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Abstract. We study nonlinear n-term approximation in Lp(R2) (0 < p ≤ ∞) from hierarchical
sequences of stable local bases consisting of differentiable (i.e., Cr with r ≥ 1) piecewise polynomials
(splines). We construct such sequences of bases over multilevel nested triangulations of R2, which
allow arbitrarily sharp angles. To quantize nonlinear n-term spline approximation, we introduce and
explore a collection of smoothness spaces (B-spaces). We utilize the B-spaces to prove companion
Jackson and Bernstein estimates and then characterize the rates of approximation by interpolation.
Even when applied on uniform triangulations with well-known families of basis functions such as
box splines, these results give a more complete characterization of the approximation rates than
the existing ones involving Besov spaces. Our results can easily be extended to properly defined
multilevel triangulations in Rd, d > 2.
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1. Introduction. Nonlinear approximation of functions in dimensions d > 1 is
a challenging area, especially if one moves away from tensor product-type approaches
in order to more adequately approximate functions with singularities along curves and
with other anisotropies. One of the most natural tools for approximation is piecewise
polynomials over triangulations, and a fundamental problem is to characterize the rate
of nonlinear approximation in Lp (0 < p ≤ ∞) in terms of properly defined global
smoothness conditions. This problem is disheartening if one allows the nonlinear
approximation to be from any piecewise polynomial over an arbitrary triangulation.
The difficulty stems from the highly nonlinear nature of piecewise polynomials in
dimensions d > 1. For instance, if s1 and s2 are two piecewise polynomials over n
triangles in R2 each, then s1+s2 is in general a piecewise polynomial over many more
than n (even > n2) pieces. Therefore, the well-known recipe of proving Jackson and
Bernstein estimates and then applying interpolation is useless.

The problem becomes even harder when differentiable piecewise polynomials are
needed, which, for instance, is the case for numerous practical applications of sur-
face modeling and for the conforming finite element methods for higher order PDEs.
Moreover, there is an intrinsic demand for differentiability of the approximating tools
from the point of view of the nonlinear approximation theory itself. Indeed, this
property, together with local reproduction of higher degree polynomials, is crucial for
the ability to represent higher order smoothness spaces, such as classical Sobolev or
Besov spaces in regular settings (see Theorem 2.15). The desirable differentiability
of the approximating piecewise polynomials, however, leads to additional difficulties
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NONLINEAR SPLINE APPROXIMATION 709

because of the complicated structure of spaces of multivariate splines. For example,
the dimension is not known and stable local bases are impossible in general already
for the space of all piecewise polynomials of degree < k and smoothness r ≥ 1 with
respect to a finite triangulation of a polygonal domain in R2 if k ≤ 3r + 2 [10].

A reasonable alternative to “spline approximation with free triangulations” is to
consider nonlinear n-term approximation from hierarchical sequences of spline bases
over multilevel nested triangulations of Rd. (For the sake of simplicity, we shall restrict
ourselves in this article to the case d = 2.) To explain this concept more precisely,
consider a sequence (Tm)m∈Z of partitions of R2 into triangles with disjoint interiors
such that each level Tm is a refinement of the previous one Tm−1. Let T :=

⋃
m∈Z

Tm.
We impose certain mild (and natural) conditions on the triangulations which prevent
them from deterioration but still allow the triangles to change in size, shape, and
orientation quickly when moving around at a given level or through the levels. In
particular, triangles with arbitrarily sharp angles may occur at any location. We
denote by Sk,r(Tm) the set of all r-times differentiable piecewise polynomials with
respect to Tm of degree < k. Given a ladder of spaces

· · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ · · · , Sm ⊂ Sk,r(Tm),(1.1)

and bases Φm of Sm, m ∈ Z, we set Φ := ΦT :=
⋃
m∈Z

Φm. Using the standard
wavelet terminology, we can describe such a nested sequence of spaces with bases as
“spline multiresolution” (or “multiresolution analysis”).

Consider now the problem for nonlinear (n-term) approximation from the set
Σn of all piecewise polynomials of the form s =

∑n
j=1 cjϕj , where ϕj ∈ Φ may

come from different levels and locations. Once a particular multilevel triangulation
has been selected, the variety of piecewise polynomial approximations significantly
reduces. However, a great deal of flexibility is retained, and the problem remains
highly nonlinear. For instance, thin and elongated basis functions are allowed. On
the other hand, the advantages of multilevel approximation methods can be exploited
in full.

Our program consists of the following basic steps:
1. We construct hierarchical sequences of bases (Φm)m∈Z on multilevel trian-

gulations satisfying certain requirements of local regularity allowing anisotropically
shaped triangles.

2. To quantify the approximation process, we introduce and develop a family
(library) of smoothness spaces Bατ (ΦT ) depending on ΦT and as a consequence on the
triangulation T . We call them B-spaces since they have some resemblance to Besov
spaces. So, the idea is to measure the smoothness of the functions using a family of
space scales Bατ (ΦT ) (which vary with ΦT ) instead of a single scale of smoothness
spaces like the scale of Besov spaces.

3. We develop a coherent theory of nonlinear n-term approximation from ΦT
based on the idea of proving Jackson and Bernstein estimates and interpolation.

4. We utilize this theory in the development of algorithms for nonlinear piece-
wise polynomial (spline) approximation which capture the rate of the best approxi-
mation.

The logic of the resulting approximation scheme is the following: Suppose {ΦT }T
is a collection of multilevel sequences of (spline) bases as above.

(i) For a given function f , find the “right” triangulation T := Tf such that f
exhibits the most smoothness (sparsity of its representation) when measured via the
scale Bα(ΦT ).
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710 OLEG DAVYDOV AND PENCHO PETRUSHEV

(ii) Find an optimal or near optimal representation of f using ΦT . (Note that
ΦT is redundant, i.e., linearly dependent.)

(iii) Using this representation, run an algorithm for n-term Lp-approximation
which achieves the rate of the best n-term approximation.

Naturally, the first step presents the most challenging problem in this scheme. We
do not have a completely satisfactory algorithm for this step. (Note that this problem
has a complete and efficient solution in the simpler case of nonlinear approximation
from piecewise polynomials over dyadic partitions; see [54].) As it will be shown in
this article, the other steps are now well understood and have complete solutions.

The above program has been suggested in [38] and implemented in [38, 39] in
the cases of approximation from discontinuous piecewise polynomials and continuous
piecewise linear functions (r = −1, k ≥ 1, and r = 0, k = 2, where r = −1 corresponds
to the discontinuous case). The simplest example of a hierarchical family of continuous
basis functions is the set of all Courant elements generated by a multilevel nested
triangulation T , that is, the set of all piecewise linear and continuous functions ΦT =
{ϕθ} supported on the cells {θ} (each θ is the union of all triangles of a particular
level Tm attached to a vertex); see [38].

In the present article, we develop the theory of nonlinear n-term approximation
for basis families consisting of differentiable piecewise polynomials (r ≥ 1). The con-
struction of such basis functions suitable for application is hampered by the fact that
both the classical differentiable finite elements [14] and the earlier polynomial spline
basis constructions on arbitrary triangulations [1, 8, 16, 17, 18, 35, 36, 44, 48, 57] are
difficult to use for our purposes; see Remark 4.12 and the discussion in section 5.3. The
stable local spline bases of [27] can in principle be used in two variables. However, all
other arguments of our article are basically “dimension independent,” and we refrain
here from treating the case d > 2 only for the sake of simplicity and clarity. Therefore,
we build upon the nodal spline bases of [22], which is the only known approach that
produces stable local bases for nested spline spaces on general triangulations in all
dimensions.

However, these bases are stable only for triangulations satisfying (in R2) the
minimal angle condition. We extend the construction of [22] to a wider class of strong
locally regular triangulations; see section 2 for a definition. Note that the new basis
functions are invariant under affine transforms (see Remark 4.9). In the case r = 0
our construction reduces to the classical continuous Lagrange finite elements and is
valid for any locally regular triangulation; see Remark 4.13.

A focal point of our development is the characterization of nonlinear n-term ap-
proximation from families of differentiable spline basis functions, including the devel-
opment of B-spaces, proof of Jackson and Bernstein estimates, and characterization of
the approximation spaces by interpolation (see sections 2–3). In [39], there are three
algorithms developed for nonlinear n-term approximation in Lp (0 < p ≤ ∞) from
Courant elements. These can be immediately implemented for n-term approximation
from differentiable spline bases, and it can be shown similarly as in [39] that they
achieve the rate of the best approximation. We do not pursue this goal here.

The B-spaces from the present article can be viewed as a generalization of the
“approximation spaces” from section 3.4 of [51] (see also the references therein). More
precisely, in the specific setting of “quasi-uniform partitions” and the basis functions
used in [51], our B-spaces coincide with the approximation spaces of [51].

The theory of nonlinear n-term approximation from box splines (on uniform tri-
angulations) has been developed in [29] (p < ∞) and [30] (p = ∞) (for nonlinear
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NONLINEAR SPLINE APPROXIMATION 711

spline approximation in dimension d = 1, see [53]). In these articles, direct, inverse,
and characterization theorems have been proved utilizing certain Besov spaces. Even
in this case, our results, which utilize B-spaces (in place of Besov spaces), are more
complete since they characterize nonlinear n-term box spline approximation for all
rates of approximation, while in the above-mentioned articles the rate is restricted by
the Besov smoothness of the box splines.

There is an apparent connection between our developments here and multilevel
finite element methods for PDEs; see, e.g., [51]. Therefore, it seems an interesting
task to develop finite element algorithms for solving PDEs which achieve the rate of
the best n-term approximation of the solution.

The outline of the article is the following. In section 2, we introduce and de-
velop the B-spaces needed for the characterization of nonlinear approximation for any
family of basis functions with certain properties. In section 3, we develop the gen-
eral theory of nonlinear n-term approximation from piecewise polynomials, where the
global smoothness of functions is measured by means of our B-spaces. In section 4, we
construct hierarchical sequences of bases consisting of differentiable piecewise polyno-
mials. In section 5, we review a number of alternative constructions fitting into our
scheme, based on box splines and some other spline bases on special triangulations.
The final section A is an appendix containing some of the proofs.

Throughout the article, we use the following notation: Lloc∞ (R2) := C(R2) and
L∞(R2) := C0(R

2) := {f ∈ C(R2) : limx→∞ f(x) = 0}, Llocq := Llocq (R2), 0 <
q ≤ ∞, C := C(R2), ‖ · ‖q := ‖ · ‖Lq(R2), 0 < q ≤ ∞; Πk denotes the set of all
algebraic polynomials in two variables of total degree < k. For any Ω ⊂ R2, 11Ω
denotes the characteristic function of Ω and |Ω| denotes the Lebesgue measure of
Ω. Positive constants are denoted by c, c1, . . . (they may vary at every occurrence),
α ≈ β means c1α ≤ β ≤ c2α, and α := β or β =: α stands for “α is by definition
equal to β.”

2. B-spaces generated by spline multiresolution. In the present section,
we introduce and explore the smoothness spaces we need for the characterization of
nonlinear n-term spline approximation generated by families of differentiable basis
functions over multilevel nested triangulations.

2.1. Triangulations. In our development, we utilize three types of multilevel
nested triangulations. We shall call each of them simply a triangulation, although such
a triangulation does not form a single partition of R2 but rather an infinite nested
family of partitions (each of them is a triangulation of R2 in the more commonly used
sense).

Let T =
⋃
m∈Z

Tm be a set of closed triangles in R2 with levels Tm, m ∈ Z. Denote
by Vm the set of all vertices (nodal points) of triangles from Tm and set V :=

⋃
m∈Z

Vm.
We say that T is a triangulation of R2 if the following conditions are fulfilled:

(a) Every level Tm is a set of triangles with disjoint interiors which cover R2:
R2 =

⋃
�∈Tm

�.
(b) The levels (Tm)m∈Z of T are nested ; i.e., Tm+1 is a refinement of Tm obtained

by splitting each � ∈ Tm into subtriangles with disjoint interiors called children of
�.

(c) Each triangle � ∈ Tm has at least two and at most M0 children in Tm+1,
where M0 ≥ 2 is a constant independent of m.

(d) No hanging vertices condition: No vertex of any triangle � ∈ Tm lies in the
interior of an edge of another triangle from Tm.
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712 OLEG DAVYDOV AND PENCHO PETRUSHEV

(e) The valence Nv of each vertex v ∈ Vm (the number of triangles � ∈ Tm
which share v as a vertex) is ≤ N0, where N0 is a constant.

(f) For any compact K ⊂ R2 and any fixed m ∈ Z, there is a finite collection
of triangles from Tm which cover K.

Note that any two triangles in T either have disjoint interiors or one of them
contains the other. In particular, �′ ∈ Tm+1 is a child of � ∈ Tm (m ∈ Z) if and
only if �′ ⊂ �. If � and �′ are two different triangles in T and �′ ⊂ �, then we
say that � is an ancestor of �′, while �′ is a descendant of �.

Locally regular triangulations. We call a triangulation T =
⋃
m∈Z

Tm a locally
regular triangulation of R2, or briefly an LR-triangulation, if T satisfies the following
additional conditions:

(g) There exists a constant 1/2 ≤ ρ < 1 such that for each � ∈ T and any child
�′ ∈ T of �,

(1− ρ)|�| ≤ |�′| ≤ ρ|�|.(2.1)

(h1) There exists a constant 0 < δ1 ≤ 1 independent of m such that for any
�′,�′′ ∈ Tm (m ∈ Z) with a common edge,

δ1 ≤ |�′|/|�′′| ≤ δ−1
1 .(2.2)

By (e), it follows that for any �′,�′′ ∈ Tm with at least one common vertex,

(2.2) holds with δ1 replaced by δ
N0/2
1 .

Strong locally regular triangulations. We call a triangulation T =
⋃
m∈Z

Tm
a strong locally regular triangulation of R2, or briefly an SLR-triangulation, if T sat-
isfies (2.1) and the following condition that replaces (2.2):

(h2) There exists a constant 0 < δ2 ≤ 1/2 such that for any �′,�′′ ∈ Tm (m ∈ Z)
sharing an edge,

|conv (�′ ∪ �′′)|/|�′| ≤ δ−1
2 ,(2.3)

where conv (G) denotes the convex hull of G ⊂ R2.
Obviously, (2.3) implies (2.2) with δ1 = δ2. Therefore, each SLR-triangulation is

an LR-triangulation.
Regular triangulations. By definition, a triangulation T =

⋃
m∈Z

Tm is called
a regular triangulation if T satisfies the following condition:

(h3) There exists a constant β = β(T ) > 0 such that the minimal angle of each
triangle � ∈ T is ≥ β.

Next, we make a few remarks which will help understand better the nature of the
triangulations that we utilize.

(i) For each of the three types of triangulations there is a number of constants
that are assumed fixed. In what follows we refer to them as parameters. Thus the
parameters of an SLR-triangulation are M0, N0, ρ, and δ2. Notice that because of
(2.1), we can setM0 := 1/(1−ρ) and removeM0 from the list of parameters. However,
this would tend to obscure the actual role of ρ and M0.

(ii) It is a key observation that the collection of all SLR-triangulations with
given (fixed) parameters is invariant under affine transforms. The same is true for
LR-triangulations.

(iii) It is easy to see that (2.3) is equivalent to the following condition introduced
in [38]. Affine transform angle condition: There exists a constant β = β(T ), 0 < β ≤
π/3, such that if �0 ∈ Tm, m ∈ Z, and A : R2 → R2 is an affine transform that maps
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NONLINEAR SPLINE APPROXIMATION 713

�0 one-to-one onto an equilateral reference triangle, then for every � ∈ Tm which
has at least one common vertex with �0, we have

min angle (A(�)) ≥ β,(2.4)

where A(�) is the image of � by the affine transform A. (The equivalence of the two
conditions follows easily from the obvious but important fact that both conditions are
invariant under affine transforms. Note that we prefer to use (2.3) rather than (2.4)
in the definition of SLR-triangulations in this article since the constant δ2 appears
naturally when estimating norms of the basis functions constructed in section 4 (see
(4.8)) and also (2.3) is easier to verify in practical situations.)

(iv) As we have already mentioned, every SLR-triangulation is an LR-triangula-
tion, but the converse statement is not true. Also, every regular triangulation is an
SLR-triangulation but not the other way around. Counterexamples are given in [38].

(v) The maximal angle (MA) condition

π −max angle (�) ≥ β > 0, � ∈ T ,(2.5)

known from the finite element method [2] is totally different from our conditions of
regularity. It is easy to see that there are SLR-triangulations that do not satisfy MA,
and there are triangulations that satisfy the MA and fail to be locally regular. As we
shall see below (Example 4.7), our construction of stable differentiable basis functions
does not extend to triangulations satisfying the MA condition but failing to be SLR.

(vi) The rate of change of the size of the elements (|�|, min angle (�), and
diam(�)) of a triangle � ∈ T as � moves away from a fixed triangle �
 ∈ T for
different types of triangulations T is explored in [38]. We shall briefly discuss this
issue for SLR-triangulations, which are the most important type of triangulations
for the present article. An SLR-triangulation T may have an equilateral (or close
to such) triangle �
 at any level Tm with descendants �1 ⊃ �2 ⊃ · · · such that
min angle (�j) → 0 as j → ∞, and also a sequence (�′

j)
∞
j=0 ⊂ Tm with �′

0 = �
and �′

j ∩ �′
j+1 �= ∅ (j = 0, 1, . . .) such that min angle (�′

j) → 0. Conditions (2.1)
and (2.3) suggest geometric rates of change of |�|, min angle (�), and diam(�) as
� ∈ Tm moves away from a fixed �
 ∈ Tm. In fact, the rate of change is a power of
the minimal number of edges connecting � and �
; see [38].

(vii) We shall need to know what happens with the levels Tm of a triangulation
T as m→ −∞. By Lemma 2.1 from [38], for each LR-triangulation T there exists a
finite cover T−∞ of R2 such that either T−∞ = {R2} or T−∞ = (�j

∞)N∞
j=1, N∞ ≤ N0,

where each �j
∞ is an infinite triangle, i.e., the set of all points on and between two rays

which are not collinear and have a common beginning. Moreover, in the second case,
the infinite triangles (�j

∞)N∞
j=1 have a single common vertex and disjoint interiors, and

also each triangle � ∈ T and all its ancestors are contained in an infinite triangle
�j

∞ ∈ T−∞.
For more details about multilevel triangulations, see [38].
Some additional notation and preliminaries. We denote by [v1, v2] the

interval (straight line segment) with endpoints v1, v2 and by |e| the length of e =
[v1, v2]. Furthermore, we let [v1, v2, v3] denote the triangle with vertices v1, v2, v3, and
let |�| denote the area of � = [v1, v2, v3]. Throughout the article, we assume that
the vertices v1, v2, v3 of any triangle [v1, v2, v3] are ordered counterclockwise.

For a triangle � ∈ Tm (m ∈ Z), we define level(�) := m.
For any vertex v ∈ Vm, we let star (v) = star 1(v) denote the star of v, i.e., the

union of all triangles � ∈ Tm attached to v. Moreover, for each $ ≥ 2, we denote
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714 OLEG DAVYDOV AND PENCHO PETRUSHEV

by star �(v) the union of star �−1(v) and the stars of the vertices of star �−1(v). (Note
that star �(v) depends also on the level m, but we do not indicate this in the notation
since it is always clear from the context what level is meant.) We also set

Ω�� := ∪{star �(v) : v ∈ Vm, � ⊂ star �(v)}, � ∈ Tm.(2.6)

It is easy to check that Ω�� := ∪{star 2�−1(v) : v is a vertex of �}, � ∈ Tm.
It is readily seen that there exists a constant c� = c�(N0, $) ≤ N �

0 such that

#{� ∈ Tm : � ⊂ star �(v)} ≤ c�, v ∈ Vm,(2.7)

and hence there exists a constant c�� = c��(N0, $) ≤ 3c�(N0, 2$ − 1) − 5 ≤ 3N2�−1
0

such that

#{� ∈ Tm : � ⊂ Ω��′} ≤ c��, �′ ∈ Tm.(2.8)

We denote by Em the set of all edges of triangles of Tm and set E :=
⋃
m∈Z

Em.
We let star(e) denote the union of the two triangles attached to e ∈ Em.

For future use, we state the following inequality:

∑
�∈T ,�⊃�′

(|�′|/|�|)γ ≤
∞∑
j=0

ρjγ = c(ρ, γ) <∞, �′ ∈ T , γ > 0,(2.9)

which is immediate from the properties of LR-triangulations (|�′| ≤ ρ|�| if �′ is a
child of �).

2.2. Basis functions: The general setting. Let T =
⋃
m∈Z

Tm be a locally
regular (or better) triangulation. For m ∈ Z, r ≥ 0, and k ≥ 1, we denote by
Sk,rm = Sk,r(Tm) the set of all r times differentiable piecewise polynomial functions of
degree < k over Tm; i.e., s ∈ Sk,rm if and only if s ∈ Cr(R2) and s =

∑
�∈Tm

11� · P�
with P� ∈ Πk. Naturally, Sk,−1

m will denote the set of all piecewise polynomials of
degree < k over Tm which are, in general, discontinuous across the edges from Em.

We assume that for each m ∈ Z there is a subspace Sm of Sk,rm (r ≥ 0, k ≥ 2)
and a family Φm = {ϕθ : θ ∈ Θm} ⊂ Sm of basis functions satisfying the following
conditions:

1. Πk̃ ⊂ Sm for some 1 ≤ k̃ ≤ k (k̃ independent of m).
2. Sm ⊂ Sm+1 (m ∈ Z).
3. For any s ∈ Sm there exists a unique sequence of real coefficients a(s) =

(aθ(s))θ∈Θm such that

s =
∑
θ∈Θm

aθ(s)ϕθ.

(Thus, Φm is a basis for Sm and (aθ(·))θ∈Θm are the dual functionals.)
4. For each θ ∈ Θm there is a vertex v = vθ ∈ Vm such that

suppϕθ ⊂ star �(v) =: Eθ,(2.10)

‖ϕθ‖L∞(R2) = ‖ϕθ‖L∞(Eθ) ≤M1,(2.11)

|aθ(s)| ≤M2‖s‖L∞(Eθ), s ∈ Sm,(2.12)

where $ ≥ 1 and M1,M2 are positive constants, all independent of θ and m.
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NONLINEAR SPLINE APPROXIMATION 715

Let

Φ :=
⋃
m∈Z

Φm and Θ :=
⋃
m∈Z

Θm.

We shall refer to r, k, k̃, $, M1, and M2 as parameters of Φ.
A simple example of a family of basis functions satisfying the above conditions is

the set of well-known Courant elements (continuous piecewise linear basis functions,
r = 0, k = 2) associated with T (see [38]). Concrete constructions of differentiable
basis functions (r ≥ 1) will be discussed below in sections 4–5.

Although Θ and Θm (m ∈ Z) are simply index sets, in the case of Courant
elements, Θ can be identified as the set of all cells (supports of basis functions). As
we shall see in sections 4–5, in general, several basis functions of Φm may have the
same support. However, the supports of only ≤ constant of them may overlap.

Lemma 2.1. There is a constant L depending only on k, $, and N0 such that for
any � ∈ Tm (m ∈ Z),

#{θ ∈ Θm : Eθ ⊃ �} ≤ L,(2.13)

where Eθ is defined in (2.10).
Proof. We have by (2.10) and (2.8)

#{θ ∈ Θm : � ⊂ Eθ} ≤ dimSk,rm |Ω�
�

≤ dimSk,−1(Tm)|Ω�
�

=

(
k + 1

2

)
#{�′ ∈ Tm : �′ ⊂ Ω��}

≤
(
k + 1

2

)
c��.

We shall frequently use the equivalence of different norms of polynomials as stated
in the following lemma (see also [38]).

Lemma 2.2. Let P ∈ Πk, k ≥ 1, and 0 < p, q ≤ ∞.
(a) For any triangle � ⊂ R2, ‖P‖Lp(�) ≈ |�|1/p−1/q‖P‖Lq(�) with constants of

equivalence depending only on p, q, and k.
(b) If � and �′ are two triangles such that �′ ⊂ � and |�| ≤ c1|�′|, then

‖P‖Lp(�) ≤ c‖P‖Lp(�′) with c = c(p, k, c1).
(c) If �′ and � are two triangles such that �′ ⊂ � and |�′| ≤ c2|�| with

0 < c2 < 1, then ‖P‖Lp(�) ≤ c‖P‖Lp(�\�′) ≈ |�|1/p−1/q‖P‖Lq(�\�′) with constants
depending only on p, q, k, and c2.

By (2.2) and (2.7), |Eθ| ≈ |�| if � ⊂ Eθ, � ∈ Tm, and θ ∈ Θm. Using this and
Lemma 2.2, we obtain that, for 0 < p, q ≤ ∞,

‖s‖Lp(Eθ) ≈ |Eθ|1/p−1/q‖s‖Lq(Eθ), s ∈ Sm, θ ∈ Θm,(2.14)

where the constants of equivalence depend on p, q, k, and δ1. In particular, we shall
need (2.14) with s = ϕθ, when it takes the form ‖ϕθ‖p ≈ |Eθ|1/p−1/q‖ϕθ‖q, in view
of (2.10).

Lemma 2.3. The bases Φm are Lq-stable for all 0 < q ≤ ∞. That is, if g :=∑
θ∈Θm

bθϕθ, where (bθ)θ∈Θm is an arbitrary sequence of real numbers, then

‖g‖q ≈
( ∑
θ∈Θm

‖bθϕθ‖qq
)1/q

.
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716 OLEG DAVYDOV AND PENCHO PETRUSHEV

Moreover, for any γ ∈ R and 0 < τ ≤ ∞,( ∑
�∈Tm

(|�|γ‖g‖Lq(�))
τ

)1/τ

≈
( ∑
θ∈Θm

(|Eθ|γ‖bθϕθ‖q)τ
)1/τ

,(2.15)

where the constants of equivalence are independent of m and g. In the case q = ∞
(or τ = ∞) the $q-norm ($τ -norm) above is replaced by the sup-norm as usual.

Proof. We have to prove only (2.15), since the first statement of the lemma then
follows with γ = 0 and τ = q. For each � ∈ Tm, we have by (2.10)

‖g‖Lq(�) = ‖
∑

θ∈Θm, Eθ⊃�
bθϕθ‖q ≤ c

∑
θ∈Θm, Eθ⊃�

‖bθϕθ‖q.

Therefore, by Lemma 2.1 and (2.7),∑
�∈Tm

(|�|γ‖g‖Lq(�))
τ ≤ c

∑
�∈Tm

∑
θ∈Θm, Eθ⊃�

(|Eθ|γ‖bθϕθ‖q)τ

≤ c
∑
θ∈Θm

(|Eθ|γ‖bθϕθ‖q)τ .

In the other direction, since Φ is a basis of Sm and g ∈ Sm, we have bθ = aθ(g),
θ ∈ Θm, and hence, by (2.12), (2.14), and (2.11),

‖bθϕθ‖q = ‖aθ(g)ϕθ‖q ≤ c‖g‖L∞(Eθ)‖ϕθ‖q ≤ c‖g‖L∞(Eθ)|Eθ|1/q

≤ c‖g‖Lq(Eθ) ≤ c
∑

�∈Tm,�⊂Eθ

‖g‖Lq(�).

Since |Eθ| ≈ |�| if � ∈ Tm and � ⊂ Eθ, we have, by (2.7) and Lemma 2.1,∑
θ∈Θm

(|Eθ|γ‖bθϕθ‖q)τ ≤ c
∑
θ∈Θm

∑
�∈Tm,�⊂Eθ

(|�|γ‖g‖Lq(�))
τ

≤ c
∑

�∈Tm

(|�|γ‖g‖Lq(�))
τ .

Local polynomial approximation is an important tool in spline approximation.
For a function f ∈ Lq(G), G ⊂ R2, we denote by Ek(f,G)q the error of the best
Lq-approximation to f on G from Πk and by ωk(f,G)q the kth local modulus of
smoothness of f on G:

Ek(f,G)q := inf
P∈Πk

‖f − P‖Lq(G), ωk(f,G)q := sup
h∈R2

‖∆kh(f, ·)‖Lq(G).

Whitney’s theorem gives an important relation between these two quantities: If f ∈
Lq(G), 0 < q ≤ ∞, where G = � is an arbitrary triangle or G = Ω� with � ∈ T , T
is an SLR-triangulation, then

Ek(f,G)q ≤ cωk(f,G)q,(2.16)

where c = c(q, k) if G = � and c = c(q, k, δ2) if G = Ω� (δ2 is from (2.3)). For a
proof of this estimate, see, e.g., the appendix of [38]. Note that this estimate holds
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NONLINEAR SPLINE APPROXIMATION 717

for much more general regions G, but then the constant c = c(G) may become hard
to control.

For 0 < q ≤ ∞ and a triangle �, we let P�,q : Lq(�) → Πk be a projector such
that

‖f − P�,q(f)‖Lq(�) ≤ cEk(f,�)q for f ∈ Lq(�).(2.17)

Note that P�,q can be realized as a linear projector if q ≥ 1. For instance, one can
utilize the averaged Taylor polynomial. Namely, suppose�0 is an equilateral reference
triangle and A is an affine transform mapping � onto �0. Let now P (g) ∈ Πk be
the averaged Taylor polynomial of the function g := f ◦ A−1 (the composition of f
with A−1) over the disc B inscribed in �0 (see, e.g., section 4.1 of [12]). Clearly,
P : Lq(B) → Πk is a linear operator, ‖P (g)‖Lq(B) ≤ c‖g‖Lq(B) (q ≥ 1), and P is a
projector, i.e., P (Q) = Q for Q ∈ Πk. From these properties of P , it follows that for
an arbitrary Q ∈ Πk,

‖g − P (g)‖Lq(�0) ≤ ‖g −Q‖Lq(�0) + ‖Q− P (g)‖Lq(�0)

≤ ‖g −Q‖Lq(�0) + c‖P (g −Q)‖Lq(B) ≤ c‖g −Q‖Lq(�0),

which implies ‖g − P (g)‖Lq(�0) ≤ cEk(g,�0)q. Substituting back, one easily obtains
‖f − (P ◦ A)(f)‖Lq(�) ≤ cEk(f,�)q. Finally, we set P�,q := P ◦ A, which is the
desired linear projector of Lq(�) into Πk.

Note that P�,q cannot be realized as a linear operator if 0 < q < 1 (otherwise,
we would be able to construct a nonzero bounded linear functional on Lq).

We define a linear operator Qm : Sk,−1(Tm) → Sm as follows. For each θ ∈ Θm,
let λθ : Sk,−1(Tm)|Eθ

→ R be a linear functional such that

λθ(s|Eθ
) = aθ(s), s ∈ Sm, and

|λθ(f)| ≤M2‖f‖L∞(Eθ), f ∈ Sk,−1(Tm)|Eθ
.

Such linear functional always exists by the Hahn–Banach theorem. We set

Qm(s) :=
∑
θ∈Θm

λθ(s|Eθ
)ϕθ, s ∈ Sk,−1(Tm).(2.18)

Clearly, Qm(s) = s if s ∈ Sm, and thus Qm is a linear projector of Sk,−1(Tm) into
Sm.

Lemma 2.4. For any s ∈ Sk,−1(Tm), 0 < q ≤ ∞, and � ∈ Tm,

‖Qm(s)‖Lq(�) ≤ c‖s‖Lq(Ω�
�),(2.19)

with a constant c independent of m, �, and s.
Proof. By Lemma 2.2 and (2.14), we have

‖ϕθ‖Lq(�) ≤ c1|�|1/q‖ϕθ‖L∞(�) ≤ c1M1|�|1/q,
‖s‖L∞(Eθ) ≤ c2|�|−1/q‖s‖Lq(Eθ),

where c1 and c2 depend only on q and k. Therefore,

‖Qm(s)‖Lq(�) =
∥∥∥ ∑

θ∈Θm
�⊂Eθ

λθ(s|Eθ
)ϕθ

∥∥∥
Lq(�)

≤ c
∑

θ∈Θm
�⊂Eθ

|λθ(s|Eθ
)| ‖ϕθ‖Lq(�)

≤ c
∑

θ∈Θm
�⊂Eθ

‖s‖L∞(Eθ)|�|1/q ≤ c
∑

θ∈Θm
�⊂Eθ

‖s‖Lq(Eθ) ≤ c‖s‖Lq(Ω�
�).
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718 OLEG DAVYDOV AND PENCHO PETRUSHEV

We now extend Qm to Llocq (R2), 0 < q ≤ ∞. Let P�,q : Lq(�) → Πk be a
projector satisfying (2.17) (linear if q ≥ 1). We define

pm,q(f) :=
∑

�∈Tm

11� · P�,q(f) for f ∈ Llocq ,(2.20)

which is a projector of Llocq into Sk,−1
m .

We put

Qm,q(f) := Qm(pm,q(f)) for f ∈ Llocq ,(2.21)

which is evidently a projector of Llocq into Sm (linear if q ≥ 1 and all P�,q are linear).
We next show that Qm,q provides a good local Lq-approximation from Sm. We

let S�(f)q denote the error of Lq(Ω
�
�)-approximation from Sm, i.e.,

S�(f)q := inf
s∈Sm

‖f − s‖Lq(Ω�
�), � ∈ Tm.(2.22)

Thus, S�(f)q is the error of approximation to f from restrictions to Ω�� of functions
from Sm, which is not necessarily the same as the approximation by all r times
differentiable piecewise polynomials of degree < k defined only on Ω��, even if Sm
coincides with Sk,rm . However, since Πk̃ ⊂ Sm, S�(f)q does not exceed the error of

Lq(Ω
�
�)-approximation to f from polynomials of degree < k̃.

Lemma 2.5. If f ∈ Llocq (R2), 0 < q ≤ ∞ (f ∈ C if q = ∞), then

‖f −Qm,q(f)‖Lq(�) ≤ cS�(f)q, � ∈ Tm (m ∈ Z),

with c independent of f , m, and �.
Proof. Let s� ∈ Sm be such that ‖f−s�‖Lq(Ω�

�) ≤ cS�(f)q. Using the properties

of Qm (see Lemma 2.4), we find

‖f −Qm,q(f)‖Lq(�) = ‖f −Qm(pm,q(f))‖Lq(�)

≤ c‖f − s�‖Lq(�) + c‖s� −Qm(pm,q(f))‖Lq(�)

≤ cS�(f)q + c‖Qm(s� − pm,q(f))‖Lq(�)

≤ cS�(f)q + c‖s� − pm,q(f)‖Lq(Ω�
�)

≤ cS�(f)q + c‖f − s�‖Lq(Ω�
�) + c‖f − pm,q(f)‖Lq(Ω�

�)

≤ cS�(f)q.

Lemma 2.6. (a) If f ∈ Llocq (R2), 0 < q ≤ ∞, then for every compact K ⊂ R2,

‖f −Qm,q(f)‖Lq(K) → 0 as m→ ∞.(2.23)

(b) If f ∈ Lq(R2), 0 < q ≤ ∞, then

‖f −Qm,q(f)‖Lq(R2) → 0 as m→ ∞.(2.24)

For the proof of this lemma, we need the following result.
Lemma 2.7. If T is an LR-triangulation, then for each triangle �
 ∈ T

max{diam(�) : � ∈ Tm,� ⊂ �
} → 0 as m→ ∞.(2.25)
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NONLINEAR SPLINE APPROXIMATION 719

Proof. Let m0 := level(�
). We set dm := max{diam(�) : � ∈ Tm,� ⊂ �
}.
Since (dm)

∞
m=m0

is nonincreasing, it suffices to show the existence of a subsequence
tending to zero. Let e be an edge of a triangle � ∈ Tm, � ⊂ �
. If it is also an edge
of a child of �, then the valence of at least one of the two endpoints of e will increase
by one at level m + 1. (Recall that there are always at least two children, so that a
child and a parent cannot be the same triangle.) Therefore, e will be subdivided at
least once after at most S := 2(N0 − 3) + 1 steps of refinement. By (2.1), it readily
follows that any edge e′ obtained by subdividing e satisfies |e′| ≤ ρ|e| ≤ ρdm.

We call an edge of a descendant of �
 a cutting edge for �
 if one of its endpoints
is a vertex of �
 and the other lies in the interior of the opposite edge of �
. Since
all cutting edges must emanate from the same vertex of �
, there are totally no more
than M := N0 − 3 such edges for �
. Therefore, no new cutting edges for �
 will be
created at levels m > m0+M . (It is easy to see that as soon as no new cutting edges
are created at a level m, they cannot be created on any further level.) Using this
and the above observation, we conclude that there will be no cutting edges at levels
m > m0 +M + S since they all will be subdivided. Therefore, each edge e inside �


at these levels is either a proper part of an edge of �
 or has both of its endpoints
in the interiors of two different edges of �
, or else it has at least one endpoint in
the interior of �
. In all cases, condition (2.1) ensures that |e| ≤ ρdm0 , which implies
dm1 ≤ ρdm0 , where m1 = m0 +M + S + 1. It is clear now that there is an increasing
sequence {mk}∞k=1 such that

dmk
≤ ρkdm0

→ 0 as k → ∞,
which completes the proof.

Proof of Lemma 2.6. (a) By condition (f) on triangulations, it suffices to prove
the lemma for K = �
, an arbitrary triangle from T . By Lemma 2.7,

max{diam(Ω��) : � ∈ Tm,� ⊂ Ω���} → 0 as m→ ∞.(2.26)

Case 1. q < ∞. Fix ε > 0. In view of (2.26), there exists a piecewise constant
function Sε of the form

Sε =
∑

�∈Tmε ,�⊂Ω�
��

c�11�, mε ≥ level(�
),

such that

‖f − Sε‖Lq(Ω�
�� ) < ε(2.27)

(choose first g ∈ C(Ω���) so that ‖f − g‖Lq(Ω�
�� ) < ε/2 and then choose Sε so that

‖g − Sε‖L∞(Ω�
�� ) <

ε
2 |Ω��� |−1/q). Then Qm,q(Sε) = Qm(Sε).

We have, for m ≥ mε,

‖f −Qm,q(f)‖Lq(��) ≤ c‖f − Sε‖Lq(��) + c‖Sε −Qm,q(Sε)‖Lq(��)

+ c‖Qm(Sε − pm,q(f))‖Lq(��).(2.28)

For the third term above, we have

‖Qm(Sε − pm,q(f))‖Lq(��) ≤ c‖Sε − pm,q(f)‖Lq(Ω�
�� )

≤ c‖f − Sε‖Lq(Ω�
�� ) + c‖f − pm,q(f)‖Lq(Ω�

�� )(2.29)

≤ c‖f − Sε‖Lq(Ω�
�� ) ≤ cε,
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720 OLEG DAVYDOV AND PENCHO PETRUSHEV

where we used Lemma 2.4 and that ‖f − pm,q(f)‖Lq(Ω�
�� ) ≤ c‖f − Sε‖Lq(Ω�

�� ) (m ≥
mε), by (2.17).

It remains to show that ‖Sε − Qm,q(Sε)‖Lq(��) ≤ cε for sufficiently large m.
Denote by G the union of the edges of all triangles � ∈ Tmε

such that � ⊂ �
 and
by Gδ := {x ∈ R2 : dist(x,G) ≤ δ} the δ-neighborhood of G. Clearly, there exists
δ > 0 such that ‖Sε‖Lq(Gδ) < ε.

By (2.26), there exists m1 ≥ mε such that diam(Ω��) < δ for all triangles � ∈ Tm
(m ≥ m1) such that � ⊂ �
 and Ω�� ∩G �= ∅. Since Π1 ⊂ Sm, Qm(Sε)|� = Sε|� if
Sε|Ω�

�
= constant. Using this, we obtain by Lemma 2.5

‖Sε −Qm,q(Sε)‖Lq(��) ≤ c

( ∑
�∈Tm,Ω�

�∩G �=∅
S�(Sε)

q
q

)1/q

≤ c‖Sε‖Lq(Gδ) ≤ cε.

We substitute this estimate together with (2.27) and (2.29) in (2.28) to obtain

‖f −Qm,q(f)‖Lq(��) ≤ cε for m ≥ m1.

This implies (2.23) if q <∞.
Case 2. q = ∞. We have, by Lemma 2.5 and the fact that Π1 ⊂ Sm,

‖f −Qm,q(f)‖L∞(��) ≤ c max
�∈Tm,�⊂��

inf
C∈Π1

‖f − C‖L∞(Ω�
�).

Now the result follows, using (2.26) and the fact that f is uniformly continuous on
Ω��� .

Part (b) of the lemma is immediate from part (a).
We denote S−∞ :=

⋂
m∈Z

Sm. As we already mentioned, there are only two

possibilities for T−∞: T−∞ = {R2} or T−∞ = (�j
∞)N∞

j=1, N∞ ≤ N0, where {�j
∞}

are infinite triangles with disjoint interiors and a common vertex which cover R2. If
T−∞ = {R2}, then obviously R2 is the union of a sequence of nested triangles, and
hence each s ∈ S−∞ is a polynomial of degree < k on R2. Therefore, if T−∞ = {R2},
then S−∞ a subspace of Πk.

Suppose T−∞ = (�j
∞)N∞

j=1 and s ∈ S−∞. Then each triangle �j
∞ can be repre-

sented as the union of a sequence of nested triangles, and hence s is a polynomial
of degree < k on �j

∞. Therefore, in this case, s ∈ S−∞ implies s ∈ Cr(R2) and
s|�j

∞
= Pj |�j

∞
for some Pj ∈ Πk, j = 1, . . . , N∞.

Furthermore, if s ∈ S−∞ and |{x ∈ R2 : |s(x)| > t}| < ∞ for some t > 0, then
s = const. In particular, if s ∈ S−∞ ∩ Lp (p <∞), then s ≡ 0.

2.3. Definition of B-spaces. Equivalent norms. Interpolation. Suppose
T is an LR(or better)-triangulation and Φ = ΦT is a family of differentiable piecewise
polynomial basis functions over T as described in sections 2.1–2.2. For the character-
ization of nonlinear n-term Lp-approximation from Φ, we need the B-spaces Bατ (Φ)
which we shall introduce and explore in this subsection. In fact, the spaces Bατ (Φ)
depend only on the underlying ladder of spaces · · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ · · · associated
with the bases (Φm)m∈Z, but as it will be shown below these spaces have atomic
representations using Φ, which justifies our notation.

We shall need the B-spaces Bατ (Φ) in two cases: (a) 0 < p < ∞ and α > 0, or
(b) p = ∞ and α ≥ 1 (see Remark 2.14). In both cases, we define τ from the identity
1/τ = α+ 1/p (1/∞ := 0).
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NONLINEAR SPLINE APPROXIMATION 721

Definition of Bα
τ (Φ) via local approximation. We define the B-space Bατ (Φ)

as the set of all functions f ∈ Lτ (R2) such that

‖f‖Bα
τ (Φ)

:=

( ∑
�∈T

(|�|−αS�(f)τ )
τ

)1/τ

<∞,(2.30)

where S�(f)τ is the error of Lτ -approximation of f on Ω�� from Sm if � ∈ Tm (see
(2.22)).

It is readily seen that Bατ (Φ) is a linear space, ‖cf‖Bα
τ

= |c|‖f‖Bα
τ
, and ‖f +

g‖λBα
τ
≤ ‖f‖λBα

τ
+ ‖g‖λBα

τ
, with λ := min{τ, 1}. Clearly, see Theorem 2.8, if ‖f‖Bα

τ
= 0,

then f = 0 a.e. Therefore, ‖ · ‖Bα
τ
is a norm if τ ≥ 1 and a quasi norm if τ < 1.

We next define other equivalent norms in Bατ (Φ). We define

NΦ,S,η(f) :=

( ∑
�∈T

(|�|1/p−1/ηS�(f)η)
τ

)1/τ

,(2.31)

where we have taken into account that 1/τ := α+ 1/p. Thus, NΦ,S,τ (f) = ‖f‖Bα
τ (Φ)

.
Moreover, we shall show that NΦ,S,η(f) ≈ ‖f‖Bα

τ (Φ)
if 0 < η < p (see Theorem 2.10).

Definition of norms in Bα
τ (Φ) via basis functions (atomic decomposi-

tion). For f ∈ Lτ (R2), we define

NΦ(f) := inf
f=
∑

θ∈Θ
cθϕθ

(∑
θ∈Θ

(|Eθ|−α‖cθϕθ‖τ )τ
)1/τ

,(2.32)

where the infimum is over all representations of f in the form f =
∑
θ∈Θ cθϕθ in

Lτ . (Note that the existence of such representations for each f ∈ Lτ follows by
Lemma 2.6.) By Theorem 2.9,∑

θ∈Θ
(|Eθ|−α‖cθϕθ‖τ )τ <∞ implies

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥
p
<∞,

and hence
∑
θ∈Θ cθϕθ(x) converges absolutely a.e. Therefore, the specific type of

convergence that we use in the definition of NΦ(f) above is not essential. Using
(2.14), we have

NΦ(f) ≈ inf
f=
∑

θ∈Θ
cθϕθ

(∑
θ∈Θ

(|Eθ|1/p−1/η‖cθϕθ‖η)τ
)1/τ

≈ inf
f=
∑

θ∈Θ
cθϕθ

(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

.(2.33)

Definition of norms in Bα
τ (Φ) via projections. For f ∈ Llocη , we set

qm,η(f) := Qm,η(f)−Qm−1,η(f) ∈ Sm,(2.34)

where Qm,η is from (2.21), and let (bθ,η(f))θ∈Θm be defined by the identity

qm,η(f) =
∑
θ∈Θm

bθ,η(f)ϕθ, i.e., bθ,η(f) := aθ(qm,η(f)), θ ∈ Θm.(2.35)
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722 OLEG DAVYDOV AND PENCHO PETRUSHEV

We define

NΦ,Q,τ (f) :=

(∑
θ∈Θ

(|Eθ|−α‖bθ,τ (f)ϕθ‖τ )τ
)1/τ

(2.36)

and, more generally (see (2.31)),

NΦ,Q,η(f) :=

(∑
θ∈Θ

(|Eθ|1/p−1/η‖bθ,η(f)ϕθ‖η)τ
)1/τ

, 0 < η < p.(2.37)

By Lemmas 2.2–2.3, it follows that

NΦ,Q,η(f) ≈
(∑
m∈Z

∑
�∈Tm

(|�|1/p−1/η‖qm,η(f)‖Lη(�))
τ

)1/τ

(2.38)

and, for 0 < µ ≤ ∞,

(2.39)

NΦ,Q,η(f) ≈
(∑
θ∈Θ

(|Eθ|1/p−1/µ‖bθ,η(f)ϕθ‖µ)τ
)1/τ

≈
(∑
θ∈Θ

‖bθ,η(f)ϕθ‖τp
)1/τ

.

We shall show (see Theorem 2.10) that all of the above norms are equivalent. To
this end, we need the following embedding theorem.

Theorem 2.8. If f ∈ Lτ (R2) and NΦ,Q,η(f) <∞, 0 < η < p, then

f =
∑
m∈Z

qm,η(f) =
∑
θ∈Θ

bθ,η(f)ϕθ,(2.40)

with the series converging absolutely a.e. and in Lp, and

‖f‖p ≤ c
∥∥∥ ∑
m∈Z

|qm,η(f)(·)|
∥∥∥
p
≤ c
∥∥∥∑
θ∈Θ

|bθ,η(f)ϕθ(·)|
∥∥∥
p
≤ cNΦ,Q,η(f),(2.41)

with c independent of f .
The proof of Theorem 2.8 hinges on the following more general embedding theo-

rem, which is a special case of Theorem 2.5 from [54].
Theorem 2.9. If 0 < τ < p < ∞, or p = ∞, and 0 < τ ≤ 1, then for any

sequence of real numbers (cθ)θ∈Θ we have

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥
p
≤ c

(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

,(2.42)

with c independent of (cθ)θ∈Θ.
For completeness, we give the simple proof of this theorem in the appendix.
Proof of Theorem 2.8. We introduce the following abbreviated notation: Qm :=

Qm,η(f), qm := qm,η(f), bθ := bθ,η(f), and N(f) := NΦ,Q,η(f). By (2.35), (2.39), and
Theorem 2.9, we have∥∥∥ ∑

m∈Z

|qm(·)|
∥∥∥
p
≤ c
∥∥∥∑
θ∈Θ

|bθϕθ(·)|
∥∥∥
p
≤ cN(f) <∞,(2.43)
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NONLINEAR SPLINE APPROXIMATION 723

and hence
∑
m∈Z

|qm(x)| < ∞ a.e. On the other hand, by Lemma 2.6, we have
‖f −Qm‖Lη(�) → 0 as m→ ∞ for each � ∈ T . The above two facts imply

f −Q0 =

∞∑
m=1

qm absolutely a.e. on R2.(2.44)

We use Lemmas 2.1 and 2.2 to obtain, for � ∈ Tm (m ∈ Z),

‖qm‖L∞(�) ≤ c|�|− 1
p ‖qm‖Lp(�) ≤ c|�|− 1

p

∑
θ∈Θm, Eθ⊃�

‖bθϕθ‖p ≤ c|�|− 1
pN(f).

Therefore, for a fixed �′ ∈ Tν (ν ∈ Z),

ν∑
m=−∞

‖qm‖L∞(�′) ≤ cN(f)
∑

�∈T ,�⊃�′
|�|−1/p

= cN(f)|�′|−1/p
∑

�∈T ,�⊃�′
(|�′|/|�|)1/p(2.45)

≤ c|�′|−1/pN(f) <∞,

where we used (2.9). We set

s∞ := Q0 −
0∑

m=−∞
qm pointwise in R2.(2.46)

From (2.45), it follows that s∞ is well defined and the series in (2.46) converges
uniformly on every compact in R2. Evidently, (2.46) yields s∞ = Qν −∑ν

m=−∞ qm
for each ν ∈ Z.

Fix n ∈ Z. Using Theorem 2.9, we obtain, for ν ≤ n,

inf
s∈Sn

‖s∞ − s‖p ≤ ‖s∞ −Qν‖p =
∥∥∥ ν∑
m=−∞

qm

∥∥∥
p

≤ c

( ∑
θ∈
⋃ν

m=−∞ Θm

‖bθϕθ‖τp
)1/τ

→ 0 as ν → −∞,

where we used that (
∑
θ∈Θ ‖bθϕθ‖τp)1/τ ≈ N(f) < ∞. Therefore, s∞ ∈ Sn for every

n ∈ Z, and hence s∞ ∈ ⋂n∈Z
Sn = S−∞.

Identities (2.44) and (2.46) yield

f − s∞ =
∑
m∈Z

qm,η(f) =
∑
θ∈Θ

bθ,η(f)ϕθ absolutely a.e.,(2.47)

and hence, using (2.43),

‖f − s∞‖p ≤ c
∥∥∥ ∑
m∈Z

|qm,η(f)(·)|
∥∥∥
p

≤ c
∥∥∥∑
θ∈Θ

|bθ,η(f)ϕθ(·)|
∥∥∥
p
≤ cNΦ,Q,η(f) <∞.(2.48)
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724 OLEG DAVYDOV AND PENCHO PETRUSHEV

Since f ∈ Lτ and f − s∞ ∈ Lp, it readily follows that, for t > 0,

|{x : |s∞(x)| > t}| ≤ |{x : |f(x)| > t/2}|+ |{x : |f(x)− s∞(x)| > t/2}|
≤ (t/2)−τ‖f‖ττ + (t/2)−p‖f − s∞‖pp <∞,

which implies s∞ ≡ 0 (see the end of section 2.2). From this, (2.47), and (2.48), we
infer (2.40) and (2.41). The proof is complete.

Theorem 2.10. The norms ‖ · ‖Bα
τ (Φ)

, NΦ,S,η(·) (0 < η < p), NΦ(·), and
NΦ,Q,η(·) (0 < η < p), defined in (2.30)–(2.32) and (2.37), are equivalent with con-
stants of equivalence depending only on p, α, η, and the parameters of T and Φ.

Proof. Theorem 2.8 readily implies

NΦ(f) ≤ NΦ,Q,η(f), 0 < η < p,(2.49)

if NΦ,Q,η(f) <∞.
Suppose NΦ,S,η(f) < ∞. For each � ∈ Tm (m ∈ Z), we have, by (2.34) and

Lemma 2.5,

‖qm,η(f)‖Lη(�) ≤ c‖f −Qm,η‖Lη(�) + c‖f −Qm−1,η‖Lη(�) ≤ cS�(f)η + cS��(f)η,

where �
 ⊃ �, �
 ∈ Tm−1, is the only parent of �. These estimates readily imply

NΦ,Q,η(f) ≤ NΦ,S,η(f), 0 < η < p.(2.50)

It remains to prove that

NΦ,S,η(f) ≤ NΦ(f), 0 < η < p,(2.51)

provided NΦ(f) < ∞. Evidently, (2.49)–(2.51) imply the desired equivalence of
norms.

Notice first that, by Hölder’s inequality, NΦ,S,µ(f) ≤ NΦ,S,η(f) if 0 < µ ≤ η, and
hence it suffices to prove (2.51) only for τ < η < p.

Suppose f ∈ Lτ and 0 < NΦ(f) <∞. Then it follows by the definition of NΦ(f)
that there exists a sequence (cθ)θ∈Θ such that

f =
∑
θ∈Θ

cθϕθ in Lτ(2.52)

and (
∑
θ∈Θ(|Eθ|−α‖cθϕθ‖τ )τ )1/τ ≤ 2NΦ(f). Theorem 2.9 implies that in (2.52) we

have absolute convergence a.e. We next estimate

NΦ,S,η(f) :=

( ∑
�∈T

[|�|1/p−1/ηS�(f)η]
τ

)1/τ

,(2.53)

using that S�(g)η = 0 if g ∈ Sm and � ∈ Tm, and S�(g)η ≤ ‖g‖Lη(Ω�
�), in general.

We denote fj :=
∑
θ∈Θj

cθϕθ. Fix �′ ∈ T and assume that �′ ∈ Tm (m ∈ Z). We

have, using Theorem 2.9 (τ < η <∞) and (2.14),

S�′(f)τη = S�′

( ∞∑
j=m+1

fj

)τ
η

≤
∥∥∥ ∞∑
j=m+1

fj

∥∥∥τ
Lη(Ω�

�′ )

≤
∥∥∥ ∞∑
j=m+1

∑
θ∈Θj , Eθ⊂Ω2�

�′

cθϕθ

∥∥∥τ
Lη(Ω�

�′ )
≤ c

∑
θ∈Θ, Eθ⊂Ω2�

�′

‖cθϕθ‖τη

≤ c
∑

θ∈Θ, Eθ⊂Ω2�
�′

|Eθ|τ(1/η−1/τ)‖cθϕθ‖ττ .
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NONLINEAR SPLINE APPROXIMATION 725

Substituting this in (2.53), we obtain

NΦ,S,η(f)
τ ≤ c

∑
�′∈T

|�′|τ(1/p−1/η)
∑

θ∈Θ, Eθ⊂Ω2�
�′

|Eθ|τ(1/η−1/τ)‖cθϕθ‖ττ

= c
∑

�′∈T

∑
θ∈Θ, Eθ⊂Ω2�

�′

(|Eθ|/|�′|)τ(1/η−1/p)(|Eθ|−α‖cθϕθ‖τ )τ

≤ c
∑
θ∈Θ

(|Eθ|−α‖cθϕθ‖τ )τ
∑

�′∈T ,Ω2�
�′⊃Eθ

(|Eθ|/|�′|)τ(1/η−1/p),

where we once switched the order of summation. By (2.1)–(2.2),

#{�′ ∈ Tν : Ω2�
�′ ⊃ Eθ} ≤ c(N0, $), ν ∈ Z, θ ∈ Θ,

and |Eθ| ≤ cρj |�′| if Eθ ⊂ Ω2�
�′ with �′ ∈ Tm and θ ∈ Θm+j (m ∈ Z, j ≥ 0). Using

these, we obtain

∑
�′∈T ,Ω2�

�′⊃Eθ

(|Eθ|/|�′|)τ(1/η−1/p) ≤ c

∞∑
j=0

ρjτ(1/η−1/p) ≤ c <∞.

Therefore, NΦ,S,η(f)
τ ≤ c

∑
θ∈Θ(|Eθ|−α‖cθϕθ‖τ )τ ≤ cNΦ(f)

τ which yields
(2.51).

The following embedding result is quite obvious.
Theorem 2.11. For 0 < α0 < α1 and τj := (αj + 1/p)−1, j = 0, 1, we have the

continuous embedding

Bα1
τ1 (Φ) ⊂ Bα0

τ0 (Φ);(2.54)

i.e., if f ∈ Bα1
τ1 (Φ), then f ∈ Bα0

τ0 (Φ) and ‖f‖Bα0
τ0

(Φ) ≤ c‖f‖Bα1
τ1

(Φ).

Proof. By Theorem 2.8, if f ∈ Bα1
τ1 (Φ), then f ∈ Lτ1 ∩ Lp ⊂ Lτ0 . Fix 0 < η < p.

Then by (2.39), we have

‖f‖
B

αj
τj

(Φ)
≈
(∑
θ∈Θ

‖bθ,η(f)ϕθ‖τjp
)1/τj

, j = 0, 1,

and the theorem follows since τ1 < τ0.
Interpolation of B-spaces. We first recall some basic definitions from the

real interpolation method. We refer the reader to [3] and [4] as general references
for interpolation theory. For a pair of quasi-normed spaces X0, X1, embedded in a
Hausdorff space, the space X0+X1 is defined as the collection of all functions f that
can be represented as f0 + f1 with f0 ∈ X0 and f1 ∈ X1. The quasi norm in X0 +X1

is defined by

‖f‖X0+X1 := inf
f=f0+f1

‖f0‖X0
+ ‖f1‖X1

.

Peetre’s K-functional is defined for each f ∈ X0 +X1 and t > 0 by

K(f, t) := K(f, t;X0, X1) := inf
f=f0+f1

‖f0‖X0
+ t‖f1‖X1

.(2.55)
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726 OLEG DAVYDOV AND PENCHO PETRUSHEV

The real interpolation space (X0, X1)λ,q with 0 < λ < 1 and 0 < q ≤ ∞ is defined as
the set of all f ∈ X0 +X1 such that

‖f‖(X0,X1)λ,q
:= ‖f‖X0+X1

+

(∫ ∞

0

(t−λK(f, t))q
dt

t

)1/q

<∞

with the Lq-norm replaced by the sup-norm if q = ∞.
It is easily seen that if X1 ⊂ X0 (X1 continuously embedded in X0), then

K(f, t) ≈ ‖f‖X0 for f ∈ X0 and t ≥ 1 and, consequently,

‖f‖(X0,X1)λ,q
≈ ‖f‖X0 +

( ∞∑
ν=0

[2νλK(f, 2−ν)]q
)1/q

.(2.56)

Theorem 2.12. Suppose 0 < p <∞ and α0, α1 > 0, or p = ∞ and α0, α1 ≥ 1.
Let τj := (αj + 1/p)−1, j = 0, 1. Then

(Bα0
τ0 (Φ), B

α1
τ1 (Φ))λ,τ = Bατ (Φ)(2.57)

with equivalent norms, provided α = (1 − λ)α0 + λα1 with 0 < λ < 1 and τ :=
(α+ 1/p)−1.

Proof. We shall use some ideas from [32]. We may assume that α0 < α1. We
denote briefly Bα := Bατ (Φ) and Bαj := B

αj
τj (Φ), j = 0, 1. Furthermore, we denote

by $q the space of all sequences a = (aθ)θ∈Θ of real numbers such that

‖a‖�q :=

(∑
θ∈Θ

|aθ|q
)1/q

<∞.

We shall utilize the following well-known interpolation result (see, e.g., [3]):

($τ0 , $τ1)λ,τ = $τ , where 1
τ = 1−λ

τ0
+ λ
τ1

with 0 < λ < 1.(2.58)

We fix 0 < η < p. Then we normalize the basis functions from Φ in Lp, that is,
‖ϕθ‖p = 1 (we use the same notation for the normalized basis functions). We also
renormalize the dual functionals λθ in the definition of Qm in (2.18) accordingly.

We denote by b(f) = (bθ(f))θ∈Θ the sequence of numbers defined by (see (2.34)–
(2.35))

qm,η(f) =:
∑
θ∈Θm

bθ(f)ϕθ, m ∈ Z (‖ϕθ‖p = 1).

By Theorem 2.8, Theorem 2.10, and (2.39), if f ∈ Bαj (j = 0, 1), then

f
Lp
=
∑
θ∈Θ

bθ(f)ϕθ and ‖f‖Bαj ≈ ‖b(f)‖�τj ,(2.59)

and similarly for f ∈ Bα.
The theorem will follow by (2.58) and the following lemma.
Lemma 2.13. For f ∈ Bα0 +Bα1 = Bα0 (α0 < α1), we have

K(f, t;Bα0 , Bα1) ≈ K(b(f), t; $τ0 , $τ1), t > 0.(2.60)
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NONLINEAR SPLINE APPROXIMATION 727

Proof. We first prove that

K(f, t;Bα0 , Bα1) ≤ cK(b(f), t; $τ0 , $τ1), t > 0.(2.61)

Indeed, let a = (aθ)θ∈Θ ∈ $τ1 . Then a ∈ $τ0 (τ0 > τ1) and since b(f) ∈ $τ0 (f ∈ Bα0),

we have b(f)− a ∈ $τ0 . We define g
Lp

:=
∑
θ∈Θ aθϕθ. Then by Theorem 2.9, g is well

defined, and hence

f − g Lp
=
∑
θ∈Θ

(bθ(f)− aθ)ϕθ.

By (2.33) and Theorem 2.10, we infer

‖g‖Bα1 ≤ c‖a‖�τ1 and ‖f − g‖Bα0 ≤ c‖b(f)− a‖�τ0 .
Since a ∈ $τ1 is arbitrary, the last two estimates give (2.61).

We next prove that

K(b(f), t; $τ0 , $τ1) ≤ cK(f, t;Bα0 , Bα1), t > 0.(2.62)

Suppose g ∈ Bα1 ; then by Theorem 2.11, g ∈ Bα0 (α0 < α1), and hence f − g ∈ Bα0 .
We shall show that there exists a sequence b(g) = (bθ(g))θ∈Θ ∈ $τ1 such that

g
Lp
=
∑
θ∈Θ

bθ(g)ϕθ with ‖g‖Bα1 ≈ ‖b(f)‖�τ1(2.63)

and

f − g Lp
=
∑
θ∈Θ

(bθ(f)− bθ(g))ϕθ with ‖f − g‖Bα0 ≈ ‖b(f)− b(g)‖�τ0 .(2.64)

Clearly, estimate (2.62) follows by (2.63)–(2.64).
Notice that if η ≥ 1, then b(·) can be realized as a linear operator, and hence

b(f − g) = b(f) − b(g). Therefore, (2.63)–(2.64) are immediate from g ∈ Bα1 and
f − g ∈ Bα0 .

Suppose η < 1. For � ∈ T , we let P�(f) := P�,η(f) ∈ Πk be the polynomial
from the definition of pm,η(f) in (2.20) (P�(f) is not unique). Thus P�(f) ∈ Πk is
such that

‖f − P�(f)‖Lη(�) ≤ cEk(f,�)η.(2.65)

We shall next show that for each � ∈ T there exists a polynomial P�(g) ∈ Πk such
that

‖g − P�(g)‖Lη(�) ≤ cEk(g,�)η(2.66)

and

‖f − g − (P�(f)− P�(g))‖Lη(�) ≤ cEk(f − g,�)η.(2.67)

We consider two cases.
Case 1. E(f − g) ≤ E(g), where E(·) := Ek(·,�)η. Let R ∈ Πk be such that

‖f − g −R‖ = E(f − g), where ‖ · ‖ := ‖ · ‖Lη(�).(2.68)
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728 OLEG DAVYDOV AND PENCHO PETRUSHEV

We define P�(g) := P�(f) − R ∈ Πk. Then (2.67) holds, by (2.68). We use (2.65)
and (2.68) to obtain

‖g − P�(g)‖ ≤ c‖f − P�(f)‖+ c‖f − g −R‖ ≤ cE(f) + cE(f − g)
≤ cE(f − g) + cE(g) + cE(f − g) ≤ cE(g),

which gives (2.66).
Case 2. E(g) < E(f−g). This time we choose P�(g) ∈ Πk so that ‖g−P�(g)‖ =

E(g). Similarly as above, one can show that

‖f − g − (P�(f)− P�(g))‖ ≤ cE(f − g).

Thus the existence of P�(g) ∈ Πk satisfying (2.66) and (2.67) is established.
Using the polynomials P�(g) from above, we define, for m ∈ Z,

pm,η(g) :=
∑

�∈Tm

11� · P�(g) and pm,η(f − g) :=
∑

�∈Tm

11� · (P�(f)− P�(g)).

Furthermore, as in (2.21) and (2.34), we define

Qm,η(g) := Qm(pm,η(g)) and qm,η(g) := Qm,η(g)−Qm−1,η(g).

We define Qm,η(f − g) and qm,η(f − g) in the same way. Finally, we define b(g) =
(bθ(g))θ∈Θ and b(f − g) = (bθ(f − g))θ∈Θ from

qm,η(g) =:
∑
θ∈Θm

bθ(g)ϕθ and qm,η(f − g) =:
∑
θ∈Θm

bθ(f − g)ϕθ, m ∈ Z.

Evidently, pm,η(f − g) = pm,η(f) − pm,η(g) and since Qm is a linear operator, it
follows that b(f − g) = b(f) − b(g). From this and the fact that P�(g) satisfies
(2.66) and (2.67), using Theorem 2.8, Theorem 2.10, and (2.39), we obtain that b(g)
satisfies (2.63) and (2.64), and hence (2.62) holds. This completes the proof of the
lemma.

By Lemma 2.13, (2.58), and (2.59) (with αj replaced by α), we obtain

‖f‖(Bα0 ,Bα1 )λ,τ
≈ ‖b(f)‖(�τ0 ,�τ1 )λ,τ

≈ ‖b(f)‖�τ ≈ ‖f‖Bα .

Thus the proof of Theorem 2.12 is complete.
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NONLINEAR SPLINE APPROXIMATION 729

Several remarks are in order.
Remark 2.14. (a) If p = ∞, then the B-space Bατ (Φ) (τ := 1/α) is useful for our

goals only if α ≥ 1. The reason for this is that Bατ (Φ) is not embedded in C if α < 1.
Indeed, consider the function f :=

∑∞
j=1 j

−1ϕθj , where θj ∈ Θmj ,m1 < m2 < · · ·, and
{ϕθj} are Courant (or other) elements which overlap so that ‖f‖∞ ≈∑∞

j=1 j
−1 = ∞.

On the other hand (see (2.33)), |f |Bα
τ (Φ)

≤ c(
∑∞
j=1 j

−τ )1/τ <∞, since τ := 1/α > 1.
(b) We introduced the B-norms NΦ,S,η(·) and NΦ,Q,η(·) with 0 < η < p (see (2.31)

and (2.37)) for the following reason. As we shall see in section 3, normally α > 1, and
hence τ < 1, which compels us to work in Lτ with τ < 1, which is not a very friendly
space. At the same time, if p > 1 we can choose 1 ≤ η < p and work in Lη instead.

(c) We also want to explain why we introduce the B-spaces over locally regular
(or better) triangulations but not over more general ones. The reason is that if we
relax the main conditions (2.1)–(2.2) in the definition of LR-triangulations, then we
can hardly work with the B-spaces. In particular, the equivalence of the norms (see
Theorem 2.10) fails to exist, which makes it impossible to prove all the results from
section 3.

General B-spaces. Given an LR(or better)-triangulation T and a family of
basis functions Φ = ΦT over T as in section 2.2, we define the more general B-space
Bαpq(Φ) = B

α
pq(S), α > 0, 0 < p, q ≤ ∞, as the set of all f ∈ Lp(R2) such that

‖f‖Bα
pq(Φ)

:= ‖f‖p +
(∑
m∈Z

[
2mα

( ∑
�∈T , 2−m≤|�|<2−m+1

S�(f)pp

)1/p]q)1/q

<∞,

with the $q-norm replaced by the sup-norm if q = ∞, where S�(f)p is as above
(see (2.22)). Evidently, Bαp (Φ) = Bαpp(Φ). In going further, the norms in Bατ (Φ)
from (2.31), (2.32), and (2.37) can be generalized accordingly. In the present article,
we do not explore the B-spaces in such generality because the space scale Bατ (Φ) is
sufficient for our goal of characterizing the approximation rates of nonlinear n-term
approximation from differentiable piecewise polynomials.

Fat B-spaces: The link to Besov spaces. Suppose T is an arbitrary SLR-
triangulation of R2. The fat B-space Bαkτ (T ) with k ≥ 1 and α, τ as in the definition
of Bατ (T ) (section 2.3) is defined (see [38]) as the set of all functions f ∈ Lτ (R2) such
that

‖f‖Bαk
τ (T ) :=

( ∑
�∈T

[|�|−αEk(f,Ω�)τ ]
τ

)1/τ

≈
( ∑

�∈T
[|�|−αωk(f,Ω�)τ ]

τ

)1/τ

<∞,

where Ek(f,Ω�)τ is the error of Lτ -approximation to f on Ω� := Ω1
� from Πk

and ωk(f,Ω�)τ is the local Lτ -modulus of smoothness of f on Ω�. (Recall that
Ek(f,Ω�)τ ≈ ωk(f,Ω�)τ by Whitney’s theorem (2.16), since T is an SLR-triangula-
tion.) Furthermore, other equivalent norms in Bαkτ (T ) as well as more general fat
B-spaces Bαkpq (T ) can be defined as in [38].

Suppose that Φ = ΦT is a hierarchical family of basis functions over T as described
in section 2.2. Assuming Πk ⊂ Sm ⊂ Sk,rm (T ) for all m ∈ Z (that is, k̃ = k in the
notation of section 2.2), we have for f ∈ Lτ and � ∈ Tm,

Ek(f,Ω
�
�)τ ≤ c

∑
�′∈Tm,�′⊂Ω�

�

Ek(f,Ω�′)τ ,
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730 OLEG DAVYDOV AND PENCHO PETRUSHEV

which implies ‖f‖Bα
τ (ΦT ) ≤ c‖f‖Bαk

τ (T ). Therefore, the space Bαkτ (T ) is a good can-
didate to replace Bατ (Φ) in nonlinear spline approximation, but this is only possible
if 0 < α < α0 for some α0 < ∞, which we do not compute here. The problem with
the space Bαkτ (T ) is that ‖ϕθ‖Bαk

τ (T ) < ∞ only for 0 < α < α0. (See Theorem 2.15
in the case of regular triangulations.) Therefore, the basic norm equivalence results
(Theorem 2.10) hold only for a restricted range of α. Thus, Bαkτ (T ) is simply not the
“right” space for the specific problem at hand if α ≥ α0. It is too “fat.” However, the
spaces Bαkτ (T ) are still noteworthy since they are less sensitive to small perturbations
of the triangulation T and are technically easier. We believe that a situation will
present itself when they will be the “right” spaces.

Comparison between regular B-spaces and Besov spaces. We begin by
recalling the definition of the classical Besov space by moduli of smoothness. So, the
space Bsq(Lp) := B

s
q(Lp(R

2)), s > 0, 1 ≤ p, q ≤ ∞, is defined as the set of all functions
f ∈ Lp(R2) such that

‖f‖Bs
q(Lp) :=

(∫ ∞

0

(t−sωk(f, t)p)q
dt

t

)1/q

<∞(2.69)

(‖f‖p is usually added to the right-hand side above), where k := [s]+1 and ωk(f, t)p is
the kth modulus of smoothness of f in Lp(R

2), i.e., ωk(f, t)p := sup|h|≤t ‖∆kh(f, ·)‖p.
It is well known that whenever 1 ≤ p ≤ ∞, if in (2.69) k is replaced by any other
k > s, then the resulting space would be the same with an equivalent norm. However,
the situation is totally different when p < 1, and this is a reason for introducing k as
a parameter of the Besov spaces in the following.

As elsewhere, let us assume that 0 < p <∞ and α > 0, or p = ∞ and α ≥ 1, and
in both cases 1/τ := α+1/p. Let k ≥ 1. We define the space B2α,k

τ (Lτ ) as the Besov
space B2α

τ (Lτ ) (see (2.69)), where k and α are independent of each other. These are
the spaces that naturally occur in nonlinear spline approximation (see [53]).

Suppose that T ∗ is a regular triangulation of R2 (see section 2.1). Then as shown
in [38], Bαkτ (T ∗) = B2α,k

τ (Lτ ) with equivalent norms. (Notice that the smoothness
parameters of B-spaces and Besov spaces are normalized differently and α corresponds
to 2α.)

Let us now assume that ΦT ∗ = {ϕθ} is a family of basis functions over T ∗ as
in section 2.2 such that Πk ⊂ Sm ⊂ Sk,rm (m ∈ Z), where r ≥ 0 and k > r. As we
mentioned above, the fat B-space Bαkτ (T ∗), and hence the Besov space B2α,k

τ (Lτ ), is
a good candidate to replace the B-space Bατ (ΦT ∗) in nonlinear n-term approximation
from ΦT ∗ . We next spell out the exact conditions for equivalence of the corresponding
norms.

Theorem 2.15. Under the above assumptions, if 0 < α < r + 1 + 1/p, then

B2α,k
τ (Lτ ) = B

α
τ (ΦT ∗)(2.70)

with equivalent norms. Furthermore, if a single basis function ϕθ ∈ ΦT ∗ does not
belong to Cr+1, then the equivalence is no longer true when α ≥ r + 1 + 1/p. More
precisely, for such ϕθ and α, ‖ϕθ‖B2α,k

τ (Lτ )
= ∞, while ‖ϕθ‖Bα

τ (ΦT ∗ ) ≈ ‖ϕθ‖p.
Proof. As we mentioned before, ‖f‖Bα

τ (ΦT ∗ ) ≤ c‖f‖Bαk
τ (T ∗) for f ∈ Bαkτ (T ∗),

and also we have ‖f‖Bαk
τ (T ∗) ≈ ‖f‖B2α,k

τ (Lτ )
, exactly as in Theorem 2.25 from [38].

Therefore,

‖f‖Bα
τ (ΦT ∗ ) ≤ c‖f‖B2α,k

τ (Lτ )
for f ∈ B2α,k

τ (Lτ ).
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NONLINEAR SPLINE APPROXIMATION 731

The proof of the reverse estimate follows in the footsteps of the proof of Theo-
rem 2.28 from [38], and we shall indicate only the differences. Using the conditions
on ΦT ∗ and the fact that T ∗ is regular, one can show by straightforward calculations
that, for each θ ∈ Θ(T ∗),

ωk(ϕθ, t)
τ
τ ≤

{
c|Eθ| 12 (1−(r+1)τ) · t1+(r+1)τ if 0 < t < |Eθ|1/2,
c|Eθ| if t ≥ |Eθ|1/2.(2.71)

Moreover, both sides of (2.71) are equivalent if ϕθ does not belong to Cr+1. In going
further, one uses (2.71) exactly as in [38] to complete the proof of the theorem.

Remark 2.16. An interesting situation occurs when p = ∞ and r = 0. Then there
is no α for which (2.70) holds. This is the case when ΦT ∗ is the set of all Courant
elements generated by T ∗ (a regular triangulation).

Comparison between different B-spaces and Besov spaces. Suppose ΦT
is a family of basis functions associated with an SLR-triangulation T which allows
arbitrarily sharp angles. Then some extremely “skinny” basis functions ϕθ ∈ ΦT
(with elongated level curves) will occur. It is easily seen that such functions have
huge Besov norms (see [38]) compared to their Lp-norms as well as their B(ΦT )-
norms (see Theorem 3.2 below) for any smoothness α > 0. Therefore, the B-spaces
for such a triangulation are essentially different from Besov spaces. The situation is
quite similar when comparing two B-spaces over different triangulations. Therefore,
the B-spaces change substantially with the triangulations, thus making the search for
the “right” triangulation mentioned in the introduction a meaningful task. In contrast
to this, the standard Besov spaces can be used only to characterize the approximation
power of piecewise polynomials over regular triangulations.

B-spaces over compact domains. B-spaces can be introduced on an arbitrary
compact polygonal domain E ⊂ R2. A substantial difference would be in assuming
that each triangulation T of E is of the form T =

⋃∞
m=0 Tm, where T0 is an initial level

(triangulation of E) and T1, T2, . . . are consecutive refinements of T0. This approach
is important for the applications (see [39]).

B-spaces in dimensions d > 2. Multilevel triangulations and B-spaces can
be introduced in much the same way in dimensions d > 2. Of course, then the
triangles should be replaced by simplices, thus making some geometric argumentation
of this section essentially more involved. In particular, the property (e) of a multilevel
triangulation should be extended to all faces of the simplices in Tm, thus saying that
there are at most N0 simplices in Tm attached to a particular face. The “no hanging
vertices” condition (d) should be replaced by the condition that each facet of a simplex
in Tm is a common facet of exactly two simplices in Tm. The minimal angle condition
appearing in the definition of regular triangulations and in (2.4) should be replaced
by the shape regularity condition that postulates the existence of an upper bound on
the ratio of the diameter of a simplex and the diameter of the inscribed sphere. In
conditions (2.1)–(2.3) the area should be replaced by the d-dimensional volume.

B-spaces in dimension d = 1. B-spaces can be introduced in the univariate
case, but none will give anything new, and hence they are not needed. The key fact
is that, in the univariate case, the Bernstein inequality involving Besov spaces holds
with no restrictions on the smoothness parameter α <∞ (see [53]).

In a nutshell, the essence of the spaces we considered in this section is the fol-
lowing. The Besov spaces are based on local polynomial approximation over regular
multilevel triangulations, which is explicitly shown in [38]. When the regular tri-
angulations are replaced by SLR-triangulations, then the Besov spaces become fat
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732 OLEG DAVYDOV AND PENCHO PETRUSHEV

B-spaces, which further evolve to B-spaces when the local polynomial approximation
is replaced by local spline approximation.

The B-spaces are closely related to certain anisotropic maximal functions, non-
classical differentiability, and other problems, which are beyond the scope of this
article.

3. Nonlinear n-term spline approximation. In this section, we assume that
T is a locally regular (or better) triangulation of R2. Also, we assume that Φ = ΦT
is a hierarchical family of basis functions over T (see section 2.2). Notice that Φ is
not a basis; Φ is redundant. We consider nonlinear n-term approximation from Φ in
Lp(R

2) (0 < p ≤ ∞), where we identify L∞(R2) as C0(R
2). We let Σn(Φ) denote the

nonlinear set consisting of all splines s of the form

s =
∑
θ∈M

aθϕθ,

where M ⊂ Θ(T ), #M ≤ n, and M may vary with s. We denote by σn(f,Φ)p the
error of Lp-approximation to f ∈ Lp(R2) from Σn(Φ):

σn(f,Φ)p := inf
s∈Σn(Φ)

‖f − s‖p.

Our goal is to characterize the approximation spaces generated by nonlinear n-term
approximation from Φ. To this end we next prove a pair of companion Jackson and
Bernstein estimates. We shall utilize the B-spaces Bατ (Φ) introduced in section 2. We
assume that 0 < p <∞ and α > 0, or p = ∞ and α ≥ 1. In both cases, 1/τ := α+1/p
(1/∞ := 0).

Theorem 3.1 (Jackson estimate). If f ∈ Bατ (Φ), then

σn(f,Φ)p ≤ cn−α‖f‖Bα
τ (Φ)

,(3.1)

with c independent of f and n.
In the case 0 < p <∞, this theorem follows by the general Theorem 3.4 from [38],

in view of the results of section 2. For completeness, we shall give its short proof in
the appendix. The proof when p = ∞ can be carried out as the proof of Theorem 4.1
from [39] but is a little longer, and so we shall skip it.

Theorem 3.2 (Bernstein estimate). If s ∈ Σn(Φ), then

‖s‖Bα
τ (Φ)

≤ cnα‖s‖p,(3.2)

with c independent of s and n.
The proof of this (vital for our development) theorem utilizes the ideas of the

proofs of Theorem 3.6 from [38] (0 < p <∞) and Theorem 4.2 from [39] (p = ∞) but
is not identical to them. We shall give the proof in the appendix.

For a fixed T and Φ := ΦT , we set K(f, t) := K(f, t;Lp, B
α
τ (Φ)) (Lp := C0 if

p = ∞); see (2.55). The Jackson and Bernstein estimates from Theorems 3.1 and 3.2
imply in a standard way (see, e.g., [55]) the following direct and inverse estimates:
For any α > 0, if f ∈ Lp, then

σn(f,Φ)p ≤ cK(f, n−α)(3.3)

and

K(f, n−α) ≤ cn−α
(
‖f‖p +

[
n∑
ν=1

1

ν
(νασν(f,Φ)p)

µ

]1/µ)
,(3.4)

where µ := min{p, 1} and c is independent of f and n.
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NONLINEAR SPLINE APPROXIMATION 733

An immediate consequence of (3.3) and (3.4) is that σn(f,Φ)p = O(n
−γ), 0 < γ <

α, if and only if K(f, n−α) = O(n−γ). More generally, these estimates enable us to
characterize the approximation spaces generated by nonlinear n-term approximation
from Φ. We define the approximation space Aγq := Aγq (Φ, Lp), α > 0, 0 < q ≤ ∞, as
the set of all functions f ∈ Lp such that

‖f‖Aγ
q
:= ‖f‖p +

( ∞∑
n=1

(nγσn(f,Φ)p)
q 1

n

)1/q

<∞

with the $q-norm replaced by the sup-norm if q = ∞ as usual.
The direct and inverse estimates (3.3)–(3.4) readily imply (see, e.g., [55]) the

following characterization of the approximation spaces.
Theorem 3.3. If 0 < γ < α and 0 < q ≤ ∞, then

Aγq (Φ, Lp) = (Lp, B
α
τ (Φ)) γ

α ,q

with equivalent norms.
In one specific case the interpolation spaces can be identified as B-spaces.
Theorem 3.4. Suppose 0 < p < ∞ and α > 0, or p = ∞ and α > 1, and let

τ := (α+ 1/p)−1. Then

Aατ (Φ, Lp) = B
α
τ (Φ)(3.5)

with equivalent norms.
The following interpolation result is immediate from Theorems 3.3 and 3.4.
Corollary 3.5. Suppose p, α, and τ =: τ(α) are as in the hypothesis of Theo-

rem 3.4, and let β > α and τ(β) := (β + 1/p)−1. Then

(Lp, B
β
τ(β)(Φ))α

β ,τ(α)
= Bατ(α)(Φ)(3.6)

with equivalent norms.
Proof of Theorem 3.4. We shall employ the idea of the proof of Theorem 3.3 in

[30]. We shall use abbreviated notation: Aαq := Aαq (Φ, Lp), B
α
τ := Bατ (Φ), and the

like. For any β > 0, we denote τ(β) := (β + 1/p)−1.
We first prove the following continuous embedding:

Aβµ ⊂ Bβτ(β) with µ := min{τ(β), 1}.(3.7)

Indeed, suppose f ∈ Aβµ, and let sm ∈ Σm be such that

‖f − sm‖p ≤ 2σm(f)p.(3.8)

Since σm(f)p → 0, we have f = s1 +
∑∞
ν=1(s2ν − s2ν−1) in Lp (uniformly if p = ∞),

and hence (µ ≤ 1)

‖f‖µ
Bβ

τ(β)

≤ ‖s1‖µ
Bβ

τ(β)

+

∞∑
ν=1

‖s2ν − s2ν−1‖µ
Bβ

τ(β)

.(3.9)

We apply the Bernstein estimate from Theorem 3.2 to s2ν − s2ν−1 ∈ Σ2ν+1 and use
(3.8) to obtain

‖s2ν − s2ν−1‖Bβ

τ(β)

≤ c2νβ‖s2ν − s2ν−1‖p ≤ c2νβ(σ2ν (f)p + σ2ν−1(f)p),
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734 OLEG DAVYDOV AND PENCHO PETRUSHEV

and similarly ‖s1‖Bβ

τ(β)

≤ c(‖f‖p + σ1(f)p). Using these in (3.9) implies

‖f‖µ
Bβ

τ(β)

≤ c‖f‖µp + c
∞∑
ν=1

(2νβσ2ν (f)p)
µ ≤ c‖f‖µ

Aβ
µ

,

which is (3.7).
Second, the Jackson estimate from Theorem 3.1 gives the continuous embedding

Bβτ(β) ⊂ Aβ∞.(3.10)

A third important ingredient in this proof is the fact that the approximation
spaces Aαq are invariant under interpolation (see [31, 52]): If α0, α1 > 0 and 0 <
q1, q2, q ≤ ∞, then

(Aα0
q0 , A

α1
q1 )λ,q = A

α
q , where α = (1− λ)α0 + λα1 with 0 < λ < 1.(3.11)

Now we choose α0 and α1 so that 0 < α0 < α < α1 (α0 := 1 if p = ∞). Also, we
select 0 < λ < 1 so that α = (1−λ)α0+λα1. Furthermore, we set τj := (αj +1/p)−1

and µj := min{τj , 1}, j = 0, 1. By Theorem 2.12, we have

(Bα0
τ0 , B

α1
τ1 )λ,τ = Bατ .

We use this, (3.7), (3.10), and (3.11) to obtain the following continuous embeddings:

Aατ = (Aα0
µ0
, Aα1

µ1
)λ,τ ⊂ Bατ = (Bα0

τ0 , B
α1
τ1 )λ,τ ⊂ (Aα0∞ , A

α1∞ )λ,τ = Aατ ,

which give (3.5).
Algorithms. In [39], there are three algorithms developed for n-term Courant

element approximation in Lp (0 < p ≤ ∞). These algorithms can be immediately
adapted to nonlinear n-term approximation from any family of differentiable spline
basis functions ΦT on a compact polygonal domain E ⊂ R2. It is an integral part of
our program that using the machinery of the B-spaces, Jackson and Bernstein esti-
mates, interpolation, etc. developed in this article, we can prove that these algorithms
achieve the rate of the best n-term approximation. This aspect of our theory will not
be elaborated on here (see [39]).

Approximation from the libraries {ΦT }T . An important element of our con-
cept for nonlinear spline approximation is the introduction of another level of nonlin-
earity by allowing the triangulation T to vary. For a given SRL(or LR)-triangulation
T , let ΦT be a family of spline basis functions like the ones considered in section 2.2.
Now, without changing the nature of the basis elements from ΦT , we let T vary and
obtain a collection (library) of basis families {ΦT }T . We denote

σn(f)p := inf
T
σn(f,ΦT )p,

where the infimum is taken over all SLR-triangulations T with fixed parameters,
and we also assume that the parameters of ΦT are fixed. The following theorem is
immediate from the Jackson estimate in Theorem 3.1. We shall assume again that
0 < p <∞ and α > 0, or p = ∞ and α ≥ 1, and in both cases, 1/τ := α+ 1/p.

Theorem 3.6. If infT ‖f‖Bα
τ (ΦT ) <∞, then

σn(f)p ≤ cn−α inf
T

‖f‖Bα
τ (ΦT )

with c depending only on p, α, and the parameters of T and ΦT .

D
ow

nl
oa

de
d 

01
/0

4/
15

 to
 1

29
.2

52
.8

6.
83

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



NONLINEAR SPLINE APPROXIMATION 735

The ultimate open problem here is to characterize the approximation spaces gen-
erated by {σn(f)p} for a given library of basis functions {ΦT }T .

Global smoothness of functions: How to measure it? Here we come to
one of the fundamental questions in approximation theory (and not only there) of
how the global smoothness of the functions should be measured.

In the case of nonlinear n-term Lp-approximation from a single basis family ΦT ,
a function f should be considered of smoothness α > 0 if ‖f‖Bα

τ (ΦT ) <∞. Then the
rate of n-term Lp-approximation of f from ΦT is O(n−α) (roughly). If we consider
nonlinear n-term approximation from a given library of basis families {ΦT }T (T is
allowed to vary), then a function f should naturally be considered of smoothness
α > 0 if infT ‖f‖Bα

τ (ΦT ) <∞, which means that there exists a triangulation T := Tf
such that ‖f‖Bα

τ (ΦT ) <∞. Then the rate of n-term Lp-approximation of f from the
library {ΦT }T is O(n−α). It is crystal clear to us that no single (super) space can
do the job in this case. It is an open problem to develop an algorithm for finding, for
a given function f , an optimal (or near optimal) triangulation, i.e., a triangulation
Tf for which f exhibits maximal (near maximal) smoothness, using the space scale
Bατ (ΦTf

). It is also an open problem whether, for a given function f ∈ Lp, there exists
a single triangulation Tf such that, for all n ≥ 1, the n-term Lp-approximation of
f from the library {ΦT }T can be realized by n-term approximation from ΦTf

and,
consequently, characterized by the B-spaces Bατ (ΦTf

) via interpolation.
Another important related issue for discussion is the smoothness of the approxi-

mating tool ΦT := {ϕθ} (T fixed). Clearly, in nonlinear approximation, there is no
saturation, which means that the corresponding approximation spaces Aγq are non-
trivial for all 0 < γ < ∞. Therefore, the smoothness spaces to be used should
naturally be designed so that the functions {ϕθ} are infinitely smooth with respect
to these spaces. This has been one of the guiding principles to us in constructing the
B-spaces. Thus each basis function ϕθ ∈ Φ is infinitely smooth with respect to the
scale of B-spaces Bατ (Φ), which is reflected in the fact that ‖ϕθ‖Bα

τ (Φ)
≤ c‖ϕθ‖p for

0 < α < ∞ (see Theorem 3.2). This makes it possible that in our direct, inverse,
and characterization theorems we impose no restrictions on the rate of approximation
α < ∞ (see Theorems 3.1–3.4). Also, this explains the complete success of Besov
spaces in univariate nonlinear spline approximation (see [53]) and why Besov spaces
are not quite suitable in dimensions d > 1. The latter remark needs a few words of
explanation: First, by allowing triangulations with arbitrarily sharp angles, we allow
very “skinny” basis functions with huge Besov norms compared to their Lp-norms (see
[38]), which precludes the use of Besov spaces in such situations. Second, even when
working on regular triangulations, the use of Besov spaces is restricted by the Besov
smoothness (regularity) of the basis functions (see Theorem 2.15), while B-spaces
impose no restrictions on the rates of approximation.

Spline wavelets (prewavelets) and frames. In the case of uniform trian-
gulations, spline wavelets play an essential role in practical algorithms. It would be
desirable to have compactly supported wavelet (prewavelet) bases or frames gener-
ated by (differentiable) spline basis families ΦT over LR- or SLR-triangulations T .
To our knowledge there are no constructions of this type available, as for now. More-
over, there is some evidence that such constructions would be too complicated and
impractical for general triangulations. However, continuous spline prewavelets on reg-
ular triangulations with uniform dyadic refinements are available from [21, 34, 58].
(See also [47].) Evidently, nonlinear n-term approximation from compactly supported
spline wavelets or frames, generated by Courant elements or a smoother spline basis
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736 OLEG DAVYDOV AND PENCHO PETRUSHEV

family ΦT , cannot give a better rate of convergence than nonlinear n-term approxi-
mation from ΦT . We hope that efficient algorithms for n-term approximation from
such families may provide a substitute for wavelet methods in situations where the
latter are difficult to apply and, in particular, for approximation in L∞.

Adaptive tree approximation. This is a method for nonlinear approximation
from piecewise polynomials on (single level) triangular partitions, which has been
developed recently in [5, 7]. In [5], algorithms are developed which achieve the rate
of the best adaptive tree approximation, while in [7] the rates of approximation are
related to the smoothness of the functions in terms of Besov spaces. There are sub-
stantial distinctions between this approach and the one in the present article. Namely,
the approximation schemes from [5, 7] use “single level” piecewise polynomials on tri-
angulations which satisfy the minimal angle condition, while here we use multilevel
(multiscale) piecewise polynomial bases over triangulations which allow arbitrarily
sharp angles. Therefore, the notion of “best approximation” in [5, 7] is quite different
from the one used here. Substantial progress has been made in [6] in applying the
adaptive tree approximation method for numerical (finite element) solution of PDEs.

4. Construction of differentiable basis functions. In this section, we give,
for any SLR-triangulation, a construction of differentiable spline basis in Sk,rm , r ≥ 1,
k > 4r+1, satisfying the conditions from section 2.2. In general, we follow the scheme
of [22]; however, appropriate modifications in the construction and in the proofs have
to be made since we do not assume that the triangulation is regular. In particular, we
replace the standard normal derivatives to the edges by derivatives in affine invariant
directions; see the definition ofDµ(e,�) below. Since our construction is also applicable
to nonnested triangulations (see Remark 4.8), we formulate the results here for a fixed
level Tm assuming only conditions (a), (d)–(f), and (2.3) of section 2.1 and making
sure that the constants in (2.11) and (2.12) depend only on k, r,N0, and δ2.

4.1. Nodal functionals. As before, let Vm and Em be the sets of all vertices and
all edges of Tm, respectively. We shall describe the basis functions for Sm = Sk,r(Tm),
k > 4r+1, with the aid of the so-called nodal functionals defined on Sk,r(Tm). These
are certain linear functionals involving the values of the splines and their derivatives
at specific points in R2. The functional corresponding to the simple evaluation of the
splines at ξ ∈ R2 will be denoted by δξ.

Of particular interest as evaluation points are the vertices v ∈ Vm, where we also
need the derivative evaluation functionals of type δvD

α
e with e being any edge in Em

emanating from v, and δvD
α
e1D

β
e2 , where e1, e2 are adjacent edges emanating from v.

Here Dα[v,ṽ]s denotes the derivative of s of order α in the direction of the interval [v, ṽ],

weighted with the length of [v, ṽ], namely,

Dα[v,ṽ]s :=
(
(ṽx − vx)Dx + (ṽy − vy)Dy

)α
s,

v = (vx, vy), ṽ = (ṽx, ṽy).

Note that, due to this weighting, the corresponding Markov inequality reads as follows:

‖Dα[v,ṽ]p‖L∞[v,ṽ] ≤ c‖p‖L∞[v,ṽ], p ∈ Πk,(4.1)

where c depends only on k and α.
Let �1,�2 ∈ Tm share an edge e. Since every s ∈ Sk,r(Tm) is continuous, the

two polynomial patches s|�1 and s|�2 coincide along e. Therefore, δvD
α
e s may be

computed for any α = 0, 1, . . . as either δvD
α
e (s|�1) or δvD

α
e (s|�2) with the same
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NONLINEAR SPLINE APPROXIMATION 737

result. Similarly, let e1, e2 ∈ Em be two edges of a triangle � ∈ Tm with a common
vertex v. Then δvD

α
e1D

β
e2s denotes the mixed derivative of s at v in the directions of

e1 and e2 away from v. If α+ β ≤ r, this derivative is uniquely defined. If α+ β > r,
the result may depend on the choice of the polynomial patch of s attached to v. We
follow the convention to always take δvD

α
e1D

β
e2s := δvD

α
e1D

β
e2(s|�), where � is the

above triangle formed by e1, e2.
We shall also need functionals evaluating at some points on any edge e the deriva-

tives of the spline in an affine invariant direction not parallel to e. Let e = [v1, v2] ∈
Em, and let �e = [v1, v2, v3] ∈ Tm be a triangle attached to e. Denote by µ(e,�) the
median of � connecting the middle point (v1 + v2)/2 of e with the third vertex v3
of �. For any point ξ ∈ e, δξDµ(e,�) will denote the derivative at ξ in the direction
pointing into the half-plane containing � parallel to µ(e,�), weighted with the length
of µ(e,�). For each edge e ∈ Em, we choose one of the two triangles attached to e
and denote it by �e. (Note that this selection of �e is not unique, but as will be seen
it will cause no problems for the basis construction.)

Remark 4.1. For later references, we note here that any nodal functional η :
Sk,r(Tm) → R of the above type can be extended to a linear functional η̃ : Sk,−1(Tm) →
R such that η̃(s) = η(s) as long as s ∈ Sk,r(Tm). Indeed, if the definition of η involves
δξ for some point ξ ∈ ∪e∈Eme, then we choose one of the triangles � ∈ Tm containing
ξ and use the corresponding value of s|� or its derivatives at ξ to define η̃(s) for any
s ∈ Sk,−1(Tm). The only restriction on the choice of � is that it must be consistent
with the above rules for δvD

α
e , δvD

α
e1D

β
e2 , and δξDµ(e,�). Clearly, the extension of this

type is not unique. Moreover, convex combinations of evaluations of the restrictions
of s to different triangles can also be used.

4.2. Characterization of differentiability. Let L be a straight line dividing
R2 into two half-planes H, H̃. Given p, p̃ ∈ Πk, we define a piecewise polynomial
function s by setting s|H = p, s|H̃ = p̃. To check whether s is differentiable across L,

we choose two points u, v on L, as well as two points w, w̃ in the interiors of H and H̃,
respectively. We set � := [u, v, w], �̃ := [u, v, w̃], e := [u, v], µ := [u,w], µ̃ := [u, w̃],
θ := ∠eµ, θ̃ := ∠µ̃e. The proof of the following lemma can be found in [17, 25].

Lemma 4.2. Let 0 ≤ r < k. Then s ∈ Cr(R2) if and only if

δuD
α
µ̃D

q−α
e p̃ =

α∑
β=0

(−1)β
(
α
β

)( sin(θ+θ̃)
|e|

)α−β(
sin θ̃
|µ|
)β(

sin θ
|µ̃|
)−α

δuD
β
µD

q−β
e p(4.2)

for all α = 0, . . . , r and q = α, . . . , k − 1.
It is readily seen that (4.2) can be reformulated as follows:

δuD
α
µ̃D

q−α
e p̃ =

α∑
β=0

(−1)β
(
α
β

)(
σ|�∗|

)α−β |�̃|β
|�|α δuD

β
µD

q−β
e p,(4.3)

where σ := sgn sin(θ + θ̃) and �∗ := [u,w, w̃]. (This identity simplifies in an obvious
way when |�∗| = 0.)

See [22] for a discussion of the relationship between these nodal conditions of
differentiability and the well-known Bernstein–Bézier conditions.

4.3. Construction of basis splines. Consider the following set Nm of nodal
functionals on Sk,r(Tm),

Nm :=

( ⋃
v∈Vm

N v
m

)
∪
( ⋃
e∈Em

N e
m

)
∪
( ⋃

�∈Tm

N�
m

)
,(4.4)

D
ow

nl
oa

de
d 

01
/0

4/
15

 to
 1

29
.2

52
.8

6.
83

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



738 OLEG DAVYDOV AND PENCHO PETRUSHEV

where for each � = [v1, v2, v3] ∈ Tm,
N�
m := {η�ξ := δξ : ξ ∈ Ξ�},

Ξ� :=

{
i1v1 + i2v2 + i3v3

k − 1
: i1 + i2 + i3 = k − 1, i1, i2, i3 > r

}
⊂ �,

for each edge e = [v1, v2] ∈ Em,
N e
m := {ηeq,ξ := δξDqµ(e,�e)

: q = 0, . . . , r, ξ ∈ Ξe,q},

Ξe,q :=

{
i1v1 + i2v2
k − q − 1

: i1 + i2 = k − q − 1, i1, i2 > 2r − q
}

⊂ e,

and for each vertex v ∈ Vm,

N v
m :=

2r⋃
q=0

N v,q
m ,

with N v,q
m , q = 0, . . . , 2r, being defined as follows. Let �[i] = [v, vi, vi+1], i =

1, . . . , Nv, be the triangles in Tm attached to v in counterclockwise order, vNv+� = v�,
and let ei = [v, vi]. We set

N v,0
m := {ηv,0 := δv},

N v,q
m := {ηv,qi,α := δvD

q−α
ei Dαei+1

: i = 1, . . . , Nv, α = 0, . . . , q − 1}, q ≥ 1.

Note that N�
m or N e

m might be empty for some combinations of r, k, e.g., N�
m =

N e
m = ∅ if r = 0, k = 2, or N�

m = ∅ if r = 1, k = 6. This, however, does not cause any
problem for the construction below.

In view of (4.2), the functionals in N v,q
m are not linearly independent on Sk,r(Tm)

if q ≥ 1. Namely, the following conditions hold for all s ∈ Sk,r(Tm), v ∈ Vm, q =
1, . . . , 2r:

ηv,qi,α(s) =

α∑
β=0

(−1)β
(
α
β

)( sin(θi−1+θi)
|ei|

)α−β(
sin θi
|ei−1|

)β(
sin θi−1

|ei+1|
)−α

ηv,qi−1,q−β(s),

α = 1, . . . ,min{r, q}, i = 1, . . . , Nv,

(4.5)

where θi := ∠eiei+1, η
v,q
i,q := ηv,qi+1,0.

The following key lemma is instrumental in constructing the basis functions.
Lemma 4.3. There is a unique spline s ∈ Sk,r(Tm) such that

η�ξ (s) = a�ξ , ξ ∈ Ξ�, � ∈ Tm,
ηeq,ξ(s) = a

e
q,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ∈ Em,

ηv,0(s) = av,0, v ∈ Vm,
ηv,qi,α(s) = a

v,q
i,α, i = 1, . . . , Nv, α = 0, . . . , q − 1, q = 1, . . . , 2r, v ∈ Vm,

(4.6)

for any given a�ξ , a
e
q,ξ, a

v,0 ∈ R and any av,qi,α ∈ R satisfying

av,qi,α =

α∑
β=0

(−1)β
(
α
β

)( sin(θi−1+θi)
|ei|

)α−β(
sin θi
|ei−1|

)β(
sin θi−1

|ei+1|
)−α

av,qi−1,q−β ,

α = 1, . . . ,min{r, q}, i = 1, . . . , Nv.

(4.7)
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NONLINEAR SPLINE APPROXIMATION 739

Moreover, for each � ∈ Tm,

‖s|�‖L∞(�) ≤ c δ−2r
2 max

η∈Nm(�)
|η(s)|,(4.8)

where c is a constant depending only on k, and

Nm(�) :=

( ⋃
v∈Vm∩�

N v
m

)
∪
( ⋃

e∈Em
e⊂�

N e
m

)
∪ N�

m .

Proof. We first determine s|e for each e = [v1, v2] ∈ Em using the fact that s|e,
as a univariate function on the interval e, is a polynomial se,0 of degree at most
k−1. Therefore, se,0 is uniquely determined by the following k Hermite interpolation
conditions: 

δv1se,0 = av1,0, δv2se,0 = av2,0,

δv1D
γ
e se,0 = av1,γi,0 , δv2D

γ
e se,0 = av2,γj,0 , γ = 1, . . . , 2r,

δξse,0 = ae0,ξ, ξ ∈ Ξe,0,

(4.9)

where we assume that e is the ith edge emanating from v1 and the jth edge emanating
from v2.

We next determine se,q := (Dqµ(e,�e)
s)|e, q = 1, . . . , r. Let �e = [v1, v2, v3]. Then

Dqµ(e,�e)
= (D[v1,v3] − 1

2D[v1,v2])
q. Therefore, for γ = 0, . . . , 2r − q,

δv1D
γ
e se,q =

q∑
�=0

(−1)�2−�δv1D
γ+�
ei Dq−�ei+1

s =

q∑
�=0

(−1)�2−�ηv1,q+γi,q−� (s).

Similarly, since Dqµ(e,�e)
= (D[v2,v3] − 1

2D[v2,v1])
q, we have for γ = 0, . . . , 2r − q,

δv2D
γ
e se,q =

q∑
�=0

(−1)�2−�δv2D
γ+�
ej Dq−�ej−1

s

=

q−1∑
�=0

(−1)�2−�ηv2,q+γj−1,γ+�(s) + (−1)q2−qηv2,q+γj,0 (s).

In addition, we have for each ξ ∈ Ξe,q,

δξse,q = δξD
q
µ(e,�e)

s = ηeq,ξ(s).

Thus, for each q = 1, . . . , r, the univariate polynomial se,q of degree k − 1 − q is
uniquely determined by the k − q Hermite interpolation conditions

δv1D
γ
e se,q =

q∑
�=0

(−1)�2−�av1,q+γi,q−� , γ = 0, . . . , 2r − q,

δv2D
γ
e se,q =

q−1∑
�=0

(−1)�2−�av2,q+γj−1,γ+� + (−1)q2−qav2,q+γj,0 , γ = 0, . . . , 2r − q,
δξse,q = a

e
q,ξ, ξ ∈ Ξe,q.

(4.10)
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740 OLEG DAVYDOV AND PENCHO PETRUSHEV

Let �̃ = [v1, v2, ṽ3] ∈ Tm be the second triangle attached to e. We set

ãe0,ξ := a
e
0,ξ, ξ ∈ Ξe,0,

ãeq,ξ :=

q∑
�=0

(−1)�
(
q

$

)
(2σ|�∗|)q−�|�̃|�|�e|−q δξDq−�e se,�,

ξ ∈ Ξe,q, q = 1, . . . , r,

where �∗ := [v̄, v3, ṽ3], v̄ = (v1 + v2)/2, and σ := sgn sin(v̂3v̄v2 + ̂̃v3v̄v2), where
ûvw denotes the angle determined by u, v, w with vertex at v. (It may happen that
|�∗| = 0.) Since �∗ ⊂ conv (�e ∪ �̃), we have

|�∗|q−�|�̃|�|�e|−q ≤ δ−q+�2 |�̃|q|�e|−q ≤ δ−2q+�
2 .(4.11)

We now construct each polynomial patch s|�, � ∈ Tm, of the spline s as the unique
solution of the following interpolation problem:

δξ(s|�) = a�ξ , ξ ∈ Ξ�,

δξD
q
µ(e,�)(s|�) = aeq,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ⊂ � if �e = �,

δξD
q
µ(e,�)(s|�) = ãeq,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ⊂ � if �e �= �,

δv(s|�) = av,0, v ∈ �,
δvD

q−α
ei Dαei+1

(s|�) = av,qi,α, α = 0, . . . , q, q = 1, . . . , 2r, v ∈ �,
(i is such that ei, ei+1 ⊂ �).

(4.12)

Since (4.12) is a standard finite element interpolation scheme for bivariate polynomials
of degree k − 1 (see, e.g., [57] or Lemma 3.7 in [25]), the polynomial s|� is uniquely
determined.

We now show that the piecewise polynomial s constructed in this way lies in
the space Sk,r(Tm); i.e., it is r times differentiable. To this end we consider any edge
e = [v1, v2] ∈ Em. As before, let �e = [v1, v2, v3], and let �̃ = [v2, v1, ṽ3] be the second
triangle attached to e, and we again assume that e is the ith edge e1,i emanating from
v1 and at the same time the jth edge e2,j emanating from v2. Then we have

e1,i−1 = [v1, ṽ3], e1,i = [v1, v2], e1,i+1 = [v1, v3],

e2,j−1 = [v2, v3], e2,j = [v2, v1], e2,j+1 = [v2, ṽ3].

Obviously, for each q = 0, . . . , r, Dqµ(e,�e)
(s|�e)|e = se,q satisfies the interpolation

conditions (4.9) if q = 0 or (4.10) if q > 0. We set

ŝe,q := D
q

µ(e,�̃)
(s|�e)|e.

The desired differentiability of s will follow if we show that

ŝe,q = s̃e,q := D
q

µ(e,�̃)
(s|�̃)|e, q = 0, . . . , r.(4.13)

By (4.12) we have

δv1(s|�e) = δv1(s|�̃) = av1,0,

δv1D
q−α
e1,i D

α
e1,i+1

(s|�e
) = av1,qi,α , α = 0, . . . , q − 1, q = 1, . . . , 2r,

δv1D
q−α
e1,i−1

Dαe1,i(s|�̃) = av1,qi−1,α, α = 0, . . . , q − 1, q = 1, . . . , 2r,
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NONLINEAR SPLINE APPROXIMATION 741

which in view of (4.7) imply

δv1D
q−α
e1,i D

α
e1,i+1

(s|�e) = δv1D
q−α
e1,i D

α
e1,i+1

(s|�̃),

α = 0, . . . ,min{r, q}, q = 0, . . . , 2r,

and hence

δv1D
γ
e (ŝe,q − s̃e,q) = 0, γ = 0, . . . , 2r − q, q = 0, . . . , r.

Similarly, we get

δv2D
γ
e (ŝe,q − s̃e,q) = 0, γ = 0, . . . , 2r − q, q = 0, . . . , r.

In addition, a simple calculation relying on (4.3) shows that

δξ ŝe,q = ã
e
q,ξ, ξ ∈ Ξe,q, q = 0, . . . , r,

so that by (4.12),

δξ(ŝe,q − s̃e,q) = 0, ξ ∈ Ξe,q, q = 0, . . . , r.

Since ŝe,q−s̃e,q satisfies homogeneous interpolation conditions of a well-posed Hermite
scheme, (4.13) follows.

The uniqueness of s is clear from the above proof, since s = 0 if the numbers in
the right-hand side of (4.6) are all zeros.

It remains to prove (4.8). Since se,q satisfies the interpolation conditions (4.9) if
q = 0 or (4.10) if q > 0,

‖se,q‖L∞(e) ≤ cmax{η(s) : η ∈ N v1
m ∪ N v2

m ∪ N e
m}, q = 0, . . . , r,

where c depends only on k. In view of (4.11) and Markov inequality (4.1), we have

|ãeq,ξ| ≤ c δ−2q
2 ‖se,q‖L∞(e), q = 0, . . . , r,

and (4.8) follows by the properties of the interpolation problem (4.12); see Lemma 3.9
in [25].

For each v ∈ Vm and q = 1, . . . , 2r, we denote by Rv,qm the (min{r, q}Nv × qNv)-
matrix of differentiability conditions (4.5). Let the vectors

av,q,j , j = 1, . . . , ρv,q := qNv − rank(Rv,qm ),

form an orthonormal basis for the null space of Rv,qm ,

null(Rv,qm ) := {a ∈ RqNv : Rv,qm a = 0}.

For convenience, we shall use the double indices introduced in the definition of N v,q
m

also for the components of av,q,j :

av,q,ji,α , i = 1, . . . , Nv, α = 0, . . . , q − 1.(4.14)
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742 OLEG DAVYDOV AND PENCHO PETRUSHEV

We set

ηv,q,j :=

Nv∑
i=1

q−1∑
α=0

av,q,ji,α ηv,qi,α , j = 1, . . . , ρv,q,(4.15)

Ñ v,q
m := {ηv,q,j : j = 1, . . . , ρv,q}, q = 1, . . . , 2r,

Ñ v
m := N v,0

m ∪
2r⋃
q=1

Ñ v,q
m , v ∈ Vm,

Ñm :=

( ⋃
v∈Vm

Ñ v
m

)
∪
( ⋃
e∈Em

N e
m

)
∪
( ⋃

�∈Tm

N�
m

)
,

and define the set

Φm = {ϕη : η ∈ Ñm}

of the basis functions for Sk,r(Tm) by the duality condition,

µ(ϕη) =

{
1 if µ = η,

0 if µ ∈ Ñm \ {η}.(4.16)

To see that the above definition is correct we have to check that for each η ∈ Ñm
there exists a unique ϕη satisfying (4.16). This follows by Lemma 4.3. Indeed, since
the vectors av,q,j are orthonormal, we have

ηv,qi,α =

ρv,q∑
j=1

av,q,ji,α ηv,q,j , i = 1, . . . , Nv, α = 0, . . . , q − 1.

Therefore, for a fixed η, the numbers

av,qi,α := ηv,qi,α(ϕη), i = 1, . . . , Nv, α = 0, . . . , q − 1,

satisfy (4.7), which ensures the applicability of Lemma 4.3.

4.4. Properties of basis splines. It follows by Lemma 4.3 that every spline
s ∈ Sk,r(Tm) is uniquely determined by the sequence (η(s))η∈Ñm

; i.e., s has a unique
representation

s =
∑
η∈Ñm

aηϕη, aη = η(s) ∈ R.

Furthermore, (4.8) immediately implies

suppϕη ⊆


star(v) if η ∈ Ñ v

m for a vertex v ∈ Vm,
star(e) if η ∈ N e

m for an edge e ∈ Em,
� if η ∈ N�

m for a triangle � ∈ Tm,
(4.17)

‖ϕη‖L∞(R2) ≤ c δ−2r
2 .(4.18)
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NONLINEAR SPLINE APPROXIMATION 743

By using Markov inequality it is easy to show that

|η(s)| ≤ c̃


‖s‖L∞(star (v)) if η ∈ Ñ v

m for a vertex v ∈ Vm,
‖s‖L∞(star (e)) if η ∈ N e

m for an edge e ∈ Em,
‖s‖L∞(�) if η ∈ N�

m for a triangle � ∈ Tm,
(4.19)

with c̃ a constant depending only on k, r and N0.
Thus, we showed that the basis Φm = {ϕη : η ∈ Ñm} satisfies all requirements

of section 2.2 with Sm = Sk,r(Tm) and k̃ = k. (Obviously, Πk ⊂ Sm and Sk,r(Tm) ⊂
Sk,r(Tm+1) if Tm+1 is a refinement of Tm.) More precisely, we have the following
result.

Theorem 4.4. Let r ≥ 0, k > 4r+1. Suppose that Tm satisfies (a), (d)–(f), and
(2.3) of section 2.1. Then the basis functions ϕη ∈ Sk,r(Tm) (η ∈ Ñm) constructed
above have the following properties:

(a) For any s ∈ Sk,r(Tm) there exists a unique sequence of real coefficients
(aη)η∈Ñm

such that

s =
∑
η∈Ñm

aηϕη,

with aη = η(s), η ∈ Ñm.

(b) For each η ∈ Ñm there is a vertex v = vη ∈ Vm such that

suppϕη ⊂ star (v) =: Eη,

‖ϕη‖L∞(R2) = ‖ϕη‖L∞(Eη) ≤M1,

|η(s)| ≤M2‖s‖L∞(Eη), s ∈ Sk,r(Tm),
where M1,M2 are positive constants depending only on k, r, δ2, and N0.

In particular, by the proof of Lemma 2.3, we have the following stability property
of Φm.

Theorem 4.5. The basis Φm is Lp-stable for all 0 < p ≤ ∞; i.e., for any sequence
(aη)η∈Ñm

,

∥∥∥ ∑
η∈Ñm

aηϕη

∥∥∥
Lp(R2)

≈
( ∑
η∈Ñm

‖aηϕη‖pLp(R2)

)1/p

,

where the constants of equivalence depend only on p, k, r, δ2, and N0. In the case
p = ∞ the $p-norm in the right-hand side is replaced by the sup-norm.

The linear functionals λη : Sk,−1(Tm) ∩ L∞(Eη) → R, η ∈ Ñm, with properties

λη(s|Eη ) = η(s), s ∈ Sk,r(Tm),

|λη(f)| ≤M2‖f‖L∞(Eη), f ∈ Sk,−1(Tm)|Eη ∩ L∞(Eη),

needed in the definition of the projector Qm (see (2.18)) can now be defined in a
constructive manner. Indeed, we first extend each functional η ∈ Nm to a functional
η̃ defined on Sk,−1(Tm), according to Remark 4.1, and then set

λη := η̃ if η ∈
( ⋃
e∈Em

N e
m

)
∪
( ⋃

�∈Tm

N�
m

)D
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744 OLEG DAVYDOV AND PENCHO PETRUSHEV

and

λη :=

Nv∑
i=1

q−1∑
α=0

av,q,ji,α η̃v,qi,α if ηv,q,j =

Nv∑
i=1

q−1∑
α=0

av,q,ji,α ηv,qi,α ∈
⋃
v∈Vm

Ñ v
m.

By (2.22), Qm can be extended to the operator Qm,p : Llocp → Sk,r(Tm) whose
local approximation power is described in the following theorem (see Lemma 2.5).

Theorem 4.6. Suppose f ∈ Llocp , 0 < p ≤ ∞ (f ∈ C if p = ∞). Then

‖f −Qm,p(f)‖Lp(�) ≤ cS�(f)p ≤ cEk(f,Ω�)p, � ∈ Tm,
where Ω� := Ω1

� is the union of all triangles in Tm that have a common vertex with
�, and the constant c depends only on p, k, r, δ2, and N0.

To show that the assumption that the triangulations Tm satisfy (2.3) cannot be
omitted, we consider the following example.

Example 4.7. Suppose Tm has an edge e = [v, u] with two triangles � = �e =
[v, u, w] and �̃ = [v, u, w̃] attached to e such that u = v + (2−Mα, 0), w = v +
(−α, α), w̃ = v+(−α,−α), where the positive numbersM,α depend onm. Evidently,
|conv (�e∪�̃)|/|�e| = 2(2M +1), and (2.3) will be violated ifM grows unboundedly
with m, while the maximal angle of the two triangles is 3π/4, thus allowing the
maximal angle condition (2.5) to hold. Note that such configurations of triangles
are possible for a sequence of levels of an LR-triangulation T with the corresponding
M ’s tending to infinity; see section 2.1 of [38]. Choosing k = 6 and r = 1, we
consider the basis functions ϕη ∈ S6,1(Tm), η ∈ Ñm, constructed according to the

above algorithm. We next show that the basis Φm = {ϕη : η ∈ Ñm} is instable;
i.e., Theorem 4.5 does not hold for it. (Therefore, neither Φm nor a renorming of it
satisfies the requirements of section 2.2.) More precisely, we show that the constant
function 11R2(x) ≡ 1, x ∈ R2, does not have an L∞-stable expansion with respect to
Φm. We have

‖11R2‖L∞(R2) = 1, 11R2 =
∑
η∈Ñm

η(11R2)ϕη.

Now choose η = ηv,0 = δv ∈ N v,0
m . Since η(11R2) = 1, the instability of Φm will follow

if we show that ‖ϕη‖L∞(R2) is unbounded as M → ∞. By (4.12),

δξD
1
µ(e,�̃)

(ϕη|�̃) = ãe1,ξ

= −2 |�∗|
|�e| δξD

1
ese,0 − |�̃|

|�e|δξse,1,

where ξ = (v + u)/2, �∗ = [ξ, w, w̃], se,0 = ϕη|e, se,1 = (D1
µ(e,�e)

ϕη)|e. Obviously,

|�̃|/|�e| = 1, and

|�∗|/|�e| =
(
|conv (�e ∪ �̃)| − |�e|+|�̃|

2

)
/|�e| = 2M+1 + 1.

The univariate polynomial se,0 of degree 5 is determined by the Hermite interpolation
conditions (4.9) that take in our case the form

δvse,0 = 1, δuse,0 = δuD
1
ese,0 = δuD

2
ese,0 = δvD

1
ese,0 = δvD

2
ese,0 = 0.

An elementary computation shows that δξD
1
ese,0 = −15/8. By (4.10), we immediately

get δξse,1 = ae1,ξ = η
e
1,ξ(ϕη) = 0. Thus,

δξD
1
µ(e,�̃)

(ϕη|�̃) =
15

4
(2M+1 + 1) → ∞ as M → ∞.
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NONLINEAR SPLINE APPROXIMATION 745

In view of Markov inequality, ‖ϕη‖L∞(R2) ≥ c|δξD1
µ(e,�̃)

(ϕη|�̃)|, and we get the de-

sired unboundedness of ‖ϕη‖L∞(R2) for sufficiently large M .
Remark 4.8. It is clear that Theorems 4.4–4.6 are valid for any sequence of levels

Tm satisfying the hypotheses of Theorem 4.4; i.e., nestedness and other additional
assumptions on {Tm} stated in section 2.1 are not needed for these results.

Remark 4.9. It is an important property of the basis functions ϕη constructed
above that they are invariant under affine transforms. More precisely, let Tm satisfy
the hypotheses of Theorem 4.4, and let A : R2 → R2 be an affine transform. We
set A(Tm) = {A(�) : � ∈ Tm}, and Aη(s) := δA(v)D

α
A(e1)

DβA(e2)s, for each nodal

functional η of the form η(s) = δvD
α
e1D

β
e2s and extend the operator A linearly to

the linear combinations of the nodal functionals such as those occurring in (4.15).
Then, clearly, the sets of nodal functionals Nm and NA

m defined by (4.4) for Tm and
A(Tm), respectively, satisfy NA

m = {Aη : η ∈ Nm}. (We used here, in particular,
the fact that µ(A(e), A(�e)) = A(µ(e,�e)).) Moreover, since the matrices Rv,qm
of the differentiability conditions (4.5) are affine invariant (see (4.3)), we also have
ÑA
m = {Aη : η ∈ Ñm} for the appropriate sets Ñm, ÑA

m defined as in the construction
above, provided we choose the same orthonormal vectors (4.14) in both cases. Let now
Φm = {ϕη : η ∈ Ñm} ⊂ Sk,r(Tm) and ΦAm = {ϕAη : η ∈ Ñm} ⊂ Sk,r(A(Tm)) be

the spline bases dual to Ñm and ÑA
m , respectively. Since ϕη(A·), η ∈ Ñm, obviously

satisfy the same duality relations, we conclude that ϕAη = ϕη(A·), η ∈ Ñm, which is
the desired affine invariance.

Remark 4.10. Our construction is extendable to the spaces Sk,r(Tm), k > r2d+1,
in dimensions d > 2. To this end the algorithm given in [22] should be extended to
SLR-triangulations in Rd. In particular, the orthogonal directions of derivatives used
in [22] should be replaced by appropriate affine invariant directions.

Remark 4.11. If the triangulation covers only a compact domain E, then usual
modifications of basis functions corresponding to boundary edges or vertices (see
[22, 23]) lead to the desired stable local bases.

Remark 4.12. In this section, we extended to the setting of SLR-triangulations
the bivariate version of nodal stable local basis construction of [22, 23], which was
originally designed for regular triangulations. The scheme from [27] can be used as
an alternative means of constructing stable local bases for Sk,r(Tm), k > 3r + 2, in
dimension d = 2. Such a development would take advantage of the affine invariance
of the Bernstein–Bézier representation of piecewise polynomials. We elected to utilize
the scheme from [22] instead, since it is available for any number of variables and allows
an effective numerical implementation as shown (for r = 1, 2, d = 2) in [23]. Also, we
want to pay heed to two more spline basis constructions (for regular triangulations
in dimension d = 2) that allow the same kind of extension to SLR-triangulations:
(a) stable local bases for Sk,1(Tm), k > 5, constructed in [26]; (b) locally stable
bases on nested triangulations (k > 4r + 1) [24]. Note that the stable local bases for
superspline subspaces of Sk,r(Tm) [16, 17, 44, 57] cannot be used since these spaces are
not nested for nested triangulations, while the earlier local spline bases for Sk,r(Tm)
[1, 8, 18, 35, 36, 48] are known to be unstable for certain triangulations.

Remark 4.13. It is easy to see that, in the case r = 0, the above basis reduces to
the classical Lagrange finite element basis for Sk,0(Tm), k > 1. Since δ2 disappears
from (4.8) when r = 0, Theorems 4.4–4.6 hold for locally regular triangulations;
i.e., the SLR assumption (2.3) is not needed in this case. (Note that δ2 and N0

completely disappear from Theorem 4.4, and δ2 is replaced by δ1 in Theorems 4.5–
4.6.) For r = 0, k = 2, we get the Courant elements, and the only essential difference
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746 OLEG DAVYDOV AND PENCHO PETRUSHEV

to the construction from [38] is that we rely here on the extensions of linear functionals
described in Remark 4.1 rather than on the explicit quasi interpolant for continuous
piecewise linear functions adopted in [38]. Both approaches obviously lead to the
same B-spaces.

5. Spline bases on special triangulations. There are several constructions
of differentiable spline bases fitting into our scheme that are only available for specific
multilevel triangulations. Since these triangulations have a special structure or even
are uniform, the corresponding libraries {ΦT } of bases are not as rich as the one
of the previous section associated with arbitrary SLR-triangulations. Moreover, the
necessity to maintain the structure of the triangulation highly reduces the variety of
refinement methods that can be used (whereas, e.g., local refinement by bisection can
be used with bases on arbitrary triangulations). On the other hand, bases on special
triangulations usually allow a smaller degree of piecewise polynomials for a given order
of differentiability as well as a simpler and more efficient practical implementation.

In this section, we review some known constructions of this type. (Note that only
box splines are available for more than two variables.)

5.1. Box splines. As usual, we consider only splines of two variables. Let
Ξ = [ξ1 · · · ξn] be a full rank 2 × n matrix with columns ξi in Z2 \ 0. The box spline
MΞ : R2 → R2 associated with Ξ is defined by its Fourier transform

M̂Ξ(u) =

n∏
ν=1

1− e−iξνu
iξνu

, u ∈ R2,

where ξνu denotes the inner product of the two vectors.
We now review the basic properties of box splines (see [9]), in order to verify the

requirements of section 2.2. It is well known that MΞ has a compact support,

suppMΞ =

{
n∑
ν=1

tνξν : 0 ≤ tν ≤ 1

}
.(5.1)

The box spline basis functions at the mth level are defined by

ϕm,j =MΞ(2
m · −j), j ∈ Z2.

We set

Φm = {ϕm,j : j ∈ Z2}, m ∈ Z,

and

Sm =

{∑
j∈Z2

am,jϕm,j : am,j ∈ R

}
, m ∈ Z,

where the series converges everywhere since for every x ∈ R2 and m ∈ Z only a
finite number of ϕm,j(x) (j ∈ Z2) are nonzero. Clearly, any affine change of variables
Q : R2 → R2 gives rise to basis functions ϕm,j(Qx) that satisfy the conditions of
section 2.2 if and only if the ϕm,j do. Therefore, we do not distinguish between
constructions that can be transformed into each other by such a method.
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NONLINEAR SPLINE APPROXIMATION 747

Since

M̂Ξ(2u)

M̂Ξ(u)
=

n∏
ν=1

1 + e−iξνu

2
,

MΞ is a finite linear combination of MΞ(2 · −j), j ∈ Z2, which implies that

Sm ⊂ Sm+1, m ∈ Z.

Let

r(Ξ) := max{r : any 2× (n− r) submatrix of Ξ has rank 2} − 1

and

k(Ξ) := n− 1.

The elements of Sm are r(Ξ) times differentiable piecewise polynomials of degree
k(Ξ)−1 with respect to the rectilinear partition T Ξ

m of R2 determined by the straight
lines

Hν + 2−mj, j ∈ Z2, ν = 1, . . . , n,

where

Hν := {tξν : t ∈ R}.

Thus,

Sm ⊂ Sk(Ξ),r(Ξ)(T Ξ
m ).

Moreover,

Πk̃(Ξ) ⊂ Sm, m ∈ Z,

and Πk̃(Ξ)+1 �⊂ Sm, where

k̃(Ξ) = r(Ξ) + 2.

It is well known that the translates of a box spline are not always linearly in-
dependent. In fact, Φm is a basis for Sm (m ∈ Z) if and only if the matrix Ξ is
unimodular ; i.e., each nonsingular 2 × 2 submatrix of Ξ has determinant ±1. This
condition implies substantial restrictions on Ξ. Namely, up to an affine change of
variables, Ξ must have the form

Ξ = [e1 · · · e1︸ ︷︷ ︸
n1

e2 · · · e2︸ ︷︷ ︸
n2

e3 · · · e3︸ ︷︷ ︸
n3

],

where e1 = [ 10 ], e2 = [ 01 ], e3 = [ 11 ], n1, n2 ≥ 1, n3 ≥ 0, and n1 + n2 + n3 = n. It is
easy to see that

r(Ξ) = n−max{n1, n2, n3} − 2
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748 OLEG DAVYDOV AND PENCHO PETRUSHEV

and that T Ξ
m is either a tensor product mesh if n3 = 0 or a three-directional mesh T (1)

m

defined by the straight lines x1 = 2−mj, x2 = 2−mj, x1−x2 = 2−mj (j ∈ Z2) in R2 if
n3 ≥ 1. Since only the latter case leads to a multilevel triangulation, we assume that
n3 ≥ 1.

It remains to verify (2.10)–(2.12). By (5.1), the support of MΞ is the hexagon
with vertices (0, 0), (n1, 0), (0, n2), (n1+n3, n3), (n3, n2+n3), (n1+n3, n2+n3), which
implies (2.10) with $ ≤  n/2!. Obviously, (2.11) is valid withM1 = ‖MΞ‖L∞ . Finally,
it is easy to show (2.12) by using the constructions of dual functionals λj : S0 → R

(j ∈ Z2), with λj(ϕ0,k) = δj,k, given, e.g., in [19, 37, 41].
Let us mention the following two cases that are perhaps most relevant in appli-

cations:

(a) n1 = n2 = 2, n3 = 1, Sm ⊂ S4,1(T (1)
m ), k̃ = 3,

(b) n1 = n2 = n3 = 2, Sm ⊂ S5,2(T (1)
m ), k̃ = 4.

5.2. Other spline bases on uniform triangulations. There are some other

spline basis constructions for the three-directional mesh T (1)
m ; see, e.g., [15, 56]. How-

ever, to our knowledge, none of them simultaneously satisfies the requirements of
nestedness of the spaces, stability, and locality of the basis functions. The situa-

tion is better for the four-directional mesh T (2)
m obtained from T (1)

m by adding the

straight lines x1 + x2 = 2−mj (j ∈ Z2). Since T (2)
m is a special case of a so-called

FVS-triangulation (see section 5.3), finite element bases for S4,1(T (2)
m ) are available

and satisfy the conditions of section 2.2. Some recent alternative constructions of

stable local bases for S4,1(T (2)
m ) can be found in [13, 28, 42, 49]. Moreover, a stable

local basis for S7,2(T (2)
m ) is also constructed in [28]. Finally, we want to mention the

stable local basis from [33] for C1 quadratic splines with respect to a sequence of
triangulation levels that can be called the six-directional meshes.

5.3. Refinable composite finite elements. Multilevel and hierarchical bases
play an important role in the modern theory and practice of numerical methods for
PDEs; see, e.g., [51]. Classical smooth finite elements [14] give rise to stable local
spline bases on triangulations satisfying the minimal angle condition. (Note that it
should be possible to replace this condition of regularity with SLR.) However, there
are difficulties in using them to build nested spline spaces on multilevel triangulations;
see [11, 20]. Although the “polynomial” finite elements (e.g., the Argyris element)
are available for arbitrary triangulations, they lead to superspline spaces [57] that lack
nestedness for nested triangulations (levels in the terminology of our section 2). In
contrast to them, “composite” finite elements require a special structure of the levels
Tm, e.g., a Clough–Tocher or Powell–Sabin split, which is not always compatible with
nested refinements with other desirable properties like boundedness of the valence of
the vertices. In fact, we are aware of only two cases when composite finite elements are
refinable, i.e., provide stable local bases for certain multilevel triangulations. First,
this is true for the triangulations obtained by the Powell–Sabin 12-split ; see [50] for the
relevant construction of stable local bases for C1 quadratics and cubics. The other case
is that of FVS-triangulations obtained from arbitrary strictly convex quadrangulations
by adding two diagonals of each quadrilateral; see, e.g., [20, 43]. Here, a well-known
composite finite element due to Fraeijs de Veubeke and Sander gives rise to a stable
local basis for C1 cubics, while for higher orders of differentiability only nonnested
superspline-type constructions are known [40, 45, 46].
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NONLINEAR SPLINE APPROXIMATION 749

Appendix A.
Proof of Theorem 2.9. Denote briefly N := (

∑
θ∈Θ ‖cθϕθ‖τp)1/τ .

Case 1. 0 < p ≤ 1. Since τ < p ≤ 1, we have

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥
p
≤
(∑
θ∈Θ

‖cθϕθ‖pp
)1/p

≤
(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

.

Case 2. p = ∞. Since τ = 1/α ≤ 1, then (2.42) is obvious.
Case 3. 1 < p <∞. We need the following lemma.
Lemma A.1. Let g :=

∑
θ∈M |cθϕθ|, where #M < ∞ and ‖cθϕθ‖p ≤ L for

θ ∈ M. Then

‖g‖p ≤ cL(#M)1/p,

with c independent of M and (cθ)θ∈M.
Proof. Using the properties of Φ, we have (recall that suppϕθ ⊂ Eθ := star �(vθ)

and ‖ϕθ‖∞ ≈ |Eθ|−1/p‖ϕθ‖p by (2.14))

‖g‖p ≤
∥∥∥ ∑
θ∈M

‖cθϕθ‖∞ · 11Eθ
(·)
∥∥∥
p
≤ cL

∥∥∥ ∑
θ∈M

|Eθ|−1/p · 11Eθ
(·)
∥∥∥
p
.

We define E :=
⋃
θ∈MEθ and E(x) := min{|Eθ| : θ ∈ M and Eθ " x} for x ∈ E. By

the properties of the LR-triangulations, it follows that∑
θ∈M

|Eθ|−1/p · 11Eθ
(x) ≤ cE(x)−1/p11E(x), x ∈ R2.

On the other hand,

E(x)−1 = max
θ∈M, Eθ�x

|Eθ|−1 ≤
∑
θ∈M

|Eθ|−111Eθ
(x).

Therefore,

‖g‖p ≤ cL‖E(·)−1/p‖Lp
= cL

(∫
E

E(x)−1 dx

)1/p

≤ cL

( ∑
θ∈M

|Eθ|−1

∫
R2

11Eθ
(x) dx

)1/p

= cL(#M)1/p.

We define

Fµ := {θ : 2−µN ≤ ‖cθϕθ‖p < 2−µ+1N},

where N := (
∑
θ∈Θ ‖cθϕθ‖τp)1/τ . Then⋃

ν≤µ
Fν = {θ : ‖cθϕθ‖p ≥ 2−µN},
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750 OLEG DAVYDOV AND PENCHO PETRUSHEV

and hence

#Fµ ≤
∑
ν≤µ

#Fν = #

( ⋃
ν≤µ

Fν
)

≤ 2µτ .(A.1)

We set Fµ :=
∑
θ∈Fµ

|cθϕθ|. Using Lemma A.1 and (A.1), we obtain

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥
p
≤
∥∥∥ ∞∑
µ=0

Fµ(·)
∥∥∥
p
≤

∞∑
µ=0

‖Fµ‖p ≤ c

∞∑
µ=0

2−µN(#Fµ)1/p

≤ cN

∞∑
µ=0

2−µ(1−τ/p) ≤ cN

∞∑
µ=0

2−µτα ≤ cN.

This completes the proof of Theorem 2.9.
Proof of Theorem 3.1 (the case 0 < p < ∞). Suppose f ∈ Bατ (Φ), where α > 0,

1/τ = α + 1/p, 0 < p < ∞. By (2.40), f can be represented in the form f =∑
θ∈Θ bθϕθ with the series converging absolutely a.e. in R2 and in Lp. We denote

briefly N(f) := NΦ,Q,τ (f) := (
∑
θ∈Θ ‖bθϕθ‖τp)1/τ ≈ ‖f‖Bα

τ (Φ)
.

Suppose that (bθjϕθj )
∞
j=1 is a rearrangement of the sequence (bθϕθ)θ∈Θ such that

‖bθ1ϕθ1‖p ≥ ‖bθ2ϕθ2‖p ≥ · · ·. Set sn :=
∑n
j=1 bθjϕθj , sn ∈ Σn(Φ).

Case 1. 0 < p ≤ 1. To estimate ‖f − sn‖p we shall use the following simple
inequality [38]: If x1 ≥ x2 ≥ · · · ≥ 0 and 0 < τ < p, then( ∞∑

j=n+1

xpj

)1/p

≤ n1/p−1/τ

( ∞∑
j=1

xτj

)1/τ

.(A.2)

We use Theorem 2.9 and apply (A.2) with xj := ‖bθjϕθj‖p to obtain

‖f − sn‖p ≤
∥∥∥ ∞∑
j=n+1

|bθjϕθj |
∥∥∥
p
≤
( ∞∑
j=n+1

‖bθjϕθj‖pp
)1/p

≤ n1/p−1/τ

( ∞∑
j=1

‖bθjϕθj‖τp
)1/τ

= n−αN(f),

which proves Theorem 3.1 in Case 1.
Case 2. 1 < p < ∞. We proceed quite similarly as in the proof of Theorem 2.9.

We set Fµ := {θ : 2−µN(f) ≤ ‖bθϕθ‖p < 2−µ+1N(f)} and Fµ :=
∑
θ∈Fµ

|bθϕθ|.
Fix m ≥ 1 and set M := $2mτ%. As in the proof of Theorem 2.9 (see (A.1)),

#Fm ≤∑ν≤m#Fν ≤ 2mτ ≤M. Using Lemma A.1, we obtain

‖f − sM‖p ≤
∥∥∥ ∞∑
µ=m+1

Fµ

∥∥∥
p
≤

∞∑
µ=m+1

‖Fµ‖p

≤ c

∞∑
µ=m+1

2−µN(f)(#Fµ)1/p ≤ cN(f)

∞∑
µ=m+1

2−µ(1−τ/p)

≤ cN(f)2−m(1−τ/p) ≤ cM−1/τ+1/pN(f) = cM−αN(f).

This estimate readily implies (3.1).
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NONLINEAR SPLINE APPROXIMATION 751

Proof of Theorem 3.2. Step 1. With this step we lay some groundwork that
is needed for the proof of the Bernstein inequality. Let T be an arbitrary LR-
triangulation and suppose Λ is a finite subset of T . The set Λ generates a certain tree
structure that we want to bring up in what follows.

We say that � ∈ T is a branching triangle if at least two children of �
have descendants in Λ. Let Λ̃ denote the extension of Λ obtained by adding all
branching triangles and all children of branching triangles if they are not already
in Λ. By considering the tree of the ancestors of all triangles in Λ, it is not diffi-
cult to see that the total number of branching triangles does not exceed #Λ − 1.
Since the number of children of a triangle is bounded by M0, we conclude that
#Λ̃ ≤ c#Λ.

Furthermore, for a later use in Step 3, we call � ∈ T \ Λ̃ a chain triangle if
at least one of its descendants belongs to Λ. The set of all chain triangles will be
denoted by Γ. By construction, for each � ∈ Γ there is a unique largest triangle
�̃ ∈ Λ̃ contained in �. We set K� := � \ �̃ and µ� := m − m̃, where � ∈ Tm
and �̃ ∈ Tm̃. We denote by Γ̃ the set of all � ∈ Γ for which there is a �′ ∈ Λ̃
containing �. It is easy to see that Γ̃ is the disjoint union of finite chains, i.e., sets
λ of the form λ = {�1, . . . ,�ν} ⊂ Γ̃ (ν ≥ 1), where �′′

λ ⊃ �1 ⊃ · · · ⊃ �ν ⊃ �′
λ

for some �′
λ,�′′

λ ∈ Λ̃, and �1 is a child of �′′
λ, �j is a child of �j−1, ν = 2, . . . , ν,

and �′
λ is a child of �ν . Similarly, Γ \ Γ̃ is the disjoint union of infinite chains

λ = {. . . ,�−2,�−1} ⊂ Γ, where · · · ⊃ �−2 ⊃ �−1 ⊃ �′
λ for some �′

λ ∈ Λ̃, and
�j is a child of �j−1, ν = −1,−2, . . ., and �′

λ is a child of �−1. We let L and L∞

denote the sets of all finite, respectively, infinite chains in Γ. Clearly, #L ≤ #Λ̃ and
#L∞ ≤ #Λ̃.

Step 2. For the proof of the theorem in the case 0 < p <∞, we need the following
lemma.

Lemma A.2. Suppose s =
∑

�∈Λ 11� · P�, where P� ∈ Πk (k ≥ 1), Λ ⊂ T with
T an LR-triangulation, and #Λ <∞. Then( ∑

�∈Λ
|�|−ατ‖s‖τLτ (�)

)1/τ

≤ c(#Λ)α‖s‖p,

with c independent of s and Λ.
Proof. We adopt all necessary notation from Step 1 above with Λ from the

hypotheses of the lemma. Since #Λ̃ ≤ c#Λ and s =
∑

�∈Λ̃ 11� · P�, where P� = 0

for � ∈ Λ̃\Λ, we may assume without loss of generality that Λ̃ = Λ; i.e., the branching
triangles and their children are contained in Λ.

Let �1, . . . ,�m be all nonbranching triangles in Λ. It is not difficult to see that
for each of them there are only two possibilities: either �i does not contain any other
� ∈ Λ (in which case we call �i a final triangle) or there is a unique largest triangle
�̃i ∈ Λ strictly contained in �i. We define the rings Ki := �i \ �̃i, i = 1, . . . ,m,
where �̃i := ∅ for a final triangle �i. Obviously, Ki have pairwise disjoint interiors,
and s|Ki

= Pi|Ki , for some Pi ∈ Πk, i = 1, . . . ,m. Since all children of branching
triangles are in Λ, we have for each � ∈ Λ,

� =

m⋃
i=1

�i⊂�

Ki and s|� =

m∑
i=1

�i⊂�

11Ki · Pi.D
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752 OLEG DAVYDOV AND PENCHO PETRUSHEV

Therefore,

∑
�∈Λ

|�|−ατ‖s‖τLτ (�) =
∑
�∈Λ

|�|−ατ
m∑
i=1

�i⊂�

‖s‖τLτ (Ki)

=

m∑
i=1

‖s‖τLτ (Ki)

∑
�∈Λ,�⊃�i

|�|−ατ

=

m∑
i=1

‖s‖τLτ (Ki)
|�i|−ατ

∑
�∈Λ,�⊃�i

(|�i|/|�|)ατ

≤ c

m∑
i=1

‖s‖τLτ (Ki)
|�i|−ατ ,

where we once switched the order of summation and used (2.9). Since |�̃i| ≤ ρ|�i|,
we have by Lemma 2.2,

‖Pi‖Lτ (Ki) ≈ |Ki|1/τ−1/p‖Pi‖Lp(Ki) ≈ |�i|α‖Pi‖Lp(Ki),

which implies ‖s‖τLτ (Ki)
|�i|−ατ ≈ ‖s‖τLp(Ki)

, i = 1, . . . ,m. Now by Hölder’s inequal-
ity,

m∑
i=1

‖s‖τLp(Ki)
≤
(

m∑
i=1

‖s‖pLp(Ki)

)τ/p
m1−τ/p ≤ (#Λ)ατ‖s‖τp ,

and the proof is complete.
Step 3. Let s ∈ Σn(Φ) and suppose that s =:

∑
θ∈M cθϕθ, where M ⊂ Θ(T )

and #M ≤ n. Let Λ be the set of all triangles � ∈ T which are involved in all
Eθ := suppϕθ, θ ∈ M. Then s =

∑
�∈Λ s�, where s� =: 11� · P�, P� ∈ Πk.

Evidently, by (2.7), #Λ ≤ c�(N0, $)#M ≤ cn.
We first extend Λ to Λ̃ as in Step 1 above and introduce some auxiliary sets of

triangles needed for the forthcoming arguments. We set

Λ̃∗
m := {� ∈ Tm : Ω�� ⊃ �′ for some �′ ∈ Λ̃ ∩ Tm},

Λ̃∗∗
m := {� ∈ Tm : Ω2�

� ⊃ �′ for some �′ ∈ Λ̃ ∩ Tm}, m ∈ Z,

and also

Λ̃∗ :=
⋃
m∈Z

Λ̃∗
m, Λ̃∗∗ :=

⋃
m∈Z

Λ̃∗∗
m .

Note that �,�′ ∈ Tm and �′ ⊂ Ω�� imply � ⊂ Ω��′ , and hence

Λ̃∗
m = {� ∈ Tm : � ⊂ Ω��′ for some �′ ∈ Λ̃ ∩ Tm}.

Therefore, by (2.8), #Λ̃∗
m ≤ c��(N0, $)#(Λ̃ ∩ Tm), and it follows that #Λ̃∗ ≤ cn.

Similarly, #Λ̃∗∗ ≤ c��(N0, 2$)(#Λ̃) ≤ cn. It is clear that Λ̃ ⊂ Λ̃∗ ⊂ Λ̃∗∗.
We now proceed to estimate |s|τBα

τ (T ) :=
∑

�∈T |�|−ατS�(s)ττ . Let

sm :=
∑
µ≤m

∑
θ∈M∩Θµ

cθϕθ, m ∈ Z.
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NONLINEAR SPLINE APPROXIMATION 753

Then sm ∈ Sm, and hence S�(s)τ = S�(s − sm)τ if � ∈ Tm. For each � ∈ T , we
shall use one of the following two obvious bounds for S�(s)τ :

S�(s)τ ≤ ‖s‖Lτ (Ω�
�),(A.3)

S�(s)τ ≤ ‖s− sm‖Lτ (Ω�
�), � ∈ Tm.(A.4)

Namely, (A.3) will be applied to the triangles � in the set Λ̃∗ ⊂ T defined above,
while (A.4) will be used for all remaining triangles in T .

For the next estimates, we shall consider separately the cases 0 < p < ∞ and
p = ∞.

Case 1. 0 < p < ∞. We consider two possibilities for each � ∈ T : � ∈ Λ̃∗ or
� ∈ T \ Λ̃∗.

(a) If � ∈ Λ̃∗
m, then for each �′ ∈ Tm such that �′ ⊂ Ω��, we have �′ ∈ Λ̃∗∗

m

and, in view of (2.2), |�′| ≤ c|�|. Hence, by (A.3),∑
�∈Λ̃∗

m

|�|−ατS�(s)ττ ≤
∑

�∈Λ̃∗
m

|�|−ατ
∑

�′∈Λ̃∗∗
m ,�′⊂Ω�

�

‖s‖τLτ (�′)

≤ c
∑

�∈Λ̃∗
m

∑
�′∈Λ̃∗∗

m ,�′⊂Ω�
�

|�′|−ατ‖s‖τLτ (�′)

= c
∑

�′∈Λ̃∗∗
m

∑
�∈Λ̃∗

m,Ω
�
�⊃�′

|�′|−ατ‖s‖τLτ (�′)

≤ c
∑

�′∈Λ̃∗∗
m

|�′|−ατ‖s‖τLτ (�′),

where we have switched the order of summation and taken into account the fact that
#{� ∈ Λ̃∗

m : Ω�� ⊃ �′} = #{� ∈ Λ̃∗
m : � ⊂ Ω��′} ≤ c��(N0, $), by (2.8). It follows

that ∑
�∈Λ̃∗

|�|−ατS�(s)ττ ≤ c
∑

�∈Λ̃∗∗

|�|−ατ‖s‖τLτ (�)

≤ c(#Λ̃∗∗)ατ‖s‖τp ≤ cnατ‖s‖τp ,(A.5)

where we applied Lemma A.2 to s with Λ replaced by Λ̃∗∗, which is obviously legiti-
mate since Λ̃∗∗ ⊃ Λ.

(b) Now suppose � ∈ Tm \ Λ̃∗
m. Then Ω�� =

⋃n�
j=1 �j for some �j ∈ Tm \ Λ̃,

j = 1, . . . , n�, with n� ≤ c�� ≤ 3N2�−1
0 (see (2.8)). We have, using (A.4),

S�(s)ττ = S�(s− sm)ττ ≤
n�∑
j=1

‖s− sm‖τLτ (�j)
.(A.6)

If �j /∈ Γ, then it has no descendants in Λ, and hence s|�j
= sm|�j

, and

‖s− sm‖Lτ (�j) = 0, �j /∈ Γ.(A.7)

Suppose �j ∈ Γ; i.e., it is a chain triangle. Let �̃j be the unique largest triangle

of Λ̃ contained in �j , and letK�j
= �j\�̃j and µ�j

= m−m̃ be defined as in Step 1.
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754 OLEG DAVYDOV AND PENCHO PETRUSHEV

It is clear that in this case s|K�j
= sm|K�j

= 11K�j
· P�j

and sm|�j
= 11�j

· P�j
for

some P�j ∈ Πk. Therefore,

‖s− sm‖τLτ (�j)
= ‖s− sm‖τ

Lτ (�̃j)
≤ c‖s‖τ

Lτ (�̃j)
+ c‖P�j

‖τ
Lτ (�̃j)

.

If �j ∈ Γ \ Γ̃, then clearly sm|�j
= 0, and we have

‖s− sm‖Lτ (�j) = ‖s‖Lτ (�̃j)
, �j ∈ Γ \ Γ̃.(A.8)

Assume that �j ∈ Γ̃. By Lemma 2.2,

‖P�j‖τLτ (�̃j)
≤ |�̃j |‖P�j

‖τL∞(�j)
≤ c|�̃j |‖P�j

‖τL∞(K�j
)

≤ c|�̃j ||K�j |−τ/p‖P�j‖τLp(K�j
) ≤ c|�̃j ||�j |ατ−1‖s‖τLp(K�j

).

By (2.1), |�̃j | ≤ ρµ�j |�j |, and we arrive at the inequality

‖s− sm‖τLτ (�j)
≤ c‖s‖τ

Lτ (�̃j)
+ cρµ�j |�j |ατ‖s‖τLp(K�j

), �j ∈ Γ̃.(A.9)

From (A.6)–(A.9) and (2.2), we obtain∑
�∈T \Λ̃∗

|�|−ατS�(s)ττ =
∑
m∈Z

∑
�∈Tm\Λ̃∗

m

|�|−ατS�(s)ττ

≤ c
∑
�∈Γ

|�|−ατ‖s‖τ
Lτ (�̃)

+ c
∑
�∈Γ̃

ρµ�‖s‖τLp(K�)

=: Σ1 +Σ2.

Trivially,

‖s‖Lτ (�̃) ≤
∑

�′∈Λ̃,�′⊂�
‖s‖Lτ (�′), � ∈ Γ.

Switching the order of summation, we find

Σ1 ≤ c
∑
�′∈Λ̃

‖s‖τLτ (�′)

∑
�∈Γ,�⊃�′

|�|−ατ

≤ c
∑
�′∈Λ̃

‖s‖τLτ (�′)|�′|−ατ
∑

�∈Γ,�⊃�′
(|�′|/|�|)ατ(A.10)

≤ c
∑
�′∈Λ̃

|�′|−ατ‖s‖τLτ (�′) ≤ c(#Λ̃)ατ‖s‖τp ,

where we also used (2.9) and applied Lemma A.2 to s with Λ replaced by Λ̃.
To estimate Σ2 we shall use the representation of Γ̃ as a disjoint union of chains:

Γ̃ =
⋃
λ∈L λ. Let λ ∈ L and suppose λ = {�1, . . . ,�ν}, where �′′

λ ⊃ �1 ⊃ · · · ⊃
�ν ⊃ �′

λ with �′
λ,�′′

λ ∈ Λ̃. Then µ�i
≥ ν − i+ 1. Therefore,

∑
�∈λ

ρµ�‖s‖τLp(K�) ≤ ‖s‖τLp(�′′
λ
\�′

λ
)

ν∑
j=1

ρν−j+1 ≤ c‖s‖τLp(Kλ)
,
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NONLINEAR SPLINE APPROXIMATION 755

where Kλ := �′′
λ \�′

λ. It is easy to see that the sets Kλ, λ ∈ L, have pairwise disjoint
interiors. Summing over all λ ∈ L, we obtain by Hölder’s inequality

Σ2 ≤ c
∑
λ∈L

‖s‖τLp(Kλ)
≤ c

(∑
λ∈L

‖s‖pLp(Kλ)

)τ/p
(#L)1−τ/p ≤ c(#Λ̃)ατ‖s‖τp .

From this estimate and (A.10), we find∑
�∈T \Λ̃∗

|�|−ατS�(s)ττ ≤ c(#Λ̃)ατ‖s‖τp ≤ cnατ‖s‖τp .

Combining this with (A.5) gives ‖s‖τBα
τ (Φ)

≤ cnατ‖s‖τp ; i.e., (3.2) holds.
Case 2. p = ∞. The proof in this case is easier. We consider as before two

possibilities for each � ∈ T : � ∈ Λ̃∗ or � ∈ T \ Λ̃∗.
(a) For � ∈ Λ̃∗, we obtain by (2.2)

|�|−1S�(s)ττ ≤ |�|−1‖s‖τLτ (Ω�
�) ≤ |�|−1|Ω��|‖s‖τ∞ ≤ c‖s‖τ∞.

Therefore, ∑
�∈Λ̃∗

|�|−1S�(s)ττ ≤ c‖s‖τ∞(#Λ̃∗) ≤ cn‖s‖τ∞.(A.11)

(b) Let � ∈ Tm \ Λ̃∗
m. Then Ω�� =:

⋃n�
j=1 �j for some �j ∈ Tm \ Λ̃, j = 1, . . . , n�,

with n� ≤ c�� < 3N2�−1
0 (see (2.8)). We have (see (A.4))

S�(s)ττ = S�(s− sm)ττ ≤
n�∑
j=1

‖s− sm‖τLτ (�j)
.

As in Case 1, if �j /∈ Γ, then ‖s − sm‖Lτ (�j) = 0, and if �j ∈ Γ, then s|K�j
=

sm|K�j
= 11K�j

· P�j and sm|�j = 11�j · P�j for some P�j ∈ Πk. Therefore,

‖s− sm‖τLτ (�j)
= ‖s− sm‖τ

Lτ (�̃j)

≤ c|�̃j |(‖s‖τ∞ + ‖P�j‖τL∞(�̃j)
) ≤ c|�̃j |‖s‖τ∞,

where we used the inequalities ‖P�j‖L∞(�̃j)
≤ ‖P�j‖L∞(�j) ≤ c‖P�j‖L∞(K�j)

≤
c‖s‖∞ (see Lemma 2.2). From the above, we infer by (2.2)

|�|−1S�(s)ττ ≤ c‖s‖τ∞
∑

1≤j≤n�,�j∈Γ∩Tm

|�̃j |/|�j |,

and hence, using (2.2) and the fact that each �′ ∈ Γ ∩ Tm can belong to ≤ c�� sets
Ω��, we obtain ∑

�∈Tm\Λ̃∗
m

|�|−1S�(s)ττ ≤ c‖s‖τ∞
∑

�∈Γ∩Tm

|�̃|/|�|

≤ c‖s‖τ∞
∑

�∈Γ∩Tm

ρµ� .
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756 OLEG DAVYDOV AND PENCHO PETRUSHEV

Summing over m ∈ Z, we find

∑
�∈T \Λ̃∗

|�|−1S�(s)ττ ≤ c‖s‖τ∞
∑
�∈Γ

ρµ� ≤ c‖s‖τ∞ (#L+#L∞) ≤ cn‖s‖τ∞.

We couple this with (A.11) to obtain ‖s‖τBα
τ (T ) ≤ cn‖s‖τ∞, which is (3.2).
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