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Hardy spaces associated with
non-negative self-adjoint operators

by

SHAI DEKEL (Herzelia), GERARD KERKYACHARIAN (Paris),
GEORGE KYRIAZIS (Nicosia) and PENCHO PETRUSHEV (Columbia, SC)

Abstract. The maximal and atomic Hardy spaces H? and H%, 0 < p < 1, are
considered in the setting of a doubling metric measure space in the presence of a non-
negative self-adjoint operator whose heat kernel has Gaussian localization. It is shown
that H? = H% with equivalent norms.

1. Introduction. The purpose of this article is to establish the equiv-
alence of the maximal and atomic Hardy spaces HP and HY, 0 < p < 1, in
the general setting of a metric measure space with the doubling property
and in the presence of a non-negative self-adjoint operator L whose heat
kernel has Gaussian localization. We next describe our setting in detail:

I. We assume that (X, p, pt) is a metric measure space such that (X, p)
is a locally compact metric space with distance p(-,-) and u is a positive
Radon measure. We also stipulate the volume doubling condition:

(1.1) 0 < p(B(z,2r)) < cou(B(z,r)) < oo forall z € X and r > 0,

where B(z,r) is the open ball centered at x of radius r and ¢y > 1 is a
constant. It follows that

(1.2) w(B(x, Ar)) < coMp(B(z, 7)) forz € X, r >0, and X > 1,
where d = logy cg > 0 is a constant playing the role of dimension.

II. The main assumptions are:
(H1) L is a non-negative self-adjoint operator on L?(X,du), mapping real-

valued to real-valued functions.
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(H2) The semigroup P; = e*£, t > 0, associated with L consists of integral
operators with (heat) kernel p;(z, y) having a Gaussian upper bound,
that is, pi(x,y) is a measurable function on X x X and there exists a

set X C X, independent of ¢, with (X \ X) = 0 such that
C* exp{—c*p?(x,y)/t}
(B2, V) (B(y, V))]'/?

Above, C*, ¢* > 0 are structural constants.

Vm,ye)?, vt > 0.

(1.3)  Ipelz, )] <

The definitions of the maximal and atomic Hardy spaces in the setting
described above will be based on L?(X) and will follow in the footsteps of
[5), 6, [4].

DEeFINITION 1.1. The mazimal Hardy space HP, 0 < p < 1, in the general
setting described above is defined as the completion of the set of all functions
f € L*(X) such that

)
1 llze = [sup e E 7 ()| < oc.
>0 Lr

Just as in the classical case on R", non-tangential, tangential, and grand
maximal operators will be introduced and the equivalence of || f| gr with
quasi-norms defined by the respective maximal operators will be established.

We consider two versions of atomic Hardy spaces in the current setting,
depending on whether pu(X) = oo or pu(X) < oc.

Atomic Hardy spaces in the case p(X) = oo

DEFINITION 1.2. Let 0 < p < 1 and n := |d/2p| + 1, where d is from
the doubling property ([1.2)). A function a is called an atom associated with
the operator L if there exists a function b € D(L") and a ball B of radius
r =rpg > 0 such that

(i) a= L™,
(ii) supp L¥b € B, k=0,1,...,n, and
(iif) [|LFDoo < r2=R|B|7VP £k =0,1,...,n

DEerFINITION 1.3. The atomic Hardy space Hz, 0 < p <1, is defined
as follows. We say that f = 2j21 Ajaj; is an atomic representation of f if
{A\j}j>1 € allay, j =1,2,..., are atoms, and the series converges in L2,
We denote by HY, the space of all functions f € L?(X) that have atomic
representations with norm defined by

\fHngszPM(ZM L rem,

Now, H flv 0 < p <1, is defined as the completion of Hi with respect to the
above norm.
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Atomic Hardy spaces in the case p(X) < oo. In this case we use
the atoms from Definition [1.2] with the addition of one more kind of atoms,
say A € L*>(X), with the property

(1.4) 1Al < |X|71/P.

Then the atomic Hardy space H fp 0 < p <1, is defined just as in the case
u(X) = oo above.

We now come to the main result in this article.

THEOREM 1.4. In the setting of this paper, we have HP = HY, 0 < p < 1,
and

(15) 1l ~ 1 f e for £ € HP.

This result has been obtained in [I1] in the setting of R™ in the presence
of a non-negative self-adjoint operator L with heat kernel having Gaussian
localization. The proof in [II] heavily relies on the geometry of R" and is
based on a technique due to A. Calderén [1].

To prove Theorem [[.4) we devise a new approach that is different from the
one in [I, TT] as well as the classical proof that uses the Calderén—Zygmund
decomposition.

Characterizations of atomic Hardy spaces via square functions and their
molecular decompositions are obtained in [5] for H', in [4] for H?, 0 < p < 1,
and in [6] for Orlicz—Hardy spaces, in somewhat different settings. We shall
not elaborate on these kind of results here.

This paper is organized as follows. In §2| we assemble the necessary back-
ground material from [2] [7]. In §3| we introduce the maximal Hardy spaces
and establish their characterization via several maximal operators. In §4]
we prove our main result: the equivalence of maximal and atomic Hardy
spaces. Section [o|is an appendix where we place the proofs of some ancillary
assertions from previous sections.

Notation. For an arbitrary set £ C X and € X we shall denote
dist(z, F) := infyep p(z,y), B := X \ E, |E| := u(E), and F is the closure
of F. We shall abbreviate “almost all” by “a.a.” and sup will stand for
ess sup. The notation ¢B(z, ) := B(x, cd) will be used. The class of Schwartz
functions on R will be denoted by S(R). As usual, C§°(R) will stand for the
class of all compactly supported C* functions on R. Positive constants will
be denoted by ¢, c1, ¢, ... and they may vary at every occurrence. Most
of them will depend on the basic structural constants ¢y, C*, ¢* from ((1.1)—
. Usually, this dependence will not be indicated explicitly. The notation

a ~ b will mean ¢; < a/b < co.
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2. Background. Our development of Hardy spaces will rely on some
basic facts and results from [2], [7], which we review next.

2.1. Inequalities related to the geometry of the underlying
space. To compare the volumes of balls with different centers z,y € X
and the same radius r we shall use the inequality

(2.1) |B(z,7)| < co(l—}—p(x,y)/r)d|B(y,r)\, z,y € X, r>0.

As B(z,r) C B(y, p(y,x) +r) the above inequality is immediate from ([1.2)).
The following simple inequalities will also be needed [7, Lemma 2.1]: for
o>dandt >0,

(22) J(+ 1 pla ) " duly) < B, 1), w € X,
X

2.2. Functional calculus. Observe that as L is a non-negative self-
adjoint operator that maps real-valued to real-valued functions, for any
real-valued, measurable and bounded function G on Ry the operator G(L)
defined by

[e.e]
G(L) := | G(\)dE},
0
with Fy, A > 0, being the spectral resolution associated with L, is bounded
on L?, self-adjoint, and maps real-valued functions to real-valued functions.
The following Davies—Gaffney estimate follows from our basic assump-
tions I-1I (see [3], [7]):

(2.3) [(Pefu, fo)l < exp{—=c*r?/t}| fullz]l foll2, >0,

for all open sets U; C X and f; € L?(X) with supp f; C Uj, j = 1,2, where
r:= p(U1,Us) and ¢* > 0 is the constant from ([L.3).

In turn, the Davies—Gaffney estimate implies (see [3]) the finite speed
propagation property, which will play a crucial role in our theory:

1
2/c*’
for all open sets U; C X, f; € L*(X), suppf; C Uj, j = 1,2, where
ri= p(U1,Us).
The finite speed propagation property leads to the following localization
result for the kernels of operators of the form G(tv/L) whenever G is band
limited. Here G(€) := { G(z)e "¢ da.

(2.4) (cos(tVL)f1, f2) =0, O0<ét<r, é:=

PROPOSITION 2.1. Let G be even, supp G C [—A, A] for some A > 0,
and G € W for some m > d, i.e. ||G™)||;1 < oo. Then for anyt >0 and
zr,y € X,

(2.5) GUVL)(z,y) =0 if p(z,y) > ctA.
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This assertion follows from [B, proof of Lemma 3.5].

The next proposition is another important ingredient in establishing our
basic localization result for the kernels of operators of the form o(v/L) for
smooth functions .

PROPOSITION 2.2. Let G be a bounded measurable function on Ry with
suppG C [0,7] for some 7 > 0. Then G(\/f) 1s an integral operator with
kernel G(vV/L)(x,y) satisfying

& [Glloo
(IB(z, 7= |B(y, 7~ 1)[)*/*’

where X C X with w(X\ )A(:) =0 is from 1’ and ¢, > 0 depends only on
the constants co, C*, c¢* from (1.1)), (1.3)).

Proof. This result is essentially contained in [2, Theorem 3.7]. We next
present the argument in order to show that it is independent of the additional
assumptions in [2].

Under the above hypothesis, clearly G(vL) = e L[e2°LG(\/L)]e 'L
for all ¢ > 0, and

12 EG(VD) g2z < sup [V G| < 271Gl
A€[0,7]

On the other hand, by || it readily follows that for x € X ,
c S dp(y)
Bz, t)] 3 1By, )1+t~ p(,y))>*

where we have used (2.1)—(2.2]).

Now, applying [2, Proposition 2.9] we conclude that G(v/L) is an integral
operator with kernel G(v/L)(z,y) satisfying

GV (,9)| < e, )|2lle* PGV asalle (- y)ll2
< ce® 7’| G| B(z, )| 7/?|B(y, )|~/

(2.6) IGVL)(a,y)| < Va,y € X,

le " E (2, )22 < < ¢|[B(a, )Y,

for all z,y € X and t > 0. Therefore, choosing t = 771 we arrive at 1) "

Just as in [T, proof of Theorem 3.4], Propositions and yield the
following important localization result:

THEOREM 2.3. Suppose G € C™(R), m > d+ 1, G is real-valued and
even, and

GO < Ap(T4+ X" for A >0 and 0 < v < m, where r > m +d.
Then G(t\/L) is an integral operator with kernel G(tv/L)(x,y) satisfying
IGAVL) (2, y)| < cAm|B(z,t)| 711+t p(a,y)) ™2, vt > 0,Vz,y € X,
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where ¢ > 0 is a constant depending only on r,m and the structural constants
co, C*, c*.

The action of an operator on the kernel of another operator is clarified
by

LEMMA 2.4. Let the functions F' and G satisfy the hypotheses of The-

orem with m > 3d/2 + 1. Let H be a real-valued measurable function
on Ry such that

(2.7) F(A\) = HA)G(\)  for almost all X € Ry.

Then F(VL) and G(VL) are self-adjoint bounded operators on L, and
H(VL) is a self-adjoint operator (defined densely in X) such that for al-
most all x € X, G(VL)(z,-) € D(H(\V'L)), and for almost all x € X,

(2.8) F(VL)(z,y) = HVL)[GWL)(x,)](y) for a.a yeX.
Above, D(H(\/L)) stands for the domain of H(v/L), and F(v/L)(z,y) and
G(VL)(z,y) are the kernels of the operators F(\/L) and G(\/L).

Proof. We shall use the abbreviated notation F' := F(v/L), G := G(/L),
and H := H(VL), and F(z,y) := F(VL)(z,y) and G(z,y) := G(VL)(z,v)
for the kernels of the operators F' and G.

Observe that from that fact that the functions F', G, and H are real-
valued and measurable it follows that (see e.g. [9]) the operators F', G, and H
are self-adjoint. As F' and G satisfy the hypotheses of Theorem where
m > 3d/2 + 1, we have F(z,y) = F(y,z) and G(z,y) = G(y,z) for a.a.
x,y € X, and using (2.2) we get

sup | |F(z,y)|du(y) < oo, sup | |G(z,y)duly) < co.
reX reX
Hence, the operators F' and G are bounded on L?(X). Moreover, by Theo-
rem and (2.2) it follows that
(2.9) 1F (2, )3 = | [F(x,9)] duly) < ¢[Bx, )]}, Vo e X.
X

We claim that
(2.10) G(z,-) e D(H*)=D(H) foraa zeX.

To prove this we first observe that as is well known [9], f € D(H*) if
V()W) W) duty)| < clgllz, Vg € D(H),
X

for some constant ¢ > 0, where D(H ) is a dense subspace of D(H). By (2.7)
it follows that Fig = (GH )g for all ¢ € D(H), and hence for every g € D(H),

211) | F(x,9)g(y) duly) = | G(z,y)(Hg)(y) du(y) for a.a. z € X.
X X
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By Assumption I it readily follows that for any fixed zg € X,

2(x) = |J L*(Blwo, )

n>1

and B(zg,n) is compact. Hence L?(B(zg,n)) is separable, implying that
L?(X) is separable.

From the fact that D(H) is dense in L?(X) it follows that there exists an
orthonormal basis {¢;};>1 for L?(X) such that {¢;};>1 C D(H). Indeed,
let {fj}j>1 C L*(X) be dense in L*(X). The fact that D(H) is dense in
L%(X) implies that for any j € N there exists a sequence {g;x}x>1 C D(H)
such that || f; —gjx| L2 < 1/k and hence the countable set {g;i};r>1 C D(H)
is dense in L?(X). Removing linearly dependent elements from {g;i};x>1
and applying Gram—Schmidt orthogonalization leads to the existence of the
claimed orthonormal basis.

Now, by for each j € N there exists a set X; C X such that
u(X \ X;) =0and

(212) | F(z,9)0;(y) duly) = | G(z,y)(Hp))(y) duly), vz € X;.

X X
Let D(H) be the linear subspace of D(H) consisting of all finite linear com-
binations of elements from {;};>1 and write X¢ := (1,5, X; N X. Clearly

u(X \ Xo) = 0. By (2.12),
| F(z,9)9(y) duly) = | G(x,y)(Hg)(y) duly), Vx € Xo, Vg € D(H).
X X
From this and (2.9) we get, for all z € X, and g € D(H),
H(Hg)(y)G(w,y) du(y)‘ <|IF(x,)l2llgll2 < ¢l Bz, 1)]7?lg]2.
X

Since D(H) is a dense subspace of L?(X), the above implies the validity

of (10).
Using the self-adjointness of H, (2.10)), and the fact that G(x,y) is real-
valued we obtain, for every f € D(H) and a.a. x € X,

(GH)f(z) = \ G(z,y)Hf(y)duly) = | Hf (y)G(x,y) du(y)

X X
= | F) H*(G(x,))(y) du(y) = | HIG(x,)]() f(y) du(y).
X X

This and (2.11)) imply F(z,-) = H[G(z,-)](-) almost everywhere for almost
all x € X, as claimed. =

We shall frequently use the following basic convergence results.
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PROPOSITION 2.5. Let ¢ € S(R) be real-valued and even, and p(0) = 1.
Then for every f € L*(X),

(2.13) f= }iH(l) o(tVL)f  (convergence in L?).
—

Furthermore, if f, f; € L*(X),j=1,2,..., and fi = fin L?, then for any
t >0,

(2.14) PVL)f (@) = lim (VL) fj(x),  vo e X,

Proof. Identity is immediate from spectral L2-theory [13].

To prove we note that from Theorem it follows that op(tv/L) is
an integral operator with kernel ¢(tv/L)(z,y) such that for any o > 0 there
exists a constant ¢, > 0 such that

(215)  [e(tVI)(w,y)| < col Bz, 1) (14 plw,y))7,  Va,y € X.
Identity (2.14) is immediate from (2.15)) and (2.2)). =

3. Hardy spaces via maximal operators. In this section we intro-
duce several maximal operators and establish the equivalence of the norm
| flzz» on the maximal Hardy spaces HP, 0 < p < 1, with the respective
norms defined by maximal operators. As in the classical case on R", the
grand maximal operator will play an important role.

3.1. Maximal operators and definition of HP

DEFINITION 3.1. A function ¢ € S(R) is called admissible if ¢ is real-
valued and even. We introduce the following norms on admissible functions
in S(R):

(3.1) Nu(p) :i=sup (1 +u)Y max |™(u)], N >0.
u>0 0<m<N
Observe that in the above we only need the values ¢(u) for u > 0.
Therefore, the condition “p is even” can be replaced by ¢(2¥ “)(O) =0 for
v =0,1,..., which implies that the even extension of ¢ from R, to R will
have the required properties.

DEFINITION 3.2. Let ¢ be an admissible function in S(R). For any func-
tion f € L?(X) we define

M(f;¢)(z) = igg\@(t\/f)f(w)!, Vr € X,

M;(f;@)(x):i=sup  sup  |p(tVI)f(y)l, VreX, a>1,
t>0 yeX, p(z,y)<at

o) s s SV )]
M7 (fa‘p)( ) = t>gy€§ (1 —|—p(:v,y)/t)”

Ve e X, ~v>0.
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Observe that for any f € L?(X),
(32) M(f;9)(z) < My (f;0)(@), Vo € X,
(3.3) M (fi9)(@) < (1+a) M2 (5 0) (@), Vo € X.
We now introduce the grand maximal operator.
DEFINITION 3.3. Denote
Fn = {p € S(R) : ¢ is admissible and Ny(¢) < 1}.
The grand maximal operator is defined by

My (f)(@) = sup Mi(fip)(z), VreX, feL*X)

pEFN
that is,

(3-4) My (f)(z) = sup sup  sup  |p(tVL)f(y)l,

PEFN 120 ye X, p(ay)<t
where N > 0 is sufficiently large (to be specified).
It is readily seen that for any admissible function ¢ and a > 1 one has
(3.5) M;(f;0) < a"Nn(e)Mn(f), Vf e L*(X).

We shall also use the following version of the Hardy-Littlewood maximal
operator:

1/6

39 s =g W) o>

Now, the maximal inequality takes the form (see e.g. [12]): if 0 < 6 < p,
then

(3.7) [Mofllr < cllflle,  VF € LP(X).

In the following we exhibit some important relations between the maxi-
mal operators. We begin with a simple estimate showing that MJ*(f;¢)(z)
is finite almost everywhere for f € L?.

PROPOSITION 3.4. Let ¢ € S(R) be admissible and v > 2d. Then for
any f € L*(X),

(3.8) MY (f;0)(@) < eMi(f)(z), Vo€ X,
where My is from (3.6)), and hence MJ*(f;¢)(z) < oo for almost all x € X.

Proof. By Theorem it follows that ¢(tv/L) is an integral operator
with kernel p(tv/L)(z,y) obeying

p(tVL)(w,y)| < e Bla, )| ML+ p(a,9)) 7, VE>0,Va,y € X,
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for an arbitrary o > 0. We choose o := ~. Then from the above, for z € X
and y € X, we have

[ptVDFW)] S £ (=) dp(z)
(4 p(z,y)/t)7 = L (B2, )1+t p(z,9)) (1 + 7 p(z, )7
| £ (2)| dp(z)
3 B )IA+1t""p(z,2))

c S | (2)| du(z)
T B, 1) 3 (M4t p(x, 2)) 1

<c

using the inequality (1 4+t !p(z,y))(1 +t"tp(z,y)) > 1+t !p(z,2) and
(2.1). Further, we have

S [f()ldp(z) | |/ (2)| dp(z)
y 1+ t=1p(x, z))r—¢ 1+t 1p(x,2))7—d

B(z,t)
> z)|du(z
.S S ()l du(2)

| B(z, t2™ 1
<c
Z Ak ‘B(x,tzm), ; Sm)\f(Z)IdM(Z)

md

< M(N@IBG O] Y 52 < M) @Bl 1)
m=0

Here we have used (1.2]) and v > 2d. Putting all of the above together we
obtain |p(tv'L) f(y)|(1 + p(x,y)/t)~" < eMi(f)(z), which implies (3.8)).
In turn by (3.8)) and the maximal inequality it follows that

M (f5@)ll2 < ellMu(f)ll2 < el fll2 < oo,
implying MJ*(f;¢)(z) < oo for almost all z € X =

PROPOSITION 3.5. Let ¢ € S(R) be admissible and p(0) # 0. Assume
f e L*(X).

(a) If 0 <0 <1 and~y > 2d/0, then

(3.9) M (f;0)(x) < eMo(M(f;0))(x)  for a.a. x € X,

where ¢ = ¢(0,7,d, ).
(b) If 0< 8 <1 and N > 6d/0+ 3d/2+ 2, then

(310)  Mu()(@) < eMp(M(f;9))(@)  for aa. 2 € X,
where ¢ = ¢(0,d, ).
For the proof of this proposition (and later) we shall need
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LEMMA 3.6. Suppose ¢ € S(R) is admissible and ¢(0) = 1, and let
N > 0. Then there exist even real-valued functions 1o, € S(R) with
Yo(0) =1, v (0) = 0 forv =0,1,..., N, and such that for any f € L*(X)
and j € Z,

(3.11) f=1v2VL)p@ VL) f
£ @D V) - @ VI,
k=j

where the convergence is in L?.
Furthermore, under the above conditions on @, if supp ¢ C [—1,1], then
the functions 1y and v can be selected so that

supp@,/bg C [-2N,2N],
supp (A" Fp(\)" € [-2N,2N], k=0,1,...,N.

Proof. We borrow the idea of this proof from [10, Theorem 1.6]. Evi-
dently,

(3.12)

A+ (27N — 27N =1, AeR,

00
k=1

and as ¢ € S(R) the series converges absolutely. From the above,

1= ()7 + Yl — o2+ 10)
k=1

It is easy to see that for N > 1 this identity can be written in the form

N
1= 30 (0 ) e - o
m=1
oo N
#3000 (1)l - pla (L pl2 A
k=1m=1
which leads to
(B13) e + v NN - e ) =1
k=1
with N
Yo(A) = Z <Z> 80()\)27”*1(1 _ SO()\)Z)me
m=1
and
Y /N
310 ) =[] Y (1) OV 1=y
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Clearly, 9,1 € S(R), 1,1 are even, 9*)(0) = 0 for v = 0,1,...,N — 2,
and 1(0) = 1.

Identity follows immediately by and spectral theory (see
e.g. [13]).

Finally, by replacing N with N 4 2 in the above proof we get what we
need.

We now prove the right-hand inclusion in for k = N —1. The proof
of the left-hand inclusion is easier and will be omitted. Using we can

write

(3.15)  ATNFLH(N) = [p(N) + p(2N)]
’ me1 N—m
<3 (M5 ey o] [P asen]

m=1
Clearly, supp ¢ C [—1, 1] implies supp@ C [-2,2]. We next show that
(3.16) supp (1_/\80(/\)>/\ C [-1,1].
By Taylor’s theorem and the fact that ¢(0) =1 we get
SD()\l_l =¢'(0) + )\§ (1 —w)¢" (M) du.
0

For the Fourier transform of the above integral we have

(F0 —we" Oy du) "(€) = [§ (01— w)” () due=€ x
0 RO

1

1

=\ —w " Qu)e ™ drdu=|(1- w)g" (¢ /u) %“
0 R 0

= fa -1/ .
1

The above manipulations are easy to justify since ¢ € S(R). Due to the
fact that supp ¢ C [—1, 1] we have suppc;’\’ C [-1,1], and from the above it
follows that supp (Sé(l —u)¢”(Au) du)” C [—1,1]. This implies . From
it follows that

supp <W>A c [-2,2).

Clearly, the Fourier transform of A™V*14()) is represented in terms of the
convolutions of the Fourier transforms of all terms in its representation
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(3.15)), leading to the conclusion that
supp (AN (AN € [-2N +2,2N — 2].
By increasing N as above we arrive at (3.12)). m

Proof of Proposition . (a) We borrow the idea of this proof from [8,
Lemma 3.2]. Assume 0 < 6 < 1 and v > 2d/, and let f € L?(X). We may
assume that ¢(0) = 1 for otherwise we use ¢(0) 'y instead. By Lemma
there exist even real-valued functions ¢g,? € S(R) such that 1y(0) = 1,
™) (0) =0 for v =0,1,...,N, and (3.11) holds for all j € Z.

Fix t > 0 and let 277 < t < 277+, Using (3.11)) and (2.14) we get, for

:UeXandye)N(,

lo(tVL) f(y)] e e(tVL)Yo(277VL)p(27 VL) f (y)|
(1+p(x,y)/t)Y — (1+27p (9679))7
Z\so (VL)Y (2~*VL)[p(27*VL) — o2 VL) f ()]
— (14 27p(z, y))" '

Let w()) := p(t27X)(2=* =9 X). Then w(27vL) = o(tv/L)p(27*VL).
Now, choose N > 3vy+3d/2+42 and set m := [y+d/2+1]. As p, ¢ € S(R)
there exists a constant ¢ > 0 such that for v =0,1,..., N,

(3.17) N <@+, PN <ca+NN, A>0,

yielding
W\ <e(1+A)N, A>0,v=01,...,N.
From this estimate we obtain, for A\ > Z(k_j)/Q,
WP (V)] < e(1 + A)"m Ao (k=) (N —m—d=1)/2

Y

and using the fact that N > 3y + 3d/2 + 2 + 2¢ for some ¢ > 0, it follows
that for v =0,1,..., N,

(3.18) W (V)] < 2 kD) (1 4 yymm—d=1 )\ > 9(k=i)/2,

On the other hand, as ¥*)(0) = 0 for v = 0,1,...,N, we use Taylor’s
formula and (3.17) to obtain [ (N\)| < eAN"Y, A > 0, v = 0,1,...,N.

Hence,

' <ddA> V¢(2—<k—i>A)‘ < 2 RN AN=V < cg=(B=DIN/2 - for 0 < )\ < 2(F=9)/2,

From this estimate and (3.17]) we get
lw® A <2 F=DN2(1 L )N o< a<2)/2 ,—0,1,...,N.
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In turn, this estimate and (3.18) imply that - ) holds for 0 < A < oo.
Now, Theorem |2.3| applied to w(2 iL ) leads to the following estimate on
the kernel of the operator o(tVL)Y(27*VL) (recall that 277 <t < 277F1):

(319)  [lp(tVL)e(2 " VL))(z,y)]

o (k=) (v+e)

S B2+ opm gy Ve
Consequently,
(VD)2 VL) [p2 *VE) — (2 * VL) f(y)]
(1 +27p(x,y))7
_ { OV ()] + e (V) () ] dpl2)

(
S B I 2ty )0 D )

[ 2Dz VD o)+ Lol VD) ()]l
) B(z.279)|(1 + 2ip(z, 2))7

 crrtiepe | LeC@VDIE + VD ()] du)
B 279)](L+ 2Xp(a )
< @ EDDL (£ ) )

(LB VDIE o2 VD) ()] dut)
[B(z,29)[(L+ 2 p(z, )7 |

IN

Cc

Similarly

e(tVD)o(2 VD)2 VD) (y)]
(1+ 2 p(a, y))7

(o (ayi=0 | PCIVD (@) dp(z)
< M (fr ) ()] )S(‘ B T+ Dol

Putting the above estimates together we get

lo(tVL) f (y)
(1+ p(z,y)/t

< M (frp)(a 1922 kneg'B(

\

)v

e(27*VIL)f(2)" du(2)
2,279)|(1 + 20 p(x, 2))70"

At this point we use the fact that MJ*(f;p)(z) < oo for almost all x € X,
established in Proposition [3.4] to conclude that for almost all z € X,

- = pe | @ VD du()
G < 02 [ a3+ e, )

k=j
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Here we have used (2.1) as well. Denote briefly F(z) := @(27%VL)f(2).
Just as in the second half of the proof of Proposition using v > 2d/6
we obtain

S |[F(2)|” dpu(z)
3 1B(@,277)[(1+ 27p(x, 2))0=¢ —

< eMp(F)(z)’.
Therefore, for almost all x € X,

(M3 (f;0)(@)]" < ed 27 F D Mp(p(27 VL) f)(2)’ < eMp(M(f;0)) ()’
k=i
which yields (3.9)).

(b) We shall proceed much as in the proof of (a). Let ¢ € Fn and assume
that ¢ € S(R) is admissible. Choose v > 2d/6 so that N > 3y + 3d/2 + 2.
Then there exists ¢ > 0 such that N > 3v + 3d/2 + 2 4 2¢.

Assume ¢ > 0 and let 277 < ¢t < 277F!, Just as in the proof of (a), by
Lemma [3.6] there exist even real-valued functions 1,9 € S(R) such that
w(”)( )=0forv=0,1,...,N and (3.11) holds for any j € Z. Hence, using

we obtain, for f € L2(X),

[¢(tV'L) f ()] <C|¢(tﬁ)¢o(2‘jf) ©(27VL) f(y)|
(1+p(x,y)/t)Y — (1+29p(z,y))7
Cilé(t\f) 27"VIL)[p(2™"VL) — o271 VIL)| f(y)]
. (L+27p(z,y))7 ’

Just as in (3.19) we have

2~ (k=j)(v+e)
(tVL)P(2 "VIL) (2, y)| < — : :
VDRV (5, 91+ 2ia(e )
where the constant ¢ > 0 is independent of ¢ due to Ny (¢) < 1. Therefore,
as in the proof of (a), for x € X and y € X,

¢tV L) (2 VL) [p(2*VL) — (27 *1V L) f (y)|

(1+29p(z,y))7

S 2= E=D (|27 VL) f(2)] + |2 * VL) ()] dps(2)
X

Vx,yef(,

IN

1B(2,277)|(1 +27p(y, 2))7 (1 + 2 p(x, )"
< 2 IR (f ) ()]

2 * VL) f(2)]° + lp(2 VL) f(2)|°] du(z)
|B(z,2=)|(1 + 27p(z, 2))7? :
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Similarly

|¢)(t\/f)'¢0(2_j \/Z)@(Q_j ﬁ)f(y)|
(1 2o, y)) (2 VD) ()" dp(2)
*k L, - 1 i e
< (M (fr0) ()] 9)5( |B(2,277)[(1+ 27 p(x, 2))7?

Here the constant ¢ > 0 is independent of ¢ since Nn(¢) < 1. As before,
denoting F(z) := ¢(27*/L) f(z) we obtain

S |[F(2)|” dpu(2) <cf |[F(2)|” dpa(2)
3 1Bz, 27)|(1+ 2p(x,2))° = § |B(2,277)|(1+ 27 p(x, 2))0~¢

< eMy(F)(x)’.

Therefore,

|p(tVL) ()]
(1 + p(z,y)/t)

< o[ MY (fr ) (@)

& e VDL i)
R | e ) [(E e

< [ My*(f0) ()] 922 =DMy (o (27 *VI) 1) ()

k=j
< [ MEF(f50) (@) [ Mp(M(f39)) ()]’ Z o—(k—j)e
k=]

< cMp(M(f;90))(),

where for the last estimate we have used the fact that MJ*(f;¢)(z) <
cMy(M(f;¢))(x) for almost all z € X, by (3.9)). Thus for almost all z € X,

!qﬁ(tf) f()l
7
Ry SLOCHES e Sievrers

< eMp(M(f;0))(),

which completes the proof. m
Proposition [3.5] leads to the following

THEOREM 3.7. Let 0 < p < 1. Then for any N > 6d/p + 3d/2 + 2,
v > 2d/p, a > 1, and an admissible ¢ € S(R) with ¢(0) # 0 we have, for
all f € L2(X),
(3.20) [f e ~ IMN )l ~ 1M S5 )l ~ 1M (f50) v
~[IMF(f5 ) Lo
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Here the constants in the equivalences involving ¢ depend not only on the
parameters but on ¢ as well.

Proof. Write ®(\) := e, Apparently @ € S(R), @ is admissible, and
&(0) # 0. Let N > 6d/p + 3d/2 + 2 and choose 0 so that 0 < § < p and
N > 6d/6 + 3d/2 + 2. Then applying Proposition [B.5(b) we obtain, for a
given f € L*(X),

IMN(F)llp < el Mo(M(f; )llp < | M(f;P)lp = cllfllmv,

where we have used the maximal inequality .
In the other direction, using ) and . we get

[ fllze = [[M(f; @)l < HM1 (F;D)lp < ellMn()lp-

Thus the first equivalence in is established.

Just in the same way we get | My (f)|lzr ~ [[M(f;@)| Lr with constants
of equivalence depending in addition on ¢. We choose 6 so that 0 < 6 < p
and v > 2d/# and apply Proposition [3.5(a) and the maximal inequality
as above to obtaln HM**(f ©)|le < c”M(f, ©)||z». All other estimates we

need follow from and .

4. Equivalence of maximal and atomic Hardy spaces. In this
section we present the proof of Theorem We shall first carry out the
proof in the noncompact case and then explain the modifications that need
to be made in the compact case.

4.1. Proof of the embedding H? C HY in the noncompact case.
We show that if f € HP, 0 < p <1, then f € H} and 1z < el f]l e

The decomposition of L2-functions from Lemma will play a central
role in this proof. Let ¢ € S(R) be real-valued and even, ¢(0) = 1, and
with Fourier transform ¢ obeying supp ¢ C [—1,1]. Fix an integer N >
6d/p+3d/2+2 as in Theorem. 3.7l By Lemmamthere exist even real-valued
functions g, ¢ € S(R) with ¢(0) = 1, v (0) =0 for v = 0,1,..., N,

(41) Supp QZ)U - [_2N7 2N]a supp ()\_VT/J()\))A - [_ZN’ 2N]’ V= 07 cee 7N7
such that for any f € L?(X) and j € Z,
(4.2) f= ¢o(2_jf) 27VL)f

+Zw 27"VIL) — (2 "V,

where the convergence is in L?.
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Write ¢ := o and 1(\) := ¢(\) — ©(2)). From now on we shall use the
following more compact notation:

(4.3)

or =92V, =@V, Y=V, Gy = g7V,
Clearly, these are integral operators whose kernels will be denoted by
(Pk;(x, y)v @k($’y)a ¢k(337y), and 7/%(%3/) Observe that since 2 ()55 1/}5 and QIZ)
are real-valued, we have ¢y (y,z) = pi(z,y) for all z,y € X, and similarly
for the others. .

Also, ¢, @,19,% € S(R), ¢, p,1,1 are even, and from supp @ C [—1,1]
and (4.1)) it follows by the final speed propagation property (Proposition
that there exists a constant 7 > 1 such that
(44) supp @k(mv ')7 sSupp @k(x7 ')7 supp wk(% .)7 supp ’J}k(xa ) C B(xa T2_k)7
and
(4.5) supp[L V(27 *VL)](z,-) € B(x,727%), v =0,1,...,N.

By Proposition (1.2), and (2.1)) it follows that for any = € X,

(4.6) lon(z, ), [&r(@, y)l, [bwle, )], [dn(z,9)| < ¢| Bz, 279) 71, vy € X.

We shall utilize the following assertion involving the grand maximal
operator My, defined in (3.4): Let ¢ € S(R) be admissible and assume
Nn(¢) < c. Then for any f € L*(X), k € Z, and = € X,

47 62"V ()] < eMn(f)(x) Yy € X with p(z,y) < 2727F,

where 7 > 1 is the constant from (4.4)—(4.5)). This claim follows readily from
B2) and (33).

We next establish an estimate of a similar nature for the operators de-
fined by

J
(4.8) Qo= trhp, —00<Ll<j<o0.
k=t

LEMMA 4.1. For any f € L*(X) and z € X,

(4.9) Qe f(W)| < eMy(f)(z)  for all y € X with p(x,y) < 27277
Furthermore,
(4.10) Qui F@)| < M (f - 1para)(@), Vi€ X,
where My is the Hardy—Littlewood mazimal operator defined in (3.6)), and
c > 0 is a constant independent of f, 0, j.

Proof. Let K := j — £ and set Q(\) := S 0 (28 \)h(2FN). Tt is readily
seen that Qy; = Q(279V/L). Clearly, @ is even and Q € S(R). We next show
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that
(4.11) My(Q) < ¢ < o0,

where the constant ¢ > 0 is independent of 2, j.

Set ¢(A) := ¥(A)p(N). Evidently, ¢ € S(R), ¢ is real-valued and even,
and ¢ (0) =0, » =0,1,...,N. We claim that for any ¢ > 0 there exists a
constant ¢ > 0 depending on o, N, and ¢ such that

i<
T (L AT
Indeed, by Taylor’s theorem

(4.12) g™ AMeR,v=0,1,...,N.

( )( ) )\NJrl v i N—l—l)( )

g\’ (A 1-— u A)du, 0<v<N,
(N+1-0)! 5

and hence

(4.13) g V)] < ellg™ [l AV

On the other hand, since ¢ € S(R) we have

4.14 TGN || ———

(1.14) 10 < e

By considering two cases: |A| < 1 and |A| > 1, estimates (4.13)—(4.14)) imply
(4.12). From (4.12)) we get
0 |2k: )\|N —v+1

) A
QY (V)] < Ckzzo (1+[2FA[)o+N"

To estimate the above sum we choose 0 = N and consider two cases.

CASE 1: |A| < 1. Assume 271 < |A\] < 27™. Then from the above,
2(k m)(N—v+1)

’Q(V)()\NS Z(1+2k ma+N—CZ2(k m)(N—v+1) —|—C Z 9- (k— ma

k=0 k=m+1
implying [Q™)(A)| < e < d(1+ AN
CASE 2: |A| > 1. We have

1 c
QVNI= X G magT = T Y 25 25 < (5
In both cases we have
(4.15) QW) <c(1+ M) forv=0,1,...,N,
which confirms (see (3.1). In turn, just as in , estimate
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yields
QE2VL)f(y)| < eMn(f)(z)  for ally € X with p(z,y) < 27277,

which verifies @ .
To prove (4.10) we note that by (4.15) and Theorem it follows that
Qyj is an integral operator with kernel Q;(x,y) satisfying

Qej(a, )| < el B, 279)[7 (1 + 27 p(a, ) N ey e X

Now, just as in the proof of Proposition this implies (4.10)), on taking
into account that N —3d/2 — 1> d and (4.4). =

From (4.2)) it follows that for any f € L*(X),

(4.16) f=9ioif + Zwk"&kf (convergence in L?),
k>j

which readily implies

(4.17) f= Z Vitnf (convergence in L?).
keZ
Let f € HPNL? 0<p<1,and f # 0. We define
(4.18) 2 ={xe X  Mn(f)(x)>2"}, rel.

Clearly, £2,41 C §2, and X = J,¢z 2. The latter identity follows by the
inequality My (f)(xz) > 0 for all z € X due to f # 0. Also, {2, is open
because My (f)(x) is lower semicontinuous. From the definition of {2, in

(4.18]) it readily follows that

S 2712, = S22 ST 2N Q| = 312\ 2| S 27

rez reZ v>r VEZ r<v
<o) 22\ 2ul<6Y | My(H)(@)dux)
VEZL vEZ 2,\2y4+1
= ¢ | Mu(f)(@)? dp(z).
X
Hence,
(4.19) > 2|02, < e | My (F)(@)? dpx) < el 1150,
reZ X
implying
(4.20) 20| < 27| fllgn, T EZ.
Assume (2, # () and write
(4.21)

Eup = {z € Q, : dist(z, 25) > 2727 })\{z € 2,41 : dist(z, 25,,) > 2727}
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We define

(4.22) Fro=> | wuCo)ef(y)duly), rez,

and in general

(4.23)  Frpoum, = Z | ok dnf (v) duly),  —o0 < ko < k1 < o0,
k=ko Erg

where the convergence is in L2. As will be shown in Lemma below, the
functions F,. and F; ., ., are well defined and F;., F ), € L?>N L>.

Clearly, for every x € {2, there exists s, € Z such that E,, N B(z,727%)
= () for k < sy,. This coupled with implies

| on, ) def () duly) =0, Yk < s, Vo € 12,
Erk

and hence for every K € Z and all z € {2, N X ,

K K
24) >\ )bt @) du) = D | ez ) (v) du(y),
k=—o0 E k=srz Ex

i.e. the sum above is finite.
Observe that the fact that supp ¢y (x,:) C B(z,727%) (see (4.4)) leads

to the following conclusions:

(i) If B(z,727%) C E,4 for some x € E,; N X, then
(4.25) V on@defduy) = | dnl,m)def (y) du(y)

ETk B((E,T27k)

= | i, ) f (y) du(y).
X
(ii) We have
(4.26) supp( | vnC )t () dﬂ(y)) C {x : dist(z, Ey) < 7277}

Erk
On the other hand, clearly B(y, 2727k )N (2 \ 2r41) # 0 for each y € Ery,

and Ny (¥) < c. Hence (see (4 ) [ f(y)] < 2" for y € Ep N X, and
using (4.6) we get

(4.27) H Unly) S 9) duty)|| <2’ VB C By

Similarly,
(4.28) |Vertenf@ auw)| <e2. vEC Ep.
E

o0
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Two more estimates will be needed: for any measurable set E C F,,

(4.29) [ orla, s ) duy)| < eMi(f - 10,) (@), Vo€ X,
E

(430)  |{ @@l W) duly)| S M (S 1o)(@). Vo€ X,
E

where M is the Hardy—Littlewood maximal operator (see (3.6)), and the
constant ¢ is independent of f, F,r, k, x. These two estimates follow readily

by (L)L)

We record some of the main properties of F,. and F} ., ., in the following

LEMMA 4.2. (a) The series in (4.22) and (4.23)) (if k1 = 00) converge in

L?, and hence the functions F, and Fy 1o, are well defined.
(b) There exists a constant ¢ > 0 such that for any r € Z and integers
—00 < Kp < K1 < 00,

(4.31) | Frlloo < €27 and ||Fr g lloo < 2"

Moreover, there exists a set Y, C X such that p(X \'Y;) = 0 and for every
r ey,
(4.32)  |Fr(2)] < eMi(f-1.)(2) < 00, [Frpgm (2)] < cMi(f-1g,)(x) < oo

Here My is the Hardy—Littlewood mazximal operator, defined in (3.6)).
(c) Also,

(4.33) Fo(x) =Frppm () =0, VzeX\ 2, Vrel
(d) We have
(4.34) E4NEw=0 ifr#r and X =|])Ew VkeZ
reZ

Proof. Identities are obvious, and follows readily from the
definitions of F., I . ., and .

Fix r € Z and assume 2,1 # 0; the case when 2,1 = () is easier and
will be omitted. We shall prove parts (a) and (b) of the lemma only for F};
the proof for F, ., x, is similar and will be omitted. We split the proof of
(a)—(b) into two cases.

CASE 1: Estimates for F, and L?*-convergence in @I} on (24+1. We
next show that F.(z) is well defined pointwise by @ on 2,41 N X, and
the left estimates in df:nl)f 4.32) hold on (2,11 NX. In fact, it will be shown
that the sum in M is finite for every x € 2,41 N X. Set

Uy = {z € 0, : dist(z, 2°) > 2727k},
Vi i=A{x € 2,4 dist(x, 27, 1) > 272_k}.
Then Ey, = Uy \ Vi, (see (4.21))).

(4.35)



Hardy spaces associated with operators 39

From (4.26)) it follows that
Fo(x)=0 forze X\ | J{y:dist(y, B) < 727"}
keZ
We next estimate |F,(x)| for
T € [U {y : dist(y, Erg) < 72”“}} N2 NX.
kEZ

For any such z there exist v, ¢ € Z such that

(4.36) z € U1 \Up) N (Vi1 \ V3.

As Q2,41 C 2, we have V;, C Uy, implying (Upp1 \Up) N (Vo1 \ Vo) = 0
if v < £. We consider two subcases depending on whether v > £ + 3 or
(<v<{+2.

(a) Let v > £ 4 3. We claim that (4.21]) and (4.36]) yield
(4.37) Bz, 727 ")NE,=0 fork>v+420rk<fl—1.

Indeed, if £ > v + 2, then E,; C §2, \ V,42, which implies (4.37)), while if
k <{¢—1, then E.; C Uy_1, again implying (4.37]).
We also claim that

(4.38) Bz, 727" C Ey forl+2<k<v-—1.
Indeed, if / +2 < k < v —1, then
Uer1 \U) 0 (Vura \ Vo) C (U1 \Ug) N (Vg1 \ Vi 1) C Ug—1 \ Viey1,

which implies (4.38]).
From (4.25)—(4.26)) and (4.37)—(4.38) it follows that

v+1 £+1
Fi(a) =3 | wnley)duf ) duty) = 32 | dula, )i f () dnly)
k=t ETk k=l E},
v+1 ~
Z Ve, ) W) duly) + Y | i, ) def (v) duy)-
k=0+2 X k=v—1 By
However, using the notation from ,
v—2
> k@) fy Z Ukt f (@) = Qeyo.—2f ().
k=0+2 X k=6+2

Since dist(x, 2, \ 2,41) < 272- =2 and B(z,272-+2) c 02, it follows by
Lemmagtha’c ‘Q[+2V 2f( )] <c2r and |Qg+2,, of ()| < eMi(f-1g,.)(x).

We use the above, (4.28), and ([{£.29)-(4.30) to obtain |F,(z)| < ¢2"

and |F,(z)] < CMl(f : ﬂrzr)( )
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(b) Let £ <v < ¢+ 2. We have

v+1 +3
Fr(x) =Y | en@)def @) duly) =D | vele, v)def (y) duly).
k=l E,j k=t B,

We use and to estimate each of these four integrals and obtain
again |F.(z)| < 2" and |F,(z)| < cMi(f - 1o, )(x).

The sum in is finite for every = € (2,41 N X and using the fact
that [|Fy||peo(o,, ) < 2" and p(£241) < oo (see ) it follows that the

series in (4.22)) converges in L?(§2,41).

CASE 2: Estimates for F, and L?-convergence in (4.22)) on 2.\ £2,41. The
following two estimates will play an important réle: for any K € Z,

(39) | S | o)) duy )| <er

(o)
et ETk Lo2(2\211)

and

(4.40) ‘Z U@, ) f(y) d ()‘

k=—00 E,p ~
< eMy(f - 1o, )(z), Yz € (20 \ 2vp1) N X,

where ¢ > 0 is a constant independent of r and K. Write

K K
Sc@) = 3 | vnlay)iif @) du) = S | vula. )0t @) duly).
k=—o00 B, k=srz Erg
Clearly,
(4.41) e\ 241 = U(Uﬁ-i-l \Ue) N (820 \ $2r41).
LeZ

Let 2 € (£2:\ 2,41)NX. Then z € (Upy \ Up) N (12, \ £2,41) for some £ € Z.
Just as in the proof of (4.37) we have B(z, 727 %) N E. =0 for k < ¢ —1,
and as in the proof of (4.38]) we have

(Ug+1\Ug>ﬂ(QT\QT+1) C kal\vk+1 for k ZE—FQ,

which implies B(x,727%) C E,; for k> ¢+ 2.
Assume that K > ¢+ 1. We use the above and (|4.25)—(4.26) to obtain
K
Si(x) =" | vz, ) f(y) du(y)
k={ E,
0+1 K

=3V ()@ dpy) + Y (e, v) e f () duy).

k={ B, k=0+2 X
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For the last sum we have

K K
> V(@) f @) duly) = Y bt f(2) = Quyak f ().
k=0+2 X k=0+2

The representation of SK( ) for K < 6 —|— 1is similar Now, Lemma

(-27)-(@.28), and (@-29)-(@.30) yield {@.39) and

We next prove the convergence of the series in the definition of F) in

(4.22) in L?(W;), where

(4.42) Wy = Upa \Up) N (82, \ 2y11), (LELZ.
From the above we know that for all k > ¢+ 2 and x € W, N X we have
V nz, 0)dnf () duly) = § ve(@, ) Pef () dply) = e f ().

X

Thereg:e for every K > { + 2,
H;{EM DS )|, = Hk;(mkf\ v
< sz;{ ¢k¢kf‘ L(x)

and hence from the convergence in (4.16)) or (4.17) it follows that

(4.43) lim HZ v () duly)|

K—oo

=0, WeZ.
L2(Wy)
We are now prepared to prove the convergence in L?(2,.\ £2,11) of the series
in the definition of F} in (4.22), which is the same as the convergence of { Sk }
in L2($2,\ 2,41). From (4.41) and (4.42)) it follows that £2,\ 2,411 = Urez We
and observe that the sets {W;} are disjoint. Hence

2\ Q| = 3 W,
LeZ
Fix ¢ > 0. From (4.20) we know that |{2.] < oo, and hence there exists
M € Z such that

(2 \ 2ee) \Unt| + 12\ 2e) UM = Y (Wil <e.
[¢|=M

From this and (4.39) it follows that

(4.44)  1Skll2io0 2 \va TISK  E2jon 20y < €272, VK € Z.
Clearly,

M
2 \ i1 = U WU [(Qr \ QrJrl) \ UM] U [(QT \ Qv"Jrl) N U—M]'
l=—M
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This, (4.43), and (4.44) imply the convergence of the series in (4.22)) in
L?(§2,\§2,11). To see this, one simply shows that || Sk, =Sk, || 12(0.\2,.,1) =0
as Kl, KQ — OQ.

Since the series in (4.22)) converges in L2(£2,\ £211), it follows that (see
g. [9, Theorem 3.12]) there exists a sequence K; < K3 < --- such that

K;

Fo(x)=1lim > | gu(@,y)duf(y)duly) foraa ze 2\ 21

j—ro0
k=—00 E,|

This coupled with (4.39) and (4.40]) yields
[ FrllLoe(2\02,10) S 2" and  [Fr(2)] < eMi(f-1o,)(7)a.e. on 2, \ 2,41.
The proof of Lemma is complete. u

For convenience, we define F, := 0 whenever (2, =0, r € Z.
Observe that from 1) it follows that, for z € X,

Uktrf (@) = \ Vel )0 f W) dp(y) =D | erz, v)def (v) duly),
X

rez Er‘k

and using (4.17) and the definition of F;. in (4.22)) we obtain f =) ., F,

We next present the needed justification for this identity.
LEMMA 4.3. We have

(4.45) f= Z F.  (convergence in L?).
reZ

Proof. We first show that

(4.46) Hf—z Z | enCoo)dufv)d ()HL2—>0 as R, K — oo.

—Rk=—K E,
Note that (4.17)) implies

(4.47) Hf— K § k)t () dtw)]| |, =0 as K = oo,

-KX

From it follows that
(448) | (et @) duy) = 30§ vela )b f(v) duly), @€ X.

X reZ E

Further, using and ( we get

| § wtmdntw) d“(wHLz(X) < 22 < | fIy 2P/,

rk
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and hence
(4.4
0 || X | wtwbd@dt|,,
r<— RErk
<l il o 20 <l fIp2 PP 20 as R .
r<—R
On the other hand, denoting
(4.50) Uiy 1= {x € 2y + dist(z, 25,) > 2727} = | | B
r>m

and using 4.474.6 we obtain, for x € )Z',
’Z (@, y) e f (y) duly ‘—’ V(. y) o f (y) d ()‘
r>m E,,.k mk

< ¢|B(z,27%)[7! | [fW)lduy) < eMi(f - 1g,,)(@).

UpniNB(z,m27F)

Here M is the Hardy—Littlewood maximal operator (see (3.6])), and we have
used the fact that |B(z, 727%)| < co7¢|B(x,27%)|, applying (1.2)). Therefore,

@s51) || § enle )b @) dut) |, < M- 10,02

r>m E.p
<cllflle2w, ) < cllflliz,) =0  asm — oo,

where we have used the maximal inequality (3.7 and the fact that |£2,,| — 0

as m — oo. Clearly, , , and yield
R
| ont)des@ anw)= 3" | et ) dutw)]| , +0  as R .
X T

=—RE

This coupled with (4.47) implies (4.46]).

Our second step is to show that

(4.52)
ISR-3 3 | wtanidam], >0 w K-
reZ r=—Rk=—K E,}

We first use (4.20)), (4.31)), and (4.33]) to obtain
<D NF<e Y 2
r<—R

r<—R

< c||f||§3/3 S 2w/ < )| f|E227ROP) 0 as R — oo,
r<—R

(4.53) H
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We next estimate || )
for any m € Z we have )
any m € Z,

(4.54) ‘ 3 Fr(x)‘ < eMy(f-10,)(z) for aa. z € Q.
r>m
To prove this, just as in (4.50) we let
Uy := {z € 0, : dist(z, 2°) > 2727%}.
Set Y := mrEZ Y,, where the sets Y, are from Lemma Clearly Y C X
and u(X \Y)=0.
Let v € £2,,NY. Then x € ({2, \ £2,41) NY for some r > m. By (4.33)

it follows that
Y Fu(z)= > Fy(x)

r'>m
Clearly, x € (Urpq1 \ Upe) N (82, \ £2,41) for some ¢ € Z. Also, from the
definition of E,; in 1} we have U, = Uer E,r. In light of |’ this

implies

Fy||p2. Observe that by (4.33) it follows that
F.(z) =0 for z € X \ £2,,,. We claim that for

r>m

r>m

l

Y Fu@) =F@)+ > | vl y)dnf ) du).

k=—0c0 Up

From (4.32)) we have |F,.(z)| < cMi(f - 1p,,)(x), and just as in the proof of
Lemma 2] one shows that

\Z U,y () duly)| < M (f - 1, (@)

k=—0c0 Uk
Putting the above together we obtain (4.54)). In turn, (4.54) and the maximal
inequality (3.7) imply

(4.55) HZ

where we have used the fact that |£2,,| — 0 as m — oo.
As was shown in Lemma the series in the definition of F) in (4.22))

converges in L2, and hence for any r € Z,
K ~

‘ Z S U y) Uk f(y) al,u(y)HL2 —0 as K — oo.

k=—00 E,,«k

This, (4.53)), and (4.55)) imply (4.52)). In turn, (4.46) and (4.52)) yield (4.45). =

We next break each function F, into atoms. To this end we need a
Whitney type cover for f2,.

2 S | Mi(f - Lo, )2 < cllfllrz2a,,) =0 asm — oo,
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LEMMA 4.4. Assume that {2 is an open subset of X, {2 # X, and denote
p(x) := dist(z, 2°). Then there exist a constant K > 0 (K = 70%c3 will do)

and a sequence {&;}jen of points in £2 with the following properties, where
p; = dist(&;, £29):

(2) 2 = Ujen B 03/2).

(b) {B(&,p;/5)} are disjoint.

(c) If B(&5,3p;/4) N B(&,,3p,/4) # 0, then T p, < p; < Tpy.

(d) For every j € N there are at most K balls B(&,,3p,/4) intersecting
B(&;,3p;i/4)-

Variants of this lemma are well known and frequently used. To prove
it one selects {B(&j,p(&;)/5)}jen to be a maximal disjoint subcollection
of {B(z, p(x)/5)}zes, and then properties (a)-(d) follow readily (see [12|
pp. 15-16]. For completeness we give the proof in the appendix.

We apply Lemma [4.4] to each set 2, # (). Fix 7 € Z and assume 2, # 0.
Denote by B; := B(§;,p;/2), j = 1,2,..., the balls given by Lemma
applied to 2., with the additional assumption that these balls are ordered
so that p; > po > ---. We shall adhere to the notation of Lemma We
shall also use the more compact notation B, := {B;}cn for the set of balls
covering 2.

For each ball B € B, and k € Z we define

(4.56)  EB :=FEgn{zeX :dist(z,B) <2r27%} if BNE,#0

and set EZ =0 if BN E,, = (.
We also define, for £ =1,2,...,

(4.57) R .= ED U EB
v>L
(4.58) Fg,:=> | en()ef(y)duly), G, =L "Fp,
keZ RBz

rk

where the convergence of the series is in L?(X).

LEMMA 4.5. (a) For any ¢ > 1 the series in (4.58)) converges in L? and
hence Fp, € L? is well defined. Furthermore, G, is well defined.

(b) There exists a constant c; > 0 such that for every £ > 1,
(459)  [Flleo <2, LG lloc < 270" ™ form=0,1,...,m,
(4.60) suppFp, C 7By, suppL™Gp, CTB; form=0,...,n.

(¢c) For any k € Z

(4.61) Ep=|JRE and REINROM =0 if t#m.
>1
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(d) We have
(4.62) F, = Z Fp  (convergence in L?).
BeB;
To prove this lemma we need some preparation.
LEMMA 4.6. For an arbitrary measurable set S C X let
Sp = {r € X : dist(z, S) < 2r27%}
and
(4.63) Fs:=> | el 0)dnf(y) duly)
k>ko ErpNSk
for some ko > —o0, where the convergence is in L*(X). Then Fs is well
defined, Fs € L*(X)NL*>®(X), and || Fs||co < €27, where ¢ > 0 is a constant
independent of S and k.
Proof. From (4.26) it follows that Fg(z) = 0 if dist(z,S) > 3727 or
re X\ 2.
Let 2 € SN X. Clearly, B(z,727%) C S, for every k, and hence

| oo )0l ) duly) = § e, ) f () duly).
E.xNB(z,m27k) Eri

Therefore, Fg = Fj ;500 0n S (see (4.23])). On account of Lemma the
series in (4.63) converges in L*(S), Fs € L*(S) N L>(S), and ||Fs|| 005y =
[[Frro,00]l00 < €27

We now consider Fg on X \ S. Let z € (S;\ Se41) NY, for some £ > ko,
where the set Y, C X is from Lemma Then B(z,727%) C S}, whenever
ko <k <f—1,and B(x,727%)N Sy = 0 if & > ¢ + 2. Therefore,

/—1 /41
Fs(x) =Y | e p)def@dpw)+d | tnlzy)def () du(y)
hmro B k={ E,,NSk
/41 ~
Frnpe1(@)+> | wela, v)dnf(y) du(y),
k=t E, ., NSk

where we have used the notation from . By Lemma and it
follows that |Fg(x)| < 2.

We finally consider the case when 272750 < dist(z,S) < 37270 and
z € X. Then we have Fg(z) = SEMOQSRO Yo (T, )i f(y) di(y), and the
estimate |Fg(z)| < ¢2" is immediate from (4.27).

Hence, Fs(x) is well defined for x € (X \ S)NY, and || Fs|| g (x\5) < 2.
Furthermore, since Fg(z) = 0 for z € X \ £2, and |2,| < oo, it follows that
the series in (4.63)) converges in L2(X \ S). m
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Proof of Lemma |4.5 By Lemma 4.4 we have (2, = By, and then
leN

(4.61) is immediate from (4.56)) and (4.57]).
Fix ¢ > 1. Observe that by Lemma By C {z : dist(z, £25) < 2pe},

and hence Eﬁ‘ := ) if 2727F > 2p,. Define ko := min{k : 727% < p,;}. Hence
pe/2 < 127%0 < p,. Consequently,

(4.64) Fp, =Y | ol m)dnf (v) duy),

k>ko pBe
rk

where the convergence is in L? and will be validated later on.
Using (4.4]) we get supp F, C B(&, (7/2)ps) = 7By, which confirms the

left-hand inclusion in (4.60)).
With £ > 1 being fixed, we let {B; : j € J} denote the set of all balls
B; = B(&j,p;/2) such that j > ¢ and

B(&;,3p;/4) N B(&, 3pe/4) # 0.

By Lemma it follows that #J < K and 7 tp, < p; < py for j € J.
Define

(4.65) ki :=min{k : 227" <47 min{p; : j € TU{(}}}.
From this definition and 72750 < p, we obtain

(4.66)
2r27F > 8 min{p; 1 j € TU{}} > 87%p, > 87272780 = by < ko +7.

Clearly, from (4.65)),
(4.67)  B(&j,pj/2+2127%) € B(€;,3p;/4), Yk > ki, Vi€ T UL}

Denote S := (J,c 7 Bj and S = Ujes Bj U By = SUBy. As in Lemma
we set

Sp:={x € X :dist(z,S) < 2r27%}, Sy :={z € X : dist(z, S) < 2r27F}.
It readily follows from the definition of k; in (4.65) and (4.57) that
(468) Ry =EN\|JEY =(EwxnS)\ (EwnSk) for k> k.

v>0

Set

(4.69) Fs:=Y | w(9)dnf)duly),
k>k1 E.p NSk

(4.70) Foi=Y | ln)dnf(y) du(y).

k2k1 E,,nSy

By Lemma it follows that the series in (4.69)—(4.70]) converge in L?, and
hence Fg and Fg are well defined. Also, just as in the proof of Lemma



48 S. Dekel et al.

using (4.68) one shows that the series in (4.64) converges in L?, and hence

F'g, is well defined as well. Now, from (4.68)) and the fact that S C .S we get
Fp,=Fs—Fs+ Y | ¢(0)0nf(y) duy).

ko<k<ki RBe

Applying Lemma 4.6/ to the functions Fg and Fg from .
(.6

deduce [|Fsl|oo < CQT and [|Fgllco < ¢2". On the other hand, from
have k1 — ko < 7. We use the above and also estimate each of the (at most 7
integrals above using ) to conclude that ||Fp, | < 2" as c1a1med

By (4.58 - we have GBZ := L™"Fp,. We next show that forany 0 < m <n

the function L™Gp, is well defined and ||L™Gp,||c < 027’,0?(”_7”), which is
the right-hand estimate in (4.59). By the definition

(4.71) L™Gp, = L~ "™ Fp,
= > | L@ VDG y) e VL) f(y) duy),
o
where we have used the equality
L@ VL) (z,y)] = [L7727"VID)](z, y)
fora.a. z,ye Xandv=1,... ,n, Which is a consequence of Lemma,
To justify the convergence in we let g(\) :== A=2("=)g)()\). Then
L=y (2 ’ff) 2 2K g (2RI ).
From we have supp[L~(""™(27F\/L)](x,-) C B(z,727%), and by
Theorem [2.3] we get
L= VD) (@, y) < 27 Bz, 27T, Va,y € X
On the other hand, by ,
W@ VD) f(y)| <2 forye RENX CEgnX.
Putting the above together we deduce that for almost all z € X,

| § Ly VI @)@V f(y) duly)

By

R'rk

< 02r2—2k(n—m) S \B(a:, 2—1@)’—1 d,u(y) < 62r2—2k(n—m)7
B(z,m27F)
where we have used the fact that B|(z,727%)| < cor?|B(x,27)| by (1.2).
Hence,
||LmGBeHoo < 2" Z 2—2k(n—m) < C2r2—2ko(n—m) < C2rp§(n—m)
k>ko
as claimed (see the right-hand inequality of (4.59)).
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Just as for F,, from and it follows that supp G, C 7B,.
Furthermore, from the above it also follows that the series in converges
in L>(7By), and hence in L?. Therefore, G, is well defined. This completes
the proof of Lemma .

We are now in a position to complete the proof of Theorem [I.4] For every
ball B € B,., r € Z, provided {2, # 0, we define B* := 7B,

ap = Cﬁ_llB*|_1/p2_TFB, bg = Cﬁ_1|B*|_1/p2_TGB,
and Ap := c;| B*|'/P2", where ¢; > 0 is the constant from (4.59). By (4.60)
we have suppap C B* and supp L™bp C B*, m =0,...,n, and by (4.59)),
laplloo < e B |7P27"||Fplloo < [BY|7VP.
From (4.58)) it follows that L"bp = ap, and assuming that B = B(&, py/2)
we obtain, using (4.59)),
10500 < ¢ ' B*7VP277 | L™ Gl
< p?("—m)|B*|—1/p < T?B(*n_m)|B*|_1/p.

Therefore, each ag is an atom for HP.
We set B, := 0 if £2, = (). Now, from the above, (4.45]), and Lemma

we infer that
F=Y F=> Y Fg=> > Agas,

reZ reZ BeB, reZ BEB,
where the convergence is in L?, and
YD e <e) 2 Y Bl=c) 2|0 < cllf I
re€Z BeB, reZ BeB, reZ

which is the claimed atomic decomposition of f € HP. Above we have used
(4.19) and the fact that |B*| = |7TB| < co7%B|. =

4.2. Proof of the embedding HY C H? in the noncompact case.
We next show that if f € H}, then f € H? and || f|[g» < c|f|lgz. To this
end we need the following

LEMMA 4.7. For any atom a and 0 < p < 1, we have
(4.72) llal|mr < ¢ < 0.

Proof. Let a(x) be an atom in the sense of Definition and suppose
suppa C B, B = B(z,r), and a = L"b for some b € D(L"), suppb C B,
and ||b||o < 72| B|7V/P,

Let ¢ € C5°(R) be real-valued and even with supp¢ C [—1,1], ¢(0) =1,
and ©*)(0) = 0 for v > 1. By Theorem [2.3] applied with G(\) = () and
G(N\) = A"p(N), it follows that (/L) and L™p(ty/L) are kernel opera-
tors with kernels satisfying the following inequalities for any o > 0 and all
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T,y € )~(:
(4.73) (tVL)(@,y)| < o B, 1) 1+t p(a, ) 7,
(4.74) Lo (VD)) (@, y)| < cot™ | Ba, )] (1 + ¢ pla, )7

We choose o so that o > d/p + 2d.
We need to estimate |p(tv/L)a(z)|. Observe first that using (2.2)) we have

a(y)|
479 VDo) < | e e )

<¢B|I7YP, ze2BNX.

To estimate |o(tv/L)a(z)| for 2 € X \ 2B we consider two cases:

CASE 1: 0 <t <r. Let z € X\ 2B and y € B. From (1.2) and (2.1) it
readily follows that

1B| < c0<r>dB (2,1)] < 2 <Z> (1 + W)d\B(:c,t)\

<1+ p(””t Z)>2d|B(a:,t)|,

where we have used p(z, z) > r. Combining this with (4.73]) and the obvious
inequality p(x, z) < p(z,y) + p(y, 2) < 2p(x,y) we obtain
(VL) (@, y)| < col Bz, )]~ (1 + " pla,y)) ™
< BT+t p(x, )02

In turn, this leads to

(V) r—\ P(tVL) (@, y)aly) du(y)|

C|B’_1/p
1+t tp(z, 2))7 24

c|B|~1-1/p
STz ) 0=

From this and (4.75)) we infer
(76)  letVDall, = eVl o + 1@V, o)

Bl tdu(z
C2§9 1B du(z) + 0)8( i J_1|p(x7l:)()(l—2d)p
<d +¢B|7YB(z,t)] < e
Here we have used (o — 2d)p > d and (2.2).
CASE 2: t > 7. Letz € X \ 2B and y € B. Using we obtain
B = [B(z,7)| < |B(z,t)| < co(1 + p(x,2) /)| B(x, )|
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and as before p(z, z) < 2p(z,y). These coupled with (4.74) lead to
LotV D)) (@, y)| < e(r/t)*"|BI7 (1 + 1 p(a, 2)) "+
This and ||b]|e < 72" B|~Y/P imply

(V) |—] | L6 (tVI) (. 9)b(y) du(y)|

c(r/t)*" | BI 7

C(T/t)Z"\B\ i/
~ (1+ttp(w, 2))e—2d ;Id,u( y) =

We use this and (4.75) to obtain
le@VT)al, = eEVI)all, up + otV Dall o,

- (r/t)>""|B|" dp(x)
02§3 |B|™! du(z) + C)S( 1+t p(z, 2))@—20p

<d+ c(r/t)Q”p\B]_l\B(z,t)] <d+ cco(r/t)Q”p(t/r)d
= + ceo(r/t)?P4 < .

Here we have used the fact that |B(z,t)| < co(t/r)? B(z,7)| by (1.2) and
that n > d/(2p). In light of Theorem [3.7] the above and (4.76]) yield (4.72). =

1+t p(z,2))72¢
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We are now prepared to complete the proof of the embedding H Z C H?.
Assume that f € HY (see Definition [1.3]). Then there exist atoms {aj}x>1

and coefficients {\}x>1 such that f = 3", A\gay (convergence in L?) and

S Pl < 201,

Let ¢ € S(R) be real-valued and even, and ¢(0) = 1. Then in light of

Proposition
o(tV'L) f( watfak( ), zeX, t>0,

and hence

sup [(tVL) f ()] < Z\Aklsup\w (tVL)ag(z)],

t>0

which is the same as M(f;¢)(z) < > 72, [Ak|M(ak; ¢)(z). Therefore, for

0<p<l,

IM(f: )7 < Z\MP’HM(% ©)lLe < CZP\MP < ell £l

k=1 k=1
On account of Theorem (3.7 this implies || f[|z» < c[|f]| gz =
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4.3. Proof of Theorem [1.4]|in the compact case. We proceed quite
similarly to the noncompact case. Therefore, we shall only indicate the mod-
ifications that need to be made.

To prove the embedding HP C Hf‘ assume f € HP, 0 < p < 1. Let
¢ € S(R) be just as in the proof in the noncompact case. Instead of

we use (4.16|) to represent f, that is,

o0
(477)  f=¢i@if+ > Yelrf=tfo+fi (convergence in L?),
k=j+1
where j is the maximal integer such that B(z¢,277) = X, and ¢;, $j, ¥
and 1 are as in 1' For the decomposition of f; we just repeat the proof

from On the other hand, as in (4.7)) we have |¢;@;f(x)] < cMn(f)(y)
for all x,y € X, and hence

i @) flloe < Al XITVPIMN(F)W)lr < e X7V fll 1.
We define the outstanding atom A (see ) by A= c | fllgre;@;f and
set A := c|| f|lmr. Clearly, ||[Allco < |B|71/? and Ay A = ;4 f = fo. Thus
we arrive at the claimed atomic decomposition of f.

The proof of the embedding HY C H? runs in the footsteps of the proof
in the noncompact case from §4.21 We only have to show in addition the
estimate ||A||g» < ¢ < oo for any outstanding atom A as in (L.4)). But, this
estimate follows readily from estimate applied to A. =

5. Appendix

Proof of Lemma . Choose {B(&j,p(£;)/5)}jen to be a maximal dis-
joint subcollection of {B(z, p(x)/5) }zen, whose existence follows by Zorn’s

lemma. Then (b) is obvious.

We now establish (a). Assume to the contrary that there exists z € 2
such that @ & ;e B(&;, pj/2). From the construction of { B(&, p;/5)}jen it
follows that B(xz, p(z)/5) N B(E, p;j/5) # 0 for some j € N. We claim that

(5.1) p(&5) > (2/3)p(x).
Indeed, assume that p(§;) < (2/3)p(x). Then
p(x, &) < (1/5)(p(&;) + p(x)) < (1/3)p(x).

Therefore, B(&j,pj) C B(x, p(x,&;) + p(&)) C B(x, p(x)), where the first
inclusion is strict. This implies B(&;, (1 +n)p;) C B(z, p(z)) C 2 for some
n > 0. But from the definition of p; it follows that B(&;, (1+n)p;) N 2¢ # 0.
This is a contradiction, which proves . From we infer

p(@,&5) < (1/5)(p(&) + p(x)) < (1/5)(1+ 3/2)p(&;) = (1/2)p(&;),

which verifies (a).
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To prove (c) assume B(&;,3p;/4) N B(&,,3p,/4) # 0 for some j,v € N.
We shall show that p; < 7p,. We proceed as above. Assume that p; > 7p,.
Then p(&;,&) < (3/4)(pj + pv) < (6/7)p; yielding

B(fy, pl/) c B(&ja p(€j7 51/) + pu) - B(§j7 (6/7)pj + (1/7)pj) = B(§j7 pj)’
where the first inclusion is strict. As above this leads to a contradiction,
which shows that p; < 7p,.

To prove (d), assume that the balls B(&,,,,3p,,,/4), m =1,..., K, in-
tersect B(§J, 3p]/4) Then from the above, p; < 7p,,., m=1,..., K. Using

this, and (| we get

B, 89,)| < 00(1 1 6o
J

p(gjagum) d d .

8,0J> 40 |B(£J7p1/m/5)|.

However, by (c), p(&;,&u,) < (3/4)(pj + pu,,) < 6p;. Therefore,

|B(&.805)| < G701 B pu, /5)],
and summing up we obtain

d
) B(&, . 8p5)

<1+

(5.2) K|B(&;,8p;)| < 7043 Z |B(&), pun /5)]-

On the other hand, by (b) the balls B(§,,m,p,,m/5), m=1,..., K, are dis-
joint, and as each ball B(&,,,, 3py,,/4) intersects B(&;,3p;/4) and p,,, < Tpj,
we have

B(&u,ns P /D) C B(&5,3p5/4+ (3/44+1/5)pu,.) C B(&;,8pj).

Consequently, S5 |B(€,.., pu.,. /5)| < |B(&,8p;)|- This coupled with (5.2)
yields K < 70%2. =
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