
shows that it is efficient and practically viable. The pre-
computational Step 1 that is executed once for a given
gravimetric quantity takes between 54 and 120min on a
standard PC for each of the quantities listed above. After
the pre-computation is done, the code is capable of comput-
ing these gravimetric quantities in the range from the geoid
up to 544km above that surface at speed between 20,000
and 40,000 point evaluations per second on a standard PC,
while the relative error does not exceed 10−6 and thememory
(RAM) use per quantity is 9.3 gigabytes (GB), see Sect. 6.

The key to the success of our method is the fact that the
desired accuracy can be achieved by using rather sparse grid
points on a limited number of ellipsoids (38 ellipsoids for T
and ζ , 53 for �g and δg, 54 for ξ , and 55 for η and Trr ) due
to the efficiency of the tensor product trigonometric needlets.

The application of our needlet-based algorithm for fast and
precise evaluation of quantities represented in solid spherical
harmonics is not limited to gravitational modeling. It can be
used with equal success in geomagnetism and other areas
where quantities are represented in high-degree spherical or
ellipsoidal harmonics.

2 Gravimetric quantities represented in solid
spherical harmonics

In this section,we describe in detail the gravimetric quantities
that our algorithm and software deal with. All of them will
be represented as a product just as in (1)–(2) or a sum of such
products. We will also derive nonsingular representations for
the deflections of the vertical,which lead to stable algorithms.

2.1 Disturbing potential and height anomaly

Webeginwith the disturbing potential T , whichwe represent
in geocentric spherical coordinates by (see also Pavlis et al.
2012, equation 3)

T (r , θ, λ) = GM
a

N∑

n=2

(a

r

)n+1

×
n∑

m=0

(c̄nm cosmλ + s̄nm sinmλ) P̄nm(cos θ),

where GM is the geocentric gravitational constant (uni-
versal gravitational constant times the Earth’s mass), a is
as in (2), and c̄nm , s̄nm are the fully normalized spher-
ical harmonic coefficients of T . The coefficients c̄nm ,
s̄nm are computed from the EGM2008 coefficients of the
file EGM2008_to2190_TideFree, after subtraction of
the even degree zonal terms (to degree 20) of the ellip-
soidal (reference) gravitational field, from the corresponding
EGM2008 coefficients.

In this case, the product representation (1) takes the form

T (r , θ, λ) = κ(r , θ)F(r , θ, λ),

where κ(r , θ) = 1 and F(r , θ, λ) is as in (2)with coefficients

ānm = GM
a

c̄nm, b̄nm = GM
a

s̄nm . (3)

The height anomaly ζ is defined (Heiskanen and Moritz
1967, equation (8–10)) by

ζ = T

γ
,

where γ = γ (r , θ) is the normal gravity. Thus it has a rep-
resentation as in (1)–(2) with (3), κ(r , θ) = 1/γ (r , θ) and
F(r , θ, λ) = T (r , θ, λ).

2.2 Gravity anomaly and gravity disturbance

The spherically approximatedgravity anomaly�g = −∂T

∂r
−

2

r
T (Heiskanen and Moritz 1967, equation (2-154)) is rep-

resented just as in (1)–(2) with G = �g and

κ(r , θ) = a

r
, ānm = GM

a2 (n − 1)c̄nm,

b̄nm = GM
a2 (n − 1)s̄nm .

The gravity disturbance δg = −∂T

∂r
(Heiskanen and

Moritz 1967, equation (2-153)) is also represented as in (1)–
(2) with G = δg and
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κ(r , θ) = a

r
, ānm = GM

a2 (n + 1)c̄nm,

b̄nm = GM
a2 (n + 1)s̄nm .

2.3 The second radial derivative of the disturbing
potential

The second-order radial derivative of the disturbing poten-

tial Trr = ∂2T

∂r2
is also represented as in (1)–(2)withG = Trr

and

κ =
(a

r

)2
, ānm = GM

a3 (n + 1)(n + 2)c̄nm,

b̄nm = GM
a3 (n + 1)(n + 2)s̄nm .

Note that Trr is the most challenging gravimetric quantity
(out of those considered in this article) to evaluate due to its
very rich high-frequency content, which is reflected in the
fact that its coefficients are amplified by terms proportional
to the square of the degree, compared to the corresponding
coefficients of the disturbing potential.

We next develop stable representations for the deflections
of the vertical that, to the best of our knowledge, are new.

2.4 Stable representations of the north–south
deflection of the vertical

The spherically approximated north–south deflection of the

vertical ξ is defined by ξ = 1

rγ

∂T

∂θ
, where as before γ is the

normal gravity (see also Heiskanen andMoritz 1967, p 235).
In geodesy, it is common to use the derivative representa-

tion

(1 − x2)
d P̄nm(x)

dx
=

√
(n2 − m2)(2n + 1)

2n − 1
P̄n−1,m(x)

−nx P̄nm(x), (4)

which implies a representation of the form

ξ(r , θ, λ) = κ(r , θ)
F�
1 (r , θ, λ)r + F�

2 (r , θ, λ) cos θ

sin θ
(5)

where κ(r , θ) = a

rγ (r , θ)
and F�

1 , F�
2 are harmonic expan-

sions. This representation of the singular at the poles function
ξ is computationally unstable due to the sin θ term in the
denominator.

To overcome the above instability, we employ the repre-
sentations

√
1 − x2

d P̄nm(x)

dx
=

√
(n − m)(n + m + 1)

2
P̄n,m+1(x)

−
√

(1 + δ0,m−1)(n + m)(n − m + 1)

2
P̄n,m−1(x),

1 ≤ m ≤ n; n ∈ N; (6)

√
1 − x2

d P̄n0(x)

dx
=

√
n(n + 1)

2
P̄n,1(x), n ∈ N; (7)

where δk,� is the Kronecker symbol, that is δk,� = 0 if k �= �

and δk,� = 1 if k = �. These identities are derived from recur-
rences (15), (17), (19) in (Erdelyi et al. 1953, §3.8). In the
geophysics literature, representations (6)–(7) are sometimes
attributed to (Bosch 2000) or to (Eshagh 2008, Eq. 18).

Identities (6)–(7) along with the standard formulas

cosmλ = cos(m ± 1)λ cos λ ± sin(m ± 1)λ sin λ,

sinmλ = sin(m ± 1)λ cos λ ∓ cos(m ± 1)λ sin λ,
(8)

lead to the representation

ξ(r , θ, λ) = κ(r , θ) (F1(r , θ, λ) cos λ + F2(r , θ, λ) sin λ) ,

(9)

where for j = 1, 2

Fj (r , θ, λ) = GM
a2

N∑

n=2

(a

r

)n+1

×
n∑

m=0

(
c j

nm cosmλ + s j
nm sinmλ

)
P̄nm(cos θ) (10)

and κ(r , θ) is as above; the coefficients c j
nm , s j

nm , j = 1, 2,
are given in Table 1. Representation (9)–(10) could also be
derived after some manipulations from the nonsingular rep-
resentations of the first Cartesian derivatives of the disturbing
potential, see e.g. (Petrovskaya andVershkov2012,Eq. (15)).

Observe that the singularity of ξ in representation (9) is
contained only in the two multipliers cos λ and sin λ, that is,
(9) has better numerical stability near the poles than (5).More
precisely, our algorithm produces an approximation ξ̃ to ξ ,
which obeys the same error bound at all points belonging to
the same ellipsoid as shown in Sect. 3.5.When the evaluation
point coincides with one of the poles (where ξ has a bounded
discontinuity), then ξ̃ approximates the latitude limit of ξ

with the same precision as at the other points, i.e.,
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Table 1 Coefficients in
representation (9)–(10) of the
north–south deflection of the
vertical

c1n,m =

⎧
⎪⎨

⎪⎩

1√
2

√
n(n + 1)c̄n,1, form = 0;

1
2

√
(n − 1)(n + 2)c̄n,2 − 1√

2

√
n(n + 1)c̄n,0, form = 1;

1
2

√
(n − m)(n + m + 1)c̄n,m+1 − 1

2

√
(n − m + 1)(n + m)c̄n,m−1, for 2 ≤ m ≤ n;

s1n,m =

⎧
⎪⎨

⎪⎩

0, form = 0;
1
2

√
(n − 1)(n + 2)s̄n,2, form = 1;

1
2

√
(n − m)(n + m + 1)s̄n,m+1 − 1

2

√
(n − m + 1)(n + m)s̄n,m−1, for 2 ≤ m ≤ n;

c2n,m =

⎧
⎪⎨

⎪⎩

1√
2

√
n(n + 1)s̄n,1, form = 0;

1
2

√
(n − 1)(n + 2)s̄n,2, form = 1;

1
2

√
(n − m)(n + m + 1)s̄n,m+1 + 1

2

√
(n − m + 1)(n + m)s̄n,m−1, for 2 ≤ m ≤ n;

s2n,m =

⎧
⎪⎨

⎪⎩

0, form = 0;
− 1

2

√
(n − 1)(n + 2)c̄n,2 − 1√

2

√
n(n + 1)c̄n,0, form = 1;

− 1
2

√
(n − m)(n + m + 1)c̄n,m+1 − 1

2

√
(n − m + 1)(n + m)c̄n,m−1, for 2 ≤ m ≤ n.

ξ̃ (r , 0, λ) ≈ lim
θ→0

ξ(r , θ, λ) = GM√
2arγ (r , 0)

N∑

n=2

(a

r

)n+1

×√
n(n + 1)(2n + 1)[c̄n,1 cos λ + s̄n,1 sin λ],

(11)

ξ̃ (r , π, λ) ≈ lim
θ→π

ξ(r , θ, λ) = −GM√
2arγ (r , π)

N∑

n=2

(
−a

r

)n+1

×√
n(n + 1)(2n + 1)[c̄n,1 cos λ + s̄n,1 sin λ],

(12)

as the values of the limits follow from (9), (10) and the coef-
ficients with m = 0 in Table 1.

2.5 Stable representations of the east–west
deflection of the vertical

The spherically approximated east–west deflection of the

vertical η = − 1

rγ sin θ

∂T

∂λ
can be represented (see also,

Heiskanen and Moritz 1967, p 235) by

η(r , θ, λ) = GM
arγ (r , θ)

N∑

n=2

n∑

m=1

(a

r

)n+1

× m
P̄nm(cos θ)

sin θ
[c̄n,m sinmλ − s̄n,m cosmλ],

where as above γ = γ (r , θ) is the normal gravity. The main
drawbackof this representation is the sin θ term in the denom-
inator, which generates computational instability around the
poles—the singularities of η.

We propose the use of the following identity (derived from
recurrences (13), (14) in Erdelyi et al. 1953, §3.8)

m
P̄nm(x)√
1 − x2

= 1

2

√
2n + 1

2n − 1

(√
(n − m − 1)(n − m)P̄n−1,m+1(x)

+ √
(1 + δ1,m)(n + m − 1)(n + m)P̄n−1,m−1(x)

)
,

1 ≤ m ≤ n, (13)

with x = cos θ . In the geophysics literature, representa-
tions (13) are sometimes attributed to (Eshagh 2008, Eq. 26).
Replacing (13) in the above representation of η and using (8)
we arrive at the representation

η(r , θ, λ) = κ(r , θ) (F1(r , θ, λ) cos λ + F2(r , θ, λ) sin λ)

(14)

with

κ(r , θ) = a2

r2γ (r , θ)
.

Here the functions Fj , j = 1, 2, are harmonic and have the
representation

Fj (r , θ, λ) = GM
2a2

N−1∑

n=1

(a

r

)n+1
√
2n + 3

2n + 1

×
n∑

m=0

(
c j

nm cosmλ + s j
nm sinmλ

)
P̄nm(cos θ), (15)

where the coefficients c j
n,m , s j

n,m , j = 1, 2, are given in
Table 2. Representation (14)–(15) could also be derived from
the nonsingular representations of the first Cartesian deriva-
tives of the disturbing potential, see e.g. (Petrovskaya and
Vershkov 2012, Eq. (15)).

Our code gives an approximation η̃ to η, which obeys the
same error boundover anyof the confocal ellipsoids as shown
in Sect. 3.5. When the evaluation point coincides with one
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Table 2 Coefficients in
representation (14)–(15) of the
east–west deflection of the
vertical

c1n,m =
⎧
⎨

⎩

−√
2(n + 1)(n + 2)s̄n+1,1, form = 0;

−√
(n + 2)(n + 3)s̄n+1,2, form = 1;

−√
(n + m + 1)(n + m + 2)s̄n+1,m+1 − √

(n − m + 1)(n − m + 2)s̄n+1,m−1, for 2 ≤ m ≤ n;

s1n,m =
⎧
⎨

⎩

0, form = 0;√
(n + 2)(n + 3)c̄n+1,2, form = 1;√
(n + m + 1)(n + m + 2)c̄n+1,m+1 + √

(n − m + 1)(n − m + 2)c̄n+1,m−1, for 2 ≤ m ≤ n;

c2n,m =
⎧
⎨

⎩

√
2(n + 1)(n + 2)c̄n+1,1, form = 0;√
(n + 2)(n + 3)c̄n+1,2, form = 1;√
(n + m + 1)(n + m + 2)c̄n+1,m+1 − √

(n − m + 1)(n − m + 2)c̄n+1,m−1, for 2 ≤ m ≤ n;

s2n,m =
⎧
⎨

⎩

0, form = 0;√
(n + 2)(n + 3)s̄n+1,2, form = 1;√
(n + m + 1)(n + m + 2)s̄n+1,m+1 − √

(n − m + 1)(n − m + 2)s̄n+1,m−1, for 2 ≤ m ≤ n.

of the poles (where η has a bounded discontinuity), then η̃

approximates the latitude limit of η with the same precision
as at the other points, i.e.,

η̃(r , 0, λ) ≈ lim
θ→0

η(r , θ, λ) = GM√
2arγ (r , 0)

N∑

n=2

(a

r

)n+1

×√
n(n + 1)(2n + 1)[c̄n,1 sin λ − s̄n,1 cos λ],

(16)

η̃(r , π, λ) ≈ lim
θ→π

η(r , θ, λ) = GM√
2arγ (r , π)

N∑

n=2

(
−a

r

)n+1

×√
n(n + 1)(2n + 1)[c̄n,1 sin λ − s̄n,1 cos λ],

(17)

as the values of the limits follow from (14), (15) and the
coefficients with m = 0 in Table 2.

3 Theoretical underpinning of our
evaluation algorithm

In this section, we describe the main components of our
algorithm for fast and accurate evaluation of gravimetric
quantities represented in terms of high-degree (> 2000) solid
spherical or ellipsoidal harmonics at many arbitrarily scat-
tered points in the space on or above the physical surface of
the Earth.

As was alluded to in Sect. 2, all gravimetric quantities of
interest to us are represented as a product of the form

G(r , θ, λ) = κ(r , θ)F(r , θ, λ) or

G(r , θ, λ) = κ(r , θ) (F1(r , θ, λ) cos λ + F2(r , θ, λ) sin λ) ,
(18)

where κ is a slowly varying smooth function whose values
are easy to compute and F is a harmonic function represented
in terms of high-degree solid spherical harmonics as in (2)
with given coefficients, that is,

F(r , θ, λ) =
N∑

n=0

n∑

m=0

(a

r

)n+1

×(ānm cosmλ+b̄nm sinmλ)P̄nm(cos θ). (19)

Thus it boils down to developing an algorithm for fast and
accurate evaluation of harmonic functions F(r , θ, λ) (or
F1(r , θ, λ) cos λ+F2(r , θ, λ) sin λ) as above,multiplied by a
very smooth function, at arbitrary points in the space on and
above the physical surface of the Earth. Overall, the main
difficulty here stems from the fact that this is a 3-d problem.

As already presented in the introduction, themain require-
ment on our algorithm is that the evaluation be fast, with
guaranteed accuracy and with reasonable use of computer
memory (RAM), so that the algorithm could ideally be
implemented in hand-held devices that may have limited
computational capabilities. The overriding objective is that
one should be able to use the software implementation of our
algorithm for evaluation of a given gravimetric quantity at
millions of points in near-real time.

We next present the main idea of our method and then
elaborate on its building blocks. The simple idea of our algo-
rithm consists of the following steps:

(1) We first convert the spherical harmonic representation
of F(r , θ, λ) (or F1(r , θ, λ) and F2(r , θ, λ)) to the cor-
responding ellipsoidal harmonic representation, which
allows to achieve better approximation error bound (see
Sect. 3.1).Of course, if the ellipsoidal harmonic represen-
tation of these functions is readily available, the current
step can be skipped.

(2) Second, we use the ellipsoidal harmonic coefficients of
F and the easy to compute representation of κ to pre-
compute the values of G on regular gridsX j on carefully
selected family of confocal ellipsoids E0, E1, . . . , EM

with increasing semiminor axes and E0 being just under
the geoid (see Sects. 3.2 and 3.3).

(3) We compute the approximate value of G at an arbitrary
point x in the external space by using the pre-computed
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values of G at appropriate grid points near x . To this end,
weuse tensor product needlets over appropriate ellipsoids
and a special kind of “polynomial” interpolation in the
u-direction (see Sect. 3.4).

Here it is important that, although G is not (in general)
harmonic, it can be approximated on ellipsoids with very
high precision by bivariate trigonometric polynomials due to
the fact that κ can be approximated to very high precision by
low degree trigonometric polynomials.

We next focus on the details.

3.1 From spherical harmonic to ellipsoidal harmonic
expansions

We first convert the representation of the harmonic func-
tion F(r , θ, λ) (or F1, F2) (see (19)) from solid spherical
harmonics to solid ellipsoidal harmonics expressed in ellip-
soidal coordinates (u, ϕ, λ), where ϕ is the complement of
the reduced latitude and u is the semiminor axis of the con-
focal ellipsoid. These coordinates are related to the spherical
coordinates (r , θ, λ) by (see also Heiskanen andMoritz 1967
section 1-19)

⎧
⎨

⎩

r sin θ cos λ = √
u2 + E2 sin ϕ cos λ,

r sin θ sin λ = √
u2 + E2 sin ϕ sin λ,

r cos θ = u cosϕ.

Applying Jekeli’s transformation (see Jekeli 1988), we trans-
form the coefficients ānm, b̄nm, 0 ≤ m ≤ n, 0 ≤ n ≤ N , to
ā{ell}

n,m , b̄{ell}
n,m , 0 ≤ m ≤ n, 0 ≤ n ≤ N1, so that

F(r , θ, λ) = H(u, ϕ, λ). (20)

The ellipsoidal harmonics expansion of H(u, ϕ, λ) takes the
form

H(u, ϕ, λ) =
N1∑

n=0

n∑

m=0

S̄n,m
( u

E

)

S̄n,m
( b

E

)

×
(

ā{ell}
nm cosmλ + b̄{ell}

nm sinmλ
)

P̄nm(cosϕ),

(21)

where S̄n,m are Jekeli’s functions, b is the semiminor axis
of the reference ellipsoid and E is its linear eccentricity. In
theory N1 = ∞ but in practice, for N = 2160, N1 = N +70
gives (20) with relative error not exceeding 10−20.

For every fixed u the function H(u, ϕ, λ) (or H1(u, ϕ, λ)

cos λ + H2(u, ϕ, λ) sin λ) is a bivariate trigonometric poly-
nomial of degree N1 (or N1 + 1) and tensor product needlets
can be utilized for its fast evaluation, see Sect. 3.4.1. The
reason for switching from spherical harmonic expansions

to ellipsoidal harmonic expansions is to guarantee smaller
approximation error as explained in Sect. 3.5.

Of course, if the gravitational model used is (originally)
available in terms of ellipsoidal harmonic coefficients, the
present conversion from spherical to ellipsoidal harmonic
coefficients is obviously not needed.

3.2 Change of variable in the u-direction

A reasonable requirement is that our evaluation algorithm
covers the range (ellipsoidal shell) determined by

U0 ≤ u ≤ U1 withU0 = b − 125m

and U1 = b + 544, 000m.

Here u = b defines the Earth reference ellipsoid and hence
the ellipsoid of semiminor axis u = b − 125 m is just bel-
low the Earth geoid. We set U1 = b + 544, 000m to cover,
with sufficient margin, satellite missions like GRACE in Low
Earth Orbits. The possible change of the bounds U0, U1 is
discussed in Sect. 3.6.1.

We now apply a substitution u = μ(s) with the function
μ satisfying the following conditions: μ is defined on an
interval [−s∗, s∗], μ is smooth, μ(0) = U0, μ(s̄) = U1 for
some 0 < s̄ < s∗,μ(s) is even, i.e.,μ(−s) = μ(s), andμ(s)
is increasing in [0, s∗] and with “small" derivatives around
s = 0. Convenient choices for μ(s) are

μ(s) = U0 + U1 − U0

1 − cos s̄
(1 − cos s);

μ(s) = U0 + U1 − U0

s̄2
s2; μ(s) = U0 + U1 − U0

s̄4
s4,

as the last one is used in the codes hsynth_init and
hsynth_fast described in Sect. 4. Now, instead of
G(u, ϕ, λ) we consider the function

g(s, ϕ, λ) = G(μ(s), ϕ, λ),

0 ≤ ϕ ≤ π, 0 ≤ λ < 2π, 0 ≤ s ≤ s̄.

Thus the evaluation of G is reduced to evaluation of g.
The purpose of the changeof variableu = μ(s) is twofold:

(i) It gives us a function g with essentially smaller oscilla-
tion of the ellipsoidal surface normal derivatives than the
derivatives of G and at the same time the derivatives of
g can be explicitly expressed in terms of the ellipsoidal
surface normal derivatives of G.

(ii) The function g(s, ϕ, λ) being even in s enables us to
only work with values of G on and above the ellipsoid
u = U0, which is critical for our evaluation scheme.
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The choice of μ(s) (the third one) in our realization of the
algorithm is determinedby the fact that thisμ(s) leads to opti-
mal ellipsoidal surface normal derivatives of the gravimetric
quantities of interest. Hence, the code will require smaller
amount of memory compared to the other two options for
μ(s). For evaluation of other quantities, the selection ofμ(s)
can be different.

3.3 Construction of regular grids on confocal
ellipsoids and pre-computation

Wefirst introduce a family of confocal ellipsoids E0, E1, . . . ,

EM , where our regular grids will reside. We will use 2J
point Lagrange interpolation of g in the s-direction, where
J = 3, 4 or 5, depending on the smoothness of g. By set-
ting s j = jh, j = 0, 1, . . . , M , where h and M are related
by μ(sM−J−1) ≤ U1 ≤ μ(sM−J ), we define the confocal
ellipsoids E j with equations u = μ(s j ). The selection of h
is explained in Sect. 3.4.2. Then the regular grid X j on E j

in ellipsoidal coordinates is defined by

X j = {(μ(s j ), ϕk, λ�)}, j = 0, . . . , M, with

ϕk = πk

K
, k = 0, 1, . . . , K ,

λ� = 2π�

L
, � = 0, 1, . . . , L − 1.

Here L must be even so that the values of the same grid
can be used for continuation through the poles. The only
requirement imposed on K , L and the maximal degree N is

min{2K , L} ≥ (2 + τ)N , (22)

where the parameter τ is from (24) and N is from (23) in Sect.
3.4.1. N represents the degree of the ellipsoidal harmonic
expansion H . In the applications, we usually take L = 2K ,
see e.g., Sect. 4 (1).

The pre-computation step consists of computingG(μ(s j ),

ϕk, λ�) for k = 0, 1, . . . , K , � = 0, 1, . . . , L − 1, j =
0, . . . , M . For this, we utilize the stable algorithm for
evaluation of quantities represented in spherical harmonics
mentioned in the introduction.

After the above preparation, we are ready to describe Step
2 of our algorithm for fast and accurate evaluation of gravi-
metric quantity G at arbitrary points in the ellipsoidal shell
U0 ≤ u ≤ U1.

3.4 Evaluation of gravimetric quantities: the core of
the algorithm

As before, let s j = jh and set u j = μ(s j ). Our algorithm
will compute an approximation G̃(u, ϕ, λ) to the gravimetric

quantity G(u, ϕ, λ) at an arbitrary point (u, ϕ, λ) from the
ellipsoidal shell U0 ≤ u ≤ U1.

The computation of G̃(u, ϕ, λ) is carried out as follows:

(1) For u ∈ [U0, U1] find s ∈ [s j , s j+1], j ≥ 0, so that
u = μ(s);

(2) Use tensor product needlets (see Sect. 3.4.1) to compute

g̃(si , ϕ, λ) := G̃(ui , ϕ, λ),

i = j − J + 1, j − J + 2, . . . , j + J ,

using the values of G at the regular points from each of
these 2J ellipsoids;

(3) Use Lagrange interpolation to compute G̃(u, ϕ, λ) :=
g̃(s, ϕ, λ) using the values g̃(si , ϕ, λ), i = j − J + 1,
j − J + 2, . . . , j + J , computed above.

Note that the choice of μ(s) as an even function yields
u−1 = u1, u−2 = u2, etc., which allows to only use values
of G̃(u j , ϕ, λ) at points with u j ≥ U0 in the computation
of G̃(u, ϕ, λ)! In this manner, we avoid derivatives of G
at points with coordinate u smaller than U0. The choice
U0 = b − 125 m allows to include in the ellipsoidal shell
all points above the geoid. The values of u0 − b, u1 − b, . . .

that our algorithm uses for computing the height anomaly ζ

and the second radial derivative of the disturbing potential
Trr are given in Tables 3 and 4, respectively.

Wenext describe in detail the tensor product trigonometric
needlets and the Lagrange interpolation we used above.

3.4.1 Trigonometric needlets

The tensor product trigonometric needlets are developed in
(Ivanov and Petrushev 2016) and used for fast computation
of gravimetric quantities represented in surface spherical har-
monics. Here we describe the basic idea of this method.

The univariate trigonometric needlets are kernels of the
form

KN (x) = 1 + 2
∑

1≤n<(1+τ)N

φ
( n

N

)
cos nx, (23)

where φ is a cutoff function with the following properties: φ
is smooth on [0,∞),

φ(t) = 1, t ∈ [0, 1]; 0 ≤ φ(t) ≤ 1, t ∈ [1, 1 + τ ]
and φ(t) = 0, t ≥ 1 + τ,

(24)

for some τ > 0. The point is that: (a) The kernel KN (x)

reproduces trigonometric polynomials of degree ≤ N , that
is, if P is a trigonometric polynomial of degree ≤ N , then

P(x) = 1

2π

∫ π

−π

KN (x − y)P(y) dy, (25)
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Table 3 Ellipsoid semiminor
axis heights (in meters) above b
for the disturbing potential T
and the height anomaly ζ

1 −125.00 11 3,231.83 21 54,013.04 31 283,771.51

2 −124.66 12 4,790.93 22 65,801.13 32 325,598.23

3 −119.63 13 6,839.66 23 79,453.05 33 372,288.83

4 −97.82 14 9,471.84 24 95,170.68 34 424,325.64

5 −39.11 15 12,789.96 25 113,171.59 35 482,245.61

6 84.70 16 16,905.46 26 133,690.70 36 546,649.19

7 309.84 17 21,939.00 27 156,982.22 37 618,211.15

8 680.65 18 28,020.82 28 183,321.92 38 697,693.53

9 1, 249.53 19 35,291.24 29 213,009.85 – –

10 2, 077.01 20 43,901.22 30 246,373.49 – –

Table 4 Ellipsoid semiminor
axis heights (in meters) above b
for the second radial derivative
of the disturbing potential Trr

1 −125.00 15 2,967.53 29 49,719.26 43 260,514.30

2 −124.92 16 3,951.00 30 57,298.34 44 287,401.31

3 −123.71 17 5,152.54 31 65,724.38 45 316,474.86

4 −118.48 18 6,602.38 32 75,062.28 46 347,883.08

5 −104.40 19 8,332.82 33 85,380.43 47 381,785.04

6 −74.71 20 10,378.22 34 96,750.82 48 418,351.93

7 −20.72 21 12,775.05 35 109,249.38 49 457,768.39

8 68.20 22 15,561.95 36 122,956.21 50 500,233.99

9 204.59 23 18,779.76 37 137,955.95 51 545,964.99

10 402.96 24 22,471.61 38 154,338.09 52 595,196.22

11 679.72 25 26,682.95 39 172,197.43 53 648,183.38

12 1, 053.26 26 31,461.65 40 191,634.49 54 705,205.57

13 1, 543.90 27 36,858.13 41 212,756.02 55 766,568.24

14 2, 173.91 28 42,925.41 42 235,675.61 – –

(b) If φ is infinitely smooth (φ ∈ C∞(R)), then KN (x)

has almost exponential localization: For an arbitrary σ > 0
there exists a constant cσ > 0 such that

|KN (x)| ≤ cσ N (1 + N |x |)−σ , |x | ≤ π. (26)

Extension of harmonic functions in ellipsoidal coordinates

Taking into account that P̄nm(cosϕ) cosmλ and P̄nm(cosϕ)

sinmλ are trigonometric polynomials in ϕ and λ for ϕ ∈
[0, π ], λ ∈ [0, 2π), leads to a natural extension of any
harmonic function H(u, ϕ, λ) as in (21). More explicitly,
H(u, ϕ, λ) (or H1(u, ϕ, λ) cos λ + H2(u, ϕ, λ) sin λ) with u
fixed extends at once to a bivariate trigonometric polyno-
mial f (ϕ, λ) for ϕ, λ ∈ Rwith the following properties: The
polynomial f (ϕ, λ) can be expressed in the form

f (ϕ, λ) =
N∑

k=−N

N∑

�=−N

ck�ei(kϕ+�λ),

where ck� are (complex) coefficients. Furthermore,

f (−ϕ, λ + π) = f (ϕ, λ) for ϕ, λ ∈ R.

The above assertion is an important ingredient in the applica-
tion of tensor product needlets for fast evaluation of harmonic
functions.

The bivariate trigonometric polynomial f (ϕ, λ) is evalu-
ated at a point (ϕ, λ) by tensor product trigonometric needlets
of the form

f̃ (ϕ, λ) =
∑

|ϕ−ϕk |≤δ1

∑

|λ−λ�|≤δ2

2

K L
f (ϕk, λ�)

× K1(ϕ − ϕk)K2(λ − λ�), (27)

where K1 and K2 are trigonometric needlet kernels in ϕ and
λ, respectively.

The number of knots {ϕk} on [ϕ − δ1, ϕ + δ1] and the
number of knots {λ�} on [λ − δ2, λ + δ2] ranges from 26 to
32 (depending on f ) for targeted relative accuracy 2×10−7.

In (27) for λ close to 0 or to 2π , we assume that the defi-
nition of λ� from Sect. 3.3 is extended by the same formula
for � < 0 or � ≥ L , which implies the periodic extension
f (ϕ, λ + 2π) = f (ϕ, λ) of f . Similarly, for ϕ close to 0
or to π we extend the definition of ϕk from Sect. 3.3 by the
same formula for k < 0 or k > K , which implies the even
semi-periodic extension f (−ϕ, λ+π) = f (ϕ, λ) in the case
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of T , ζ,�g, δg or Trr , and the odd semi-periodic extension
f (−ϕ, λ+π) = − f (ϕ, λ) in the case of ξ or η. These exten-
sions do not require evaluation of the polynomial f at new
grid points (ϕk, λ�) whenever L is even!

We next summarize the main properties of the trigono-
metric needlets:

(a) They are highly localized and, therefore, the needlet
algorithm is local. As a result it is a fast computational
method.

(b) The superb localization of the needlets makes the
method stable and accurate. It also allows to tightly con-
trol the approximation error.

(c) The trigonometric needlets are compatible with spheri-
cal and ellipsoidal harmonics, which enables us to work
with sparser grids and as a result in economical use of
memory (RAM).

(d) The compatibility of the trigonometric needlets with
ellipsoidal harmonics also allows to improve the accu-
racy of computation without changing the grid points.
More explicitly, to improve the error of approximation
of f (ϕ, λ) by f̃ (ϕ, λ) we only have to enlarge δ1 and
δ2 in (27) without changing the grid points. This is a
big advantage over other computational methods, e.g.,
fixed-degree polynomial or spline interpolation, which
require denser grid points.

(e) The trigonometric needlets are easy to implement in
ways that result in fast computational algorithms.

We refer the reader to (Ivanov and Petrushev 2016) for a
detailed account of trigonometric needlets.

To speed up our algorithm, we apply tensor product
trigonometric needlets for evaluation of quantitiesG(u, ϕ, λ)

that are not harmonic but are as in (18) the product of a har-
monic function H(u, ϕ, λ) as in (21) and a smooth slowly
varying function κ(u, ϕ) for fixedu. The point is that the fac-
tor κ(u, ϕ) can be well approximated by a very low-degree
bivariate trigonometric polynomial which implies practically
the same accuracy of needlet computations for G and H
whenever N ≥ 50.

3.4.2 Lagrange interpolation

As already explained in the description of our algorithm
above the approximation G̃(u, ϕ, λ) to the gravimetric quan-
tity G(u, ϕ, λ) for u from the ellipsoidal shell U0 ≤ u ≤ U1

is obtained by interpolating the values of g(s, ϕ, λ) :=
G(μ(s), ϕ, λ) on equispaced knots {si }, which means inter-
polating G on several confocal ellipsoids.

Let (ϕ, λ) be fixed and let s := μ−1(u) ∈ [s j , s j+1].
If g̃(s, ϕ, λ) is the Lagrange interpolant of g(s, ϕ, λ) at the
points si = ih, i = j − J + 1, j − J + 2, . . . , j + J , then
the remainder can be expressed as

g(s, ϕ, λ) − g̃(s, ϕ, λ)

= (s − s j−J+1) · · · (s − s j+J )

(2J )!
∂2J g

∂s2J
(z, ϕ, λ)

for some z ∈ (s j−J+1, s j+J ). Hence

|g(s, ϕ, λ) − g̃(s, ϕ, λ)|
≤ (2J )!

J !222J

(
h

2

)2J

max
s∈[s j−J+1,s j+J ]

∥∥∥∥
∂2J g

∂s2J
(s, ·, ·)

∥∥∥∥ , (28)

where the uniform norm on the partial derivative of g is taken
on ϕ ∈ [0, π ], λ ∈ [0, 2π).

In our algorithm h is chosen so that:

1. The right-hand side of (28) divided by the uniform norm
of g for fixed s always to be smaller than 5 × 10−7;

2. |si − s̃i | ≤ 10−11 for i = 0, 1, . . . , M , where s̃i =
μ−1(ui ) and ui = μ(si ) in the computer arithmetic.

The first condition requires the evaluation of the 2J partial
derivative of g, which by the chain rule is expressed via the
partial derivatives of G and the derivatives of μ. The second
condition provides for a small round-off error in the eval-
uation of g̃. The reasons for the choice of μ are explained
in Sect. 3.2. Moreover, the fact that μ(s) is even allows us
to only operate in the right-hand side of (28) with values of
the partial derivatives of G at points (u, ϕ, λ) with u ≥ U0.
Thus, we avoid the highly oscillatory behavior of G(u, ϕ, λ)

in the region u < U0.
Note that the above computational scheme represents for

fixed ϕ, λ an approximation of G(u, ϕ, λ) at the nonequally
spaced points u j by a 2J − 1 degree interpolation spline of
maximal defect in the variable μ−1(u).

3.5 Accuracy

For a gravimetric quantity G, G being T , ζ , �g, δg, ξ , η or
Trr , denote by

N (G,E, u) = max{(ϕ,λ)} |G(u, ϕ, λ)|

its normon an ellipsoidwith semiminor axis u confocal to the
reference ellipsoid. Here (u, ϕ, λ) stand for the ellipsoidal
coordinates of a point and the maximum is taken over all
0 ≤ ϕ ≤ π , 0 ≤ λ ≤ 2π .

For a point P with spherical coordinates (rP , θP , λP )

and ellipsoidal ones (u P , ϕP , λP ), U0 ≤ u P ≤ U1,
we require that our algorithm computes an approximation
G̃(u P , ϕP , λP ) to the gravimetric quantity G(u P , ϕP , λP )

with relative error ≤ 10−6, i.e.,
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Table 5 Norm N (G,E, b + h)

of the gravimetric quantity G on
the ellipsoids with semiminor
axis b + h for some heights h

G\height h km 0 100 200 300 400 500

N (T ,E, b + h) m2/s2 1041.54 945.64 873.39 811.31 755.93 706.09

N (ζ,E, b + h) m 106.49 99.75 95.01 90.97 87.33 84.01

N (�g,E, b + h) mGal 989.20 87.39 50.94 35.95 31.40 27.79

N (δg,E, b + h) mGal 993.45 102.67 68.51 59.96 53.48 48.14

N (ξ,E, b + h) arcsec. 126.78 21.72 11.63 7.52 5.87 5.41

N (η,E, b + h) arcsec. 94.77 15.70 9.95 8.45 7.63 7.09

N (Trr ,E, b + h) Eötvös 1296.45 10.49 2.39 1.29 0.81 0.55

Table 6 Evaluation accuracy as
an absolute error bound

G\h km 0 20 100 200 500

T m2/s2 1.0 × 10−3 1.0 × 10−3 9.5 × 10−4 8.7 × 10−4 7.1 × 10−4

ζ m 1.1 × 10−4 1.0 × 10−4 1.0 × 10−4 9.5 × 10−5 8.4 × 10−5

�g mGal 9.9 × 10−4 3.4 × 10−4 8.7 × 10−5 5.1 × 10−5 2.8 × 10−5

δg mGal 9.9 × 10−4 3.5 × 10−4 1.0 × 10−4 6.9 × 10−5 4.8 × 10−5

ξ arcsec. 1.3 × 10−4 5.2 × 10−5 2.2 × 10−5 1.2 × 10−5 5.4 × 10−6

η arcsec. 8.6 × 10−5 4.1 × 10−5 1.4 × 10−5 9.6 × 10−6 7.1 × 10−6

Trr Eötvös 1.3 × 10−3 1.3 × 10−4 1.0 × 10−5 2.4 × 10−6 5.5 × 10−7

max{(ϕP ,λP )}
U0≤u P≤U1

|G̃(u P , ϕP , λP ) − G(u P , ϕP , λP )|
N (G,E, u P )

≤ 10−6.

(29)

Note that (29) holds evenwhenG is ξ orη,which are bounded
discontinuous functions at the poles.

The relative precision 10−6 in (29) is selected to be bet-
ter than the relative accuracy of the model EGM2008 itself.
When the relative accuracy of the gravimetric model is
improved then our codes can be easily modified to work with
higher accuracy.

Table 5 illustrates the dependanceof thenormsN (G,E, u)

on the ellipsoid semiminor axis. Notice the modest decrease
of the norms of T and ζ , the faster decrease of the norms of
�g, δg, Tr , ξ and η, and the very fast decrease of the norms
of Trr . The decrease ofN (G,E, u P )means smaller absolute
errors in (29) when u P increases.

3.5.1 Absolute error

In some instances, it is useful to know how the bound 10−6

on the relative error translates into absolute error for various
gravimetric quantities at various heights h above the surface
of the earth (geoid). The accuracy in absolute units for each
of the gravimetric quantities T , ζ , �g, δg, ξ , η, and Trr is
given in Table 6.

In Fig. 1, we demonstrate how the concept of the uni-
form relative error, implemented into estimate (29), implies
the correlation of the discrepancies with the signal. The plot
gives the difference between the values of T̃rr and Trr on a

20 × 20 grid at the Earth’s surface in microEötvös units. The
essential statistics of the signal Trr in Eötvös are: minimal
value − 183.53247, maximal value 259.85623, mean value
− 0.25362, standard deviation 20.03877. The mean absolute
ratio of the discrepancy and the signal is 2.27 × 10−7 .

3.5.2 Norms on ellipsoids versus norms on spheres

Onemay avoid the use of ellipsoidal coordinates as described
in Sect. 3.1 and work only in spherical coordinates. Then the
target error estimate would be

max{(θP ,λP )}
U0≤u P≤U1

|G̃(rP , θP , λP ) − G(rP , θP , λP )|
N (G,S, rP )

≤ 10−6,

(30)

where (rP , θP , λP ) and (u P , ϕP , λP ) denote the spherical
and the ellipsoidal coordinates of a point P , respectively,
and

N (G,S, r) = max{(θ,λ)} |G(r , θ, λ)|

denotes the norm of G on the sphere of radius r . Here the
maximum is taken over all 0 ≤ θ ≤ π , 0 ≤ λ ≤ 2π .

The main problem in obtaining error estimate as in (30) is
the very high oscillation of G in the domain under the surface
of the earth (see dotted red curves in Fig. 2), i.e., whenever
b ≤ rP ≤ a, b ≤ u P . This would lead to the use of larger size
of memory (RAM) because more concentric spheres will be
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Fig. 1 Values of T̃rr − Trr on a 20 × 20 grid at the Earth’s surface in microEötvös units

Fig. 2 Point P above the Earth reference ellipsoid (black) congruent
to a confocal ellipsoid (blue) and to a sphere (red). Parts of the sphere
(dotted red) may be into the reference ellipsoid

needed to get (30) compared with the number of confocal
ellipsoids necessary for (29).

Another advantage of the ellipsoidal coordinates over the
spherical coordinates here is the fact thatN (G,S, rP ) could

be essentially larger than N (G,E, u P ) when the point P is
away from the equator as Table 7 shows. This means that
estimate (30) could be a lot less precise than estimate (29).
Of course, if the point P is on the equator, then the inequality
is reversed but the two normsN (G,E, u P ) andN (G,S, rP )

remain close to each other in this case. Table 7 also shows that
the disadvantage of (30) over (29) on the reference ellipsoid
is a lot stronger for �g, δg, ξ , η and Trr than for ζ and T .

The two estimates (29) and (30) become closer with the
increase of the point height above the reference ellipsoid. As
Table 8 shows the discrepancies at height 20 km for �g, δg,
ξ , η and Trr still exist but they have smaller magnitude, while
the discrepancies for ζ and T are practically negligible.

3.6 Discussion

Our algorithm can be applied for scattered point evaluation of
an arbitrary quantity G represented as in (18). The factor κ in
(18) may also depend on λ, but should be well approximated
by low-degree bivariate trigonometric polynomials on every
ellipsoid under consideration as explained in Sect. 3.4.1. This
would allow a good approximation of G from solid spheri-
cal harmonics of slightly larger degree than the degree of F .
At the same time, the product κ F should satisfy the require-
ments of Sect. 3.4.2 for an appropriate μ and large enough
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Table 7 Ratio of the norms N (G,S, rP )/N (G,E, b) for points P
on the reference ellipsoid with ellipsoidal coordinates (b, ϕP , λP ) and
spherical coordinates (rP , θP , λP )

G \ϕP π/2 5π/12 π/3 π/4 π/6 π/12 0

ζ 1.00 1.00 1.00 1.01 1.43 3.03 4.45

�g 0.93 1.07 1.75 5.70 26.32 83.74 129.19

ξ 0.77 0.90 1.61 6.24 29.25 94.73 146.31

η 0.86 1.00 2.22 9.19 40.64 130.28 202.19

Trr 0.68 0.94 2.59 12.07 58.86 191.90 296.94

The entries for T and δg are not reported because they are very close
to the entries for ζ and �g, respectively

Table 8 Ratio of the norms N (G,S, rP )/N (G,E, b + 20, 000) for
points P 20 km above the reference ellipsoid with ellipsoidal coor-
dinates (b + 20, 000, ϕP , λP ) and spherical coordinates (rP , θP , λP )

G \ϕP π/2 5π/12 π/3 π/4 π/6 π/12 0

ζ 1.00 1.00 1.00 1.01 1.01 1.02 1.02

�g 0.93 0.97 1.14 1.47 1.99 2.70 3.10

ξ 0.92 0.94 1.01 1.13 1.33 1.85 2.18

η 0.97 1.00 1.12 1.33 1.61 1.96 2.29

Trr 0.96 1.04 1.34 2.03 3.64 6.81 9.35

The entries for T and δg are not reported because they are very close
to the entries for ζ and �g, respectively

h. Note that the main approximation parameter h heavily
depends on the choice of μ and on the coefficients of F and
is specific to every gravimetric quantity to be evaluated.

3.6.1 Range of distances above the reference ellipsoid

If one wants to cover areas lying below the ellipsoid of
semiminor axis u = b − 125 m (e.g., the Dead Sea), then U0

should be decreased to, say, U0 = b − 550 m. This choice of
U0 would increase the number of ellipsoids fromSect. 3.3 for
the range [U0, U1] by at most 1 and at the same time preserve
the relative error estimate (29). This would result in slightly
larger absolute error for the points below the geoid because
of the increase of N (G,E, u P ) (see Sect. 3.5). Essentially
larger decrease of U0 is not desirable as the discussion in
Sect. 3.5.2 indicates.

As was alluded to in Sect. 3.2, the selection U1 = b +
544, 000m was made in order to cover satellites in low earth
orbits. The simplest way to evaluate gravimetric quantities at
points above b + 544, 000m is to increase U1. For example,
the choice U1 = b + 1, 000, 000m would increase the num-
ber of ellipsoids from Sect. 3.3 by 6 for T and ζ and by 8 for
the remaining gravimetric quantities, i.e., by approximately
15% (with the same increase of memory and of the time
for pre-computing), at the same time preserving the compu-
tational speed and the relative error estimate (29). At high

altitudes (u > b + 1, 000, 000m), the gravimetric quantities
of interest can be approximated with relative error 10−6 by
low-degree solid spherical harmonics which allow for good
computational speed.

It is important to point out that for all gravimetric quanti-
ties, we deal with in this article the step h we use for the range
[b − 125, b + 544, 000] will ensure the required accuracy of
approximation also for the range [b − 550, b + 1, 000, 000].

Another possible scenario is when one wishes to cover
points on or near the Earth’s topography only. That means to
choose, e.g., U1 = b + 10, 000 m. Assume that one wants
to compute values of the second radial derivative of the dis-
turbing potential Trr . Then Tabel 4 shows that the current
version of our algorithm will use 24 ellipsoids to compute
the values of Trr at arbitrary scattered points from this region.
The speed and accuracy will be the same as before. This ver-
sion of our algorithm would be more economical in the size
of memory (RAM) used than the current version. Roughly it
will use half the RAM.However, if one is interested in cover-
ing points on the Earth’s topography or on any other surface,
then the problem could be considered as a combination of a
few 2-dimensional ones and our algorithm can be modified
so that the use of RAM would be reduced substantially with
the speed and accuracy remaining the same or better.

3.6.2 Regular grids on ellipsoids

From algorithmic point of view, the computation of the val-
ues of a gravimetric quantity G at the points of the regular
grid X j ( j = 0, 1, . . . , M) residing on the confocal ellip-
soid E j (see Sect. 3.3) can be performed directly in solid
spherical harmonics without passing to ellipsoidal ones as
in Sect. 3.1. But from analytic point of view, error estimates
as (29) can be guaranteed for needlet approximation only if
the restriction of G on E j is approximated within a margin
of 10−8 by bivariate trigonometric polynomials of degree
close to the degree of the original series. As shown in Sect.
3.1, Jekeli’s transformation provides such an approximation
error (not exceeding 10−20) by increasing the degree from
2190 to 2260. If the ellipsoid eccentricity was larger than
the Earth’s one or if another type of surface of revolution is
used then one may need higher trigonometrical degree for
good approximation which will result in a denser grid. For
more detailed account of the approximation error when using
trigonometric needlets, see (Ivanov and Petrushev 2016).

3.6.3 Needlets versus spline interpolation

Clearly, the role of the trigonometric needlets in the algorithm
described in Sect. 3.4 can be played by spline interpolation
based on local high-degree polynomial Lagrange interpola-
tion. A detailed comparison of these two schemes is given in
(Ivanov and Petrushev 2016, §3.5). The overall conclusion
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is that if using spline interpolation, in order to guarantee the
accuracy and speed we require here, one will be forced to
use at least 3.3 times more memory (RAM) for regular grid
data than the needlet-based software, that means at least 33
GB rather than 10GB RAM. Therefore, the needlets have a
significant advantage over spline interpolation. One should
expect additional slowdown of the computation when using
high degree spline interpolation due to stability problems.

Our evaluation algorithm combines two approximation
methods: needlet approximation on surfaces (e.g., ellipsoids)
and fixed-degree spline interpolation in the normal direction
to these surfaces. The spline degrees are 5, 7 or 9 depend-
ing on the smoothness of the gravimetric quantity near the
boundary—the ellipsoid with u = U0. Here “smoothness”
means that the ratio of the norm of the 6th, 8th or 10th deriva-
tive and the norm of the gravimetric quantity is essentially
smaller than the same ratio for an arbitrary polynomial of
degree 2190. Such low-degree spline interpolation require
prior knowledge of the approximated quantity but gives us
the best speed under the reasonable memory usage of under
10 GB for regular grid data.

In case one wants to achieve better accuracy, say 10−8,
then the strategies for the two approximation methods are
different. For the needlet approximation, one employs the
same regular grid (or any other grid satisfying (22)) but uses
more nodes. This leads to the same size of memory (per ellip-
soid) and slower evaluation speed. In the case of fixed-degree
spline approximation, one is forced to decrease the step h in
order to guarantee the required accuracy using estimate (28).
This implies the same evaluation speed but larger size of
memory due to the usage of more ellipsoids.

3.6.4 Ultra-high-degree harmonic expansions

In recent years, spherical harmonics of degree 10,800 or
higher have been used in geopotential modeling. Next, we
briefly discuss the estimated requirements for using our
algorithm for evaluation of such ultra-high-degree harmonic
expansions.

The exact number of the necessary confocal ellipsoids
will be determined based on the (ultra-high-degree) har-
monic expansion coefficients using the criterion of Sect.
3.4.2. This criterion clearly indicates that the number of the
needed ellipsoids depends on the smoothness of the har-
monic expansion of interest in the radial direction and the
targeted accuracy. However, one may expect that the coeffi-
cients of degree greater than 2160 decay at a rate similar to
the one of the coefficients of degree not exceeding 2160.
As a result, the smoothness of the ultra-high-degree har-
monic expansion in the radial direction above the surface
of the Earth will remain the same. Therefore, if the accuracy
remains the same, the number of ellipsoids will be approxi-
mately the same. For 5 times higher model degree, there will

be 25 times more regular points on every ellipsoid, which
means 233GBmemory—currently not possible on desktops.
In addition to the 125 times longer work (in double precision
arithmetic) of the initialization code, there will be underflow
in the grid evaluation and the Fukushima (2012) method (or
other extended precision arithmetic) has to be used. At the
same time the accuracy and the speed of ourmethod after the
pre-computation of the necessary grids would be the same!
Also the local nature of our algorithmcould help to reduce the
memory requirements by sorting scattered points by regions.

On the other hand, the “standard” software will work
some 25 times slower without counting the underflow that
inevitably will occur. The Fukushima (2012) method will
additionally slow down the computations. The model coeffi-
cient set will also increase 25 times, but this is not so critical
memory requirement.

Naturally, any model that uses 10,800 degree spherical
harmonics should achievebetter approximation than the 2160
degree EGM2008 and then the accuracy of the computation
should be higher. Assume that we wish to guarantee 5 times
higher accuracy for fast evaluation of gravimetric quantities
using some 10,800 degree model than the accuracy for the
current EGM2008, that is, the required accuracy is improved
from 10−6 to 2 × 10−7, measured as relative error. Then
applying the criterion of Sect. 3.4.2 for evaluation, for exam-
ple, of �g, δg, ξ or η leads us to the conclusion that our
method will require approximately 22%more ellipsoids than
the necessary ones for 10−6 accuracy and the number of
points on every ellipsoid will increase by 6% in each direc-
tion; the speed after pre-computation will remain the same.

It should be pointed out that our tensor product trigono-
metric needlet method would not experience memory prob-
lems when applied for evaluation of harmonic expansions of
degree up to 15,000 at scattered points on any sphere or ellip-
soid. We have successfully tested it on functions represented
in spherical/ellipsoidal harmonics of degree 12,960.

3.6.5 Evaluation of very “rough” functions

If our computational method is applied to a very “rough”
function (in the radial direction), then the targeted relative
accuracywill be achieved if the number of confocal ellipsoids
is increased depending on the norms of the derivatives of that
quantity.

However, the grid spacing on the ellipsoids could remain
the same; it will provide the same accuracy and speed as
before. Thus, the relative accuracy 2 × 10−7 of the tensor
product trigonometric needlets is always guaranteed (inde-
pendent of the “roughness” of the trigonometric polynomial)
by using 26 knots for τ = 1.6 or 32 knots for τ = 1.0. Note
that τ = 1.6 means denser grid than τ = 1.0 and we can
achieve the desired accuracy with less knots here. The inde-
pendence of the grid from the “roughness” of the function
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being evaluated is an important advantage of needlet tensor
product method over other ones, e.g., fixed-degree polyno-
mial or spline interpolation.

4 Description of software

Software realization in FORTRAN of the algorithms for fast
and precise evaluation of quantities represented in terms of
solid spherical or ellipsoidal harmonics has been developed.
The covered gravimetric quantities are: disturbing potential
T (in m2/s2), height anomaly ζ (in meters), gravity anomaly
�g (in mGal), gravity disturbance δg (in mGal), north–
south deflection of the vertical ξ (in arcseconds), east–west
deflection of the vertical η (in arcseconds), and the second
radial derivative of the disturbing potential Trr (in Eötvös).
In the present implementation, the values of these quantities
are derived from the Earth Gravitational Model EGM2008
(Pavlis et al. 2012).

We next provide some basic information about our soft-
ware.

(1) The program hsynth_init precomputes the values
of the gravimetric quantity of interest at regular grid
points located on confocal ellipsoids as described in
Sect. 3.3. The “standard” method for evaluation of
surface spherical harmonic gridded values is applied.
The coefficients of the ellipsoidal harmonic expan-
sions are obtained via Jekeli’s transformation from the
coefficients of the spherical harmonic expansions (see
Sect. 3.1), which in turn are derived as explained in
Sect. 2 from the EGM2008 coefficients given in file
EGM2008_to2190_TideFree. The number of con-
focal ellipsoids is chosen to cover the range [U0, U1]
with steph,which in turn depends on the evaluatedgravi-
metric quantity as explained in Sect. 3.4.2.
The number of regular grid points located on an ellip-
soid is: 4015 × 8028 for T and ζ (2.69′ × 2.69′ grid);
3346×6690 for�g, δg, ξ , η and Trr (3.23′×3.23′ grid).
Thegrids are further extended as explained inSect. 3.4.1.
The number of confocal ellipsoids used by the code is
38 for T and ζ , 53 for �g and δg, 54 for ξ , 55 for η and
Trr . The values of the parameter h generating these ellip-
soids are 0.021435478 for T and ζ , 0.015295193 for�g,
0.015323755 for δg, 0.01510703 for ξ , 0.014712992 for
η, 0.01500051 for Trr .
The pre-computed values are not included in the package
because of their 9.3 GB sizes. On the computer where
the tests were performed, it takes approximately 54min
to run the code for T or ζ , 1 hour for �g, δg or Trr and
2 hours for ξ or η. The program hsynth_init is run
once for every gravimetric quantity.

(2) The program hsynth_fast is an implementation
of the algorithm described in Sect. 3.4 to compute
the values of any of the above gravimetric quan-
tities at arbitrarily scattered points in the external
space. As input hsynth_fast uses the output of
hsynth_init, which does not depend of the sets
of points on which the code hsynth_fast is run.
The output of hsynth_init is used to initialize
the program hsynth_fast in the same way as the
gravitational model coefficients are used to initial-
ize the “standard” synthesis algorithms, e.g., the code
hsynth_standard described below.

(3) The code hsynth_standardwas developed for test-
ing theaccuracyof themain codehsynth_fast and is
used as a benchmark for its speed. Here, the gravimetric
quantities are evaluated using the same method imple-
mented in the harmonic_synth program (Holmes
and Pavlis 2008) for the case of randomly scattered eval-
uation points, except for the north–south and east–west
vertical deflections ξ and η. These are computed here
using the more stable numerical methods presented in
Sects. 2.4 and 2.5, respectively. Unlike hsynth_init
and hsynth_fast, which use ellipsoidal harmonic
coefficients, hsynth_standard uses spherical har-
monic coefficients to evaluate the gravimetric quantities.
In the present implementation, the EGM2008 coeffi-
cients were used.

When executed the three codes report some statistics
for their work. Among the displayed hsynth_standard
statistics, one can find the relative errors of the gravimet-
ric quantity computed by hsynth_fast. The speed of our
realization of the two methods can be compared using the
reported numbers “Values per second”. In both programs,
these numbers represent pure computational time, ignoring
the time necessary to read the input or to write the output.

As the speed of the “standard” method (hsynth_
standard) is approximately 46 values per second for T , ζ ,
�g, δg and Trr or 23 values per second for ξ and η, it is not
advisable to run this code with more than 10,000 points.

5 Software download

The software described above is now open source and is
available at the website of the Interdisciplinary Mathematics
Institute (IMI), University of South Carolina: http://imi.cas.
sc.edu/. To download the source codes in MATLAB and in
FORTRAN with its precompiled executables visit
http://imi.cas.sc.edu/gravimetric-quantities/.
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Table 9 Values per
second by
hsynth_standard and
hsynth_ fast and the
improvement in computational
speed

Gravimetric quantity hsynth_standard hsynth_fast Improvement (times)

T 46.50 40884.58 879.24

ζ 46.37 40677.58 877.24

�g 46.11 24716.76 536.04

δg 46.21 24510.06 530.41

ξ 23.32 24831.27 1064.81

η 46.33 24690.56 532.93

Trr 46.29 19918.77 430.30

A user manual with a detailed description of the software,
instructions for its use and test statistics is also available at
the IMI website.

6 Comparison with existingmethods.
Results

The FORTRAN software has been extensively tested on a
laptop with 2.4GHz PC, CPU IntelCore i7 with 16GB of
RAM and 250 GB SSD used to store the input and output
files. The hsynth_fast uses 11GB of RAM.

The program hsynth_fast has been tested on up
to 30,000,000 randomly distributed within the whole shell
[U0, U1] points, which were processed with the speed indi-
cated in the third column of Table 9. The relative error
did not exceed 4.64 × 10−7 for all tests measured with
hsynth_standard. Recall that the relative error is com-
puted by (29) and some values of the normsN (G,E, u) are
given in Table 5.

The improvement in computational speed of our code
(measured by Values per second) to the software
using the “standard” method is given in the last column of
Table 9. The reciprocals of the entries in the second and third
columns multiplied by the number of evaluation points give
the “pure synthesis times”. They do not include the times for
loading the point coordinates and for writing the computed
values, which are also proportional to the number of evalua-
tion points. They also do not include the times for initializing
the codes—approximately 30s for loading the grid values by
hsynth_fast or 11s for loading the model coefficients by
hsynth_standard. For more details see the user manual
from Sect. 5.

The different entries in the third column of Table 9 reflect
the different approximationmethodsused inhsynth_fast
to compute the respective gravimetric quantities. The speed
for ξ in the second column of Table 9 is twice smaller than
for the other quantities because two harmonic expansions
(instead of one) are used for its evaluation in hsynth_
standard. The reported speed for η in the second column
of Table 9 is for the “standard” method, which is not stable

near the poles. If our stable method is used, then the speed
for η is similar to the speed for ξ .

7 Conclusion

The experiments with the software described above clearly
demonstrate the capability of our needlet method for fast
and stable evaluation of gravimetric quantities represented
in terms of solid spherical harmonics at scattered points in
space. After the pre-computational step, the current version
of our software (hsynth_fast) runs between 430 and
1064 times faster than the software (hsynth_standard)
that employs “standard” harmonic synthesis methods. This
speed allows to use our code for near-real-time calculations
on standard computers. It also is capable of evaluation of
gravimetric quantities at large number (millions) of points.
Future work Our method for fast and accurate evaluation
of quantities represented in solid spherical harmonics is not
limited to gravimetric quantities only. It can be successfully
used for evaluation of any quantity that is represented in
high-degree solid spherical or ellipsoidal harmonics. In par-
ticular, it can be utilized for evaluation of the elements of the
geomagnetic field in the current Enhanced Magnetic Model
(EMM2015), which are represented in terms of spherical
harmonics of degree 720, see https://www.ngdc.noaa.gov/
geomag/EMM/index.html.

In many areas ranging from geodesy and geomagnetism
to cosmology and atmospheric sciences data are collected at
accelerating rateswith higher and higher resolution and accu-
racy every year. The assimilation of these data will lead to the
development ofmathematicalmodelswith high accuracy and
predictability. The needlet method described in this article
has a lot of potential. Since our method is local, it is paral-
lelizable and can be utilized for fast and accurate evaluation
of quantities represented in spherical/ellipsoidal harmonics
of degree 10,000 or higher. The results reported here indicate
that the needlets can be a handy tool in future more accurate
models.
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