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A new proof is given of the atomic decomposition of Hardy spaces
H?, 0 < p < 1, in the classical setting on R™. The new method can
be used to establish atomic decomposition of maximal Hardy spaces in
general and nonclassical settings.
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1. Introduction

The study of the real-variable Hardy spaces H?, 0 < p < 1, on R™ was
pioneered by Stein and Weiss [6] and a major step forward in developing this
theory was made by Fefferman and Stein in [3], see also [5]. Since then there
has been a great deal of work done on Hardy spaces. The atomic decomposition
of HP was first established by Coifman [1] in dimension n = 1 and by Latter [4]
in dimensions n > 1.

The purpose of this article is to give a new proof of the atomic decomposition
of the H? spaces in the classical setting on R™. Our method does not use the
Calderén-Zygmund decomposition of functions and an approximation of the
identity as the classical argument does, see [5]. The main advantage of the
new proof over the classical one is that it is amenable to utilization in more
general and nonclassical settings. For instance, it is used in [2] for establishing
the equivalence of maximal and atomic Hardy spaces in the general setting of
a metric measure space with the doubling property and in the presence of a
non-negative self-adjoint operator whose heat kernel has Gaussian localization.

We denote by |z| the Euclidean norm of € R™ and by B(z, d) the open ball
centered at x € R™ of radius 0, i.e. B(z,9) :={y € R": |z — y| < 6}. Positive
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constants will be denoted by ¢, cy,... and they may vary at every occurrence;
a ~ b will stand for ¢; < a/b < co.

1.1. Maximal Operators and HP Spaces

We begin by recalling some basic facts about Hardy spaces on R™. For a
complete account of Hardy spaces we refer the reader to [5].
Given ¢ € S with S being the Schwartz class on R™ and f € S’ one defines

Mo f(z) :=sup e » f(@)] with () := "t ),

and
M:;yaf(ac) :=sup sup |t * f(y)l, a>1.
t>0  yeR"
lz—y|<at

We now recall the grand maximal operator. Write

P = sup (1+ |z)Y max [0%(z
w(g) = sup (14 Ja)¥ | max (07 (o)

and denote
Fn = {cp €S: 'PN(QO) < 1}.

The grand maximal operator My is defined by

My f(z) == sup Mg, f(z), fes. (1)

YEFN

It is easy to see that for any ¢ € S and a > 1 one has
Mg o f(x) < a"Py(@)Myf(x),  [€S. (2)

Definition 1. The space H?, 0 < p < 1, is defined as the set of all bounded
distributions f € &’ such that the Poisson maximal function sup,.q [P * f(x)]
belongs to LP; the quasi-norm on HP is defined by

[z = [|sup [P+ fO)]]
>0
As is well known the following assertion holds, see [3, 5]:

Proposition 1. Let 0 < p <1, a > 1, and assume ¢ € S and f]R" w # 0.
Then for any N > L%J +1

[fllme ~ [IMg o fllLe ~ IMNfllLe, Ve HP.
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1.2. Atomic HP Spaces

A function a € L*°(R") is called an atom if there exists a ball B such that
(i) suppa C B,
(i) [lallz~ < |B|~/7, and
(iii) [pn #*a(x) dz = 0 for all a with |a| < n(p~' —1).

The atomic Hardy space HY, 0 < p < 1, is defined as the set of all distri-
butions f € &’ that can be represented in the form

oo o0
= Z Ajaj, where Z [A;]P < o0,
j=1 j=1
{a;} are atoms, and the convergence is in &’. Set
) > 1/p
7l = ,_jnt, <j_1 ) feny,

2. Atomic Decomposition of HP Spaces

We now come to the main point in this article, that is, to give a new proof
of the following classical result [1, 4], see also [5]:

Theorem 1. For any 0 < p < 1 the continuous embedding HP C HY is
valid, that is, if f € HP, then f € HY and

1fllen < el fllaw,

where ¢ > 0 is a constant depending only on p,n. This along with the easy to
prove embedding H) C H? leads to H? = HY and || f| ze ~ || f||az, for f € HP.

Proof. We first derive a simple decomposition identity which will play a
central role in this proof. For this construction we need the following

Lemma 1. For any m > 1 there exists a function ¢ € C§°(R™) such that
supp C B(0,1), ¢(0) = 1, and 0*¢(0) = 0 for 0 < |a] < m. Here ¢ is the
Fourier transform of ¢, defined by ¢(§) == [gn o(x)e™ ¢ da.

Proof. We will construct a function ¢ with the claimed properties in di-
mension n = 1. Then a properly normalized dilation of ¢(z1)p(z2) - @(x,)
will have the claimed properties on R™.

For the univariate construction, pick a smooth “bump” ¢ with the following
properties: ¢ € C§°(R), suppé C [—1/4,1/4], ¢(x) > 0 for x € (—1/4,1/4),
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and ¢ is even. Let O(z) := ¢(z +1/2) — ¢p(z — 1/2) for z € R. Clearly O is
odd.

We may assume that m > 1 is even, otherwise we work with m 4 1 instead.
Denote A} := (T}, — T_p)™, where T}, f(x) := f(xz + h).

We define ¢(z) := 2AmO(x), where h = g-. Clearly, ¢ € C®(R), ¢ is
even, and supp ¢ C [—%, —%] U [%, %] It is readily seen that for v =1,2,...,m

) = (- [ e ape@e e do
R

and hence

~(v) — (=9 1,1/71 m ) dr = (—i)vtm T mxvfl r = 0.
2¥(0) = ( >/R APO () di = (—i)"+ /R@UAh dz =0

On the other hand,

0o 3/4
$(0) = /ch(:c) dx = 2/0 rPATO(x) dr = 2(—1)™ /1/4 O(x)Arx ™! da.

However, if f is a sufficiently smooth function, then A} f(z) = (2h)™ f(™)(¢),
where £ € (x — mh,z + mh). Hence,

APzt = (2R)™m!(—=1)™¢™ Y with ¢ € (x — mh,x +mh) C [1/8,7/8].

Consequently, $(0) # 0 and then $(0) " 1p(x) has the claimed properties. [

With the aid of the above lemma, we pick ¢ € C5°(R™) with the following
properties: supp ¢ C B(0,1), ¢(0) = 1, and 90*¢(0) = 0 for 0 < |a| < K, where
K is sufficiently large. More precisely, we choose K > n/p.

Set 1h(z) 1= 27p(2z) — p(z). Then P(€) = @(£/2) — $(€). Therefore,
9°)(0) = 0 for |a| < K which implies Jn 2% (x) dz = 0 for |a] < K. We
also introduce the function ¥ (x) := 2"¢(2z) + ¢(z). We will use the notation
hi(x) = 2" h(2F ).

Clearly, for any f € &’ we have f = lim;_,o ; * @, * f (convergence in §’),
which leads to the following representation: For any j € Z

(o)
f:%*%*erZ(sOkH*<Pk+1*f*$0k*s0k*f)
k=3

=@ x0ix f+ Y (ori1 — k) * (Prp1 + ox) * f.
k=j
Thus we arrive at

(oo}
fz@j*@j*f+z¢k*1;k*f, VfeS VjeZ (convergenceinS’).
k=j
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Observe that supp . C B(0,27%) and supp oy C B(0,27F).
In what follows we will utilize the grand maximal operator My, defined
in (1) with N := | 3] + 1. The following claim is an immediate consequence

of (2): If € S, then for any f € S, k€ Z, and x € R”
|pr * f(y)| < eMpyf(z) forall yeR™ with |y—z| <27, (3)

where the constant ¢ > 0 depends only on Py(¢) and N.
Let fe HP, 0<p <1, f #0. We define

Q ={zeR": Myf(z) >2"}, rei

Clearly, Q. is open, Q2,41 C Q,, and R” = U, ¢z ;.. It is easy to see that

D2 < [ My f@) de < e fl. (4)

rEZL R™

Indeed, we have

S0, =372 ST\ Qo] = D12\ QoD 27"

rEZL rez v>r VEZL r<v
<cp Y 27|, \Qu+1|<cp2/ My f ()P dx
vEZ vEZ v\ Qg1

=c¢p | Mnf(z)Pda.
Rn

From (4) we get || < ¢27P"||f||%,, for r € Z. Therefore, for any r € Z
there exists J > 0 such that ||p; * ¢; * f]loc < ¢27 for j < —J. Consequently,
I * @; * flloo = 0 as j — —oo, which implies

K
f= Klgnoo k; Vi * Yp * f (convergence in §’). (5)

Assuming that Q, # 0 we write
B = {x € Q, t dist(z, Q%) > 2713\ {z € Qppq « dist(z, Q5,,) > 271

By (4) it follows that |Q,| < co and hence there exists s, € Z such that E,;, # )
and E., = 0 for k < s,.. Evidently s, < s,,1. We define

Z/ Ur(x — y)Ur * fy) dy, reR™ rez, (6)
k>s,
and more generally

rngnl Z/ wsz wk*f( )dya STS’{'OSHISOO~ (7)

k:li()
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It will be shown in Lemma 2 below that the functions F, and F; ., ., are well
defined and Fy., Fy ., € L.
Note that supp ¢ C B(0, 27%) and hence

supp ( U = y)d = f(y) dy) C {z:dist(z, Ex) <27} (8)

Erk

On the other hand, clearly B(y, 2 **1)N (2, \ Q41) # 0 for each y € Ey, and
Py () < c. Therefore, see (3), |¢hr * f(y)| < ¢2" for y € By, which implies

H/Ewk('—y)iﬁk*f(y) clyH(>o <c2', VEC Ey. (9)

Similarly,

H /E (- —y)@r* f(y) dyHOO <c2',  VECEy. (10)

We collect all we need about the functions F,. and F; ., ., in the following
Lemma 2. (a) We have

EaxNEn=0 ifr#7r and R"=U,cz FEn, Vk<LZ. (11)

(b) There exists a constant ¢ > 0 such that for any r € Z and s, < kg <
K1 < 00

[Frlloe <27,

|F7‘7K0,H1||<>O S CQT' (12)

(¢) The series in (6) and (7) (if kK1 = 00) converge point-wise and in distri-
butional sense.
(d) Moreover,

F.(z) =0, Ve e R"\ Q,, VreZ. (13)

Proof. Identities (11) are obvious and (13) follows readily from (8).

We next prove the left-hand side inequality in (12); the proof of the right-
hand side inequality is similar and will be omitted. Consider the case when
Q11 # 0 (the case when Q.11 = 0 is easier). Write

Uk = {z € Q, : dist(z, Q¢) > 2751},
Vio = {z € Quyq : dist(z, Q5 ) > 27711

Observe that E,., = Uy \ Vi.

Clearly, (8) implies |F, ()| = 0 for € R™ \ Uy, {x : dist(z, E) < 27F}.
We next estimate |F,(z)| for & € U, {@ : dist(z, E;i) < 27%}. Two cases
present themselves here.

Case 1: z € [Ul@sr {:L' s dist(z, Erg) < 2*’“}] N Q,11. Then there exist
v, £ € Z such that

T € (Ug+1 \Ug) N (Vu+1 \ V). (14)
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Due to Q.41 C Q, we have Vi, C Uy, implying (Upy1 \Up) N (Vi1 \ Vo) = 0
if v < £. We next consider two subcases depending on whether v > ¢ + 3 or
<y <{+2.

(a) Let v > £+ 3. We claim that (14) yields

B(ac,Q_k)ﬂE,.k:(Z) for k>v+2or k</{-—1. (15)
Indeed, if k > v+2, then E,. C .\ V, 12, which implies (15), while if £ < £—1,
then E,, C Uy—1, again implying (15).
We also claim that
B(x,27 ") Cc E for (+2<k<v-—1. (16)
Indeed, clearly
(Uera \Ue) N (Vg1 \ Vo) € (Uk—1 \ Ue) N (Vo1 \ Vi) C Up—1 \ Vi1,

which implies (16).
From (8) and (15)—(16) it follows that

v+1 +1
Z/ i — v * fly dy*Z/ Yz — Y * fy) dy
v+1
+Z U@ —y)ir * f(y dy-l—Z/ U@ —y)ir * f(y) dy
k=t+2 7 R" k=v—1
However,

Z U@ — y)ir * f(y) dy
k=t4+2 /R
v—2

= Z (Prr1 * Qa1 * f(x) — on * on % f(2))

k=042
= Pr—1 kK Py—_1* f(x) — Po42 kK Ppg2 ¥ f(x)

- / o1 (@ — Y)pu1 * F(y) dy — / esa(& — y)pren * fy) dy
Erv_1 Ery2

Combining the above with (9) and (10) we obtain |F,.(x)| < ¢2".
(b) Let ¢ < v < £+ 2. Just as above we have

V+1 l+3
F.(x / Vi(z — y)oe * f(y) dy* / i — ) * fy) dy

We use (9) to estimate each the above four integrals and obtain |F.(z)| < ¢2".



66

Atomic Decomposition of Hardy Spaces

Case 2: x € Q. \ Q,41. Then there exists £ > s, such that

RS (Uz+1 \ Uz) N (QT \ QTJrl).

Just as in the proof of (15) we have B(z,27 %) N E,;, =0 for k </ —1, and as
in the proof of (16) we have

(Ues1 \Ue) N (2 \ Qry1) C Up—1 \ Vi,

which implies B(z,27%) C E, for k > £+ 2. We use these and (8) to obtain

R =3 /E Al =) S dy

£+1 ~
= Yz — y)w * f(y) dy +

For the last sum we have

> [ nle—wbis ) do

k=042

> [ e p)is f@dy= Jim 3 s fla)
k=t+2 7 R" k=042
VlLH;O ((pl/-i-l * Pyl * f(I) — Pe42 * Poy2 * f(I))

= lim

Jm ([ et —vem e rw

[ eala - weenex fo)dy).
Eroy2
From the above and (9)-(10) we obtain |F,.(z)| < ¢2".

The point-wise convergence of the series in (6) follows from above and we
similarly establish the point-wise convergence in (7).

The convergence in distributional sense in (6) relies on the following asser-
tion: For every ¢ € S

S o) < oo, where gou(o)i= [ (o~ o) f)ds. (17)
k>s, Ery
Here (g,k, ¢) := fRn gri¢d dz. To prove the above we will employ this estimate:

[0k flloo < 2577 fllgn, k€ Z

(18)
Indeed, using (2) we get
Ppf(z)P < inf sup e f(2)|P < inf ceMy fy)P
e (@)l yrlm*y|§2*’“z:\y7z\g2fk| e (el yilo—y|<27F i)

< B2 |

M f(y)P dy < 2| 115,
B(xz,2F)



S. Dekel, G. Kerkyacharian, G. Kyriazis and P. Petrushev 67

and (18) follows.
We will also need the following estimate: For any o > n there exists a
constant ¢, > 0 such that

‘ Yi(x —y)d(x) dx‘ < 27 FEFD (1 4 |y, yeR™ k£>0. (19)
R?L

This is a standard estimate for inner products taking into account that ¢ € S
and ¢ € C>, suppv C B(0,1), and [, 2*¢(x) dz =0 for |a| < K.

We now estimate [{(grk, ¢)|. From (18) and the fact that ¢ € C§°(R) and
¢ € S it readily follows that

[ [ e pllo@ s @l duds < oo, 25,
Erg n
Therefore, we can use Fubini’s theorem, (18), and (19) to obtain for k£ > 0

g, &) s/
E, Rn
< 2 HEH=D| F| / (14 y) 7 dy < c2 T

Ey i

Vel = y)o(a) del [0 f (y) dy (20)

which implies (17) because K > n/p.

Denote Gy := Zi:sr gri- From the above proof of (b) and (12) we infer
that Ge(z) — F.(x) as £ — oo for x € R™ and ||Gy||ec < ¢2" < 00 for £ > s,.
On the other hand, from (17) it follows that the series >,  g,r converges
in distributional sense. By applying the dominated convergence theorem one
easily concludes that F,. = >, s, grk with the convergence in distributional
sense. 0

We set F,. := 0 in the case when Q, =0, r € Z.
Note that by (11) it follows that

vt f@) = [ o=t =3 [ ola—pibisfdy @)
rez " Erk

and using (5) and the definition of F,. in (6) we arrive at

f=Y_F in&, e (f,¢)=) (F.¢), VpeS, (22)

reZ rez

where the last series converges absolutely. Above (f,¢) denotes the action of
f on ¢. We next provide the needed justification of equality (22).
From (5), (6), (21), and the notation from (17) we obtain for ¢ € S

(F,0) = WP £,8) = D) (ks ®) = D> (grr ) = Y _(Fr, ).
k T T k

k T
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Clearly, to justify the above it suffices to show that >, > [(grk, ®)| < co. We
split this sum into two:

ST Uk O =D Hgrks O+ DD [grks @) =: Ty + Do
k r

k>0 k<0 T

To estimate X1 we use (20) and obtain

S1 < el fll 32K /E (L+1y)~ dy
rk

k>0 r

< el 32O [ (L) dy < el

k>0 Rn

Here we also used that K > n/p and o > n.
We estimate Y in a similar manner, using that [,
(18). We get

S <clflin 2SS [ onle =l dviote)] da

k<0

Yi(y)| dy < ¢ < oo and

< clfllar 327 [ (@ fal) " do <

k<0 R

The above estimates of ¥; and Xy imply Y, > |(grk, ®)| < 0o, which com-
pletes the justification of (22).

Observe that due to [g, 2% (x) dz = 0 for |a| < K we have
/ 2Fp(x)de =0 for|o| <K, reZ.

We next decompose each function F). into atoms. To this end we need a
Whitney type cover for £2,., given in the following

Lemma 3. Suppose 2 is an open proper subset of R™ and let p(x) :=
dist(x,Q°). Then there exists a constant K > 0, depending only on n, and
a sequence of points {&;}jen in Q with the following properties, where p; =
dist (&5, Q°):

(a) Q= Ujen B(&;,p;/2)-
(b) {B(&;,pj/5)} are disjoint.
(¢) If B(&,%2)nB(&,, %) # 0, then T7~'p, < p; < Tp,.

(d) For every j € N there are at most K balls B({,,, 32") intersecting
B¢, 3Pi
(& 7).

)
)
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Variants of this simple lemma are well known and frequently used. To
prove it one simply selects {B(&;, p(§;)/5)}jen to be a maximal disjoint subset
of {B(x,p(z)/5)}zeq and then properties (a)—(d) follow readily, see [5, pp.
15-16).

We apply Lemma 3 to each set Q. # 0, r € Z. Fix r € Z and assume §,. # 0.
Denote by B; := B(§j,p;/2), j = 1,2,..., the balls given by Lemma 3, applied
to 2,, with the additional assumption that these balls are ordered so that
p1 > p2 > ---. We will adhere to the notation from Lemma 3. We will also use
the more compact notation B, := {B,},en for the set of balls covering .

For each ball B € B, and k > s, we define

EE = Epn{z:dist(z,B) <275} if BNE. #0 (23)

and set EB := ) if BN E., = 0.
We also define, for £ =1,2,.. .,

RB = EB\ U~ BB and (24)
Fa0)i= 3 [, onla )i s 1) dy. (25)
i>s, Bk

Lemma 4. For every { > 1 the function Fp, is well defined, more pre-
cisely, the series in (25) converges point-wise and in distributional sense. Fur-
thermore,

supp Fp, C 7By, (26)
/ v*Fp,(z)dz =0 for all a with |a| < n(p~* — 1), (27)
]Rn
and
1B [loo < 42", (28)

where the constant cy is independent of r, (.
In addition, for any k > s,

Eup=Ups1RE and RE!ORE™ =0, (#m. (29)
Hence
F.= Z Fgp (convergence in S). (30)
BeB,

Proof. Fix ¢ > 1. Observe that using Lemma 3 we have
By C {z € R" : dist(z, Q%) < 2p¢ }
and hence Eﬁf = () if 27%+1 > 2p,. Define ko := min{k : 27% < ps}. Hence
pe/2 < 270 < p,. Consequently,

Fo@)i= Y [, ule = )i f) do.

k>ko Y firk
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Therefore, supp Fpg, C B(&, (7/2);)4) = 7By, which confirms (26).
To prove (28) we will use the following

Lemma 5. For an arbitrary set S C R™ let
Sy = {z € R : dist(z, S) < 271}

and set

Fs(z) =Y /E s G (z — y) ok * f(y) dy (31)

kZHO

for some kg > s,. Then ||Fs|loo < ¢2", where ¢ > 0 is a constant independent
of S and k9. Moreover, the above series converges in S’.

Proof. From (8) it follows that Fs(x) = 0 if dist(z,S) > 3 x 270
Let € S. Evidently, B(z,27%) C S}, for every k and hence

R =3 [ el ) dy

kZHO

=y /E V(@ —y)du * f(y) dy = Frno ().

k‘ZKo

On account of Lemma 2 (b) we obtain |Fg(z)| = |Fy k. (2)] < c27.
Consider the case when x € S;\ Sgy1 for some £ > k. Then B(z,27%) C Sy,
if ko <k <{—1and B(z, Z_k) NS, =0 if k > £+ 2. Therefore,

/—1 ~ +1 _
F = — * d — * d
5(2) :Z [E e = e £) ‘”; [E e ) dy

£+1 ~
=F, Ko, 0— - * d R
) 1(m)+kz_4/ETmSk Yz —y)e * f(y) dy

where we used the notation from (7). By Lemma 2 (b) and (9) it follows that
|Fs(x)] < c2".

We finally consider the case when 27 %01 < dist(z, S) < 3 x 27%0. Then we
have Fg(z) = fEmOﬁSHO Vo (& — 1)y * f(y) dy and the estimate |Fg(z)| < ¢2"

is immediate from (9).
The convergence in S’ in (31) is established as in the proof of Lemma 2. [

Fix ¢ > 1 and let {B; : j € J} be the set of all balls B; = B(¢;, p;/2) such

that 7 > ¢ and
3p; 3
B(g, L) nB(&, 24) # 0.
4 4
By Lemma 3 it follows that #J < K and 7~ 'p, < p; < Tp, for j € J. Define

k1 :=min {k : 271 <4 min{p;: j € JU {631} (32)
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From this definition and 27% < p, we infer

2 hitl > g1 -er}lgl{e} p; >8py >822 — ky <ko+7. (33)
J

Clearly, from (32)

{z : dist(z, Bj) < 27"} C B(&;,3p;/4), Yk > ki, Vi€ JU{l}
Denote S := U;c s Bj and S = UjegBjUBy = SUBy. As in Lemma 5 we set
Sy == {z e R" : dist(z, S) < 27"} and Sy = {z eR™: dist(z, §) < 2 k11,
It readily follows from the definition of &y in (32) that

RE = BN \UysiESy = (B N Sk) \ (Ere N Sk) for k >k (34)

Denote

Fs(@)= 3 /E ke = )y, and

k>kq

Fo(e) = ¥ /E o= 9 )y,

k>ky

From (34) and the fact that S C S it follows that

Fo(@) = Fs(@) = Fs(@)+ Y [ ino =i« )y

ko<k<ki b

By Lemma 5 we get || Fs|loo < ¢2" and || Fl|oc < ¢2". On the other hand from
(33) we have k1 — kg < 7. We estimate each of the (at most 7) integrals above
using (9) to conclude that ||Fp,|lcc < 2.

We deal with the convergence in (25) and (30) as in the proof of Lemma 2.

Clearly, (27) follows from the fact that [p, 2%¢(z)dzr = 0 for all a with
ol < K.

Finally, from Lemma 3 we have Q, C Ujen By and then (29) is immediate
from (23) and (24). O

We are now prepared to complete the proof of Theorem 1. For every ball
B € B, r € Z, provided Q,. # ), we define B* := 7B,

ap(x) = cu71|B*|71/p27TFB(x) and A := cﬁ|B*|1/7”2T7
where ¢4 > 0 is the constant from (28). By (26) suppap C B* and by (28)
laslloo < e ™! B*| /727" Fplloo < |B*|71/P.

Furthermore, from (27) it follows that [, 2%ap(z)dz =0 if |a| < n(p~' —1).
Therefore, each ap is an atom for HP.
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We set B, := 0 if Q. = (. Now, using the above, (22), and Lemma 4 we get

P =Y Y F =Y Y v

rez reZ BeB,. reZ BeB,.

where the convergence is in §’, and

SN el <e X2 Y 1B =320, < el £,

rEZ BEB, rEZL BeB,. rez

which is the claimed atomic decomposition of f € HP. Above we used that
|B*| = |7B| = 7"|B|. The proof of Theorem 1 is complete. O

Remark. The proof of Theorem 1 can be considerably simplified and
shortened if one seeks to establish atomic decomposition of the H? spaces in
terms of g-atoms with p < ¢ < oo rather than oco-atoms as in Theorem 1, i.e.
atoms satisfying ||al|« < |B|*/971/P with ¢ < oo rather than ||a||p~ < |B|~'/P.
We will not elaborate on this here.
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