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A new proof is given of the atomic decomposition of Hardy spaces
Hp, 0 < p ≤ 1, in the classical setting on R

n. The new method can
be used to establish atomic decomposition of maximal Hardy spaces in
general and nonclassical settings.
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1. Introduction

The study of the real-variable Hardy spaces Hp, 0 < p ≤ 1, on R
n was

pioneered by Stein and Weiss [6] and a major step forward in developing this
theory was made by Fefferman and Stein in [3], see also [5]. Since then there
has been a great deal of work done on Hardy spaces. The atomic decomposition
of Hp was first established by Coifman [1] in dimension n = 1 and by Latter [4]
in dimensions n > 1.

The purpose of this article is to give a new proof of the atomic decomposition
of the Hp spaces in the classical setting on R

n. Our method does not use the
Calderón-Zygmund decomposition of functions and an approximation of the
identity as the classical argument does, see [5]. The main advantage of the
new proof over the classical one is that it is amenable to utilization in more
general and nonclassical settings. For instance, it is used in [2] for establishing
the equivalence of maximal and atomic Hardy spaces in the general setting of
a metric measure space with the doubling property and in the presence of a
non-negative self-adjoint operator whose heat kernel has Gaussian localization.

We denote by |x| the Euclidean norm of x ∈ R
n and by B(x, δ) the open ball

centered at x ∈ R
n of radius δ, i.e. B(x, δ) := {y ∈ R

n : |x− y| < δ}. Positive

∗G. Kerkyacharian has been supported by ANR Forewer.
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constants will be denoted by c, c1, . . . and they may vary at every occurrence;
a ∼ b will stand for c1 ≤ a/b ≤ c2.

1.1. Maximal Operators and H
p Spaces

We begin by recalling some basic facts about Hardy spaces on R
n. For a

complete account of Hardy spaces we refer the reader to [5].

Given ϕ ∈ S with S being the Schwartz class on R
n and f ∈ S ′ one defines

Mϕf(x) := sup
t>0

|ϕt ∗ f(x)| with ϕt(x) := t−nϕ(t−1x),

and

M∗
ϕ,af(x) := sup

t>0
sup
y∈R

n

|x−y|≤at

|ϕt ∗ f(y)|, a ≥ 1.

We now recall the grand maximal operator. Write

PN(ϕ) := sup
x∈Rn

(1 + |x|)N max
|α|≤N+1

|∂αϕ(x)|

and denote

FN := {ϕ ∈ S : PN (ϕ) ≤ 1}.

The grand maximal operator MN is defined by

MNf(x) := sup
ϕ∈FN

M∗
ϕ,1f(x), f ∈ S ′. (1)

It is easy to see that for any ϕ ∈ S and a ≥ 1 one has

M∗
ϕ,af(x) ≤ aNPN (ϕ)MNf(x), f ∈ S ′. (2)

Definition 1. The space Hp, 0 < p ≤ 1, is defined as the set of all bounded
distributions f ∈ S ′ such that the Poisson maximal function supt>0 |Pt ∗ f(x)|
belongs to Lp; the quasi-norm on Hp is defined by

‖f‖Hp :=
∥

∥ sup
t>0

|Pt ∗ f(·)|
∥

∥

Lp .

As is well known the following assertion holds, see [3, 5]:

Proposition 1. Let 0 < p ≤ 1, a ≥ 1, and assume ϕ ∈ S and
∫

Rn ϕ 6= 0.
Then for any N ≥ ⌊n

p ⌋+ 1

‖f‖Hp ∼ ‖M∗
ϕ,af‖Lp ∼ ‖MNf‖Lp , ∀f ∈ Hp.
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1.2. Atomic H
p Spaces

A function a ∈ L∞(Rn) is called an atom if there exists a ball B such that

(i) supp a ⊂ B,

(ii) ‖a‖L∞ ≤ |B|−1/p, and

(iii)
∫

Rn x
αa(x) dx = 0 for all α with |α| ≤ n(p−1 − 1).

The atomic Hardy space Hp
A, 0 < p ≤ 1, is defined as the set of all distri-

butions f ∈ S ′ that can be represented in the form

f =

∞
∑

j=1

λjaj , where

∞
∑

j=1

|λj |
p <∞,

{aj} are atoms, and the convergence is in S ′. Set

‖f‖Hp

A
:= inf

f=
∑

j λjaj

(

∞
∑

j=1

|λj |
p
)1/p

, f ∈ Hp
A.

2. Atomic Decomposition of Hp Spaces

We now come to the main point in this article, that is, to give a new proof
of the following classical result [1, 4], see also [5]:

Theorem 1. For any 0 < p ≤ 1 the continuous embedding Hp ⊂ Hp
A is

valid, that is, if f ∈ Hp, then f ∈ Hp
A and

‖f‖Hp

A
≤ c‖f‖Hp ,

where c > 0 is a constant depending only on p, n. This along with the easy to

prove embedding Hp
A ⊂ Hp leads to Hp = Hp

A and ‖f‖Hp ∼ ‖f‖Hp

A
for f ∈ Hp.

Proof. We first derive a simple decomposition identity which will play a
central role in this proof. For this construction we need the following

Lemma 1. For any m ≥ 1 there exists a function ϕ ∈ C∞
0 (Rn) such that

suppϕ ⊂ B(0, 1), ϕ̂(0) = 1, and ∂αϕ̂(0) = 0 for 0 < |α| ≤ m. Here ϕ̂ is the

Fourier transform of ϕ, defined by ϕ̂(ξ) :=
∫

Rn ϕ(x)e
−ix·ξ dx.

Proof. We will construct a function ϕ with the claimed properties in di-
mension n = 1. Then a properly normalized dilation of ϕ(x1)ϕ(x2) · · ·ϕ(xn)
will have the claimed properties on R

n.
For the univariate construction, pick a smooth “bump” φ with the following

properties: φ ∈ C∞
0 (R), suppφ ⊂ [−1/4, 1/4], φ(x) > 0 for x ∈ (−1/4, 1/4),
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and φ is even. Let Θ(x) := φ(x + 1/2) − φ(x − 1/2) for x ∈ R. Clearly Θ is
odd.

We may assume that m ≥ 1 is even, otherwise we work with m+1 instead.
Denote ∆m

h := (Th − T−h)
m, where Thf(x) := f(x+ h).

We define ϕ(x) := 1
x∆

m
h Θ(x), where h = 1

8m . Clearly, ϕ ∈ C∞(R), ϕ is

even, and suppϕ ⊂ [− 7
8 ,−

1
8 ]∪ [ 18 ,

7
8 ]. It is readily seen that for ν = 1, 2, . . . ,m

ϕ̂(ν)(ξ) = (−i)ν
∫

R

xν−1∆m
h Θ(x)e−iξx dx

and hence

ϕ̂(ν)(0) = (−i)ν
∫

R

xν−1∆m
h Θ(x) dx = (−i)ν+m

∫

R

Θ(x)∆m
h x

ν−1 dx = 0.

On the other hand,

ϕ̂(0) =

∫

R

ϕ(x) dx = 2

∫ ∞

0

x−1∆m
h Θ(x) dx = 2(−1)m

∫ 3/4

1/4

Θ(x)∆m
h x

−1 dx.

However, if f is a sufficiently smooth function, then ∆m
h f(x) = (2h)mf (m)(ξ),

where ξ ∈ (x−mh, x+mh). Hence,

∆m
h x

−1 = (2h)mm!(−1)mξ−m−1 with ξ ∈ (x−mh, x+mh) ⊂ [1/8, 7/8].

Consequently, ϕ̂(0) 6= 0 and then ϕ̂(0)−1ϕ(x) has the claimed properties. �

With the aid of the above lemma, we pick ϕ ∈ C∞
0 (Rn) with the following

properties: suppϕ ⊂ B(0, 1), ϕ̂(0) = 1, and ∂αϕ̂(0) = 0 for 0 < |α| ≤ K, where
K is sufficiently large. More precisely, we choose K ≥ n/p.

Set ψ(x) := 2nϕ(2x) − ϕ(x). Then ψ̂(ξ) = ϕ̂(ξ/2) − ϕ̂(ξ). Therefore,

∂αψ̂(0) = 0 for |α| ≤ K which implies
∫

Rn x
αψ(x) dx = 0 for |α| ≤ K. We

also introduce the function ψ̃(x) := 2nϕ(2x) + ϕ(x). We will use the notation
hk(x) := 2knh(2kx).

Clearly, for any f ∈ S ′ we have f = limj→∞ ϕj ∗ϕj ∗ f (convergence in S ′),
which leads to the following representation: For any j ∈ Z

f = ϕj ∗ ϕj ∗ f +
∞
∑

k=j

(

ϕk+1 ∗ ϕk+1 ∗ f − ϕk ∗ ϕk ∗ f
)

= ϕj ∗ ϕj ∗ f +

∞
∑

k=j

(

ϕk+1 − ϕk

)

∗
(

ϕk+1 + ϕk

)

∗ f.

Thus we arrive at

f = ϕj ∗ ϕj ∗ f +

∞
∑

k=j

ψk ∗ ψ̃k ∗ f, ∀f ∈ S ′ ∀j ∈ Z (convergence in S ′).
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Observe that suppψk ⊂ B(0, 2−k) and supp ψ̃k ⊂ B(0, 2−k).
In what follows we will utilize the grand maximal operator MN , defined

in (1) with N := ⌊n
p ⌋ + 1. The following claim is an immediate consequence

of (2): If φ ∈ S, then for any f ∈ S ′, k ∈ Z, and x ∈ R
n

|φk ∗ f(y)| ≤ cMNf(x) for all y ∈ R
n with |y − x| ≤ 2−k+1, (3)

where the constant c > 0 depends only on PN(φ) and N .
Let f ∈ Hp, 0 < p ≤ 1, f 6= 0. We define

Ωr := {x ∈ R
n : MNf(x) > 2r}, r ∈ Z.

Clearly, Ωr is open, Ωr+1 ⊂ Ωr, and R
n = ∪r∈ZΩr. It is easy to see that

∑

r∈Z

2pr|Ωr| ≤ c

∫

Rn

MNf(x)
p dx ≤ c‖f‖pHp . (4)

Indeed, we have

∑

r∈Z

2pr|Ωr| =
∑

r∈Z

2pr
∑

ν≥r

|Ων \ Ων+1| =
∑

ν∈Z

|Ων \ Ων+1|
∑

r≤ν

2pr

≤ cp
∑

ν∈Z

2pν |Ων \ Ων+1| ≤ cp
∑

ν∈Z

∫

Ων\Ων+1

MNf(x)
p dx

= cp

∫

Rn

MNf(x)
p dx.

From (4) we get |Ωr| ≤ c 2−pr‖f‖pHp for r ∈ Z. Therefore, for any r ∈ Z

there exists J > 0 such that ‖ϕj ∗ ϕj ∗ f‖∞ ≤ c 2r for j < −J . Consequently,
‖ϕj ∗ ϕj ∗ f‖∞ → 0 as j → −∞, which implies

f = lim
K→∞

K
∑

k=−∞

ψk ∗ ψ̃k ∗ f (convergence in S ′). (5)

Assuming that Ωr 6= ∅ we write

Erk :=
{

x ∈ Ωr : dist(x,Ωc
r) > 2−k+1

}

\
{

x ∈ Ωr+1 : dist(x,Ωc
r+1) > 2−k+1

}

.

By (4) it follows that |Ωr| <∞ and hence there exists sr ∈ Z such that Ersr 6= ∅
and Erk = ∅ for k < sr. Evidently sr ≤ sr+1. We define

Fr(x) :=
∑

k≥sr

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy, x ∈ R
n, r ∈ Z, (6)

and more generally

Fr,κ0,κ1
(x) :=

κ1
∑

k=κ0

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy, sr ≤ κ0 ≤ κ1 ≤ ∞. (7)
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It will be shown in Lemma 2 below that the functions Fr and Fr,κ0,κ1
are well

defined and Fr, Fr,κ0,κ1
∈ L∞.

Note that suppψk ⊂ B(0, 2−k) and hence

supp
(

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy
)

⊂
{

x : dist(x,Erk) < 2−k
}

. (8)

On the other hand, clearly B(y, 2−k+1)∩
(

Ωr \Ωr+1

)

6= ∅ for each y ∈ Erk, and

PN (ψ̃) ≤ c. Therefore, see (3), |ψ̃k ∗ f(y)| ≤ c 2r for y ∈ Erk, which implies

∥

∥

∥

∫

E

ψk(· − y)ψ̃k ∗ f(y) dy
∥

∥

∥

∞
≤ c 2r, ∀E ⊂ Erk. (9)

Similarly,

∥

∥

∥

∫

E

ϕk(· − y)ϕ̃k ∗ f(y) dy
∥

∥

∥

∞
≤ c 2r, ∀E ⊂ Erk. (10)

We collect all we need about the functions Fr and Fr,κ0,κ1
in the following

Lemma 2. (a) We have

Erk ∩ Er′k = ∅ if r 6= r′ and R
n = ∪r∈ZErk, ∀k ∈ Z. (11)

(b) There exists a constant c > 0 such that for any r ∈ Z and sr ≤ κ0 ≤
κ1 ≤ ∞

‖Fr‖∞ ≤ c 2r, ‖Fr,κ0,κ1
‖∞ ≤ c 2r. (12)

(c) The series in (6) and (7) (if κ1 = ∞) converge point-wise and in distri-

butional sense.

(d) Moreover,

Fr(x) = 0, ∀x ∈ R
n \ Ωr, ∀r ∈ Z. (13)

Proof. Identities (11) are obvious and (13) follows readily from (8).
We next prove the left-hand side inequality in (12); the proof of the right-

hand side inequality is similar and will be omitted. Consider the case when
Ωr+1 6= ∅ (the case when Ωr+1 = ∅ is easier). Write

Uk :=
{

x ∈ Ωr : dist(x,Ωc
r) > 2−k+1

}

,

Vk :=
{

x ∈ Ωr+1 : dist(x,Ωc
r+1) > 2−k+1

}

.

Observe that Erk = Uk \ Vk.
Clearly, (8) implies |Fr(x)| = 0 for x ∈ R

n \ ∪k≥sr

{

x : dist(x,Erk) < 2−k
}

.

We next estimate |Fr(x)| for x ∈ ∪k≥sr

{

x : dist(x,Erk) < 2−k
}

. Two cases
present themselves here.

Case 1: x ∈
[

∪k≥sr

{

x : dist(x,Erk) < 2−k
}]

∩ Ωr+1. Then there exist
ν, ℓ ∈ Z such that

x ∈ (Uℓ+1 \ Uℓ) ∩ (Vν+1 \ Vν). (14)
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Due to Ωr+1 ⊂ Ωr we have Vk ⊂ Uk, implying (Uℓ+1 \ Uℓ) ∩ (Vν+1 \ Vν) = ∅
if ν < ℓ. We next consider two subcases depending on whether ν ≥ ℓ + 3 or
ℓ ≤ ν ≤ ℓ+ 2.

(a) Let ν ≥ ℓ + 3. We claim that (14) yields

B(x, 2−k) ∩ Erk = ∅ for k ≥ ν + 2 or k ≤ ℓ− 1. (15)

Indeed, if k ≥ ν+2, then Erk ⊂ Ωr\Vν+2, which implies (15), while if k ≤ ℓ−1,
then Erk ⊂ Uℓ−1, again implying (15).

We also claim that

B(x, 2−k) ⊂ Erk for ℓ+ 2 ≤ k ≤ ν − 1. (16)

Indeed, clearly

(Uℓ+1 \ Uℓ) ∩ (Vν+1 \ Vν) ⊂ (Uk−1 \ Uℓ) ∩ (Vν+1 \ Vk+1) ⊂ Uk−1 \ Vk+1,

which implies (16).
From (8) and (15)–(16) it follows that

Fr(x) =

ν+1
∑

k=ℓ

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy =

ℓ+1
∑

k=ℓ

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy

+

ν−2
∑

k=ℓ+2

∫

Rn

ψk(x− y)ψ̃k ∗ f(y) dy +
ν+1
∑

k=ν−1

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy.

However,

ν−2
∑

k=ℓ+2

∫

Rn

ψk(x− y)ψ̃k ∗ f(y) dy

=

ν−2
∑

k=ℓ+2

(

ϕk+1 ∗ ϕk+1 ∗ f(x)− ϕk ∗ ϕk ∗ f(x)
)

= ϕν−1 ∗ ϕν−1 ∗ f(x)− ϕℓ+2 ∗ ϕℓ+2 ∗ f(x)

=

∫

Er,ν−1

ϕν−1(x − y)ϕν−1 ∗ f(y) dy −

∫

Er,ℓ+2

ϕℓ+2(x− y)ϕℓ+2 ∗ f(y) dy.

Combining the above with (9) and (10) we obtain |Fr(x)| ≤ c 2r.
(b) Let ℓ ≤ ν ≤ ℓ+ 2. Just as above we have

Fr(x) =

ν+1
∑

k=ℓ

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy =

ℓ+3
∑

k=ℓ

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy.

We use (9) to estimate each the above four integrals and obtain |Fr(x)| ≤ c 2r.
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Case 2: x ∈ Ωr \ Ωr+1. Then there exists ℓ ≥ sr such that

x ∈ (Uℓ+1 \ Uℓ) ∩ (Ωr \ Ωr+1).

Just as in the proof of (15) we have B(x, 2−k) ∩ Erk = ∅ for k ≤ ℓ− 1, and as
in the proof of (16) we have

(Uℓ+1 \ Uℓ) ∩ (Ωr \ Ωr+1) ⊂ Uk−1 \ Vk+1,

which implies B(x, 2−k) ⊂ Erk for k ≥ ℓ+ 2. We use these and (8) to obtain

Fr(x) =

∞
∑

k=ℓ

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy

=

ℓ+1
∑

k=ℓ

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy +
∞
∑

k=ℓ+2

∫

Rn

ψk(x− y)ψ̃k ∗ f(y) dy.

For the last sum we have

∞
∑

k=ℓ+2

∫

Rn

ψk(x− y)ψ̃k ∗ f(y) dy = lim
ν→∞

ν
∑

k=ℓ+2

ψk ∗ ψ̃k ∗ f(x)

= lim
ν→∞

(

ϕν+1 ∗ ϕν+1 ∗ f(x)− ϕℓ+2 ∗ ϕℓ+2 ∗ f(x)
)

= lim
ν→∞

(

∫

Er,ν+1

ϕν+1(x− y)ϕν+1 ∗ f(y) dy

−

∫

Er,ℓ+2

ϕℓ+2(x− y)ϕℓ+2 ∗ f(y) dy
)

.

From the above and (9)-(10) we obtain |Fr(x)| ≤ c 2r.
The point-wise convergence of the series in (6) follows from above and we

similarly establish the point-wise convergence in (7).
The convergence in distributional sense in (6) relies on the following asser-

tion: For every φ ∈ S

∑

k≥sr

|〈grk, φ〉| <∞, where grk(x) :=

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy. (17)

Here 〈grk, φ〉 :=
∫

Rn grkφdx. To prove the above we will employ this estimate:

‖ψ̃kf‖∞ ≤ c 2kn/p‖f‖Hp , k ∈ Z. (18)

Indeed, using (2) we get

|ψ̃kf(x)|
p ≤ inf

y:|x−y|≤2−k
sup

z:|y−z|≤2−k

|ψ̃kf(z)|
p ≤ inf

y:|x−y|≤2−k
cMNf(y)

p

≤ c|B(x, 2−k)|−1

∫

B(x,2−k)

MNf(y)
p dy ≤ c 2kn‖f‖pHp ,
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and (18) follows.
We will also need the following estimate: For any σ > n there exists a

constant cσ > 0 such that

∣

∣

∣

∫

Rn

ψk(x− y)φ(x) dx
∣

∣

∣
≤ cσ2

−k(K+1)(1 + |y|)−σ, y ∈ R
n, k ≥ 0. (19)

This is a standard estimate for inner products taking into account that φ ∈ S
and ψ ∈ C∞, suppψ ⊂ B(0, 1), and

∫

Rn x
αψ(x) dx = 0 for |α| ≤ K.

We now estimate |〈grk, φ〉|. From (18) and the fact that ψ ∈ C∞
0 (R) and

φ ∈ S it readily follows that

∫

Erk

∫

Rn

|ψk(x− y)| |φ(x)| |ψ̃kf(y)| dydx <∞, k ≥ sr.

Therefore, we can use Fubini’s theorem, (18), and (19) to obtain for k ≥ 0

|〈grk, φ〉| ≤

∫

Erk

∣

∣

∣

∫

Rn

ψk(x− y)φ(x) dx
∣

∣

∣
|ψ̃kf(y)| dy (20)

≤ c 2−k(K+1−n/p)‖f‖Hp

∫

Erk

(1 + |y|)−σ dy ≤ c 2−k(K+1−n/p)‖f‖Hp ,

which implies (17) because K ≥ n/p.

Denote Gℓ :=
∑ℓ

k=sr
grk. From the above proof of (b) and (12) we infer

that Gℓ(x) → Fr(x) as ℓ → ∞ for x ∈ R
n and ‖Gℓ‖∞ ≤ c 2r < ∞ for ℓ ≥ sr.

On the other hand, from (17) it follows that the series
∑

k≥sr
grk converges

in distributional sense. By applying the dominated convergence theorem one
easily concludes that Fr =

∑

k≥sr
grk with the convergence in distributional

sense. �

We set Fr := 0 in the case when Ωr = ∅, r ∈ Z.
Note that by (11) it follows that

ψk ∗ ψ̃k ∗f(x) =

∫

Rn

ψk(x−y)ψ̃k ∗f(y) dy =
∑

r∈Z

∫

Erk

ψk(x−y)ψ̃k ∗f(y) dy (21)

and using (5) and the definition of Fr in (6) we arrive at

f =
∑

r∈Z

Fr in S ′, i.e. 〈f, φ〉 =
∑

r∈Z

〈Fr , φ〉, ∀φ ∈ S, (22)

where the last series converges absolutely. Above 〈f, φ〉 denotes the action of
f on φ. We next provide the needed justification of equality (22).

From (5), (6), (21), and the notation from (17) we obtain for φ ∈ S

〈f, φ〉 =
∑

k

〈ψk ∗ ψ̃k ∗ f, φ〉 =
∑

k

∑

r

〈grk, φ〉 =
∑

r

∑

k

〈grk, φ〉 =
∑

r

〈Fr, φ〉.
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Clearly, to justify the above it suffices to show that
∑

k

∑

r |〈grk, φ〉| <∞. We
split this sum into two:

∑

k

∑

r

|〈grk, φ〉| =
∑

k≥0

∑

r

|〈grk, φ〉|+
∑

k<0

∑

r

|〈grk, φ〉| =: Σ1 +Σ2.

To estimate Σ1 we use (20) and obtain

Σ1 ≤ c‖f‖Hp

∑

k≥0

2−k(K+1−n/p)
∑

r

∫

Erk

(1 + |y|)−σ dy

≤ c‖f‖Hp

∑

k≥0

2−k(K+1−n/p)

∫

Rn

(1 + |y|)−σ dy ≤ c‖f‖Hp .

Here we also used that K ≥ n/p and σ > n.
We estimate Σ2 in a similar manner, using that

∫

Rn |ψk(y)| dy ≤ c <∞ and
(18). We get

Σ2 ≤ c‖f‖Hp

∑

k<0

2kn/p
∑

r

∫

Erk

∫

Rn

|ψk(x− y)| dy|φ(x)| dx

≤ c‖f‖Hp

∑

k<0

2kn/p
∫

Rn

(1 + |x|)−n−1 dx ≤ c‖f‖Hp .

The above estimates of Σ1 and Σ2 imply
∑

k

∑

r |〈grk, φ〉| < ∞, which com-
pletes the justification of (22).

Observe that due to
∫

Rn x
αψ(x) dx = 0 for |α| ≤ K we have

∫

Rn

xαFr(x) dx = 0 for |α| ≤ K, r ∈ Z.

We next decompose each function Fr into atoms. To this end we need a
Whitney type cover for Ωr, given in the following

Lemma 3. Suppose Ω is an open proper subset of R
n and let ρ(x) :=

dist(x,Ωc). Then there exists a constant K > 0, depending only on n, and

a sequence of points {ξj}j∈N in Ω with the following properties, where ρj :=
dist(ξj ,Ω

c):

(a) Ω = ∪j∈N B(ξj , ρj/2).

(b) {B(ξj , ρj/5)} are disjoint.

(c) If B
(

ξj ,
3ρj

4

)

∩B
(

ξν ,
3ρν

4

)

6= ∅, then 7−1ρν ≤ ρj ≤ 7ρν .

(d) For every j ∈ N there are at most K balls B
(

ξν ,
3ρν

4

)

intersecting

B
(

ξj ,
3ρj

4

)

.
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Variants of this simple lemma are well known and frequently used. To
prove it one simply selects {B(ξj , ρ(ξj)/5)}j∈N to be a maximal disjoint subset
of {B(x, ρ(x)/5)}x∈Ω and then properties (a)–(d) follow readily, see [5, pp.
15–16].

We apply Lemma 3 to each set Ωr 6= ∅, r ∈ Z. Fix r ∈ Z and assume Ωr 6= ∅.
Denote by Bj := B(ξj , ρj/2), j = 1, 2, . . ., the balls given by Lemma 3, applied
to Ωr, with the additional assumption that these balls are ordered so that
ρ1 ≥ ρ2 ≥ · · · . We will adhere to the notation from Lemma 3. We will also use
the more compact notation Br := {Bj}j∈N for the set of balls covering Ωr.

For each ball B ∈ Br and k ≥ sr we define

EB
rk := Erk ∩

{

x : dist(x,B) < 2−k+1
}

if B ∩Erk 6= ∅ (23)

and set EB
rk := ∅ if B ∩ Erk = ∅.

We also define, for ℓ = 1, 2, . . .,

RBℓ

rk := EBℓ

rk \ ∪ν>ℓE
Bν

rk and (24)

FBℓ
(x) :=

∑

k≥sr

∫

R
Bℓ
rk

ψk(x− y)ψ̃k ∗ f(y) dy. (25)

Lemma 4. For every ℓ ≥ 1 the function FBℓ
is well defined, more pre-

cisely, the series in (25) converges point-wise and in distributional sense. Fur-

thermore,

suppFBℓ
⊂ 7Bℓ, (26)

∫

Rn

xαFBℓ
(x) dx = 0 for all α with |α| ≤ n(p−1 − 1), (27)

and

‖FBℓ
‖∞ ≤ c♯2

r, (28)

where the constant c♯ is independent of r, ℓ.
In addition, for any k ≥ sr

Erk = ∪ℓ≥1R
Bℓ

rk and RBℓ

rk ∩RBm

rk = ∅, ℓ 6= m. (29)

Hence

Fr =
∑

B∈Br

FB (convergence in S ′). (30)

Proof. Fix ℓ ≥ 1. Observe that using Lemma 3 we have

Bℓ ⊂
{

x ∈ R
n : dist(x,Ωc

r) < 2ρℓ
}

and hence EBℓ

rk := ∅ if 2−k+1 ≥ 2ρℓ. Define k0 := min{k : 2−k < ρℓ}. Hence
ρℓ/2 ≤ 2−k0 < ρℓ. Consequently,

FBℓ
(x) :=

∑

k≥k0

∫

R
Bℓ
rk

ψk(x− y)ψ̃k ∗ f(y) dy.
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Therefore, suppFBℓ
⊂ B

(

ξℓ, (7/2)ρℓ
)

= 7Bℓ, which confirms (26).
To prove (28) we will use the following

Lemma 5. For an arbitrary set S ⊂ R
n let

Sk := {x ∈ R
n : dist(x, S) < 2−k+1}

and set

FS(x) :=
∑

k≥κ0

∫

Erk∩Sk

ψk(x− y)ψ̃k ∗ f(y) dy (31)

for some κ0 ≥ sr. Then ‖FS‖∞ ≤ c 2r, where c > 0 is a constant independent

of S and κ0. Moreover, the above series converges in S ′.

Proof. From (8) it follows that FS(x) = 0 if dist(x, S) ≥ 3× 2−κ0

Let x ∈ S. Evidently, B(x, 2−k) ⊂ Sk for every k and hence

FS(x) =
∑

k≥κ0

∫

Erk∩B(x,2−k)

ψk(x− y)ψ̃k ∗ f(y) dy

=
∑

k≥κ0

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy = Fr,κ0
(x).

On account of Lemma 2 (b) we obtain |FS(x)| = |Fr,κ0
(x)| ≤ c 2r.

Consider the case when x ∈ Sℓ\Sℓ+1 for some ℓ ≥ κ0. Then B(x, 2−k) ⊂ Sk

if κ0 ≤ k ≤ ℓ− 1 and B(x, 2−k) ∩ Sk = ∅ if k ≥ ℓ+ 2. Therefore,

FS(x) =

ℓ−1
∑

k=κ0

∫

Erk

ψk(x− y)ψ̃k ∗ f(y) dy +
ℓ+1
∑

k=ℓ

∫

Erk∩Sk

ψk(x− y)ψ̃k ∗ f(y) dy

= Fr,κ0,ℓ−1(x) +

ℓ+1
∑

k=ℓ

∫

Erk∩Sk

ψk(x− y)ψ̃k ∗ f(y) dy,

where we used the notation from (7). By Lemma 2 (b) and (9) it follows that
|FS(x)| ≤ c 2r.

We finally consider the case when 2−κ0+1 ≤ dist(x, S) < 3×2−κ0. Then we
have FS(x) =

∫

Erκ0
∩Sκ0

ψκ0
(x−y)ψ̃κ0

∗f(y) dy and the estimate |FS(x)| ≤ c 2r

is immediate from (9).
The convergence in S ′ in (31) is established as in the proof of Lemma 2. �

Fix ℓ ≥ 1 and let {Bj : j ∈ J } be the set of all balls Bj = B(ξj , ρj/2) such
that j > ℓ and

B
(

ξj ,
3ρj
4

)

∩B
(

ξℓ,
3ρℓ
4

)

6= ∅.

By Lemma 3 it follows that #J ≤ K and 7−1ρℓ ≤ ρj ≤ 7ρℓ for j ∈ J . Define

k1 := min
{

k : 2−k+1 < 4−1 min{ρj : j ∈ J ∪ {ℓ}}
}

. (32)
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From this definition and 2−k0 < ρℓ we infer

2−k1+1 ≥ 8−1 min
j∈J∪{ℓ}

ρj > 8−2ρℓ > 8−2 2−k0 =⇒ k1 ≤ k0 + 7. (33)

Clearly, from (32)

{

x : dist(x,Bj) < 2−k+1
}

⊂ B
(

ξj , 3ρj/4
)

, ∀k ≥ k1, ∀j ∈ J ∪ {ℓ}.

Denote S := ∪j∈JBj and S̃ := ∪j∈JBj ∪Bℓ = S ∪Bℓ. As in Lemma 5 we set

Sk :=
{

x ∈ R
n : dist(x, S) < 2−k+1

}

and S̃k :=
{

x ∈ R
n : dist(x, S̃) < 2−k+1

}

.

It readily follows from the definition of k1 in (32) that

RBℓ

rk := EBℓ

rk \ ∪ν>ℓE
Bν

rk =
(

Erk ∩ S̃k

)

\
(

Erk ∩ Sk

)

for k ≥ k1. (34)

Denote

FS(x) :=
∑

k≥k1

∫

Erk∩Sk

ψk(x− y)ψ̃k ∗ f(y) dy, and

FS̃(x) :=
∑

k≥k1

∫

Erk∩S̃k

ψk(x− y)ψ̃k ∗ f(y) dy.

From (34) and the fact that S ⊂ S̃ it follows that

FBℓ
(x) = FS̃(x) − FS(x) +

∑

k0≤k<k1

∫

R
Bℓ
rk

ψk(x− y)ψ̃k ∗ f(y) dy.

By Lemma 5 we get ‖FS‖∞ ≤ c 2r and ‖FS̃‖∞ ≤ c 2r. On the other hand from
(33) we have k1 − k0 ≤ 7. We estimate each of the (at most 7) integrals above
using (9) to conclude that ‖FBℓ

‖∞ ≤ c 2r.
We deal with the convergence in (25) and (30) as in the proof of Lemma 2.
Clearly, (27) follows from the fact that

∫

Rn x
αψ(x) dx = 0 for all α with

|α| ≤ K.
Finally, from Lemma 3 we have Ωr ⊂ ∪j∈N Bℓ and then (29) is immediate

from (23) and (24). �

We are now prepared to complete the proof of Theorem 1. For every ball
B ∈ Br, r ∈ Z, provided Ωr 6= ∅, we define B⋆ := 7B,

aB(x) := c♯
−1|B⋆|−1/p2−rFB(x) and λB := c♯|B

⋆|1/p2r,

where c♯ > 0 is the constant from (28). By (26) supp aB ⊂ B⋆ and by (28)

‖aB‖∞ ≤ c♯
−1|B⋆|−1/p2−r‖FB‖∞ ≤ |B⋆|−1/p.

Furthermore, from (27) it follows that
∫

Rn x
αaB(x) dx = 0 if |α| ≤ n(p−1 − 1).

Therefore, each aB is an atom for Hp.
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We set Br := ∅ if Ωr = ∅. Now, using the above, (22), and Lemma 4 we get

f =
∑

r∈Z

Fr =
∑

r∈Z

∑

B∈Br

FB =
∑

r∈Z

∑

B∈Br

λBaB,

where the convergence is in S ′, and
∑

r∈Z

∑

B∈Br

|λB|
p ≤ c

∑

r∈Z

2pr
∑

B∈Br

|B| = c
∑

r∈Z

2pr|Ωr| ≤ c‖f‖pHp ,

which is the claimed atomic decomposition of f ∈ Hp. Above we used that
|B⋆| = |7B| = 7n|B|. The proof of Theorem 1 is complete. �

Remark. The proof of Theorem 1 can be considerably simplified and
shortened if one seeks to establish atomic decomposition of the Hp spaces in
terms of q-atoms with p < q < ∞ rather than ∞-atoms as in Theorem 1, i.e.
atoms satisfying ‖a‖Lq ≤ |B|1/q−1/p with q <∞ rather than ‖a‖L∞ ≤ |B|−1/p.
We will not elaborate on this here.
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