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Abstract. The maximal and atomic Hardy spaces Hp and Hp
A, 0 < p ≤ 1, are

considered in the setting of a doubling metric measure space in the presence of a non-
negative self-adjoint operator whose heat kernel has Gaussian localization. It is shown
that Hp = Hp

A with equivalent norms.

1. Introduction. The purpose of this article is to establish the equiv-
alence of the maximal and atomic Hardy spaces Hp and Hp

A, 0 < p ≤ 1, in
the general setting of a metric measure space with the doubling property
and in the presence of a non-negative self-adjoint operator L whose heat
kernel has Gaussian localization. We next describe our setting in detail:

I. We assume that (X, ρ, µ) is a metric measure space such that (X, ρ)
is a locally compact metric space with distance ρ(·, ·) and µ is a positive
Radon measure. We also stipulate the volume doubling condition:

(1.1) 0 < µ(B(x, 2r)) ≤ c0µ(B(x, r)) <∞ for all x ∈ X and r > 0,

where B(x, r) is the open ball centered at x of radius r and c0 > 1 is a
constant. It follows that

(1.2) µ(B(x, λr)) ≤ c0λdµ(B(x, r)) for x ∈ X, r > 0, and λ > 1,

where d = log2 c0 > 0 is a constant playing the role of dimension.

II. The main assumptions are:

(H1) L is a non-negative self-adjoint operator on L2(X, dµ), mapping real-
valued to real-valued functions.
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(H2) The semigroup Pt = e−tL, t > 0, associated with L consists of integral
operators with (heat) kernel pt(x, y) having a Gaussian upper bound,
that is, pt(x, y) is a measurable function on X ×X and there exists a

set X̃ ⊂ X, independent of t, with µ(X \ X̃) = 0 such that

(1.3) |pt(x, y)| ≤ C? exp{−c?ρ2(x, y)/t}
[µ(B(x,

√
t))µ(B(y,

√
t))]1/2

, ∀x, y ∈ X̃, ∀t > 0.

Above, C?, c? > 0 are structural constants.

The definitions of the maximal and atomic Hardy spaces in the setting
described above will be based on L2(X) and will follow in the footsteps of
[5, 6, 4].

Definition 1.1. The maximal Hardy space Hp, 0 < p ≤ 1, in the general
setting described above is defined as the completion of the set of all functions
f ∈ L2(X) such that

‖f‖Hp :=
∥∥∥sup
t>0
|e−t2Lf(·)|

∥∥∥
Lp
<∞.

Just as in the classical case on Rn, non-tangential, tangential, and grand
maximal operators will be introduced and the equivalence of ‖f‖Hp with
quasi-norms defined by the respective maximal operators will be established.

We consider two versions of atomic Hardy spaces in the current setting,
depending on whether µ(X) =∞ or µ(X) <∞.

Atomic Hardy spaces in the case µ(X) =∞
Definition 1.2. Let 0 < p ≤ 1 and n := bd/2pc + 1, where d is from

the doubling property (1.2). A function a is called an atom associated with
the operator L if there exists a function b ∈ D(Ln) and a ball B of radius
r = rB > 0 such that

(i) a = Lnb,
(ii) suppLkb ⊂ B, k = 0, 1, . . . , n, and
(iii) ‖Lkb‖∞ ≤ r2(n−k)|B|−1/p, k = 0, 1, . . . , n.

Definition 1.3. The atomic Hardy space Hp
A, 0 < p ≤ 1, is defined

as follows. We say that f =
∑

j≥1 λjaj is an atomic representation of f if

{λj}j≥1 ∈ `p, all aj , j = 1, 2, . . . , are atoms, and the series converges in L2.
We denote by Hp

A the space of all functions f ∈ L2(X) that have atomic
representations with norm defined by

‖f‖HpA := inf
f=

∑
j≥1 λjaj

(∑
j≥1
|λj |p

)1/p
, f ∈ Hp

A.

Now, Hp
A, 0 < p ≤ 1, is defined as the completion of Hp

A with respect to the
above norm.
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Atomic Hardy spaces in the case µ(X) < ∞. In this case we use
the atoms from Definition 1.2 with the addition of one more kind of atoms,
say A ∈ L∞(X), with the property

(1.4) ‖A‖∞ ≤ |X|−1/p.

Then the atomic Hardy space Hp
A, 0 < p ≤ 1, is defined just as in the case

µ(X) =∞ above.

We now come to the main result in this article.

Theorem 1.4. In the setting of this paper, we have Hp = Hp
A, 0 < p ≤ 1,

and

(1.5) ‖f‖Hp
A
∼ ‖f‖Hp for f ∈ Hp.

This result has been obtained in [11] in the setting of Rn in the presence
of a non-negative self-adjoint operator L with heat kernel having Gaussian
localization. The proof in [11] heavily relies on the geometry of Rn and is
based on a technique due to A. Calderón [1].

To prove Theorem 1.4 we devise a new approach that is different from the
one in [1, 11] as well as the classical proof that uses the Calderón–Zygmund
decomposition.

Characterizations of atomic Hardy spaces via square functions and their
molecular decompositions are obtained in [5] for H1, in [4] for Hp, 0 < p ≤ 1,
and in [6] for Orlicz–Hardy spaces, in somewhat different settings. We shall
not elaborate on these kind of results here.

This paper is organized as follows. In §2 we assemble the necessary back-
ground material from [2, 7]. In §3 we introduce the maximal Hardy spaces
and establish their characterization via several maximal operators. In §4
we prove our main result: the equivalence of maximal and atomic Hardy
spaces. Section 5 is an appendix where we place the proofs of some ancillary
assertions from previous sections.

Notation. For an arbitrary set E ⊂ X and x ∈ X we shall denote
dist(x,E) := infy∈E ρ(x, y), Ec := X \E, |E| := µ(E), and E is the closure
of E. We shall abbreviate “almost all” by “a.a.” and sup will stand for
ess sup. The notation cB(x, δ) := B(x, cδ) will be used. The class of Schwartz
functions on R will be denoted by S(R). As usual, C∞0 (R) will stand for the
class of all compactly supported C∞ functions on R. Positive constants will
be denoted by c, c1, c

′, . . . and they may vary at every occurrence. Most
of them will depend on the basic structural constants c0, C

?, c? from (1.1)–
(1.3). Usually, this dependence will not be indicated explicitly. The notation
a ∼ b will mean c1 ≤ a/b ≤ c2.
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2. Background. Our development of Hardy spaces will rely on some
basic facts and results from [2, 7], which we review next.

2.1. Inequalities related to the geometry of the underlying
space. To compare the volumes of balls with different centers x, y ∈ X
and the same radius r we shall use the inequality

(2.1) |B(x, r)| ≤ c0(1 + ρ(x, y)/r)d|B(y, r)|, x, y ∈ X, r > 0.

As B(x, r) ⊂ B(y, ρ(y, x) + r) the above inequality is immediate from (1.2).
The following simple inequalities will also be needed [7, Lemma 2.1]: for

σ > d and t > 0,

(2.2)
�

X

(1 + t−1ρ(x, y))−σ dµ(y) ≤ c|B(x, t)|, x ∈ X,

2.2. Functional calculus. Observe that as L is a non-negative self-
adjoint operator that maps real-valued to real-valued functions, for any
real-valued, measurable and bounded function G on R+ the operator G(L)
defined by

G(L) :=

∞�

0

G(λ) dEλ,

with Eλ, λ ≥ 0, being the spectral resolution associated with L, is bounded
on L2, self-adjoint, and maps real-valued functions to real-valued functions.

The following Davies–Gaffney estimate follows from our basic assump-
tions I–II (see [3, 7]):

(2.3) |〈Ptf1, f2〉| ≤ exp{−c?r2/t}‖f1‖2‖f2‖2, t > 0,

for all open sets Uj ⊂ X and fj ∈ L2(X) with supp fj ⊂ Uj , j = 1, 2, where
r := ρ(U1, U2) and c? > 0 is the constant from (1.3).

In turn, the Davies–Gaffney estimate implies (see [3]) the finite speed
propagation property, which will play a crucial role in our theory:

(2.4) 〈cos(t
√
L)f1, f2〉 = 0, 0 < c̃t < r, c̃ :=

1

2
√
c?
,

for all open sets Uj ⊂ X, fj ∈ L2(X), supp fj ⊂ Uj , j = 1, 2, where
r := ρ(U1, U2).

The finite speed propagation property leads to the following localization
result for the kernels of operators of the form G(t

√
L) whenever Ĝ is band

limited. Here Ĝ(ξ) :=
	
RG(x)e−ixξ dx.

Proposition 2.1. Let G be even, supp Ĝ ⊂ [−A,A] for some A > 0,
and Ĝ ∈ Wm

1 for some m > d, i.e. ‖Ĝ(m)‖L1 <∞. Then for any t > 0 and
x, y ∈ X,

(2.5) G(t
√
L)(x, y) = 0 if ρ(x, y) > c̃tA.
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This assertion follows from [5, proof of Lemma 3.5].

The next proposition is another important ingredient in establishing our
basic localization result for the kernels of operators of the form ϕ(

√
L) for

smooth functions ϕ.

Proposition 2.2. Let G be a bounded measurable function on R+ with
suppG ⊂ [0, τ ] for some τ > 0. Then G(

√
L) is an integral operator with

kernel G(
√
L)(x, y) satisfying

(2.6) |G(
√
L)(x, y)| ≤ c[‖G‖∞

(|B(x, τ−1)| |B(y, τ−1)|)1/2
, ∀x, y ∈ X̃,

where X̃ ⊂ X with µ(X \ X̃) = 0 is from (1.3) and c[ > 0 depends only on
the constants c0, C

?, c? from (1.1), (1.3).

Proof. This result is essentially contained in [2, Theorem 3.7]. We next
present the argument in order to show that it is independent of the additional
assumptions in [2].

Under the above hypothesis, clearly G(
√
L) = e−t

2L[e2t
2LG(

√
L)]e−t

2L

for all t > 0, and

‖e2t2LG(
√
L)‖L2→L2 ≤ sup

λ∈[0,τ ]
|e2t2λ2G(λ)| ≤ e2t2τ2‖G‖∞.

On the other hand, by (1.3) it readily follows that for x ∈ X̃,

‖e−t2L(x, ·)‖2L2 ≤
c

|B(x, t)|

�

X

dµ(y)

|B(y, t)|(1 + t−1ρ(x, y))2d+1
≤ c|B(x, t)|−1,

where we have used (2.1)–(2.2).

Now, applying [2, Proposition 2.9] we conclude that G(
√
L) is an integral

operator with kernel G(
√
L)(x, y) satisfying

|G(
√
L)(x, y)| ≤ ‖e−t2L(x, ·)‖2‖e2t

2LG(
√
L)‖2→2‖e−t

2L(·, y)‖2
≤ ce2t2τ2‖G‖∞|B(x, t)|−1/2|B(y, t)|−1/2

for all x, y ∈ X̃ and t > 0. Therefore, choosing t = τ−1 we arrive at (2.6).

Just as in [7, proof of Theorem 3.4], Propositions 2.1 and 2.2 yield the
following important localization result:

Theorem 2.3. Suppose G ∈ Cm(R), m ≥ d + 1, G is real-valued and
even, and

|G(ν)(λ)| ≤ Am(1 + λ)−r for λ ≥ 0 and 0 ≤ ν ≤ m, where r > m+ d.

Then G(t
√
L) is an integral operator with kernel G(t

√
L)(x, y) satisfying

|G(t
√
L)(x, y)| ≤ cAm|B(x, t)|−1(1 + t−1ρ(x, y))−m+d/2, ∀t > 0,∀x, y ∈ X̃,
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where c > 0 is a constant depending only on r,m and the structural constants
c0, C

?, c?.

The action of an operator on the kernel of another operator is clarified
by

Lemma 2.4. Let the functions F and G satisfy the hypotheses of The-
orem 2.3 with m ≥ 3d/2 + 1. Let H be a real-valued measurable function
on R+ such that

(2.7) F (λ) = H(λ)G(λ) for almost all λ ∈ R+.

Then F (
√
L) and G(

√
L) are self-adjoint bounded operators on L2, and

H(
√
L) is a self-adjoint operator (defined densely in X) such that for al-

most all x ∈ X, G(
√
L)(x, ·) ∈ D(H(

√
L)), and for almost all x ∈ X,

(2.8) F (
√
L)(x, y) = H(

√
L)[G(

√
L)(x, ·)](y) for a.a. y ∈ X.

Above, D(H(
√
L)) stands for the domain of H(

√
L), and F (

√
L)(x, y) and

G(
√
L)(x, y) are the kernels of the operators F (

√
L) and G(

√
L).

Proof. We shall use the abbreviated notation F := F (
√
L), G := G(

√
L),

and H := H(
√
L), and F (x, y) := F (

√
L)(x, y) and G(x, y) := G(

√
L)(x, y)

for the kernels of the operators F and G.
Observe that from that fact that the functions F , G, and H are real-

valued and measurable it follows that (see e.g. [9]) the operators F , G, and H
are self-adjoint. As F and G satisfy the hypotheses of Theorem 2.3, where
m ≥ 3d/2 + 1, we have F (x, y) = F (y, x) and G(x, y) = G(y, x) for a.a.
x, y ∈ X, and using (2.2) we get

sup
x∈X

�

X

|F (x, y)| dµ(y) <∞, sup
x∈X

�

X

|G(x, y)| dµ(y) <∞.

Hence, the operators F and G are bounded on L2(X). Moreover, by Theo-
rem 2.3 and (2.2) it follows that

(2.9) ‖F (x, ·)‖22 =
�

X

|F (x, y)|2 dµ(y) ≤ c|B(x, 1)|−1, ∀x ∈ X̃.

We claim that

(2.10) G(x, ·) ∈ D(H∗) = D(H) for a.a. x ∈ X.

To prove this we first observe that as is well known [9], f ∈ D(H∗) if∣∣∣ �
X

(Hg)(y)f(y) dµ(y)
∣∣∣ ≤ c‖g‖2, ∀g ∈ D̃(H),

for some constant c > 0, where D̃(H) is a dense subspace of D(H). By (2.7)
it follows that Fg = (GH)g for all g ∈ D(H), and hence for every g ∈ D(H),

(2.11)
�

X

F (x, y)g(y) dµ(y) =
�

X

G(x, y)(Hg)(y) dµ(y) for a.a. x ∈ X.
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By Assumption I it readily follows that for any fixed x0 ∈ X,

L2(X) =
⋃
n≥1

L2(B(x0, n))

and B(x0, n) is compact. Hence L2(B(x0, n)) is separable, implying that
L2(X) is separable.

From the fact that D(H) is dense in L2(X) it follows that there exists an
orthonormal basis {ϕj}j≥1 for L2(X) such that {ϕj}j≥1 ⊂ D(H). Indeed,
let {fj}j≥1 ⊂ L2(X) be dense in L2(X). The fact that D(H) is dense in
L2(X) implies that for any j ∈ N there exists a sequence {gjk}k≥1 ⊂ D(H)
such that ‖fj−gjk‖L2 < 1/k and hence the countable set {gjk}j,k≥1 ⊂ D(H)
is dense in L2(X). Removing linearly dependent elements from {gjk}j,k≥1
and applying Gram–Schmidt orthogonalization leads to the existence of the
claimed orthonormal basis.

Now, by (2.11) for each j ∈ N there exists a set Xj ⊂ X such that
µ(X \Xj) = 0 and

(2.12)
�

X

F (x, y)ϕj(y) dµ(y) =
�

X

G(x, y)(Hϕj)(y) dµ(y), ∀x ∈ Xj .

Let D̃(H) be the linear subspace of D(H) consisting of all finite linear com-

binations of elements from {ϕj}j≥1 and write X0 :=
⋂
j≥1Xj ∩ X̃. Clearly

µ(X \X0) = 0. By (2.12),
�

X

F (x, y)g(y) dµ(y) =
�

X

G(x, y)(Hg)(y) dµ(y), ∀x ∈ X0, ∀g ∈ D̃(H).

From this and (2.9) we get, for all x ∈ X0 and g ∈ D̃(H),∣∣∣ �
X

(Hg)(y)G(x, y) dµ(y)
∣∣∣ ≤ ‖F (x, ·)‖2‖g‖2 ≤ c|B(x, 1)|−1/2‖g‖2.

Since D̃(H) is a dense subspace of L2(X), the above implies the validity
of (2.10).

Using the self-adjointness of H, (2.10), and the fact that G(x, y) is real-
valued we obtain, for every f ∈ D(H) and a.a. x ∈ X,

(GH)f(x) =
�

X

G(x, y)Hf(y) dµ(y) =
�

X

Hf(y)G(x, y) dµ(y)

=
�

X

f(y)H∗(G(x, ·))(y) dµ(y) =
�

X

H[G(x, ·)](y)f(y) dµ(y).

This and (2.11) imply F (x, ·) = H[G(x, ·)](·) almost everywhere for almost
all x ∈ X, as claimed.

We shall frequently use the following basic convergence results.
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Proposition 2.5. Let ϕ ∈ S(R) be real-valued and even, and ϕ(0) = 1.
Then for every f ∈ L2(X),

(2.13) f = lim
t→0

ϕ(t
√
L)f (convergence in L2).

Furthermore, if f, fj ∈ L2(X), j = 1, 2, . . . , and fj → f in L2, then for any
t > 0,

(2.14) ϕ(t
√
L)f(x) = lim

j→∞
ϕ(t
√
L)fj(x), ∀x ∈ X̃.

Proof. Identity (2.13) is immediate from spectral L2-theory [13].
To prove (2.14) we note that from Theorem 2.3 it follows that ϕ(t

√
L) is

an integral operator with kernel ϕ(t
√
L)(x, y) such that for any σ > 0 there

exists a constant cσ > 0 such that

(2.15) |ϕ(t
√
L)(x, y)| ≤ cσ|B(x, t)|−1(1 + t−1ρ(x, y))σ, ∀x, y ∈ X̃.

Identity (2.14) is immediate from (2.15) and (2.2).

3. Hardy spaces via maximal operators. In this section we intro-
duce several maximal operators and establish the equivalence of the norm
‖f‖Hp on the maximal Hardy spaces Hp, 0 < p ≤ 1, with the respective
norms defined by maximal operators. As in the classical case on Rn, the
grand maximal operator will play an important rôle.

3.1. Maximal operators and definition of Hp

Definition 3.1. A function ϕ ∈ S(R) is called admissible if ϕ is real-
valued and even. We introduce the following norms on admissible functions
in S(R):

(3.1) NN (ϕ) := sup
u≥0

(1 + u)N max
0≤m≤N

|ϕ(m)(u)|, N ≥ 0.

Observe that in the above we only need the values ϕ(u) for u ≥ 0.
Therefore, the condition “ϕ is even” can be replaced by ϕ(2ν+1)(0) = 0 for
ν = 0, 1, . . . , which implies that the even extension of ϕ from R+ to R will
have the required properties.

Definition 3.2. Let ϕ be an admissible function in S(R). For any func-
tion f ∈ L2(X) we define

M(f ;ϕ)(x) := sup
t>0
|ϕ(t
√
L)f(x)|, ∀x ∈ X̃,

M∗a (f ;ϕ)(x) := sup
t>0

sup
y∈X̃, ρ(x,y)≤at

|ϕ(t
√
L)f(y)|, ∀x ∈ X, a ≥ 1,

M∗∗γ (f ;ϕ)(x) := sup
t>0

sup
y∈X̃

|ϕ(t
√
L)f(y)|

(1 + ρ(x, y)/t)γ
, ∀x ∈ X, γ > 0.
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Observe that for any f ∈ L2(X),

M(f ;ϕ)(x) ≤M∗a (f ;ϕ)(x), ∀x ∈ X̃,(3.2)

M∗a (f ;ϕ)(x) ≤ (1 + a)γM∗∗γ (f ;ϕ)(x), ∀x ∈ X.(3.3)

We now introduce the grand maximal operator.

Definition 3.3. Denote

FN := {ϕ ∈ S(R) : ϕ is admissible and NN (ϕ) ≤ 1}.

The grand maximal operator is defined by

MN (f)(x) := sup
ϕ∈FN

M∗1 (f ;ϕ)(x), ∀x ∈ X, f ∈ L2(X),

that is,

(3.4) MN (f)(x) := sup
ϕ∈FN

sup
t>0

sup
y∈X̃, ρ(x,y)≤t

|ϕ(t
√
L)f(y)|,

where N > 0 is sufficiently large (to be specified).

It is readily seen that for any admissible function ϕ and a ≥ 1 one has

(3.5) M∗a (f ;ϕ) ≤ aNNN (ϕ)MN (f), ∀f ∈ L2(X).

We shall also use the following version of the Hardy–Littlewood maximal
operator:

(3.6) Mθf(x) := sup
B3x

(
1

|B|

�

B

|f(y)|θ dµ(y)

)1/θ

, θ > 0.

Now, the maximal inequality takes the form (see e.g. [12]): if 0 < θ < p,
then

(3.7) ‖Mθf‖Lp ≤ c‖f‖Lp , ∀f ∈ Lp(X).

In the following we exhibit some important relations between the maxi-
mal operators. We begin with a simple estimate showing that M∗∗γ (f ;ϕ)(x)

is finite almost everywhere for f ∈ L2.

Proposition 3.4. Let ϕ ∈ S(R) be admissible and γ > 2d. Then for
any f ∈ L2(X),

(3.8) M∗∗γ (f ;ϕ)(x) ≤ cM1(f)(x), ∀x ∈ X,

where M1 is from (3.6), and hence M∗∗γ (f ;ϕ)(x) <∞ for almost all x ∈ X.

Proof. By Theorem 2.3 it follows that ϕ(t
√
L) is an integral operator

with kernel ϕ(t
√
L)(x, y) obeying

|ϕ(t
√
L)(x, y)| ≤ cσ|B(x, t)|−1(1 + t−1ρ(x, y))−σ, ∀t > 0, ∀x, y ∈ X̃,
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for an arbitrary σ > 0. We choose σ := γ. Then from the above, for x ∈ X
and y ∈ X̃, we have

|ϕ(t
√
L)f(y)|

(1 + ρ(x, y)/t)γ
≤ c

�

X

|f(z)| dµ(z)

|B(z, t)|(1 + t−1ρ(z, y))γ(1 + t−1ρ(x, y))γ

≤ c
�

X

|f(z)| dµ(z)

|B(z, t)|(1 + t−1ρ(z, x))γ

≤ c

|B(x, t)|

�

X

|f(z)| dµ(z)

(1 + t−1ρ(x, z))γ−d
,

using the inequality (1 + t−1ρ(z, y))(1 + t−1ρ(x, y)) ≥ 1 + t−1ρ(z, x) and
(2.1). Further, we have
�

X

|f(z)| dµ(z)

(1 + t−1ρ(x, z))γ−d
=

�

B(x,t)

|f(z)| dµ(z)

(1 + t−1ρ(x, z))γ−d

+

∞∑
m=1

�

B(x,t2m)\B(x,t2m−1)

|f(z)| dµ(z)

(1 + t−1ρ(x, z))γ−d

≤ c
∞∑
m=0

|B(x, t2m)|
2m(γ−d)

1

|B(x, t2m)|

�

B(x,t2m)

|f(z)| dµ(z)

≤ cM1(f)(x)|B(x, t)|
∞∑
m=0

2md

2m(γ−d) ≤ cM1(f)(x)|B(x, t)|.

Here we have used (1.2) and γ > 2d. Putting all of the above together we
obtain |ϕ(t

√
L)f(y)|(1 + ρ(x, y)/t)−γ ≤ cM1(f)(x), which implies (3.8).

In turn by (3.8) and the maximal inequality it follows that

‖M∗∗γ (f ;ϕ)‖2 ≤ c‖M1(f)‖2 ≤ c‖f‖2 <∞,
implying M∗∗γ (f ;ϕ)(x) <∞ for almost all x ∈ X.

Proposition 3.5. Let ϕ ∈ S(R) be admissible and ϕ(0) 6= 0. Assume
f ∈ L2(X).

(a) If 0 < θ ≤ 1 and γ > 2d/θ, then

(3.9) M∗∗γ (f ;ϕ)(x) ≤ cMθ(M(f ;ϕ))(x) for a.a. x ∈ X,

where c = c(θ, γ, d, ϕ).

(b) If 0 < θ ≤ 1 and N > 6d/θ + 3d/2 + 2, then

(3.10) MN (f)(x) ≤ cMθ(M(f ;ϕ))(x) for a.a. x ∈ X,

where c = c(θ, d, ϕ).

For the proof of this proposition (and later) we shall need
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Lemma 3.6. Suppose ϕ ∈ S(R) is admissible and ϕ(0) = 1, and let
N ≥ 0. Then there exist even real-valued functions ψ0, ψ ∈ S(R) with
ψ0(0) = 1, ψ(ν)(0) = 0 for ν = 0, 1, . . . , N , and such that for any f ∈ L2(X)
and j ∈ Z,

f = ψ0(2
−j√L)ϕ(2−j

√
L)f(3.11)

+

∞∑
k=j

ψ(2−k
√
L)[ϕ(2−k

√
L)− ϕ(2−k+1

√
L)]f,

where the convergence is in L2.
Furthermore, under the above conditions on ϕ, if supp ϕ̂ ⊂ [−1, 1], then

the functions ψ0 and ψ can be selected so that

(3.12)
supp ψ̂0 ⊂ [−2N, 2N ],

supp (λ−kψ(λ))∧ ⊂ [−2N, 2N ], k = 0, 1, . . . , N.

Proof. We borrow the idea of this proof from [10, Theorem 1.6]. Evi-
dently,

ϕ(λ)2 +
∞∑
k=1

[ϕ(2−kλ)2 − ϕ(2−k+1λ)2] = 1, λ ∈ R,

and as ϕ ∈ S(R) the series converges absolutely. From the above,

1 =
(
ϕ(λ)2 +

∞∑
k=1

[ϕ(2−kλ)2 − ϕ(2−k+1λ)2]
)N

.

It is easy to see that for N ≥ 1 this identity can be written in the form

1 =

N∑
m=1

(
N

m

)
ϕ(λ)2m(1− ϕ(λ)2)N−m

+

∞∑
k=1

N∑
m=1

(
N

m

)
[ϕ(2−kλ)2 − ϕ(2−k+1λ)2]m(1− ϕ(2−kλ)2)N−m,

which leads to

(3.13) ψ0(λ)ϕ(λ) +
∞∑
k=1

ψ(2−kλ)[ϕ(2−kλ)− ϕ(2−k+1λ)] = 1

with

ψ0(λ) :=

N∑
m=1

(
N

m

)
ϕ(λ)2m−1(1− ϕ(λ)2)N−m

and

(3.14) ψ(λ) := [ϕ(λ)+ϕ(2λ)]

N∑
m=1

(
N

m

)
[ϕ(λ)2−ϕ(2λ)2]m−1(1−ϕ(λ)2)N−m.
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Clearly, ψ0, ψ ∈ S(R), ψ0, ψ are even, ψ(ν)(0) = 0 for ν = 0, 1, . . . , N − 2,
and ψ0(0) = 1.

Identity (3.11) follows immediately by (3.13) and spectral theory (see
e.g. [13]).

Finally, by replacing N with N + 2 in the above proof we get what we
need.

We now prove the right-hand inclusion in (3.12) for k = N−1. The proof
of the left-hand inclusion is easier and will be omitted. Using (3.14) we can
write

(3.15) λ−N+1ψ(λ) = [ϕ(λ) + ϕ(2λ)]

×
N∑
m=1

(
N

m

)[
ϕ(λ)− ϕ(2λ)

λ
(ϕ(λ) + ϕ(2λ))

]m−1[1− ϕ(λ)

λ
(1 + ϕ(λ))

]N−m
.

Clearly, supp ϕ̂ ⊂ [−1, 1] implies supp ϕ̂(2λ) ⊂ [−2, 2]. We next show that

(3.16) supp

(
1− ϕ(λ)

λ

)∧
⊂ [−1, 1].

By Taylor’s theorem and the fact that ϕ(0) = 1 we get

ϕ(λ)− 1

λ
= ϕ′(0) + λ

1�

0

(1− u)ϕ′′(λu) du.

For the Fourier transform of the above integral we have(1�
0

(1− u)ϕ′′(λu) du
)∧

(ξ) =
�

R

1�

0

(1− u)ϕ′′(λu) du e−iλξ dλ

=

1�

0

(1− u)
�

R

ϕ′′(λu)e−iλξ dλ du =

1�

0

(1− u)ϕ̂′′(ξ/u)
du

u

=

∞�

1

(1− 1/v)ϕ̂′′(vξ)
dv

v
.

The above manipulations are easy to justify since ϕ ∈ S(R). Due to the

fact that supp ϕ̂ ⊂ [−1, 1] we have supp ϕ̂′′ ⊂ [−1, 1], and from the above it

follows that supp (
	1
0(1−u)ϕ′′(λu) du)∧ ⊂ [−1, 1]. This implies (3.16). From

(3.16) it follows that

supp

(
ϕ(λ)− ϕ(2λ)

λ

)∧
⊂ [−2, 2].

Clearly, the Fourier transform of λ−N+1ψ(λ) is represented in terms of the
convolutions of the Fourier transforms of all terms in its representation



Hardy spaces associated with operators 29

(3.15), leading to the conclusion that

supp (λ−N+1ψ(λ))∧ ⊂ [−2N + 2, 2N − 2].

By increasing N as above we arrive at (3.12).

Proof of Proposition 3.5. (a) We borrow the idea of this proof from [8,
Lemma 3.2]. Assume 0 < θ ≤ 1 and γ > 2d/θ, and let f ∈ L2(X). We may
assume that ϕ(0) = 1 for otherwise we use ϕ(0)−1ϕ instead. By Lemma 3.6
there exist even real-valued functions ψ0, ψ ∈ S(R) such that ψ0(0) = 1,
ψ(ν)(0) = 0 for ν = 0, 1, . . . , N , and (3.11) holds for all j ∈ Z.

Fix t > 0 and let 2−j ≤ t < 2−j+1. Using (3.11) and (2.14) we get, for

x ∈ X and y ∈ X̃,

|ϕ(t
√
L)f(y)|

(1 + ρ(x, y)/t)γ
≤ c |ϕ(t

√
L)ψ0(2

−j√L)ϕ(2−j
√
L)f(y)|

(1 + 2jρ(x, y))γ

+ c
∞∑
k=j

|ϕ(t
√
L)ψ(2−k

√
L)[ϕ(2−k

√
L)− ϕ(2−k+1

√
L)]f(y)|

(1 + 2jρ(x, y))γ
.

Let ω(λ) := ϕ(t2jλ)ψ(2−(k−j)λ). Then ω(2−j
√
L) = ϕ(t

√
L)ψ(2−k

√
L).

Now, choose N > 3γ+3d/2+2 and set m := bγ+d/2+1c. As ϕ,ψ ∈ S(R)
there exists a constant c > 0 such that for ν = 0, 1, . . . , N ,

(3.17) |ϕ(ν)(λ)| ≤ c(1 + λ)−N , |ψ(ν)(λ)| ≤ c(1 + λ)−N , λ > 0,

yielding

|ω(ν)(λ)| ≤ c(1 + λ)−N , λ > 0, ν = 0, 1, . . . , N.

From this estimate we obtain, for λ ≥ 2(k−j)/2,

|ω(ν)(λ)| ≤ c(1 + λ)−m−d−12−(k−j)(N−m−d−1)/2,

and using the fact that N ≥ 3γ + 3d/2 + 2 + 2ε for some ε > 0, it follows
that for ν = 0, 1, . . . , N ,

(3.18) |ω(ν)(λ)| ≤ c2−(k−j)(γ+ε)(1 + λ)−m−d−1, λ ≥ 2(k−j)/2.

On the other hand, as ψ(ν)(0) = 0 for ν = 0, 1, . . . , N , we use Taylor’s
formula and (3.17) to obtain |ψ(ν)(λ)| ≤ cλN−ν , λ > 0, ν = 0, 1, . . . , N .
Hence,∣∣∣∣( d

dλ

)ν
ψ(2−(k−j)λ)

∣∣∣∣≤ c2−(k−j)NλN−ν ≤ c2−(k−j)N/2 for 0≤ λ≤ 2(k−j)/2.

From this estimate and (3.17) we get

|ω(ν)(λ)| ≤ c2−(k−j)N/2(1 + λ)−N , 0 ≤ λ ≤ 2(k−j)/2, ν = 0, 1, . . . , N.
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In turn, this estimate and (3.18) imply that (3.18) holds for 0 < λ < ∞.
Now, Theorem 2.3 applied to ω(2−j

√
L) leads to the following estimate on

the kernel of the operator ϕ(t
√
L)ψ(2−k

√
L) (recall that 2−j ≤ t < 2−j+1):

(3.19) |[ϕ(t
√
L)ψ(2−k

√
L)](x, y)|

≤ c2−(k−j)(γ+ε)

|B(y, 2−j)|(1 + 2jρ(x, y))γ
, ∀x, y ∈ X̃.

Consequently,

|ϕ(t
√
L)ψ(2−k

√
L)[ϕ(2−k

√
L)− ϕ(2−k+1

√
L)]f(y)|

(1 + 2jρ(x, y))γ

≤ c
�

X

2−(γ+ε)(k−j)[|ϕ(2−k
√
L)f(z)|+ |ϕ(2−k+1

√
L)f(z)|] dµ(z)

|B(z, 2−j)|(1 + 2jρ(y, z))γ(1 + 2jρ(x, y))γ

≤ c
�

X

2−(γ+ε)(k−j)[|ϕ(2−k
√
L)f(z)|+ |ϕ(2−k+1

√
L)f(z)|] dµ(z)

|B(z, 2−j)|(1 + 2jρ(x, z))γ

≤ c2−(k−j)ε
�

X

[|ϕ(2−k
√
L)f(z)|+ |ϕ(2−k+1

√
L)f(z)|] dµ(z)

|B(z, 2−j)|(1 + 2kρ(x, z))γ

≤ c2−(k−j)ε[M∗∗γ (f ;ϕ)(x)]1−θ

×
�

X

[|ϕ(2−k
√
L)f(z)|θ + |ϕ(2−k+1

√
L)f(z)|θ] dµ(z)

|B(z, 2−j)|(1 + 2jρ(x, z))γθ
.

Similarly

|ϕ(t
√
L)ψ0(2

−j√L)ϕ(2−j
√
L)f(y)|

(1 + 2jρ(x, y))γ

≤ c[M∗∗γ (f ;ϕ)(x)]1−θ
�

X

|ϕ(2−j
√
L)f(z)|θ dµ(z)

|B(z, 2−j)|(1 + 2jρ(x, z))γθ
.

Putting the above estimates together we get

|ϕ(t
√
L)f(y)|

(1 + ρ(x, y)/t)γ

≤ c[M∗∗γ (f ;ϕ)(x)]1−θ
∞∑
k=j

2−(k−j)ε
�

X

|ϕ(2−k
√
L)f(z)|θ dµ(z)

|B(z, 2−j)|(1 + 2jρ(x, z))γθ
.

At this point we use the fact that M∗∗γ (f ;ϕ)(x) < ∞ for almost all x ∈ X,
established in Proposition 3.4, to conclude that for almost all x ∈ X,

[M∗∗γ (f ;ϕ)(x)]θ ≤ c
∞∑
k=j

2−(k−j)ε
�

X

|ϕ(2−k
√
L)f(z)|θ dµ(z)

|B(x, 2−j)|(1 + 2jρ(x, z))γθ−d
.
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Here we have used (2.1) as well. Denote briefly F (z) := ϕ(2−k
√
L)f(z).

Just as in the second half of the proof of Proposition 3.4, using γ > 2d/θ
we obtain

�

X

|F (z)|θ dµ(z)

|B(x, 2−j)|(1 + 2jρ(x, z))γθ−d
≤ cMθ(F )(x)θ.

Therefore, for almost all x ∈ X,

[M∗∗γ (f ;ϕ)(x)]θ ≤ c
∞∑
k=j

2−(k−j)εMθ(ϕ(2−k
√
L)f)(x)θ ≤ cMθ(M(f ;ϕ))(x)θ,

which yields (3.9).

(b) We shall proceed much as in the proof of (a). Let φ ∈ FN and assume
that ϕ ∈ S(R) is admissible. Choose γ > 2d/θ so that N > 3γ + 3d/2 + 2.
Then there exists ε > 0 such that N ≥ 3γ + 3d/2 + 2 + 2ε.

Assume t > 0 and let 2−j ≤ t < 2−j+1. Just as in the proof of (a), by
Lemma 3.6 there exist even real-valued functions ψ0, ψ ∈ S(R) such that
ψ(ν)(0) = 0 for ν = 0, 1, . . . , N and (3.11) holds for any j ∈ Z. Hence, using
(2.14) we obtain, for f ∈ L2(X),

|φ(t
√
L)f(y)|

(1 + ρ(x, y)/t)γ
≤ c |φ(t

√
L)ψ0(2

−j√L)ϕ(2−j
√
L)f(y)|

(1 + 2jρ(x, y))γ

+ c

∞∑
k=j

|φ(t
√
L)ψ(2−k

√
L)[ϕ(2−k

√
L)− ϕ(2−k+1

√
L)]f(y)|

(1 + 2jρ(x, y))γ
.

Just as in (3.19) we have

|φ(t
√
L)ψ(2−k

√
L)(x, y)| ≤ c2−(k−j)(γ+ε)

|B(y, 2−j)|(1 + 2jρ(x, y))γ
, ∀x, y ∈ X̃,

where the constant c > 0 is independent of φ due to NN (φ) ≤ 1. Therefore,

as in the proof of (a), for x ∈ X and y ∈ X̃,

|φ(t
√
L)ψ(2−k

√
L)[ϕ(2−k

√
L)− ϕ(2−k+1

√
L)]f(y)|

(1 + 2jρ(x, y))γ

≤ c
�

X

2−(γ+ε)(k−j)[|ϕ(2−k
√
L)f(z)|+ |ϕ(2−k+1

√
L)f(z)|] dµ(z)

|B(z, 2−j)|(1 + 2jρ(y, z))γ(1 + 2jρ(x, y))γ

≤ c2−(k−j)ε[M∗∗γ (f ;ϕ)(x)]1−θ

×
�

X

[|ϕ(2−k
√
L)f(z)|θ + |ϕ(2−k+1

√
L)f(z)|θ] dµ(z)

|B(z, 2−j)|(1 + 2jρ(x, z))γθ
.
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Similarly

|φ(t
√
L)ψ0(2

−j√L)ϕ(2−j
√
L)f(y)|

(1 + 2jρ(x, y))γ

≤ c[M∗∗γ (f ;ϕ)(x)]1−θ
�

X

|ϕ(2−j
√
L)f(z)|θ dµ(z)

|B(z, 2−j)|(1 + 2jρ(x, z))γθ
.

Here the constant c > 0 is independent of φ since NN (φ) ≤ 1. As before,
denoting F (z) := ϕ(2−k

√
L)f(z) we obtain

�

X

|F (z)|θ dµ(z)

|B(z, 2−j)|(1 + 2jρ(x, z))γθ
≤ c

�

X

|F (z)|θ dµ(z)

|B(x, 2−j)|(1 + 2jρ(x, z))γθ−d

≤ cMθ(F )(x)θ.

Therefore,

|φ(t
√
L)f(y)|

(1 + ρ(x, y)/t)γ
≤ c[M∗∗γ (f ;ϕ)(x)]1−θ

×
∞∑
k=j

2−(k−j)ε
�

X

|ϕ(2−k
√
L)f(z)|θ dµ(z)

|B(z, 2−j)|(1 + 2jρ(x, z))γθ

≤ c[M∗∗γ (f ;ϕ)(x)]1−θ
∞∑
k=j

2−(k−j)ε[Mθ(|ϕ(2−k
√
L)f |)(x)]θ

≤ c[M∗∗γ (f ;ϕ)(x)]1−θ[Mθ(M(f ;ϕ))(x)]θ
∞∑
k=j

2−(k−j)ε

≤ cMθ(M(f ;ϕ))(x),

where for the last estimate we have used the fact that M∗∗γ (f ;ϕ)(x) ≤
cMθ(M(f ;ϕ))(x) for almost all x ∈ X, by (3.9). Thus for almost all x ∈ X,

sup
t>0

sup
y∈X̃, ρ(x,y)≤t

|φ(t
√
L)f(y)| ≤ 2γ sup

t>0
sup
y∈X̃

|φ(t
√
L)f(y)|

(1 + ρ(x, y)/t)γ

≤ cMθ(M(f ;ϕ))(x),

which completes the proof.

Proposition 3.5 leads to the following

Theorem 3.7. Let 0 < p ≤ 1. Then for any N > 6d/p + 3d/2 + 2,
γ > 2d/p, a ≥ 1, and an admissible ϕ ∈ S(R) with ϕ(0) 6= 0 we have, for
all f ∈ L2(X),

‖f‖Hp ∼ ‖MN (f)‖Lp ∼ ‖M(f ;ϕ)‖Lp ∼ ‖M∗a (f ;ϕ)‖Lp(3.20)

∼ ‖M∗∗γ (f ;ϕ)‖Lp .
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Here the constants in the equivalences involving ϕ depend not only on the
parameters but on ϕ as well.

Proof. Write Φ(λ) := e−λ
2
. Apparently Φ ∈ S(R), Φ is admissible, and

Φ(0) 6= 0. Let N > 6d/p + 3d/2 + 2 and choose θ so that 0 < θ < p and
N > 6d/θ + 3d/2 + 2. Then applying Proposition 3.5(b) we obtain, for a
given f ∈ L2(X),

‖MN (f)‖p ≤ c‖Mθ(M(f ;Φ))‖p ≤ c‖M(f ;Φ)‖p = c‖f‖Hp ,

where we have used the maximal inequality (3.7).

In the other direction, using (3.2) and (3.5) we get

‖f‖Hp = ‖M(f ;Φ)‖p ≤ ‖M∗1 (f ;Φ)‖p ≤ c‖MN (f)‖p.

Thus the first equivalence in (3.20) is established.

Just in the same way we get ‖MN (f)‖Lp ∼ ‖M(f ;ϕ)‖Lp with constants
of equivalence depending in addition on ϕ. We choose θ so that 0 < θ < p
and γ > 2d/θ and apply Proposition 3.5(a) and the maximal inequality
as above to obtain ‖M∗∗γ (f ;ϕ)‖Lp ≤ c‖M(f ;ϕ)‖Lp . All other estimates we
need follow from (3.3) and (3.5).

4. Equivalence of maximal and atomic Hardy spaces. In this
section we present the proof of Theorem 1.4. We shall first carry out the
proof in the noncompact case and then explain the modifications that need
to be made in the compact case.

4.1. Proof of the embedding Hp ⊂ Hp
A in the noncompact case.

We show that if f ∈ Hp, 0 < p ≤ 1, then f ∈ Hp
A and ‖f‖Hp

A
≤ c‖f‖Hp .

The decomposition of L2-functions from Lemma 3.6 will play a central
rôle in this proof. Let ϕ ∈ S(R) be real-valued and even, ϕ(0) = 1, and
with Fourier transform ϕ̂ obeying supp ϕ̂ ⊂ [−1, 1]. Fix an integer N >
6d/p+3d/2+2 as in Theorem 3.7. By Lemma 3.6 there exist even real-valued
functions ψ0, ψ ∈ S(R) with ψ0(0) = 1, ψ(ν)(0) = 0 for ν = 0, 1, . . . , N ,

(4.1) supp ψ̂0 ⊂ [−2N, 2N ], supp (λ−νψ(λ))∧ ⊂ [−2N, 2N ], ν = 0, . . . , N,

such that for any f ∈ L2(X) and j ∈ Z,

f = ψ0(2
−j√L)ϕ(2−j

√
L)f(4.2)

+
∞∑
k=j

ψ(2−k
√
L)[ϕ(2−k

√
L)− ϕ(2−k+1

√
L)]f,

where the convergence is in L2.
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Write ϕ̃ := ϕ0 and ψ̃(λ) := ϕ(λ)− ϕ(2λ). From now on we shall use the
following more compact notation:

(4.3)

ϕk := ϕ(2−k
√
L), ϕ̃k := ψ0(2

−k√L), ψk := ψ(2−k
√
L), ψ̃k := ψ̃(2−k

√
L).

Clearly, these are integral operators whose kernels will be denoted by
ϕk(x, y), ϕ̃k(x, y), ψk(x, y), and ψ̃k(x, y). Observe that since ϕ, ϕ̃, ψ, and ψ̃

are real-valued, we have ϕk(y, x) = ϕk(x, y) for all x, y ∈ X̃, and similarly
for the others.

Also, ϕ, ϕ̃, ψ, ψ̃ ∈ S(R), ϕ, ϕ̃, ψ, ψ̃ are even, and from supp ϕ̂ ⊂ [−1, 1]
and (4.1) it follows by the final speed propagation property (Proposition 2.1)
that there exists a constant τ > 1 such that

(4.4) suppϕk(x, ·), supp ϕ̃k(x, ·), suppψk(x, ·), supp ψ̃k(x, ·) ⊂ B(x, τ2−k),

and

(4.5) supp[L−νψ(2−k
√
L)](x, ·) ⊂ B(x, τ2−k), ν = 0, 1, . . . , N.

By Proposition 2.2, (1.2), and (2.1) it follows that for any x ∈ X,

(4.6) |ϕk(x, y)|, |ϕ̃k(x, y)|, |ψk(x, y)|, |ψ̃k(x, y)| ≤ c|B(x, 2−k)|−1, ∀y ∈ X̃.

We shall utilize the following assertion involving the grand maximal
operator MN , defined in (3.4): Let φ ∈ S(R) be admissible and assume
NN (φ) ≤ c. Then for any f ∈ L2(X), k ∈ Z, and x ∈ X,

(4.7) |φ(2−k
√
L)f(y)| ≤ cMN (f)(x) ∀y ∈ X̃ with ρ(x, y) ≤ 2τ2−k,

where τ > 1 is the constant from (4.4)–(4.5). This claim follows readily from
(3.2) and (3.5).

We next establish an estimate of a similar nature for the operators de-
fined by

(4.8) Q`j :=

j∑
k=`

ψkψ̃k, −∞ < ` ≤ j <∞.

Lemma 4.1. For any f ∈ L2(X) and x ∈ X,

(4.9) |Q`jf(y)| ≤ cMN (f)(x) for all y ∈ X̃ with ρ(x, y) ≤ 2τ2−j .

Furthermore,

(4.10) |Q`jf(x)| ≤ cM1(f · 1B(x,2τ2−`))(x), ∀x ∈ X̃,
where M1 is the Hardy–Littlewood maximal operator defined in (3.6), and
c > 0 is a constant independent of f, `, j.

Proof. Let K := j− ` and set Q(λ) :=
∑K

k=0 ψ(2kλ)ψ̃(2kλ). It is readily

seen that Q`j = Q(2−j
√
L). Clearly, Q is even and Q ∈ S(R). We next show
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that

(4.11) NN (Q) ≤ c <∞,

where the constant c > 0 is independent of `, j.

Set q(λ) := ψ(λ)ψ̃(λ). Evidently, q ∈ S(R), q is real-valued and even,
and q(ν)(0) = 0, ν = 0, 1, . . . , N . We claim that for any σ > 0 there exists a
constant c > 0 depending on σ,N , and ϕ such that

(4.12) |q(ν)(λ)| ≤ c|λ|N−ν+1

(1 + |λ|)σ+N
, λ ∈ R, ν = 0, 1, . . . , N.

Indeed, by Taylor’s theorem

q(ν)(λ) =
λN+1−ν

(N + 1− ν)!

1�

0

(1− u)N−νq(N+1)(λu) du, 0 ≤ ν ≤ N,

and hence

(4.13) |q(ν)(λ)| ≤ c‖q(N+1)‖∞|λ|N+1−ν .

On the other hand, since q ∈ S(R) we have

(4.14) |q(ν)(λ)| ≤ c

(1 + |λ|)σ+N
.

By considering two cases: |λ| ≤ 1 and |λ| ≥ 1, estimates (4.13)–(4.14) imply
(4.12). From (4.12) we get

|Q(ν)(λ)| ≤ c
∞∑
k=0

|2kλ|N−ν+1

(1 + |2kλ|)σ+N
.

To estimate the above sum we choose σ = N and consider two cases.

Case 1: |λ| ≤ 1. Assume 2−m−1 < |λ| ≤ 2−m. Then from the above,

|Q(ν)(λ)| ≤ c
∞∑
k=0

2(k−m)(N−ν+1)

(1 + 2k−m)σ+N
≤ c

m∑
k=0

2(k−m)(N−ν+1) + c

∞∑
k=m+1

2−(k−m)σ,

implying |Q(ν)(λ)| ≤ c ≤ c′(1 + |λ|)−N .

Case 2: |λ| > 1. We have

|Q(ν)(λ)| ≤ c
∞∑
k=0

1

(1 + |2kλ|)N
≤ c

(1 + |λ|)N
∞∑
k=0

1

2kN
≤ c

(1 + |λ|)N
.

In both cases we have

(4.15) |Q(ν)(λ)| ≤ c(1 + |λ|)−N for ν = 0, 1, . . . , N,

which confirms (4.11) (see (3.1)). In turn, just as in (4.7), estimate (4.11)
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yields

|Q(2−j
√
L)f(y)| ≤ cMN (f)(x) for all y ∈ X̃ with ρ(x, y) ≤ 2τ2−j ,

which verifies (4.9).

To prove (4.10) we note that by (4.15) and Theorem 2.3 it follows that
Q`j is an integral operator with kernel Q`j(x, y) satisfying

|Q`j(x, y)| ≤ c|B(x, 2−j)|−1(1 + 2jρ(x, y))−N+3d/2+1, ∀x, y ∈ X̃.
Now, just as in the proof of Proposition 3.4, this implies (4.10), on taking
into account that N − 3d/2− 1 > d and (4.4).

From (4.2) it follows that for any f ∈ L2(X),

(4.16) f = ϕjϕ̃jf +
∑
k≥j

ψkψ̃kf (convergence in L2),

which readily implies

(4.17) f =
∑
k∈Z

ψkψ̃kf (convergence in L2).

Let f ∈ Hp ∩ L2, 0 < p ≤ 1, and f 6= 0. We define

(4.18) Ωr := {x ∈ X :MN (f)(x) > 2r}, r ∈ Z.

Clearly, Ωr+1 ⊂ Ωr and X =
⋃
r∈ZΩr. The latter identity follows by the

inequality MN (f)(x) > 0 for all x ∈ X due to f 6= 0. Also, Ωr is open
because MN (f)(x) is lower semicontinuous. From the definition of Ωr in
(4.18) it readily follows that∑

r∈Z
2pr|Ωr| =

∑
r∈Z

2pr
∑
ν≥r
|Ων \Ων+1| =

∑
ν∈Z
|Ων \Ων+1|

∑
r≤ν

2pr

≤ cp
∑
ν∈Z

2pν |Ων \Ων+1| ≤ cp
∑
ν∈Z

�

Ων\Ων+1

MN (f)(x)p dµ(x)

= cp
�

X

MN (f)(x)p dµ(x).

Hence,

(4.19)
∑
r∈Z

2pr|Ωr| ≤ c
�

X

MN (f)(x)p dµ(x) ≤ c‖f‖pHp ,

implying

(4.20) |Ωr| ≤ c2−pr‖f‖pHp , r ∈ Z.

Assume Ωr 6= ∅ and write

(4.21)
Erk := {x ∈ Ωr : dist(x,Ωc

r) > 2τ2−k}\{x ∈ Ωr+1 : dist(x,Ωc
r+1) > 2τ2−k}.
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We define

(4.22) Fr :=
∑
k∈Z

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y), r ∈ Z,

and in general

(4.23) Fr,κ0,κ1 :=

κ1∑
k=κ0

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y), −∞ ≤ κ0 ≤ κ1 ≤ ∞,

where the convergence is in L2. As will be shown in Lemma 4.2 below, the
functions Fr and Fr,κ0,κ1 are well defined and Fr, Fr,κ0,κ1 ∈ L2 ∩ L∞.

Clearly, for every x ∈ Ωr there exists srx ∈ Z such that Erk ∩B(x, τ2−k)
= ∅ for k < srx. This coupled with (4.4) implies�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) = 0, ∀k < srx, ∀x ∈ Ωr,

and hence for every K ∈ Z and all x ∈ Ωr ∩ X̃,

(4.24)
K∑

k=−∞

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) =
K∑

k=srx

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y),

i.e. the sum above is finite.
Observe that the fact that suppψk(x, ·) ⊂ B(x, τ2−k) (see (4.4)) leads

to the following conclusions:

(i) If B(x, τ2−k) ⊂ Erk for some x ∈ Erk ∩ X̃, then�

Erk

ψk(x, y)ψ̃kf dµ(y) =
�

B(x,τ2−k)

ψk(x, y)ψ̃kf(y) dµ(y)(4.25)

=
�

X

ψk(x, y)ψ̃kf(y) dµ(y).

(ii) We have

(4.26) supp
( �

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
)
⊂ {x : dist(x,Erk) ≤ τ2−k}.

On the other hand, clearly B(y, 2τ2−k) ∩ (Ωr \Ωr+1) 6= ∅ for each y ∈ Erk,
and NN (ψ̃) ≤ c. Hence (see (4.7)), |ψ̃kf(y)| ≤ c2r for y ∈ Erk ∩ X̃, and
using (4.6) we get

(4.27)
∥∥∥ �
E

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
∞
≤ c2r, ∀E ⊂ Erk.

Similarly,

(4.28)
∥∥∥ �
E

ϕk(·, y)ϕkf(y) dµ(y)
∥∥∥
∞
≤ c2r, ∀E ⊂ Erk.



38 S. Dekel et al.

Two more estimates will be needed: for any measurable set E ⊂ Erk,∣∣∣ �
E

ψk(x, y)ψ̃kf(y) dµ(y)
∣∣∣ ≤ cM1(f · 1Ωr)(x), ∀x ∈ X̃,(4.29) ∣∣∣ �

E

ϕk(x, y)ϕ̃kf(y) dµ(y)
∣∣∣ ≤ cM1(f · 1Ωr)(x), ∀x ∈ X̃,(4.30)

where M1 is the Hardy–Littlewood maximal operator (see (3.6)), and the
constant c is independent of f,E, r, k, x. These two estimates follow readily
by (4.4)–(4.6).

We record some of the main properties of Fr and Fr,κ0,κ1 in the following

Lemma 4.2. (a) The series in (4.22) and (4.23) (if κ1 =∞) converge in
L2, and hence the functions Fr and Fr,κ0,κ1 are well defined.

(b) There exists a constant c > 0 such that for any r ∈ Z and integers
−∞ ≤ κ0 ≤ κ1 ≤ ∞,

(4.31) ‖Fr‖∞ ≤ c2r and ‖Fr,κ0,κ1‖∞ ≤ c2r.

Moreover, there exists a set Yr ⊂ X̃ such that µ(X \ Yr) = 0 and for every
x ∈ Yr,
(4.32) |Fr(x)| ≤ cM1(f ·1Ωr)(x) <∞, |Fr,κ0,κ1(x)| ≤ cM1(f ·1Ωr)(x) <∞.
Here M1 is the Hardy–Littlewood maximal operator, defined in (3.6).

(c) Also,

(4.33) Fr(x) = Fr,κ0,κ1(x) = 0, ∀x ∈ X \Ωr, ∀r ∈ Z.
(d) We have

(4.34) Erk ∩ Er′k = ∅ if r 6= r′ and X =
⋃
r∈Z

Erk, ∀k ∈ Z.

Proof. Identities (4.34) are obvious, and (4.33) follows readily from the
definitions of Fr, Fr,κ0,κ1 and (4.26).

Fix r ∈ Z and assume Ωr+1 6= ∅; the case when Ωr+1 = ∅ is easier and
will be omitted. We shall prove parts (a) and (b) of the lemma only for Fr;
the proof for Fr,κ0,κ1 is similar and will be omitted. We split the proof of
(a)–(b) into two cases.

Case 1: Estimates for Fr and L2-convergence in (4.22) on Ωr+1. We

next show that Fr(x) is well defined pointwise by (4.22) on Ωr+1 ∩ X̃, and

the left estimates in (4.31)–(4.32) hold on Ωr+1∩X̃. In fact, it will be shown

that the sum in (4.22) is finite for every x ∈ Ωr+1 ∩ X̃. Set

Uk := {x ∈ Ωr : dist(x,Ωc
r) > 2τ2−k},

Vk := {x ∈ Ωr+1 : dist(x,Ωc
r+1) > 2τ2−k}.

(4.35)

Then Erk = Uk \ Vk (see (4.21)).
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From (4.26) it follows that

Fr(x) = 0 for x ∈ X \
⋃
k∈Z
{y : dist(y,Erk) < τ2−k}.

We next estimate |Fr(x)| for

x ∈
[⋃
k∈Z
{y : dist(y,Erk) < τ2−k}

]
∩Ωr+1 ∩ X̃.

For any such x there exist ν, ` ∈ Z such that

(4.36) x ∈ (U`+1 \ U`) ∩ (Vν+1 \ Vν).

As Ωr+1 ⊂ Ωr we have Vk ⊂ Uk, implying (U`+1 \ U`) ∩ (Vν+1 \ Vν) = ∅
if ν < `. We consider two subcases depending on whether ν ≥ ` + 3 or
` ≤ ν ≤ `+ 2.

(a) Let ν ≥ `+ 3. We claim that (4.21) and (4.36) yield

(4.37) B(x, τ2−k) ∩ Erk = ∅ for k ≥ ν + 2 or k ≤ `− 1.

Indeed, if k ≥ ν + 2, then Erk ⊂ Ωr \ Vν+2, which implies (4.37), while if
k ≤ `− 1, then Erk ⊂ U`−1, again implying (4.37).

We also claim that

(4.38) B(x, τ2−k) ⊂ Erk for `+ 2 ≤ k ≤ ν − 1.

Indeed, if `+ 2 ≤ k ≤ ν − 1, then

(U`+1 \ U`) ∩ (Vν+1 \ Vν) ⊂ (Uk−1 \ U`) ∩ (Vν+1 \ Vk+1) ⊂ Uk−1 \ Vk+1,

which implies (4.38).

From (4.25)–(4.26) and (4.37)–(4.38) it follows that

Fr(x) =

ν+1∑
k=`

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) =

`+1∑
k=`

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y)

+
ν−2∑
k=`+2

�

X

ψk(x, y)ψ̃kf(y) dµ(y) +
ν+1∑

k=ν−1

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y).

However, using the notation from (4.8),

ν−2∑
k=`+2

�

X

ψk(x, y)ψ̃kf(y) dµ(y) =

ν−2∑
k=`+2

ψkψ̃kf(x) = Q`+2,ν−2f(x).

Since dist(x,Ωr \Ωr+1) ≤ 2τ2−(ν−2) and B(x, 2τ2−(`+2)) ⊂ Ωr it follows by
Lemma 4.1 that |Q`+2,ν−2f(x)| ≤ c2r and |Q`+2,ν−2f(x)| ≤ cM1(f ·1Ωr)(x).
We use the above, (4.27)–(4.28), and (4.29)–(4.30) to obtain |Fr(x)| ≤ c2r

and |Fr(x)| ≤ cM1(f · 1Ωr)(x).
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(b) Let ` ≤ ν ≤ `+ 2. We have

Fr(x) =

ν+1∑
k=`

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) =

`+3∑
k=`

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y).

We use (4.27) and (4.29) to estimate each of these four integrals and obtain
again |Fr(x)| ≤ c2r and |Fr(x)| ≤ cM1(f · 1Ωr)(x).

The sum in (4.22) is finite for every x ∈ Ωr+1 ∩ X̃ and using the fact
that ‖Fr‖L∞(Ωr+1) ≤ c2r and µ(Ωr+1) < ∞ (see (4.20)) it follows that the

series in (4.22) converges in L2(Ωr+1).

Case 2: Estimates for Fr and L2-convergence in (4.22) onΩr\Ωr+1. The
following two estimates will play an important rôle: for any K ∈ Z,

(4.39)
∥∥∥ K∑
k=−∞

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L∞(Ωr\Ωr+1)

≤ c2r

and

(4.40)
∣∣∣ K∑
k=−∞

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y)
∣∣∣

≤ cM1(f · 1Ωr)(x), ∀x ∈ (Ωr \Ωr+1) ∩ X̃,
where c > 0 is a constant independent of r and K. Write

SK(x) :=
K∑

k=−∞

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) =
K∑

k=srx

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y).

Clearly,

(4.41) Ωr \Ωr+1 =
⋃
`∈Z

(U`+1 \ U`) ∩ (Ωr \Ωr+1).

Let x ∈ (Ωr \Ωr+1)∩ X̃. Then x ∈ (U`+1 \U`)∩ (Ωr \Ωr+1) for some ` ∈ Z.
Just as in the proof of (4.37) we have B(x, τ2−k) ∩ Erk = ∅ for k ≤ ` − 1,
and as in the proof of (4.38) we have

(U`+1 \ U`) ∩ (Ωr \Ωr+1) ⊂ Uk−1 \ Vk+1 for k ≥ `+ 2,

which implies B(x, τ2−k) ⊂ Erk for k ≥ `+ 2.
Assume that K > `+ 1. We use the above and (4.25)–(4.26) to obtain

SK(x) =

K∑
k=`

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y)

=
`+1∑
k=`

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) +
K∑

k=`+2

�

X

ψk(x, y)ψ̃kf(y) dµ(y).
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For the last sum we have
K∑

k=`+2

�

X

ψk(x, y)ψ̃kf(y) dµ(y) =

K∑
k=`+2

ψkψ̃kf(x) = Q`+2,Kf(x).

The representation of SK(x) for K ≤ ` + 1 is similar. Now, Lemma 4.1,
(4.27)–(4.28), and (4.29)–(4.30) yield (4.39) and (4.40).

We next prove the convergence of the series in the definition of Fr in
(4.22) in L2(W`), where

(4.42) W` := (U`+1 \ U`) ∩ (Ωr \Ωr+1), ` ∈ Z.

From the above we know that for all k ≥ `+ 2 and x ∈W` ∩ X̃ we have�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) =
�

X

ψk(x, y)ψ̃kf(y) dµ(y) = ψkψ̃kf(x).

Therefore, for every K ≥ `+ 2,∥∥∥ ∞∑
k=K

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2(W`)

=
∥∥∥ ∞∑
k=K

ψkψ̃kf
∥∥∥
L2(W`)

≤
∥∥∥ ∞∑
k=K

ψkψ̃kf
∥∥∥
L2(X)

,

and hence from the convergence in (4.16) or (4.17) it follows that

(4.43) lim
K→∞

∥∥∥ ∞∑
k=K

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2(W`)

= 0, ∀` ∈ Z.

We are now prepared to prove the convergence in L2(Ωr \Ωr+1) of the series
in the definition of Fr in (4.22), which is the same as the convergence of {SK}
in L2(Ωr\Ωr+1). From (4.41) and (4.42) it follows that Ωr\Ωr+1 =

⋃
`∈ZW`

and observe that the sets {W`} are disjoint. Hence

|Ωr \Ωr+1| =
∑
`∈Z
|W`|.

Fix ε > 0. From (4.20) we know that |Ωr| < ∞, and hence there exists
M ∈ Z such that

|(Ωr \Ωr+1) \ UM |+ |(Ωr \Ωr+1) ∩ U−M | =
∑
|`|≥M

|W`| < ε.

From this and (4.39) it follows that

(4.44) ‖SK‖L2[Ωr\Ωr+1)\UM ]+‖SK‖L2[Ωr\Ωr+1)∩U−M ] ≤ c2rε1/2, ∀K ∈ Z.
Clearly,

Ωr \Ωr+1 =

M⋃
`=−M

W` ∪ [(Ωr \Ωr+1) \ UM ] ∪ [(Ωr \Ωr+1) ∩ U−M ].
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This, (4.43), and (4.44) imply the convergence of the series in (4.22) in
L2(Ωr\Ωr+1). To see this, one simply shows that ‖SK1−SK2‖L2(Ωr\Ωr+1)→0
as K1,K2 →∞.

Since the series in (4.22) converges in L2(Ωr \Ωr+1), it follows that (see
e.g. [9, Theorem 3.12]) there exists a sequence K1 < K2 < · · · such that

Fr(x) = lim
j→∞

Kj∑
k=−∞

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) for a.a. x ∈ Ωr \Ωr+1.

This coupled with (4.39) and (4.40) yields

‖Fr‖L∞(Ωr\Ωr+1) ≤ c2
r and |Fr(x)| ≤ cM1(f ·1Ωr)(x) a.e. on Ωr \Ωr+1.

The proof of Lemma 4.2 is complete.

For convenience, we define Fr := 0 whenever Ωr = ∅, r ∈ Z.

Observe that from (4.34) it follows that, for x ∈ X̃,

ψkψ̃kf(x) =
�

X

ψk(x, y)ψ̃kf(y) dµ(y) =
∑
r∈Z

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y),

and using (4.17) and the definition of Fr in (4.22) we obtain f =
∑

r∈Z Fr.
We next present the needed justification for this identity.

Lemma 4.3. We have

(4.45) f =
∑
r∈Z

Fr (convergence in L2).

Proof. We first show that

(4.46)
∥∥∥f − R∑

r=−R

K∑
k=−K

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2
→ 0 as R,K →∞.

Note that (4.17) implies

(4.47)
∥∥∥f − K∑

k=−K

�

X

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2
→ 0 as K →∞.

From (4.34) it follows that

(4.48)
�

X

ψk(x, y)ψ̃kf(y) dµ(y) =
∑
r∈Z

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y), x ∈ X̃.

Further, using (4.20) and (4.27) we get∥∥∥ �

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2(X)

≤ c2r|Ωr|1/2 ≤ c‖f‖pHp2
r(1−p/2),
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and hence

(4.49)
∥∥∥ ∑
r<−R

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2(X)

≤ c‖f‖pHp

∑
r<−R

2r(1−p/2) ≤ c‖f‖pHp2
−R(1−p/2) → 0 as R→∞.

On the other hand, denoting

(4.50) Umk := {x ∈ Ωm : dist(x,Ωc
m) > 2τ2−k} =

⋃
r≥m

Erk

and using (4.4)–(4.6) we obtain, for x ∈ X̃,∣∣∣∑
r≥m

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y)
∣∣∣ =

∣∣∣ �

Umk

ψk(x, y)ψ̃kf(y) dµ(y)
∣∣∣

≤ c|B(x, 2−k)|−1
�

Umk∩B(x,τ2−k)

|f(y)| dµ(y) ≤ cM1(f · 1Umk)(x).

Here M1 is the Hardy–Littlewood maximal operator (see (3.6)), and we have
used the fact that |B(x, τ2−k)| ≤ c0τd|B(x, 2−k)|, applying (1.2). Therefore,

(4.51)
∥∥∥∑
r≥m

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y)
∥∥∥
L2
≤ c‖M1(f · 1Umk)‖L2

≤ c‖f‖L2(Umk) ≤ c‖f‖L2(Ωm) → 0 as m→∞,

where we have used the maximal inequality (3.7) and the fact that |Ωm| → 0
as m→∞. Clearly, (4.48), (4.49), and (4.51) yield∥∥∥ �
X

ψk(·, y)ψ̃kf(y) dµ(y)−
R∑

r=−R

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2
→ 0 asR→∞.

This coupled with (4.47) implies (4.46).

Our second step is to show that

(4.52)∥∥∥∑
r∈Z

Fr −
R∑

r=−R

K∑
k=−K

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2
→ 0 as R,K →∞.

We first use (4.20), (4.31), and (4.33) to obtain

(4.53)
∥∥∥ ∑
r<−R

Fr

∥∥∥
L2
≤
∑
r<−R

‖Fr‖L2 ≤ c
∑
r<−R

2r|Ωr|1/2

≤ c‖f‖p/2Hp

∑
r<−R

2r(1−p/2) ≤ c‖f‖p/2Hp 2−R(1−p/2) → 0 as R→∞.



44 S. Dekel et al.

We next estimate ‖
∑

r≥m Fr‖L2 . Observe that by (4.33) it follows that
for any m ∈ Z we have

∑
r≥m Fr(x) = 0 for x ∈ X \Ωm. We claim that for

any m ∈ Z,

(4.54)
∣∣∣ ∑
r≥m

Fr(x)
∣∣∣ ≤ cM1(f · 1Ωm)(x) for a.a. x ∈ Ωm.

To prove this, just as in (4.50) we let

Urk := {x ∈ Ωr : dist(x,Ωc
r) > 2τ2−k}.

Set Y :=
⋂
r∈Z Yr, where the sets Yr are from Lemma 4.2. Clearly Y ⊂ X̃

and µ(X \ Y ) = 0.

Let x ∈ Ωm ∩ Y . Then x ∈ (Ωr \ Ωr+1) ∩ Y for some r ≥ m. By (4.33)
it follows that ∑

r′≥m
Fr′(x) =

r∑
r′=m

Fr′(x).

Clearly, x ∈ (Ur,`+1 \ Ur`) ∩ (Ωr \ Ωr+1) for some ` ∈ Z. Also, from the
definition of Erk in (4.21) we have Umk =

⋃
r≥mErk. In light of (4.22) this

implies

r∑
r′=m

Fr′(x) = Fr(x) +
∑̀
k=−∞

�

Umk

ψk(x, y)ψ̃kf(y) dµ(y).

From (4.32) we have |Fr(x)| ≤ cM1(f · 1Ωm)(x), and just as in the proof of
Lemma 4.2 one shows that∣∣∣ ∑̀

k=−∞

�

Umk

ψk(x, y)ψ̃kf(y) dµ(y)
∣∣∣ ≤ cM1(f · 1Ωm)(x).

Putting the above together we obtain (4.54). In turn, (4.54) and the maximal
inequality (3.7) imply

(4.55)
∥∥∥∑
r≥m

Fr

∥∥∥
L2
≤ c‖M1(f · 1Ωm)‖L2 ≤ c‖f‖L2(Ωm) → 0 as m→∞,

where we have used the fact that |Ωm| → 0 as m→∞.

As was shown in Lemma 4.2, the series in the definition of Fr in (4.22)
converges in L2, and hence for any r ∈ Z,∥∥∥Fr − K∑

k=−∞

�

Erk

ψk(·, y)ψ̃kf(y) dµ(y)
∥∥∥
L2
→ 0 as K →∞.

This, (4.53), and (4.55) imply (4.52). In turn, (4.46) and (4.52) yield (4.45).

We next break each function Fr into atoms. To this end we need a
Whitney type cover for Ωr.
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Lemma 4.4. Assume that Ω is an open subset of X, Ω 6= X, and denote
ρ(x) := dist(x,Ωc). Then there exist a constant K > 0 (K = 70dc20 will do)
and a sequence {ξj}j∈N of points in Ω with the following properties, where
ρj := dist(ξj , Ω

c):

(a) Ω =
⋃
j∈NB(ξj , ρj/2).

(b) {B(ξj , ρj/5)} are disjoint.

(c) If B(ξj , 3ρj/4) ∩B(ξν , 3ρν/4) 6= ∅, then 7−1ρν ≤ ρj ≤ 7ρν .

(d) For every j ∈ N there are at most K balls B(ξν , 3ρν/4) intersecting
B(ξj , 3ρj/4).

Variants of this lemma are well known and frequently used. To prove
it one selects {B(ξj , ρ(ξj)/5)}j∈N to be a maximal disjoint subcollection
of {B(x, ρ(x)/5)}x∈Ω, and then properties (a)–(d) follow readily (see [12,
pp. 15–16]. For completeness we give the proof in the appendix.

We apply Lemma 4.4 to each set Ωr 6= ∅. Fix r ∈ Z and assume Ωr 6= ∅.
Denote by Bj := B(ξj , ρj/2), j = 1, 2, . . . , the balls given by Lemma 4.4
applied to Ωr, with the additional assumption that these balls are ordered
so that ρ1 ≥ ρ2 ≥ · · · . We shall adhere to the notation of Lemma 4.4. We
shall also use the more compact notation Br := {Bj}j∈N for the set of balls
covering Ωr.

For each ball B ∈ Br and k ∈ Z we define

(4.56) EBrk := Erk ∩ {x ∈ X : dist(x,B) < 2τ2−k} if B ∩ Erk 6= ∅

and set EBrk := ∅ if B ∩ Erk = ∅.
We also define, for ` = 1, 2, . . . ,

RB`rk := EB`rk \
⋃
ν>`

EBνrk ,(4.57)

FB` :=
∑
k∈Z

�

R
B`
rk

ψk(·, y)ψ̃kf(y) dµ(y), GB` := L−nFB` ,(4.58)

where the convergence of the series is in L2(X).

Lemma 4.5. (a) For any ` ≥ 1 the series in (4.58) converges in L2 and
hence FB` ∈ L2 is well defined. Furthermore, GB` is well defined.

(b) There exists a constant c] > 0 such that for every ` ≥ 1,

‖FB`‖∞ ≤ c]2
r, ‖LmGB`‖∞ ≤ c]2

rρ
2(n−m)
` for m = 0, 1, . . . , n,(4.59)

suppFB` ⊂ 7B`, suppLmGB` ⊂ 7B` for m = 0, . . . , n.(4.60)

(c) For any k ∈ Z

(4.61) Erk =
⋃
`≥1

RB`rk and RB`rk ∩R
Bm
rk = ∅ if ` 6= m.
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(d) We have

(4.62) Fr =
∑
B∈Br

FB (convergence in L2).

To prove this lemma we need some preparation.

Lemma 4.6. For an arbitrary measurable set S ⊂ X let

Sk := {x ∈ X : dist(x, S) < 2τ2−k}
and

(4.63) FS :=
∑
k≥κ0

�

Erk∩Sk

ψk(·, y)ψ̃kf(y) dµ(y)

for some κ0 ≥ −∞, where the convergence is in L2(X). Then FS is well
defined, FS ∈ L2(X)∩L∞(X), and ‖FS‖∞ ≤ c2r, where c > 0 is a constant
independent of S and κ0.

Proof. From (4.26) it follows that FS(x) = 0 if dist(x, S) ≥ 3τ2−κ0 or
x ∈ X \Ωr.

Let x ∈ S ∩ X̃. Clearly, B(x, τ2−k) ⊂ Sk for every k, and hence�

Erk∩B(x,τ2−k)

ψk(x, y)ψ̃kf(y) dµ(y) =
�

Erk

ψk(x, y)ψ̃kf(y) dµ(y).

Therefore, FS = Fr,κ0,∞ on S (see (4.23)). On account of Lemma 4.2 the
series in (4.63) converges in L2(S), FS ∈ L2(S) ∩ L∞(S), and ‖FS‖L∞(S) =
‖Fr,κ0,∞‖∞ ≤ c2r.

We now consider FS on X \ S. Let x ∈ (S` \ S`+1) ∩ Yr for some ` ≥ κ0,
where the set Yr ⊂ X̃ is from Lemma 4.2. Then B(x, τ2−k) ⊂ Sk whenever
κ0 ≤ k ≤ `− 1, and B(x, τ2−k) ∩ Sk = ∅ if k ≥ `+ 2. Therefore,

FS(x) =

`−1∑
k=κ0

�

Erk

ψk(x, y)ψ̃kf(y) dµ(y) +

`+1∑
k=`

�

Erk∩Sk

ψk(x, y)ψ̃kf(y) dµ(y)

= Fr,κ0,`−1(x) +

`+1∑
k=`

�

Erk∩Sk

ψk(x, y)ψ̃kf(y) dµ(y),

where we have used the notation from (4.23). By Lemma 4.2 and (4.27) it
follows that |FS(x)| ≤ c2r.

We finally consider the case when 2τ2−κ0 ≤ dist(x, S) < 3τ2−κ0 and

x ∈ X̃. Then we have FS(x) =
	
Erκ0∩Sκ0

ψκ0(x, y)ψ̃κ0f(y) dµ(y), and the

estimate |FS(x)| ≤ c2r is immediate from (4.27).
Hence, FS(x) is well defined for x ∈ (X \S)∩Yr and ‖FS‖L∞(X\S) ≤ c2r.

Furthermore, since FS(x) = 0 for x ∈ X \Ωr and |Ωr| <∞, it follows that
the series in (4.63) converges in L2(X \ S).
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Proof of Lemma 4.5. By Lemma 4.4 we have Ωr =
⋃
`∈NB`, and then

(4.61) is immediate from (4.56) and (4.57).

Fix ` ≥ 1. Observe that by Lemma 4.4, B` ⊂ {x : dist(x,Ωc
r) < 2ρ`},

and hence EB`rk := ∅ if 2τ2−k ≥ 2ρ`. Define k0 := min{k : τ2−k < ρ`}. Hence
ρ`/2 ≤ τ2−k0 < ρ`. Consequently,

(4.64) FB` =
∑
k≥k0

�

R
B`
rk

ψk(·, y)ψ̃kf(y) dµ(y),

where the convergence is in L2 and will be validated later on.

Using (4.4) we get suppFB` ⊂ B(ξ`, (7/2)ρ`) = 7B`, which confirms the
left-hand inclusion in (4.60).

With ` ≥ 1 being fixed, we let {Bj : j ∈ J } denote the set of all balls
Bj = B(ξj , ρj/2) such that j > ` and

B(ξj , 3ρj/4) ∩B(ξ`, 3ρ`/4) 6= ∅.

By Lemma 4.4 it follows that #J ≤ K and 7−1ρ` ≤ ρj ≤ ρ` for j ∈ J .
Define

(4.65) k1 := min
{
k : 2τ2−k < 4−1 min{ρj : j ∈ J ∪ {`}}

}
.

From this definition and τ2−k0 < ρ` we obtain

(4.66)
2τ2−k1 ≥ 8−1 min

{
ρj : j ∈ J ∪ {`}

}
> 8−2ρ` > 8−2τ2−k0 ⇒ k1 ≤ k0 + 7.

Clearly, from (4.65),

(4.67) B(ξj , ρj/2 + 2τ2−k) ⊂ B(ξj , 3ρj/4), ∀k ≥ k1, ∀j ∈ J ∪ {`}.

Denote S :=
⋃
j∈J Bj and S̃ :=

⋃
j∈J Bj ∪ B` = S ∪ B`. As in Lemma 4.6

we set

Sk := {x ∈ X : dist(x, S) < 2τ2−k}, S̃k := {x ∈ X : dist(x, S̃) < 2τ2−k}.

It readily follows from the definition of k1 in (4.65) and (4.57) that

(4.68) RB`rk := EB`rk \
⋃
ν>`

EBνrk = (Erk ∩ S̃k) \ (Erk ∩ Sk) for k ≥ k1.

Set

FS :=
∑
k≥k1

�

Erk∩Sk

ψk(·, y)ψ̃kf(y) dµ(y),(4.69)

FS̃ :=
∑
k≥k1

�

Erk∩S̃k

ψk(·, y)ψ̃kf(y) dµ(y).(4.70)

By Lemma 4.6 it follows that the series in (4.69)–(4.70) converge in L2, and
hence FS and FS̃ are well defined. Also, just as in the proof of Lemma 4.2,
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using (4.68) one shows that the series in (4.64) converges in L2, and hence
FB` is well defined as well. Now, from (4.68) and the fact that S ⊂ S̃ we get

FB` = FS̃ − FS +
∑

k0≤k<k1

�

R
B`
rk

ψk(·, y)ψ̃kf(y) dµ(y).

Applying Lemma 4.6 to the functions FS and FS̃ from (4.69)–(4.70) we
deduce ‖FS‖∞ ≤ c2r and ‖FS̃‖∞ ≤ c2

r. On the other hand, from (4.66) we
have k1−k0 ≤ 7. We use the above and also estimate each of the (at most 7)
integrals above using (4.27) to conclude that ‖FB`‖∞ ≤ c2r as claimed.

By (4.58) we have GB` := L−nFB` . We next show that for any 0 ≤ m < n

the function LmGB` is well defined and ‖LmGB`‖∞ ≤ c2rρ
2(n−m)
` , which is

the right-hand estimate in (4.59). By the definition

LmGB` = L−(n−m)FB`(4.71)

=
∑
k≥k0

�

R
B`
rk

[L−(n−m)ψ(2−k
√
L)](·, y)ψ̃(2−k

√
L)f(y) dµ(y),

where we have used the equality

L−ν [ψ(2−k
√
L)(x, y)] = [L−νψ(2−k

√
L)](x, y)

for a.a. x, y ∈ X and ν = 1, . . . , n, which is a consequence of Lemma 2.4.
To justify the convergence in (4.71) we let g(λ) := λ−2(n−m)ψ(λ). Then

L−(n−m)ψ(2−k
√
L) = 2−2k(n−m)g(2−k

√
L).

From (4.5) we have supp[L−(n−m)ψ(2−k
√
L)](x, ·) ⊂ B(x, τ2−k), and by

Theorem 2.3 we get

|[L−(n−m)ψ(2−k
√
L)](x, y)| ≤ c2−2k(n−m)|B(x, 2−k)|−1, ∀x, y ∈ X̃.

On the other hand, by (4.27),

|ψ̃(2−k
√
L)f(y)| ≤ c2r for y ∈ RB`rk ∩ X̃ ⊂ Erk ∩ X̃.

Putting the above together we deduce that for almost all x ∈ X,∣∣∣ �

R
B`
rk

[L−(n−m)ψ(2−k
√
L)](x, y)ψ̃(2−k

√
L)f(y) dµ(y)

∣∣∣
≤ c2r2−2k(n−m)

�

B(x,τ2−k)

|B(x, 2−k)|−1 dµ(y) ≤ c2r2−2k(n−m),

where we have used the fact that B|(x, τ2−k)| ≤ c0τ
2|B(x, 2−k)| by (1.2).

Hence,

‖LmGB`‖∞ ≤ c2
r
∑
k≥k0

2−2k(n−m) ≤ c2r2−2k0(n−m) ≤ c2rρ2(n−m)
`

as claimed (see the right-hand inequality of (4.59)).
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Just as for FB` , from (4.5) and (4.71) it follows that suppGB` ⊂ 7B`.
Furthermore, from the above it also follows that the series in (4.71) converges
in L∞(7B`), and hence in L2. Therefore, GB` is well defined. This completes
the proof of Lemma 4.5.

We are now in a position to complete the proof of Theorem 1.4. For every
ball B ∈ Br, r ∈ Z, provided Ωr 6= ∅, we define B? := 7B,

aB := c]
−1|B?|−1/p2−rFB, bB := c]

−1|B?|−1/p2−rGB,

and λB := c]|B?|1/p2r, where c] > 0 is the constant from (4.59). By (4.60)
we have supp aB ⊂ B? and suppLmbB ⊂ B?, m = 0, . . . , n, and by (4.59),

‖aB‖∞ ≤ c]−1|B?|−1/p2−r‖FB‖∞ ≤ |B?|−1/p.
From (4.58) it follows that LnbB = aB, and assuming that B = B(ξ`, ρ`/2)
we obtain, using (4.59),

‖LmbB‖∞ ≤ c]−1|B?|−1/p2−r‖LmGB‖∞
≤ ρ2(n−m)

` |B?|−1/p ≤ r2(n−m)
B? |B?|−1/p.

Therefore, each aB is an atom for Hp.
We set Br := ∅ if Ωr = ∅. Now, from the above, (4.45), and Lemma 4.5

we infer that

f =
∑
r∈Z

Fr =
∑
r∈Z

∑
B∈Br

FB =
∑
r∈Z

∑
B∈Br

λBaB,

where the convergence is in L2, and∑
r∈Z

∑
B∈Br

|λB|p ≤ c
∑
r∈Z

2pr
∑
B∈Br

|B| = c
∑
r∈Z

2pr|Ωr| ≤ c‖f‖pHp ,

which is the claimed atomic decomposition of f ∈ Hp. Above we have used
(4.19) and the fact that |B?| = |7B| ≤ c07d|B|.

4.2. Proof of the embedding Hp
A ⊂ Hp in the noncompact case.

We next show that if f ∈ Hp
A, then f ∈ Hp and ‖f‖Hp ≤ c‖f‖Hp

A
. To this

end we need the following

Lemma 4.7. For any atom a and 0 < p ≤ 1, we have

(4.72) ‖a‖Hp ≤ c <∞.
Proof. Let a(x) be an atom in the sense of Definition 1.2 and suppose

supp a ⊂ B, B = B(z, r), and a = Lnb for some b ∈ D(Ln), supp b ⊂ B,
and ‖b‖∞ ≤ r2n|B|−1/p.

Let ϕ ∈ C∞0 (R) be real-valued and even with suppϕ ⊂ [−1, 1], ϕ(0) = 1,
and ϕ(ν)(0) = 0 for ν ≥ 1. By Theorem 2.3 applied with G(λ) = ϕ(λ) and
G(λ) = λ2nϕ(λ), it follows that ϕ(t

√
L) and Lnϕ(t

√
L) are kernel opera-

tors with kernels satisfying the following inequalities for any σ > 0 and all
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x, y ∈ X̃:

|ϕ(t
√
L)(x, y)| ≤ cσ|B(x, t)|−1(1 + t−1ρ(x, y))−σ,(4.73)

|[Lnϕ(t
√
L)](x, y)| ≤ cσt−2n|B(x, t)|−1(1 + t−1ρ(x, y))−σ.(4.74)

We choose σ so that σ > d/p+ 2d.
We need to estimate |ϕ(t

√
L)a(x)|. Observe first that using (2.2) we have

|ϕ(t
√
L)a(x)| ≤

�

X

|a(y)|
|B(x, t)|(1 + t−1ρ(x, y))σ

dµ(y)(4.75)

≤ c|B|−1/p, x ∈ 2B ∩ X̃.

To estimate |ϕ(t
√
L)a(x)| for x ∈ X̃ \ 2B we consider two cases:

Case 1: 0 < t ≤ r. Let x ∈ X̃ \ 2B and y ∈ B. From (1.2) and (2.1) it
readily follows that

|B| ≤ c0
(
r

t

)d
|B(z, t)| ≤ c20

(
r

t

)d(
1 +

ρ(x, z)

t

)d
|B(x, t)|

≤ c20
(

1 +
ρ(x, z)

t

)2d

|B(x, t)|,

where we have used ρ(x, z) ≥ r. Combining this with (4.73) and the obvious
inequality ρ(x, z) ≤ ρ(x, y) + ρ(y, z) ≤ 2ρ(x, y) we obtain

|ϕ(t
√
L)(x, y)| ≤ cσ|B(x, t)|−1(1 + t−1ρ(x, y))−σ

≤ c|B|−1(1 + t−1ρ(x, z))−σ+2d.

In turn, this leads to

|ϕ(t
√
L)a(x)| =

∣∣∣ �
B

ϕ(t
√
L)(x, y)a(y) dµ(y)

∣∣∣
≤ c|B|−1−1/p

(1 + t−1ρ(x, z))σ−2d

�

B

1 dµ(y) =
c|B|−1/p

(1 + t−1ρ(x, z))σ−2d
.

From this and (4.75) we infer

‖ϕ(t
√
L)a‖pLp = ‖ϕ(t

√
L)a‖pLp(2B) + ‖ϕ(t

√
L)a‖pLp(X\2B)(4.76)

≤ c
�

2B

|B|−1 dµ(x) + c
�

X

|B|−1 dµ(x)

(1 + t−1ρ(x, z))(σ−2d)p

≤ c′ + c|B|−1|B(z, t)| ≤ c.
Here we have used (σ − 2d)p > d and (2.2).

Case 2: t > r. Let x ∈ X̃ \ 2B and y ∈ B. Using (2.1) we obtain

|B| = |B(z, r)| ≤ |B(z, t)| ≤ c0(1 + ρ(x, z)/t)d|B(x, t)|
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and as before ρ(x, z) ≤ 2ρ(x, y). These coupled with (4.74) lead to

|[Lnϕ(t
√
L)](x, y)| ≤ c(r/t)2n|B|−1(1 + t−1ρ(x, z))−σ+d.

This and ‖b‖∞ ≤ r2n|B|−1/p imply

|ϕ(t
√
L)a(x)| =

∣∣∣ �
B

Lnϕ(t
√
L)(x, y)b(y) dµ(y)

∣∣∣
≤ c(r/t)2n|B|−1−1/p

(1 + t−1ρ(x, z))σ−2d

�

B

1 dµ(y) =
c(r/t)2n|B|−1/p

(1 + t−1ρ(x, z))σ−2d
.

We use this and (4.75) to obtain

‖ϕ(t
√
L)a‖pLp = ‖ϕ(t

√
L)a‖pLp(2B) + ‖ϕ(t

√
L)a‖pLp(X\2B)

≤ c
�

2B

|B|−1 dµ(x) + c
�

X

(r/t)2np|B|−1 dµ(x)

(1 + t−1ρ(x, z))(σ−2d)p

≤ c′ + c(r/t)2np|B|−1|B(z, t)| ≤ c′ + cc0(r/t)
2np(t/r)d

= c′ + cc0(r/t)
2np−d ≤ c.

Here we have used the fact that |B(z, t)| ≤ c0(t/r)
d|B(z, r)| by (1.2) and

that n ≥ d/(2p). In light of Theorem 3.7 the above and (4.76) yield (4.72).

We are now prepared to complete the proof of the embedding Hp
A ⊂ Hp.

Assume that f ∈ Hp
A (see Definition 1.3). Then there exist atoms {ak}k≥1

and coefficients {λk}k≥1 such that f =
∑

k λkak (convergence in L2) and∑
k |λk|p ≤ 2‖f‖pHpA .

Let ϕ ∈ S(R) be real-valued and even, and ϕ(0) = 1. Then in light of
Proposition 2.5,

ϕ(t
√
L)f(x) =

∞∑
k=1

λkϕ(t
√
L)ak(x), x ∈ X, t > 0,

and hence

sup
t>0
|ϕ(t
√
L)f(x)| ≤

∞∑
k=1

|λk| sup
t>0
|ϕ(t
√
L)ak(x)|,

which is the same as M(f ;ϕ)(x) ≤
∑∞

k=1 |λk|M(ak;ϕ)(x). Therefore, for
0 < p ≤ 1,

‖M(f ;ϕ)‖pLp ≤
∞∑
k=1

|λk|p‖M(ak;ϕ)‖pLp ≤ c
∞∑
k=1

|λk|p ≤ c‖f‖pHpA .

On account of Theorem 3.7 this implies ‖f‖Hp ≤ c‖f‖Hp
A

.
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4.3. Proof of Theorem 1.4 in the compact case. We proceed quite
similarly to the noncompact case. Therefore, we shall only indicate the mod-
ifications that need to be made.

To prove the embedding Hp ⊂ Hp
A assume f ∈ Hp, 0 < p ≤ 1. Let

ϕ ∈ S(R) be just as in the proof in the noncompact case. Instead of (4.17)
we use (4.16) to represent f , that is,

(4.77) f = ϕjϕ̃jf +
∞∑

k=j+1

ψkψ̃kf =: f0 + f1 (convergence in L2),

where j is the maximal integer such that B(x0, 2
−j) = X, and ϕj , ϕ̃j , ψk

and ψ̃k are as in (4.3). For the decomposition of f1 we just repeat the proof
from §4.1. On the other hand, as in (4.7) we have |ϕjϕ̃jf(x)| ≤ cMN (f)(y)

for all x, y ∈ X̃, and hence

‖ϕjϕ̃jf‖∞ ≤ c|X|−1/p‖MN (f)(y)‖Lp ≤ c∗|X|−1/p‖f‖Hp .

We define the outstanding atom A (see (1.4)) by A := c−1∗ ‖f‖−1Hpϕjϕ̃jf and

set λA := c∗‖f‖Hp . Clearly, ‖A‖∞ ≤ |B|−1/p and λAA = ϕjϕ̃jf = f0. Thus
we arrive at the claimed atomic decomposition of f .

The proof of the embedding Hp
A ⊂ Hp runs in the footsteps of the proof

in the noncompact case from §4.2. We only have to show in addition the
estimate ‖A‖Hp ≤ c <∞ for any outstanding atom A as in (1.4). But, this
estimate follows readily from estimate (4.75) applied to A.

5. Appendix

Proof of Lemma 4.4. Choose {B(ξj , ρ(ξj)/5)}j∈N to be a maximal dis-
joint subcollection of {B(x, ρ(x)/5)}x∈Ω, whose existence follows by Zorn’s
lemma. Then (b) is obvious.

We now establish (a). Assume to the contrary that there exists x ∈ Ω
such that x 6∈

⋃
j∈NB(ξj , ρj/2). From the construction of {B(ξ, ρj/5)}j∈N it

follows that B(x, ρ(x)/5) ∩B(ξ, ρj/5) 6= ∅ for some j ∈ N. We claim that

(5.1) ρ(ξj) > (2/3)ρ(x).

Indeed, assume that ρ(ξj) ≤ (2/3)ρ(x). Then

ρ(x, ξj) < (1/5)(ρ(ξj) + ρ(x)) ≤ (1/3)ρ(x).

Therefore, B(ξj , ρj) ⊂ B(x, ρ(x, ξj) + ρ(ξj)) ⊂ B(x, ρ(x)), where the first
inclusion is strict. This implies B(ξj , (1 + η)ρj) ⊂ B(x, ρ(x)) ⊂ Ω for some
η > 0. But from the definition of ρj it follows that B(ξj , (1 +η)ρj)∩Ωc 6= ∅.
This is a contradiction, which proves (5.1). From (5.1) we infer

ρ(x, ξj) < (1/5)(ρ(ξj) + ρ(x)) ≤ (1/5)(1 + 3/2)ρ(ξj) = (1/2)ρ(ξj),

which verifies (a).
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To prove (c) assume B(ξj , 3ρj/4) ∩ B(ξν , 3ρν/4) 6= ∅ for some j, ν ∈ N.
We shall show that ρj ≤ 7ρν . We proceed as above. Assume that ρj > 7ρν .
Then ρ(ξj , ξν) ≤ (3/4)(ρj + ρν) ≤ (6/7)ρj yielding

B(ξν , ρν) ⊂ B(ξj , ρ(ξj , ξν) + ρν) ⊂ B(ξj , (6/7)ρj + (1/7)ρj) = B(ξj , ρj),

where the first inclusion is strict. As above this leads to a contradiction,
which shows that ρj ≤ 7ρν .

To prove (d), assume that the balls B(ξνm , 3ρνm/4), m = 1, . . . ,K, in-
tersect B(ξj , 3ρj/4). Then from the above, ρj ≤ 7ρνm , m = 1, . . . ,K. Using
this, (2.1) and (1.2) we get

|B(ξj , 8ρj)| ≤ c0
(

1 +
ρ(ξj , ξνm)

8ρj

)d
|B(ξνm , 8ρj)|

≤ c20
(

1 +
ρ(ξj , ξνm)

8ρj

)d
40d|B(ξj , ρνm/5)|.

However, by (c), ρ(ξj , ξνm) ≤ (3/4)(ρj + ρνm) ≤ 6ρj . Therefore,

|B(ξj , 8ρj)| ≤ c2070d|B(ξj , ρνm/5)|,
and summing up we obtain

(5.2) K|B(ξj , 8ρj)| ≤ 70dc20

K∑
m=1

|B(ξj , ρνm/5)|.

On the other hand, by (b) the balls B(ξνm , ρνm/5), m = 1, . . . ,K, are dis-
joint, and as each ball B(ξνm , 3ρνm/4) intersects B(ξj , 3ρj/4) and ρνm ≤ 7ρj ,
we have

B(ξνm , ρνm/5) ⊂ B(ξj , 3ρj/4 + (3/4 + 1/5)ρνm) ⊂ B(ξj , 8ρj).

Consequently,
∑K

m=1 |B(ξνm , ρνm/5)| ≤ |B(ξj , 8ρj)|. This coupled with (5.2)
yields K ≤ 70dc20.
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