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Abstract We present a construction of anisotropic multiresolution and anisotropic
wavelet frames based on multilevel ellipsoid covers (dilations) of R

n. The wavelets
we construct are C∞ functions, can have any prescribed number of vanishing mo-
ments and fast decay with respect to the anisotropic quasi-distance induced by the
cover. The dual wavelets are also C∞, with the same number of vanishing moments,
but with only mild decay with respect to the quasi-distance. An alternative construc-
tion yields a meshless frame whose elements do not have vanishing moments, but do
have fast anisotropic decay.
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1 Introduction

Anisotropic phenomena appear in various contexts in mathematical analysis and its
applications. The formation of shocks results in jump discontinuities of solutions of
hyperbolic conservation laws across lower dimensional manifolds and sharp edges
often separate areas of little detail in digital images, to name just two examples. The
central objective of this paper is to describe a sufficiently flexible framework for
adaptive representations that can efficiently capture anisotropic features of functions
e.g. singularities along curves and lower dimensional smooth manifolds.

Anisotropic function spaces on R
n were extensively studied, beginning with the

Russian school in the 1960s (see [27, Chap. 5] for a survey and references therein,
specifically Bownik [2] and Bownik and Ho [3]). In Sect. 2 we review a more gen-
eral anisotropic framework on R

n using the multi-level ellipsoid covers introduced
in [14]. Whereas in previous work the anisotropy is fixed and global over R

n, in our
settings only mild conditions are imposed on dilation matrices which are local and
allow them to rapidly change from point to point and in depth, from level to level.
The ellipsoid covers induce anisotropic quasi-distances on R

n and together with the
usual Lebesgue measure, form spaces of homogeneous type [12, 23].

Once the geometry of an anisotropic space is established, we proceed with the con-
struction of wavelets. The highly anisotropic locally and scale-wise varying structure
of the dilations considered here prevents us from using Fourier analysis techniques.
Also, the ellipsoid cover which serves as the basis for the construction is of ‘mesh-
less’ type, i.e. it does not satisfy the exact inclusion property of Euclidian dyadic
cubes, where a cube on a higher level is contain in exactly one parent cube in the
lower level. However, we can still apply a classical two-step approach to wavelet
construction (e.g. [15, 17, 24]) where the first step is to construct a multiresolution
analysis and the second step is to create difference operators between each adjacent
levels in the multiresolution.

In Sect. 3, we define a notion of anisotropic multiresolution analysis. We con-
struct operators Sm that are approximation operators associated with a level-of-
detail m ∈ Z, which reproduce polynomials up to a specified degree and have ar-
bitrarily high anisotropic regularity, i.e. smoothness and decay with respect to the
quasi-distance induced by the cover. In Sect. 4, with the wavelet operators Dm :=
Sm+1 − Sm as starting point, we leverage on the work of Han and Sawyer [20] and
the Calderón reproducing formula for spaces of homogeneous type, to construct dual
wavelet operators. With these dual operators at hand we show two constructions of
anisotropic discrete frames. Let us recall the following definition (see [7] for the gen-
eral theory).

Definition 1.1 A family of elements {fi}i∈I contained in an Hilbert space H is a
frame if there exist constants 0 < A ≤ B < ∞ such that such that for any f ∈ H

A‖f ‖2
H ≤

∑

i∈I

|〈f,fi〉H|2 ≤ B‖f ‖2
H. (1.1)

While it is possible to construct an anisotropic orthonormal basis of L2(R
n) over

an anisotropic triangulation mesh (see [21]), it is still unknown if it is possible to
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construct a ‘meshless’ orthonormal basis. Therefore, we focus our attention on frame
constructions, in view of the fact that frames can be thought of as some kind of a
‘generalized bases’, as is evident from (1.1).

First, we apply the tools of [19] and sample from the wavelet kernels Dm discrete
wavelet frames that are also smooth and well-localized. The novelty in our setup is
that in R

n there are the notions of approximation order of the operators Sm and the
number of vanishing moments of the wavelets. However, we can only prove ‘mini-
mal’ decay for the dual frame. A second approach we take is to represent the kernels
of Dm using ‘two level split’ elements. We can combine the stability of these ele-
ments on each level m with a Littlewood-Paley result for the operators Dm and prove
that the ‘two level splits’, which have fast decay with respect to the anisotropic quasi-
distance, are in fact a frame for the entire L2(R

n) space.
We note that the geometric setting for our constructions is much more flexible than

the setting for the so-called ‘irregular frames’ (e.g. [1, 8, 9]). Our constructions differ
from the Curvelet frame [4, 5] in that we describe an adaptive framework while the
Curvelet system is ‘non-adaptive’. Also, the Curvelet frame contains at each scale
and location directional elements at all possible orientations (the number of orien-
tation increases with the scale), while our construction adaptively chooses a ‘small’
bounded number of elements with a single orientation.

2 Anisotropic Ellipsoid Covers of R
n

We recall the definitions of [14]. The image of the Euclidian unit ball B∗ in R
n via

an affine transform will be called an ellipsoid. For a given ellipsoid θ we let Aθ be an
affine transform such that θ = Aθ(B

∗). Denoting by vθ := Aθ(0) the center of θ we
have

Aθ(x) = Mθx + vθ ,

where Mθ is a nonsingular n × n matrix.

Definition 2.1 We call

� =
⋃

m∈Z

�m,

a discrete multilevel ellipsoid cover of R
n if the following conditions are obeyed,

where p(�) := {a1, . . . , a8} are positive constants:

(a) Every level �m,m ∈ Z, consists of ellipsoids θ such that

a12−m ≤ |θ | ≤ a22−m, (2.1)

and �m is a cover of R
n, i.e. R

n = ⋃
θ∈�m

θ .
(b) For each θ ∈ � let Aθ be an affine transform associated with θ , of the form

Aθ(x) = Mθx + vθ , Mθ ∈ R
n×n,
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such that θ = Aθ(B
∗) and vθ = A(0) is the center of θ . We postulate that for any

θ ∈ �m and θ ′ ∈ �m+ν , ν ≥ 0, with θ ∩ θ ′ �= ∅, we have

a32−a4ν ≤ 1/‖M−1
θ ′ Mθ‖l2→l2 ≤ ‖M−1

θ Mθ ′ ‖l2→l2 ≤ a52−a6ν . (2.2)

(c) Each θ ∈ �m can intersect with at most N1 ellipsoids from �m.
(d) For any x ∈ R

n and m ∈ Z there exists θ ∈ �m such that x ∈ θ♦, where θ♦ is the
dilated version of θ by a factor of a7 < 1, i.e. θ♦ = Aθ(B(0, a7)).

(e) If θ ∩ η �= ∅ with θ ∈ �m and η ∈ �m ∪ �m+1, then θ♦ ∩ η♦ �= ∅, where θ♦, η♦
are the dilated versions of θ, η by a factor a7 as above.

Remarks As in [14] we can replace condition (2.1) by

a12−a0m ≤ |θ | ≤ a22−ma0,

for some a0 > 0. This provides more flexibly in the construction of covers in appli-
cations. However, in this work, so as not to burden the reader with more notation, we
assume that a0 = 1.

Definition 2.2 We say that

� :=
⋃

t∈R

�t

is a continuous multilevel ellipsoid cover of R
n if it satisfies the following conditions,

where p(�) := {a1, . . . , a6} are positive constants:

(a) For every v ∈ R
n and t ∈ R there exists an ellipsoid θ(v, t) ∈ �t and an affine

transform Av,t (x) = Mv,tx + v such that θ(v, t) = Av,t (B
∗) and

a12−t ≤ |θ(v, t)| ≤ a22−t .

(b) For any v, y ∈ R
n, t ∈ R and s > 0, if θ(v, t) ∩ θ(y, t + s) �= ∅, then

a32−a4s ≤ 1/‖M−1
y,t+sMv,t‖ ≤ ‖M−1

v,t My,t+s‖ ≤ a52−a6s .

The discrete and continuous ellipsoid covers induce quasi-distances on R
n.

A quasi-distance on a set X is a mapping ρ : X × X → [0,∞) that satisfies the
following conditions:

(a) ρ(x, y) = 0 ⇔ x = y,
(b) ρ(x, y) = ρ(y, x),
(c) For some κ ≥ 1 and all x, y, z ∈ R

n

ρ(x, y) ≤ κ(ρ(x, z) + ρ(z, y)). (2.3)

Let � be a cover. We define ρ : R
n × R

n → [0,∞) by

ρ(x, y) = inf
θ∈�

{|θ | : x, y ∈ θ}. (2.4)

The following results are proved in [14].
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Proposition 2.1 The function ρ in (2.4), induced by a discrete or a continuous ellip-
soid cover, is a quasi-distance on R

n.

Proposition 2.2 Any continuous cover can be sampled to a discrete cover, inducing
an equivalent quasi-distance.

Let � be an ellipsoid cover inducing a quasi-distance ρ. We denote B(x, r) :=⋃{y ∈ R
n : ρ(x, y) < r}. Evidently,

B(x, r) =
⋃

θ∈�

{θ : |θ | ≤ r, x ∈ θ}.

Proposition 2.3 Let � be an ellipsoid cover. For each ball B(x, r), there exist ellip-
soids θ ′, θ ′′ ∈ �, such that θ ′ ⊂ B(x, r) ⊂ θ ′′ and |θ ′| ∼ |B(x, r)| ∼ |θ ′′| ∼ r , where
the constants depend on p(�).

Spaces of homogeneous type were first introduced in [11] (see also [23]) as a
means to extend the Calderon-Zygmund theory of singular integral operators to more
general settings. Let X be a topological space endowed with a Borel measure μ and
a quasi-distance ρ. Assume that the balls B(x, r) := {y ∈ X : ρ(x, y) < r}, x ∈ X,
r > 0, form a basis for the topology in X. The space (X,ρ,μ) is said to be of ho-
mogenous type if there exists a constant A such that for all x ∈ X and r > 0,

μ(B(x,2r)) ≤ Aμ(B(x, r)). (2.5)

If (2.5) holds then μ is said to be a doubling measure [26, Chap. 1, 1.1]. A space
of homogeneous type is said to be normal, if the equivalence μ(B(x, r)) ∼ r holds.
Proposition 2.3 gives inequality (2.5) and implies that an ellipsoid cover induces a
normal space of homogenous type (Rn, ρ, dx), where ρ is the quasi-distance (2.4)
and dx is the Lebesgue measure.

Let us describe a useful form of covers of R
2. We select all ellipses on levels ≤ 0 to

be Euclidian balls. For levels > 0 we allow the ellipses to change from Euclidian balls
to ellipses with the ‘parabolic scaling’ parameters (a6, a4) = (1/3,2/3). This choice
of parameters relates to polygonal approximation of a planar curve, with segments
of length h and approximation error of O(h2). Roughly speaking, with this choice
we can simulate the performance of polygonal approximation by constructing at the
level m > 0 roughly O(2m/3) ‘thin’ ellipses of length ∼ 2−m/3 and width ∼ 2−2m/3,
such that they (are aligned with and) cover the function’s curve singularities with a
‘strip width’ of ∼ 2−2m/3. The actual number of ellipses that are needed depends on
the total length of the curve singularities as well as their ‘curve smoothness’. Away
from the curve singularities, the ellipses can be selected to be Euclidian balls (see
also the constructions in [14, Sect. 7.1]).

We conclude this section by relating the quasi-distances induced by ellipsoid cov-
ers with the Euclidian distance. To this end we first require the following definition.
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Definition 2.3 Let ρ be a quasi-distance on R
n and let μ = (μ0,μ1), 0 < μ0 ≤

μ1 ≤ 1. For any x, y ∈ R
n and d > 0 we define

μ(x, y, d) :=
{
μ0 ρ(x, y) < d,

μ1 ρ(x, y) ≥ d,
μ̃(x, y, d) :=

{
μ1 ρ(x, y) < d,

μ0 ρ(x, y) ≥ d.
(2.6)

For t ∈ R we define

μ(t) :=
{
μ1 t ≤ 0,

μ0 t > 0,
μ̃(t) :=

{
μ0 t ≤ 0,

μ1 t > 0.
(2.7)

Theorem 2.1 Let � be a discrete ellipsoid cover and ρ the quasi-distance (2.4).
Denote by μ := (μ0,μ1) = (a6, a4) where 0 < a6 ≤ a4 ≤ 1 are the parameters from
Definition 2.1. Then for each fixed y ∈ R

n there exist constants 0 < c1 < c2 < ∞ that
depend on y and p(�) such that

c1ρ(x, y)μ̃(x,y,1) ≤ |x − y| ≤ c2ρ(x, y)μ(x,y,1), ∀x ∈ R
n, (2.8)

where |x − y| is the usual Euclidian distance between x and y.

Proof Select an ellipsoid θ0 ∈ �0 such that y ∈ θ0 ∈ �0. For any x ∈ R
n, let θ ∈ �m

such that ρ(x, y) = θ . From condition (2.2) (see also [14, Lemma 2.2]) we obtain

|x − y| ≤ diam(θ) ≤ c diam(θ0)2
−μ(m)m

≤ c diam(θ0)a
−μ(m)
1 |θ |μ(m) ≤ c2ρ(x, y)μ(x,y,1).

We now prove the right hand side of (2.8). By the minimality of θ ∈ �m, there
exists θ1 ∈ �m+J such that y ∈ θ

♦
1 (the dilated version of θ1 by a factor a7) and

x /∈ θ1, where J > 0 depends only on p(�). Denote by σmin(θ1) the minimal semi-
axis of θ1. From (2.2) we get that σmin(θ1) ≥ cσmin(θ0)2−μ̃(m+J )(m+J ). Thus,

|x − y| ≥ (1 − a7)σmin(θ1) ≥ c2−μ̃(m+J )(m+J )

≥ cρ(x, y)μ̃(m+J ) ≥ c1ρ(x, y)μ̃(x,y,1). �

Remarks

(1) Observe that in the case where all ellipsoids in �0 are equivalent in shape (for
example, to the Euclidian ball), we get that the constants c1, c2 in (2.8) depend
only on p(�) and not the points y.

(2) In the special case where the ellipsoid cover is composed of Euclidian balls,
we have that the parameters in (2.2) satisfy a4 = a6 = 1/n and (2.8) is easily
verified by

|x − y| ∼ |{z : |z − x| ≤ |y − x|}|1/n ∼ ρ(x, y)1/n

∼ ρ(x, y)μ(x,y,1) = ρ(x, y)μ̃(x,y,1).
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3 Anisotropic Multiresolution Analysis

We begin with the following generalization to higher orders of the definitions given
in [20]. Let K(x,y) be a smooth kernel. For x, y ∈ R

n, we have the Taylor represen-
tation of the kernel about the point x, with y fixed as

K(z, y) = Tr−1,x(K(·, y))(z) + Rr,x(K(·, y))(z), (3.1)

where Tr−1 is the Taylor polynomial of degree r − 1 (order r) and Rr,x is the Taylor
remainder of order r .

Definition 3.1 Let (Rn, ρ, dx) be a normal space of homogeneous type. A sequence
of kernel operators {Sm}, formally defined by Sm(f )(x) := ∫

Rn Sm(x, y)f (y)dy, is a
multiresolution of order (μ, δ, r), μ = (μ0,μ1), 0 < μ0 ≤ μ1 ≤ 1, δ > 0, r ∈ N, with
respect to ρ, if for some constant c > 0 the following conditions are satisfied:

(i) |Sm(x, y)| ≤ c 2−mδ

(2−m+ρ(x,y))1+δ , ∀x, y ∈ R
n.

(ii) For 1 ≤ k ≤ r and all x, y, z ∈ R
n,

|Rk,x(Sm(·, y))(z)| ≤ cρ(x, z)μ(x,z,2−m)k

(
2−mδ

(2−m + ρ(x, y))1+δ+μ(x,z,2−m)k

+ 2−mδ

(2−m + ρ(y, z))1+δ+μ(x,z,2−m)k

)
,

|Rk,y(Sm(x, ·))(z)| ≤ cρ(y, z)μ(y,z,2−m)k

(
2−mδ

(2−m + ρ(x, y))1+δ+μ(y,z,2−m)k

+ 2−mδ

(2−m + ρ(x, z))1+δ+μ(y,z,2−m)k

)
.

(iii) For 1 ≤ k ≤ r and all x, x′, y, y′ ∈ R
n

|Rk,y(Rk,x(Sm(·, ·))(x′))(y′)|, |Rk,x(Rk,y(Sm(·, ·))(y′))(x′)|
≤ cρ(x, x′)μ(x,x′,2−m)kρ(y, y′)μ(y,y′,2−m)k

×
(

2−mδ

(2−m + ρ(x, y))1+δ+μ(x,x′,2−m)k+μ(y,y′,2−m)k

+ 2−mδ

(2−m + ρ(x, y′))1+δ+μ(x,x′,2−m)k+μ(y,y′,2−m)k

× 2−mδ

(2−m + ρ(x′, y))1+δ+μ(x,x′,2−m)k+μ(y,y′,2−m)k

+ 2−mδ

(2−m + ρ(x′, y′))1+δ+μ(x,x′,2−m)k+μ(y,y′,2−m)k

)
.
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[To clarify our notation, denote gm(x, x′, y) := Rk,x(Sm(·, y))(x′), then for fixed
x, x′ ∈ R

n, Rk,y(Rk,x(Sm(·, ·))(x′))(y′) = Rk,y(gm(x, x′, ·))(y′)].
(iv) P(x) = ∫

Rn Sm(x, y)P (y)dy and P(y) = ∫
Rn Sm(x, y)P (x)dx, for every poly-

nomial P ∈ 
r−1, where 
r−1 are the polynomials of total degree r − 1.

Remarks

(1) We shall use the fact that condition (ii) implies

|Rr,x(Sm(·, y))(z)| ≤ cρ(x, z)μ0k
2−mδ

(2−m + ρ(x, y))1+δ+μ0k
,

ifρ(x, z) ≤ 1

2κ
(2−m + ρ(x, y)),

|Rr,y(Sm(x, ·))(z)| ≤ cρ(y, z)μ0k
2−mδ

(2−m + ρ(x, y))1+δ+μ0k
,

if ρ(y, z) ≤ 1

2κ
(2−m + ρ(x, y)),

(3.2)

and condition (iii) implies

|Rk,y(Rk,x(Sm(·, ·))(x′))(y′)|

≤ cρ(x, x′)μ0kρ(y, y′)μ0k
2−mδ

(2−m + ρ(x, y))1+δ+2μ0k
, (3.3)

if ρ(x, x′) ≤ 1
2κ

(2−m + ρ(x, y)) and ρ(y, y′) ≤ 1
2κ

(2−m + ρ(x, y)), where κ is
given in (2.3).

(2) The definition given in [20] corresponds to the case 0 < δ < r = 1. There, (3.2)
and (3.3) are used in place of conditions (ii) and (iii) here.

(3) See [16, Lemma 2.2] or [20] for Coifman’s construction of a multiresolution
analysis of order r = 1 for arbitrary spaces of homogeneous type.

Let � be a discrete ellipsoid cover (see Definition 2.1). Our goal is to construct a
multiresolution {Sm}m∈Z that satisfies the above properties for arbitrary r ≥ 1, where
the quasi-distance ρ is induced by the cover. We shall first construct for each level
m ∈ Z a stable basis �m whose elements are C∞ ‘bumps’ that reproduce polynomials
and are supported on the ellipsoids of �m (the construction is a modification of the
one given in [13, 14]). To this end, we split �m into no more than N1 disjoint sets
{�ν

m}N1
ν=1 (N1 appears in condition (c) in Definition 2.1), so that neither two ellipsoids

θ ′, θ ′′ ∈ �m, with θ ′ ∩ θ ′′ �= ∅ are of the same color.

Remark 3.1 In Sect. 4.4, where we require the stability of the ‘two-level splits’
of [14], we shall need a stronger coloring scheme, where two intersecting ellipsoids
from adjacent levels also have different colors.

The method we employ here to ensure stability of �m is to construct the ‘core’
part of each basis function supported on an ellipsoid as a rational function, whose
nominator is a polynomial of a certain degree which is different from the degrees
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of the nominators of its neighbors, i.e. the basis functions supported on neighbor
ellipsoids. This construction will give local linear independence of neighbor basis
function and eventually lead to the global stability of �m. To this end we first recall
the well known up-function defined by

up = 1[−1/2,1/2]
20

∗ 1[−1/22,1/22]
21

∗ 1[−1/23,1/23]
22

∗ · · · . (3.4)

It is easy to see that for any univariate polynomial P and segment [a, b], the function
P ∗ 1[a,b] is also a polynomial and deg(P ∗ 1[a,b]) = degP . Hence, P ∗ up is also a
polynomial and deg(P ∗ up) = degP .

Choose l > 1 so that 2−l ≤ (1 − a7)/4, where a7 < 1 is from condition (d) in
Definition 2.1. From the Fourier representation of (3.4) it readily follows that

up(2l ·) = 1[−1/2l+1,1/2l+1]
2l

∗ 1[−1/2l+2,1/2l+2]
2l+1

∗ 1[−1/2l+3,1/2l+3]
2l+2

∗ · · · .

Denote

hν(t) := (
(1 − 2−l )2 − t2)νr

+ , t ∈ R, 1 ≤ ν ≤ N1,

and consider the function Hν := hν ∗ up(2l ·). Clearly, Hν ∈ C∞, supp Hν = [−1,1],
Hν is even and the restriction of Hν on [−1 + 2−l+1,1 − 2−l+1] is a polynomial of
degree precisely 2νr . We define

φν(x) := Hν(|x|), x ∈ R
n. (3.5)

From above it follows that φν ∈ C∞(Rn), φν ≥ 0, supp φν = B∗ with B∗ being the
Euclidean unit ball in R

n and the restriction of φν is a polynomial of degree 2νr on
B(0, (a7 + 1)/2). In addition,

φν |B(0,a7) ≥ c1 > 0, c1 = c1(N1, r). (3.6)

For any ellipsoid θ let Aθ be the affine transform satisfying Aθ(B
∗) = θ and let

φθ := φν ◦ A−1
θ , if θ ∈ �ν

m. It is standard to form a partition of unity {φ̃θ }θ∈�m by
setting

φ̃θ := φθ∑
θ ′∈�m

φθ ′
. (3.7)

Observe that property (d) of ellipsoid covers (see Definition 2.1) together with (3.6)
ensure that 0 < c′ ≤ ∑

θ∈�m
φθ (x) ≤ c′′, for all x ∈ R

n and hence φ̃θ is well defined

and
∑

θ∈�m
φ̃θ = 1.

Fix 1 ≤ ν ≤ N1. Suppose {Pβ : β ∈ N
n, |β| = β1 + · · · + βn ≤ r − 1} is an ortho-

normal basis for 
r−1 in the weighted norm ‖f ‖L2(B
∗,φν) := ‖f φν‖L2(B

∗). Then for
any θ ∈ �ν

m and β ∈ N
n, |β| < r , we define

Pθ,β := |θ |−1/2Pβ ◦ A−1
θ , (3.8)

and set

ϕθ,β := Pθ,βφ̃θ . (3.9)
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To simplify our notation, we denote

�m := {λ := (θ,β) : θ ∈ �m, |β| < r}, (3.10)

and if λ = (θ,β) we shall denote by θλ and βλ the components of λ.
Notice that from our construction ‖ϕλ‖2 = 1 and in general ‖ϕλ‖p ∼ |θλ|1/p−1/2,

0 ≤ p ≤ ∞. In going further we define the mth level basis �m by

�m := {ϕλ : λ ∈ �m} and set S r
m := span(�m). (3.11)

It is easy to see that 
r−1 ⊂ S r
m, since for any polynomial P ∈ 
r−1 and θ ∈ �m

there exist a representation P = ∑
|β|<r cθ,βPθ,β and therefore

P =
∑

θ∈�m

P φ̃θ =
∑

θ∈�m,|β|<r

cθ,βPθ,β φ̃θ =
∑

θ∈�m,|β|<r

cθ,βϕθ,β =
∑

λ∈�m

cλϕλ. (3.12)

As we already discussed, the stability of �m is critical for our further development.

Proposition 3.1 If f ∈ S r
m ∩ Lp , 0 < p ≤ ∞, and f = ∑

λ∈�m
cλϕλ, then

‖f ‖p ∼
( ∑

λ∈�m

‖cλϕλ‖p
p

)1/p

∼ 2m( 1
2 − 1

p
)

( ∑

λ∈�m

|cλ|p
)1/p

, (3.13)

with the obvious modification when p = ∞ and where the constant of equivalency
depend only on p(�),n, r,p and our choice of ‘bumps’ {φν}ν=1,...,N1 .

Proof The proof of the proposition is simply a repetition of the proof of Theorem 3.2
in [14]. It relies on the fact that as in [14], each φθ is a polynomial on the dilated
version of θ by a factor of (a7 + 1)/2. We omit the proof. �

To construct well localized kernels Sm(x, y) which reproduce polynomials we
need to construct an appropriate dual basis to �m. Let Gm be the Gram matrix given
by

Gm := [Aλ,λ′ ]λ,λ′∈�m
, Aλ,λ′ := 〈ϕλ,ϕλ′ 〉 :=

∫

Rn

ϕλϕλ′ .

By Proposition 3.1, for any sequence α = (αλ)λ∈�m in l2(�m) we have

c1‖α‖l2 ≤ 〈Gmα,α〉 =
∥∥∥∥

∑

λ∈�m

αλϕλ

∥∥∥∥
2
≤ c2‖α‖l2,

where the constants c1, c2 > 0 do not depend on α or m. Thus the operator
Gm : l2 → l2 with matrix Gm is symmetric, positive and c1I ≤ Gm ≤ c2I . Therefore,
G−1

m exists and c−1
2 I ≤ Gm ≤ c−1

1 I . Denote by G−1
m := [Bλ,λ′ ]λ,λ′∈�m

the matrix of
the operator G−1

m .
We now introduce a graph-distance d̃m(·, ·) on �m. To this end we first define the

graph-distance dm(θ, θ ′) between any θ, θ ′ ∈ �m as the length of the shortest chain
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connecting θ and θ ′. A chain is a list of ellipsoids in �m where each consecutive
ellipsoids have a non-empty intersection and its length is the number of elements – 1.
Evidently, dm is a distance on �m. Let us order in a sequence, indexed by 0,1, . . . ,

the multi-indices β ∈ N
n in such a way that if N(β) denotes the index of β then

N(β) < N(β ′) for |β| < |β ′|. Denote also Nmax := max|β|<r N(β) + 1. After this
preparation, we define the graph distance d̃m(λ,λ′) between any λ,λ′ ∈ �m by

d̃m(λ,λ′) := Nmaxdm(θλ, θλ′) + |N(βλ) − N(βλ′)|.

It is readily seen that d̃m(·, ·) is a true distance on �m, which is dominated by the
graph distance between the ellipsoids. Applying a generalization, given in [22], of
a well-known result of Demko on the inverses of band matrices, we arrive at the
following lemma (see also [21, Lemma 3.6].

Theorem 3.1 There exist constants 0 < q < 1 and c > 0 depending only on p(�), r

and our choice of {φν}ν=1,...,N1 , such that the following estimates hold for the entries
of G−1

m , m ∈ Z

|Bλ,λ′ | ≤ cqd̃m(λ,λ′) ≤ cqdm(θλ,θλ′ ), λ,λ′ ∈ �m. (3.14)

In going further, we need an estimate of the entries Bλ,λ′ using the quasi-distance.
First we need the following result given in [14, Lemma 2.8].

Lemma 3.1 There is an integer J > 0 depending only on p(�) such that for any
two ellipsoids θ ∈ �m and θ ′ ∈ �m+ν , ν > 0, such that θ ∩ θ ′ �= ∅, there exists an
ellipsoid η ∈ �m−J such that θ, θ ′ ⊂ η.

Lemma 3.2 There exist constants 0 < q∗, γ < 1 and c > 0 depending only on p(�)

and r such that for any entry Bλ,λ′ , λ,λ′ ∈ �m and points x ∈ θλ, y ∈ θλ′

|Bλ,λ′ | ≤ cq
(2mρ(x,y))γ∗ . (3.15)

Proof Let λ,λ′ ∈ �m. There exists a connected chain of ellipsoids in �m of length
dm(θλ, θλ′) that starts at θλ and ends in θλ′ . By Lemma 3.1, we can find a connected
chain of ellipsoids in �m−J of length �dm(θλ, θλ′)/2� whose first element contains
θλ and the last θλ′ . After at most L := 2 log2(dm(θλ, θλ′)) such iterations, we obtain
an ellipsoid η ∈ �m−LJ such that θλ, θλ′ ⊂ η and therefore

ρ(x, y) ≤ |η| ≤ a22−(m−LJ) = a22−m2log2(dm(θλ,θλ′ ))2J = a22−mdm(θλ, θλ′)2J .

(3.16)

Denoting q∗ := qa
−1/2J
2 where q is defined in (3.14) and γ := 1/2J , we conclude that

(3.15) holds by combining (3.14) and (3.16)

|Bλ,λ′ | ≤ cqdm(θλ,θλ′ ) ≤ cq(a−1
2 2mρ(x,y))1/2J = cq

(2mρ(x,y))γ∗ . �
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Definition 3.2 We define the dual basis �̃m := {ϕ̃λ}λ∈�m by

ϕ̃λ :=
∑

λ′∈�m

Bλ,λ′ϕλ′ , λ ∈ �m. (3.17)

For λ ∈ �m, let x0 be any point in θλ. Combining (3.15) and (3.17) we see that

|ϕ̃λ(x)| ≤ c2−m/2
∑

x∈θλ′
|Bλ,λ′ | ≤ c2−m/2q

(2mρ(x,x0))γ∗ . (3.18)

Therefore, each ϕ̃λ has fast decay with respect to the quasi-distance induced by �

and so by (2.8) it also has fast decay with respect to the Euclidian distance (in fact it
is in the Schwartz class S, we omit the proof). Also,

〈ϕλ, ϕ̃λ′ 〉 =
∑

λ′′∈�m

Bλ′,λ′′ 〈ϕλ,ϕλ′′ 〉 = (G−1
m Gm)λ′,λ = δλ,λ′ .

We use the bases �m and �̃m to define the multiresolution kernel operators {Sm}m∈Z

by

Sm(x, y) =
∑

λ∈�m

ϕλ(x)ϕ̃λ(y). (3.19)

Our next step is to show that {Sm}m∈Z form a high order multiresolution analysis (see
Definition 3.1). As we shall see the parameter μ depends on the parameters of the
cover. We begin with the following result (see [21, Lemma 4.2] for the case r = 2
and triangulation meshes).

Lemma 3.3 Let � be an ellipsoid cover of R
n, denote μ := (a6, a4) (see Defini-

tion 2.1) and let k ∈ N. For any λ ∈ �m and x, z ∈ R
n

|Rk,x(ϕλ, z)| ≤ c2m/2(2mρ(x, z))μ(x,z,2−m)k (3.20)

where Rk,x(f, z) is the Taylor remainder of order k about the point x and at the
point z. The constant depends on the parameters of the cover, k, r, n and the choice
of {φν}ν=1,...,N1 .

Proof Assume first that θ := θλ ∈ �0 and that θ = B∗, where B∗ is the Euclidian
unit ball in R

n.
Denote |f |W∞

k
:= ∑

|γ |=k ‖∂γ f ‖∞. Evidently, in this special case, |ϕλ|W∞
k

≤ c∗
with c∗ depending on the aforementioned parameters. By definition there exists an
ellipsoid θ̃ ∈ �j , for some j ∈ Z, such that ρ(x, z) = |θ̃ |. Since we may assume that
either x or z are in θ (otherwise Rk,x(ϕλ, z) = 0 and (3.20) is obvious) we get that
θ ∩ θ̃ �= ∅. We may consider two cases:

Case 1: j ≥ 0. Since θ̃ ∩ B∗ �= ∅ then by condition (2.2) (see [14, Lemma 2.2])
we have |x − z| ≤ diam(θ̃ ) ≤ c2−a6j . Also, since θ̃ ∈ �j , we have by (2.1) that |θ̃ | ≥
a12−j . Combining these last two estimates yields

|Rk,x(ϕB∗,β , z)| ≤ c|ϕB∗,β |W∞
k

|x − z|k ≤ c2−a6jk ≤ c|θ̃ |a6k ≤ cρ(x, z)a6k.
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Case 2: j < 0. Since θ̃ ∩ B∗ �= ∅ then by condition (2.2) we have |x − z| ≤
diam(θ̃) ≤ C2−a4j . Similarly as above one arrives at

|Rk,x(ϕB∗,β , z)| ≤ cρ(x, z)a4k.

These last two estimates prove (3.20) for the case θλ ∈ �0 and θλ = B∗. We now
consider the case where both the ellipsoid and the cover are arbitrary. We first observe
that for any f ∈ W∞

k and affine transform A, one has for x, z ∈ R
n

Tk−1,x(f ◦ A,z) = Tk−1,A(x)(f,A(z)) and

Rk,x(f ◦ A,z) = Rk,A(x)(f,A(z)).
(3.21)

As in Definition 2.1, let Aθ be an affine transform such that θ = Aθ(B
∗). Ev-

idently, �∗ := {A−1(η)}η∈� is an ellipsoid cover of R
n with the same parameters

as �. Denote by ρ∗(·, ·) the quasi-distance induced by �∗. It is easy to see that

ρ∗(A−1(x),A−1(z)) = |θ |−1ρ(x, z). (3.22)

Denote ϕB∗,β := φ̃B∗Pβ and notice that ϕθ,β = |θ |−1/2ϕB∗,β ◦ A−1
θ . Observing that

(3.20) holds for the special case of A−1(θ) = B∗ ∈ �∗, we use (3.22) and (3.21) to
obtain

|Rk,x(ϕθ,β, z)| = |θ |−1/2|R
k,A−1

θ (x)
(ϕB∗,β ,A−1

θ (z))|

≤ c|θ |−1/2ρ∗(A−1
θ (x),A−1

θ (z))μ(A−1
θ (x),A−1

θ (z),1)

= c|θ |−1/2(|θ |−1ρ(x, z))μ(x,z,2−m).

The proof of Lemma 3.3 is complete. �

Theorem 3.2 Suppose � is a discrete ellipsoid cover of R
n, denote μ := (a6, a4)

and let Sm, m ∈ Z, be defined as in (3.19). Then there exist 0 < q∗, γ < 1 and c > 0
such that for any x, x′, y, y′, z ∈ R

n

|Sm(x, y)| ≤ c2mq
(2mρ(x,y))γ∗ , (3.23)

|Rk,x(Sm(·, y), z)|
≤ c2m(2mρ(x, z))μ(x,z,2−m)k(q

(2mρ(x,y))γ∗ + q
(2mρ(y,z))γ∗ ), (3.24)

|Rk,y(Sm(x, ·), z)|
≤ c2m(2mρ(y, z))μ(y,z,2−m)k(q

(2mρ(x,y))γ∗ + q
(2mρ(x,z))γ∗ ), (3.25)

|Rk,yRk,x(Sm(·, ·), z)|
= |Rk,xRk,y(Sm(·, ·), z)|
≤ c2m(2mρ(x, x′))μ(x,x′,2−m)k(2mρ(y, y′))μ(y,y′,2−m)k

× (
q

(2mρ(x,y))γ∗ + q
(2mρ(x,y′))γ∗ + q

(2mρ(x′,y))γ∗ + q
(2mρ(x′,y′))γ∗

)
. (3.26)
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Proof By (3.17) and (3.19) the kernel Sm(x, y) has a representation

Sm(x, y) =
∑

λ,λ′∈�m

Bλ,λ′ϕλ(x)ϕλ′(y). (3.27)

Applying (3.15) we obtain (3.23)

|Sm(x, y)| ≤
∑

x∈θλ,y∈θλ′
|Bλ,λ′ ||ϕλ(x)||ϕλ′(y)| ≤ c2mq

(2mρ(x,y))γ∗ .

For the proof of (3.24), we apply (3.27), (3.20) and (3.15)

|Rk,x(Sm(·, y))(z)|
≤

∑

x∈θλ or z∈θλ

∑

y∈θλ′
|Bλ,λ′ ||Rr,x(ϕλ, z)||ϕλ′(y)|

≤ c2m(2mρ(x, z))μ(x,z,2−m)k

( ∑

x∈θλ,y∈θλ′
|Bλ,λ′ | +

∑

z∈θλ,y∈θλ′
|Bλ,λ′ |

)

≤ c2m(2mρ(x, z))μ(x,z,2−m)k
(
q

(2mρ(x,y))γ∗ + q
(2mρ(y,z))γ∗

)
.

The proof of (3.25) is similar. Finally, we prove (3.26) using the same technique

|Rk,y(Rk,x(Sm(·, ·))(x′))(y′)|
≤

∑

x∈θλ orx′∈θλ

∑

y∈θλ′ ory′∈θλ′
|Bλ,λ′ ||Rk,x(ϕλ, x

′)||Rk,y(ϕλ′ , y′)|

≤ c2m(2mρ(x, x′))μ(x,x′,2−m)k(2mρ(y, y′))μ(y,y′,2−m)k

×
( ∑

x∈θλ,y∈θλ′
|Bλ,λ′ | +

∑

x∈θλ,y′∈θλ′
|Bλ,λ′ |

+
∑

x′∈θλ,y∈θλ′
|Bλ,λ′ | +

∑

x′∈θλ,y′∈θλ′
|Bλ,λ′ |

)

≤ c2m(2mρ(x, x′))μ(x,x′,2−m)k(2mρ(y, y′))μ(y,y′,2−m)k

× (
q

(2mρ(x,y))γ∗ + q
(2mρ(x,y′))γ∗ + q

(2mρ(x′,y))γ∗ + q
(2mρ(x′,y′))γ∗

)
. �

We can now prove that our construction is indeed a high order multiresolution.

Corollary 3.1 For a discrete ellipsoid cover �, the kernels (3.19) are a multiresolu-
tion with respect to the quasi-distance (2.4) induced by the cover. The vector μ can
be taken as μ = (a6, a4), the parameter δ can be any positive and the parameter r is
the total order of the polynomials (3.8) used in the construction of the local ellipsoid
‘bumps’.
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Proof The corollary is immediate from the previous theorem using standard tech-
niques, but we give the proof for the sake of completeness. For any δ̃ > 0 denote

q̃ := q
1/δ̃∗ , where q∗ is given by (3.15). Evidently, for any 0 < q̃, γ < 1 there exists a

constant c1(q̃, γ ) > 0 such that q̃ tγ ≤ c1(1 + t)−1, ∀t ≥ 0. Therefore, for all m ∈ Z,
x, y ∈ R

n we have

q
(2mρ(x,y))γ∗ = q̃(2mρ(x,y))γ δ̃ ≤ cδ̃

1

(
1

1 + 2mρ(x, y)

)δ̃

= c
2−mδ̃

(2−m + ρ(x, y))δ̃
. (3.28)

Thus, for any δ > 0, setting δ̃ = 1 + δ in (3.28), we get from (3.23)

|Sm(x, y)| ≤ c2mq
(2mρ(x,y))γ∗

≤ c2m 2−m(1+δ)

(2−m + ρ(x, y))1+δ

= c
2−mδ

(2−m + ρ(x, y))1+δ
,

which is property (i) in Definition 3.1. Property (ii) is proved similarly, by apply-
ing (3.24) or (3.25) for 1 ≤ k ≤ r and setting δ̃ = 1 + δ + μ1k, i.e.

|Rk,x(Sm(·, y), z)|
≤ c2m(2mρ(x, z))μ(x,z,2−m)k(q

(2mρ(x,y))γ∗ + q
(2mρ(y,z))γ∗ )

≤ c2m(2mρ(x, z))μ(x,z,2−m)k

×
((

2−m

2−m + ρ(x, y)

)1+δ+μ(x,z,2−m)k

+
(

2−m

2−m + ρ(y, z)

)1+δ+μ(x,z,2−m)k)

= cρ(x, z)μ(x,z,2−m)k

×
(

2−mδ

(2−m + ρ(x, y))1+δ+μ(x,z,2−m)k
+ 2−mδ

(2−m + ρ(y, z))1+δ+μ(x,z,2−m)k

)
.

Property (iii) is proved similarly. Finally, we prove the polynomial reproduction prop-
erty (iv). By (3.12) for any P ∈ 
r−1, there exist coefficients {cλ}λ∈�m such that
P = ∑

λ∈�m
cλϕλ. For fixed y ∈ R

n, we have

∫

Rn

Sm(x, y)P (x)dx =
∫

Rn

( ∑

λ,λ′∈�m

Bλ,λ′ϕλ(x)ϕλ′(y)

)( ∑

λ′′∈�m

cλ′′ϕλ′′(x)

)
dx

=
∑

λ,λ′,λ′′∈�m

cλ′′Bλ,λ′ϕλ′(y)

∫

Rn

ϕλ(x)ϕλ′′(x)dx

=
∑

λ′,λ′′∈�m

cλ′′ϕλ′(y)
∑

λ∈�m

Bλ,λ′Aλ′′,λ
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=
∑

λ′,λ′′∈�m

cλ′′ϕλ′(y)δλ′,λ′′

=
∑

λ′′∈�m

cλ′′ϕλ′′(y) = P(y).

The proof that P(x) = ∫
Rn Sn(x, y)P (y)dy is similar. This concludes the proof of

the corollary. �

4 Construction of Anisotropic Wavelet Frames

4.1 Wavelet Operators

Let {Sm}m∈Z be a multiresolution analysis of order (μ, δ, r). Then it is clear that
the kernels of the wavelet operators Dm := Sm+1 − Sm, satisfy properties (i)–(iii) of
Definition 3.1, while the polynomial reproduction property (iv) is replaced with the
zero moments property

∫

Rn

Dm(x, y)P (y)dy = 0,

∫

Rn

Dm(x, y)P (x)dx = 0, (4.1)

for every polynomial P ∈ 
r−1.
We now show that two wavelet operators (kernels) from different scales are ‘al-

most orthogonal’.

Lemma 4.1 Assume that two kernels operators {D1
m} and {D2

m}, m ∈ Z, satisfy (4.1)
for r ≥ 1 and conditions (i)–(ii) of a multiresolution with order (μ, δ + μ1r, r) for
some δ ≥ μ1r . Then

|D1
kD

2
l (x, y)| ≤ c2−|k−l|μ0r

2−min(k,l)δ

(2−min(k,l) + ρ(x, y))1+δ
, k, l ∈ Z. (4.2)

Proof For simplicity of notation, assume that {Dm} = {D1
m} = {D2

m}. The proof of
the general case is similar. The kernel of the operator DkDl is

DkDl(x, y) =
∫

Rd

Dk(x, z)Dl(z, y)dz.

Assume that l ≤ k. The proof for the case k < l is similar. We apply the zero-moment
property (4.1) to obtain

|DkDl(x, y)|

=
∣∣∣∣
∫

Rn

Dk(x, z)Dl(z, y)dz

∣∣∣∣

≤
∫

Rn

|Dk(x, z)||Rr,x(Dl(·, y))(z)|dz
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≤
∫

ρ(x,z)≤ 1
2κ

(2−l+ρ(x,y))

|Dk(x, z)||Rr,x(Dl(·, y))(z)|dz

+
∫

ρ(x,y)≤ρ(y,z)

|Dk(x, z)||Rr,x(Dl(·, y))(z)|dz

+
∫

ρ(x,y)>ρ(y,z),ρ(x,z)> 1
2κ

(2−l+ρ(x,y))

|Dk(x, z)||Rr,x(Dl(·, y))(z)|dz

=: I + II + III.

We estimate each of the three integrals separately. Applying the properties of the
kernels and (3.2) we derive

I =
∫

ρ(x,z)≤ 1
2κ

(2−l+ρ(x,y))

|Dk(x, z)||Rr,x(Dl(·, y))(z)|dz

≤ c

∫

ρ(x,z)≤ 1
2κ

(2−l+ρ(x,y))

2−kδ

(2−k + ρ(x, z))1+δ
ρ(x, z)μ0r

2−lδ

(2−l + ρ(x, y))1+δ+μ0r
dz

≤ c2−kδ 2−lδ

(2−l + ρ(x, y))1+δ+μ0r

∫

Rn

ρ(x, z)μ0r

(2−k + ρ(x, z))1+δ
dz

≤ c2−kδ 2−lδ

(2−l + ρ(x, y))1+δ+μ0r
2k(δ−μ0r)

≤ c2(l−k)μ0r
2−lδ

(2−l + ρ(x, y))1+δ
.

The estimate of the second integral is similar to first, only here we use property (ii)
in Definition 3.1 the fact that ρ(x, y) ≤ ρ(y, z)

II =
∫

ρ(x,y)≤ρ(y,z)

|Dk(x, z)||Rr,x(Dl(·, y))(z)|dz

≤ c

∫

ρ(x,y)≤ρ(y,z)

2−kδ

(2−k + ρ(x, z))1+δ
ρ(x, z)μ(x,z,2−l )r

× 2−lδ

(2−l + ρ(x, y))1+δ+μ(x,z,2−l )r
dz

≤ 2−kδ

(
2−lδ

(2−l + ρ(x, y))1+δ+μ0r

∫

ρ(x,z)≤2−l

ρ(x, z)μ0r

(2−k + ρ(x, z))1+δ
dz

+ 2−lδ

(2−l + ρ(x, y))1+δ+μ1r

∫

ρ(x,z)>2−l

ρ(x, z)μ1r

(2−k + ρ(x, z))1+δ
dz

)

≤ 2−kδ

(
2−lδ

(2−l + ρ(x, y))1+δ+μ0r
2k(δ−μ0r) + 2−lδ

(2−l + ρ(x, y))1+δ+μ1r
2k(δ−μ1r)

)

≤ c2(l−k)μ0r
2−lδ

(2−l + ρ(x, y))1+δ
.
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We proceed with the estimate of III. Observe that the integration domain in this term
satisfies ρ(x, z) > 2−l/2κ which implies that we can assume μ(x, z,2−l ) = μ1

III =
∫

ρ(x,y)>ρ(y,z),ρ(x,z)> 1
2κ

(2−l+ρ(x,y))

|Dk(x, z)||Rr,x(Dl(·, y))(z)|dz

≤ c

∫

ρ(x,z)> 1
2κ

(2−l+ρ(x,y))

|Dk(x, z)|ρ(x, z)μ1r
2−lδ

(2−l + ρ(z, y))1+δ+μ1r
dz

≤ c2−lδ

(∫

ρ(x,z)> 1
2κ

(2−l+ρ(x,y))

2−kδ

(2−k + ρ(x, z))1+δ

ρ(z, y)μ1r

(2−l + ρ(z, y))1+δ+μ1r
dz

+
∫

ρ(x,z)> 1
2κ

(2−l+ρ(x,y))

2−k(δ+μ1r)

(2−k + ρ(x, z))1+δ+μ1r

ρ(x, y)μ1r

(2−l + ρ(z, y))1+δ+μ1r
dz

)

≤ c2−kδ 2−lδ

(2−l + ρ(x, y))1+δ

∫

Rn

ρ(z, y)μ1r

(2−l + ρ(z, y))1+δ+μ1r
dz

+ 2−k(δ+μ1r)
2−lδ

(2−l + ρ(x, y))1+δ+μ1r

∫

Rn

ρ(x, y)μ1r

(2−l + ρ(z, y))1+δ+μ1r
dz

≤ c2−kδ 2−lδ

(2−l + ρ(x, y))1+δ
2lδ

+ c2−k(δ+μ1r)
2−lδ

(2−l + ρ(x, y))1+δ+μ1r
ρ(x, y)μ1r2l(δ+μ1r)

≤ c2(l−k)μ0r
2−lδ

(2−l + ρ(x, y))1+δ
. �

4.2 Dual Wavelet Operators

In the previous section we defined the wavelet (difference) operators and reviewed
some of their properties. In this section we leverage significantly on the results of
Han and Sawyer [20] concerning the Calderón reproducing formula in spaces of ho-
mogeneous type and adapt them to our special setting. We begin with the definitions
for anisotropic test functions and molecules.

Definition 4.1 Fix a quasi-distance ρ on R
n. A function f ∈ C(Rn) belongs to the

anisotropic test function space M(ε, δ, x0, t), 0 < ε, δ ≤ 1, x0 ∈ R
n, t ∈ R if there

exists a constant C such that

(i) |f (x)| ≤ C
2−tδ

(2−t + ρ(x, x0))1+δ
, ∀x ∈ R

n.

(ii) |f (x) − f (y)| ≤ Cρ(x, y)ε
2−tδ

(2−t + ρ(x, x0))1+δ+ε
, for all x, y ∈ R

n

where ρ(x, y) ≤ 1
2κ

(2−t + ρ(x, x0)), with κ defined in (2.3).



652 J Fourier Anal Appl (2009) 15: 634–662

We can check that M(ε, δ, x0, t) is a Banach space with ‖f ‖M defined by the
infimum over all constants C satisfying (i) and (ii). We also denote M(ε, δ) :=
M(ε, δ,0,0).

Definition 4.2 An anisotropic test function f ∈ M(ε, δ, x0, t) is said to be a mole-
cule in M0(ε, δ, r, x0, t) if

∫

Rn

f (y)dy = 0.

As Y. Meyer pointed out the Banach space Cε(R) of Hölder functions with expo-
nent β has the following properties:

(1) If 0 < ε < 1, Cε(R) is isomorphic to l∞(Z),
(2) If ε = 1, the Zygmond class is isomorphic to L∞(R).

It implies that the dual space of Cε(R) is not a functional space. Indeed, the dual
space of l∞(Z) is not a sequence space. This remark also applies to M(ε, δ) and
its dual space of anisotropic distributions M′(ε, δ). Of course, this can be solved.
It suffices to replace Cε by the closure in the Cε norm of Cγ for some γ > ε. This

closure does not depend on γ . For this purpose, we denote by
◦

M(ε, δ) the closure

of M(γ, δ) in the norm of M(ε, δ). Then, we define the
◦

M′(ε, δ) as the dual of
◦

M(ε, δ).
We are now ready to state the Calderón reproducing formula which implies the

existence of wavelet dual operators.

Theorem 4.1 (Continuous Calderón reproducing formula) Let (Rn, ρ, dx) be a nor-
mal space of homogeneous type and let {Sm} be an anisotropic multiresolution of
order (μ, δ, r) with respect to ρ. For Dm := Sm+1 − Sm there exist linear operators
{D̃m}m∈Z and {D̂m}m∈Z such that for all f ∈ M0(ε, γ ), 0 < ε,γ < μ0

f (x) =
∑

m∈Z

D̃mDm(f )(x) =
∑

m∈Z

DmD̂m(f )(x), (4.3)

where the series converges in the norm M(ε′, γ ′), ε′ < ε, γ ′ < γ , and in the space
Lp(Rn), 1 < p < ∞. Furthermore, for any ε < μ0, the kernels of {D̃m}m∈Z and
{D̂m}m∈Z satisfy the conditions (i)–(iii) of multiresolution of order (μ, ε,1) (with
constants that depend on ε) and the r th zero moments conditions (4.1) for r .

By the duality argument we obtain

Corollary 4.1 Under the conditions of Theorem 4.1, the series in (4.3) converges in
◦

M′(ε∗, δ∗) with ε < ε∗ < μ0, γ < γ∗ < μ0, whenever
◦

M(ε, γ ).
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Proof of Theorem 4.1 The method of proof is essentially similar to the method of
[20]. We use Coifman’s idea and write the identity operator I by

I =
∑

k

Dk =
∑

k

Dk

∑

l

Dl =
∑

k,l

DkDl.

We define for some integer N > 0, the operator DN
m := ∑

|j |≤N Dm+j and the opera-
tors TN and RN by

I =
∑

k,l

DkDl =
∑

k∈Z

DN
k Dk +

∑

|j |>N

∑

k∈Z

Dk+jDk =: TN + RN.

Let 0 < ε,γ < μ0. We claim that RN is bounded on M0(ε, γ, x0, t) for any
x0 ∈ R

n, t ∈ R. Moreover, there exist constants τ > 0 and C > 0 such that for
f ∈ M0(ε, γ, x0, t)

‖RNf ‖M0(ε,γ,x0,t) ≤ C2−Nτ‖f ‖M0(ε,γ,x0,t). (4.4)

Assume the claim for a moment. Choosing a large N such that C2−Nτ < 1, then
(4.4) implies that the operator T −1

N exists and is bounded on M0(ε, γ, x0, t). Thus,
we obtain

I = T −1
N TN =

∑

m

(T −1
N DN

m)Dm =
∑

m

D̃mDm, where D̃m := T −1
N DN

m .

The regularity conditions of the kernels {Dm} and (4.1) imply that for any fixed
N and y ∈ R

n the function DN
m(·, y) is in M0(μ0, δ). This gives that D̃m(·, y) =

T −1
N DN

m(·, y) is in M0(ε, γ ) for any 0 < ε,γ < μ0. Similarly, we may write

I = TNT −1
N =

(∑

m

DN
mDm

)
T −1

N =
∑

m

DmDN
mT −1

N =
∑

m

DmD̂m,

where D̂m := DN
mT −1

N .

By the same reasons, for any fixed N and x ∈ R
n, the function D̂m(x, ·) is in

M0(ε, γ ) for any 0 < ε,γ < μ0. �

Discussion In Theorem 4.1 we apply tools from the general theory of spaces of ho-
mogeneous type to construct dual wavelet operators. Although the kernels of the dual
operators {D̃m} and {D̂m} have the same number of r vanishing moments as {Dm},
we only claim very ‘modest’ regularity and size conditions for them. For example, in
Theorem 4.1 we claim that for any 0 < γ < μ0, there exists a constant C > 0 (that
also depends on γ ) such that

|D̃m(x, y)|, |D̂m(x, y)| ≤ C
2−mγ

(2−m + ρ(x, y))1+γ
,
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while in contrast, the construction of the anisotropic multiresolution over the ellipsoid
cover in Sect. 3 gives wavelet kernels {Dm} that satisfy for any positive δ > 0 (see
Corollary 3.1)

|Dm(x, y)| ≤ C
2−mδ

(2−m + ρ(x, y))1+δ
.

It is still unknown to us how to correctly define higher order anisotropic test func-
tion spaces and prove that the operator RN := ∑

|j |>N

∑
k∈Z

Dk+jDk is a bounded
operator on these higher order spaces as in (4.4).

As in [18], we may apply the Calderón reproducing formula to obtain the follow-
ing Littlewood-Paley result

Proposition 4.1 Let {Sm}m∈Z be any anisotropic multiresolution and let Dm =
Sm+1 − Sm. Then for all f ∈ Lp(Rn), 1 < p < ∞, we have

‖f ‖p ∼
∥∥∥∥

(∑

m

|Dm(f )(·)|2
)1/2∥∥∥∥

p

.

4.3 Discrete Wavelet Frames

We construct wavelet frames using the discrete Calderón reproducing formula, which
in turn is obtained by ‘sampling’ the continuous Calderón reproducing formula. First
we introduce the following sampling process.

Definition 4.3 Let ρ be a quasi-distance on R
n. We call a set of closed domains

{�m,k}, m ∈ Z, k ∈ Im, and points ym,k ∈ �m,k , a sampling set if it satisfies the
following properties:

(a) For each m ∈ Z, the sets �m,k , k ∈ Im, are pairwise interior disjoint.
(b) For all m ∈ Z, R

n = ⋃
k∈Im

�m,k .
(c) Each set �m,k satisfies �m,k ⊂ B(xm,k, c2−m) for some point xm,k ∈ R

n and
fixed c > 0 (here the ball corresponds to ρ).

(d) There exists a constant c′ > 0 such that for any m ∈ Z and k ∈ Im, we have that
ρ(ym,k, ym,k′) > c′2−m for all k′ ∈ Im, k′ �= k, except perhaps for a bounded set.

Examples

(1) One can construct a sampling set from an ellipsoid cover. We begin by pick-
ing a maximal set of disjoint ellipsoids as follows: For each level �m we enu-
merate the ellipsoids as θm,j , j ≥ 1. We define θ ′

m,1 := θm,1 and then induc-

tively for k, j > 1, θ ′
m,k := θm,j if int((

⋃k−1
i=1 θ ′

m,i) ∩ θm,j ) = ∅. We also select
ym,k as the center of θ ′

m,k . After this step, the domains {θ ′
m,k} and sampling

points {ym,k} satisfy properties (a), (c) and (d), but not (b). To see that prop-
erty (d) is indeed satisfied, denote by σmax(θ) the length of the maximal semi-axis
of any ellipsoid θ . If two ellipsoids θ ′

m,k and θ ′
m,k′ do not intersect then evidently

|ym,k − ym,k′ | > σmax(θm,k). Let η be any ellipsoid at the level m′ > m such that
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ym,k ∈ η. By [14, Lemma 2.2] we have that σmax(η) ≤ a52−(m′−m)a6σmax(θm,k).
Therefore, if m′ > m + ν, ν := �a−1

6 log2 a5�, then ym,k′ /∈ η. We conclude that
ρ(ym,k, ym,k′) > a12−(m+ν) = c′2−m. Observe that each θm,j that was not se-
lected at the previous step, must intersect one of the ellipsoids θ ′

m,k . We now
denote �m,k := θ ′

m,k and iterate on the ellipsoids that were not selected. For each
such ellipsoid θm,j we add the domain θm,j − (

⋃∞
i=1 �m,i) (if not empty at this

stage) to one of the domains �m,k only if θm,j intersects θ ′
m,k . Observe that the

domains �m,k are possibly enlarged during this process, but this is controlled by
the fact that each ellipsoid θ ′

m,k has no more than N1 neighbors. Evidently, we
attain domains {�m,k} that satisfy all of the conditions.

(2) Christ’s ‘dyadic cube’ construction for spaces of homogeneous type [6] also sat-
isfies the above conditions. As the name suggests, it has similar properties to the
regular, isotropic dyadic cube cover of R

n. For example, each sampling ‘cube’
�m+1,k is contained in one and only one sampling ‘cube’ �m,k′ for some k′ ∈ Im.
Also, each sampling domain at the level m is ‘substantial’ in the sense that it con-
tains a ball of radius ≥ c′2−m. Therefore property (d) is satisfied, provided the
sampling points ym,k ∈ �m,k are picked from these inner balls.

Theorem 4.2 Let {Sm}m∈Z be an anisotropic multiresolution of order (μ, δ, r),
with respect to the quasi-distance induced by an ellipsoid cover �. Denote Dm :=
Sm+1 − Sm and let {�m,k} and {ym,k}, ym,k ∈ �m,k be a sampling set for �. Then
there exists N > 0 and linear operators {Êm} such that for all f ∈ M0(ε, γ ),
0 < ε,γ < μ0,

f (x) =
∑

m∈Z

∑

k∈Im+N

|�m+N,k|Êm(f )(ym+N,k)Dm(x, ym+N,k), (4.5)

where the convergence is in M(ε′, γ ′), ε′ < ε, γ ′ < γ , and in the space Lp(Rn),
1 < p < ∞. Furthermore, the kernels of {Êm} satisfy conditions (i)–(iii) of
anisotropic multiresolution with (μ, ε,1) for all ε < μ0 (with constants that depend
on ε) and the zero moments conditions (4.1) for r .

Sketch of proof The proof is similar to the proof in [19]. The discrete formula (4.5) is
obtained from the continuous formula (4.3) as follows. We fix some N > 0 and apply
(4.3) to obtain for f ∈ M0(ε, γ )

f (x) =
∑

m

DmD̂m(f )(x)

=
∑

m

∑

k∈Im+N

∫

�m+N,k

Dm(x, y)D̂m(f )(y)dy

=
∑

m

∑

k∈Im+N

|�m+N,k|Dm(x, ym+N,k)D̂m(f )(ym+N,k)

+
{∑

m

∑

k∈Im+N

∫

�m+N,k

[Dm(x, y) − Dm(x, ym+N,k)]D̂m(f )(y)dy



656 J Fourier Anal Appl (2009) 15: 634–662

+
∑

m

∑

k∈Im+N

∫

�m+N,k

Dm(x, ym+N,k)[D̂m(f )(y) − D̂m(f )(ym+N,k)]dy

}

=: T̃N (x) + R̃N (x).

It is shown in [19] that for sufficiently large N > 0, the operator R̃N is bounded on
M0(ε, γ ) and its norm is strictly smaller than 1. Therefore, there exists the inverse
operator T̃ −1

N and it is bounded on M0(ε, γ ). Thus, with Êm := D̂mT̃ −1
N we get

f (x) = T̃N T̃ −1
N (f )(x)

=
∑

m

∑

k∈Im+N

|�m+N,k|Dm(x, ym+N,k)D̂m(T̃ −1
N (f ))(ym+N,k)

=
∑

m

∑

k∈Im+N

|�m+N,k|Dm(x, ym+N,k)Êm(f )(ym+N,k).
�

Denoting the index set Km := Im+N , the functions {ψm,k} by ψm,k(x) :=
|�m+N,k|1/2 Dm(x, ym+N,k) and the functionals {ψ̃m,k} by ψ̃m,k(x) := |�m+N,k|1/2

Êm(ym+N,k, x), m ∈ Z, k ∈ Km, we obtain the following representation

f (x) =
∑

m

∑

k∈Km

〈f, ψ̃m,k〉ψm,k(x). (4.6)

Observe that the anisotropic wavelet representation (4.6) resembles a classical
isotropic wavelet representation (see [10, 15, 17]). However, here the wavelets are
specifically ‘tuned’ to the geometry of the given ellipsoid cover and the induced
quasi-distance. Lastly, we show that the anisotropic wavelets constitute a frame (see
Definition 1.1)

Theorem 4.3 Let {Sm}m∈Z be an anisotropic multiresolution of order (μ, δ, r). De-
note Dm := Sm+1 − Sm and let {�m,k} and {ym,k}, ym,k ∈ �m,k be a sampling set
for �. Then there exists constants 0 < A ≤ B < ∞ such that such that for any
f ∈ L2(R

n)

A‖f ‖2
2 ≤

∑

m

∑

k∈Km

|〈f, ψ̃m,k〉|2 ≤ B‖f ‖2
2. (4.7)

Proof The proof is similar to the proof of [19, Theorem 3.35]. We begin with a
proof of the left hand side of (4.7). An identical argument to the one used to prove
Lemma 4.1 yields

|〈ψm,k,ψm′,k′ 〉|

= |�m+N,k|1/2|�m′+N,k′ |1/2
∣∣∣∣
∫

Rn

Dm(x, ym+N,k)Dm′(x, ym′+N,k′)dx

∣∣∣∣

≤ c|�m+N,k|1/2|�m′+N,k′ |1/2
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× 2−|m−m′|μ0r
2−min(m,m′)δ

(2−min(m,m′) + ρ(ym+N,k, ym′+N,k′))1+δ

≤ c2−|m−m′|(μ0r+1/2)

(
2−min(m,m′)

2−min(m,m′) + ρ(ym+N,k, ym′+N,k′)

)1+δ

.

We denote ω(m,k) := 2−m/2 and apply this last estimate and condition (d) of Defin-
ition 4.3 to compute for fixed m ∈ Z, k ∈ Km,

∑

m′,k′
|〈ψm,k,ψm′,k′ 〉|ω(m′, k′)

≤ c
∑

m′,k′
2−m′/22−|m−m′|(μ0r+1/2)

(
2−min(m,m′)

2−min(m,m′) + ρ(ym+N,k, ym′+N,k′)

)1+δ

≤ c
∑

m′
2−m′/22−|m−m′|(μ0r+1/2)2m′ ∑

k′
2−m′

(
2−min(m,m′)

2−min(m,m′) + ρ(ym+N,k, ym′+N,k′)

)1+δ

≤ c
∑

m′
2−m′/2′

2−|m−m′|(μ0r+1/2)2m′
2−min(m,m′)

≤ c

( ∑

m′≤m

2−m′/22−(m−m′)(μ0r+1/2) +
∑

m′>m

2−m′/22−(m′−m)(μ0r+1/2)2m′
2−m

)

≤ c

(
2−m/2

∑

m′≤m

2−(m−m′)μ0r + 2−m/2
∑

m′>m

2−(m′−m)μ0r

)

≤ c2−m/2 = cω(m,k).

The above estimate is exactly the condition of Schur’s Lemma (see [25, Sect. 8.4] for
the case of isotropic dyadic cubes and wavelets) which we use here to show that the
infinite matrix A := {〈ψm,k,ψm′,k′ 〉} is bounded on l2 sequences over the ‘sampling’
index space. In particular, for the sequence α := {〈f, ψ̃m,k〉}m∈Z,k∈Km

we obtain

‖f ‖2
2 = 〈Aα,α〉 ≤ ‖A‖‖α‖2 ≤ c

∑

m,k

|〈f, ψ̃m,k〉|2.

Next we prove the right hand side inequality of (4.7). By definition we have

∑

m

∑

k∈Km

|〈f, ψ̃m,k〉|2 =
∑

m

∑

k∈Km

|�m+N,k||Êm(f )(ym+N,k)|2

=
∑

m

∑

k∈Km

∫

�m+N,k

|Êm(f )(ym+N,k)|2dy.

Theorem 4.1 shows that there exist operators {D̃m}m∈Z that satisfy the regularity con-
ditions (i)–(iii) of multiresolution of order (μ, ε,1), ε < μ0, have r zero moments and
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for which f = ∑
m D̃mDm(f ). One can show (using a similar, but simpler, approach

to the proof of (4.2)) that for m,j ∈ Z

|ÊmD̃j (x, y)| ≤ c2−|m−j |ε 2−min(m,j)ε

(2−min(m,j) + ρ(x, y))1+ε
(4.8)

It is well known (see e.g. [26]) that in the setting of spaces of homogeneous type the
Maximal function

Mf (x) := sup
x∈B

1

|B|
∫

B

|f (y)|dy, B are anisotropic balls,

is bounded in Lp , 1 < p ≤ ∞
‖Mf ‖p ≤ c‖f ‖p. (4.9)

We use the Continuous Calderón formula and (4.8) to estimate each coefficient

|〈f, ψ̃m,k〉|2

=
∫

�m+N,k

|Êm(f )(ym+N,k)|2dy

=
∫

�m+N,k

∣∣∣∣
∑

j

ÊmD̃jDj (f )(ym+N,k)

∣∣∣∣
2

dy

≤ c

∫

�m+N,k

(∑

j

∫

Rn

2−|m−j |ε 2−min(m,j)ε

(2−min(m,j) + ρ(ym+N,k, z))1+ε
|Dj(f )(z)|dz

)2

dy

≤ c

∫

�m+N,k

(∑

j

2−|m−j |εMDj(f )(y)

)2

dy.

Applying the discrete Holder inequality and the Maximal inequality (4.9) give

∑

m

∑

k∈Km

|〈f, ψ̃m,k〉|2

≤ c
∑

m

∫

Rn

(∑

j

2−|m−j |εMDj(f )(y)

)2

dy

≤ c
∑

m

∫

Rn

(∑

j

2−|m−j |ε
)(∑

j

2−|m−j |ε(MDj (f )(y))2
)

dy

≤ c
∑

j

‖MDj(f )‖2
2

≤ c
∑

j

‖Dj(f )‖2
2 ≤ c‖f ‖2

2.
�
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4.4 Two Level Split Frames

Following [14] we introduce a useful representation for the wavelet kernels Dm(x, y)

using the ‘two level split’ construction. Denote

Mm := {ν = (η, θ,β) :η ∈ �m+1, θ ∈ �m,η ∩ θ �= ∅, |β| < r}, m ∈ Z,

and define using (3.7) and (3.9)

Fν := Pη,β φ̃ηφ̃θ = ϕη,β φ̃θ , ν ∈ Mm, (4.10)

We also denote Fm := {Fν : ν ∈ Mm} and set Wm := span(Fm).
Note that Fν ∈ C∞, supp(Fν) = θ ∩ η if ν = (η, θ,β), and by property (e) in

Definition 2.1 we have that ‖Fν‖p ≈ |η|1/p−1/2, 0 < p ≤ ∞. It is important that
under certain conditions (see Remark 3.1) Fm is a stable basis:

Proposition 4.2 [14] If f ∈ Wm ∩ Lp(Rn), 0 < p ≤ ∞ and f = ∑
ν∈Mm

aνFν , then

‖f ‖p ∼
( ∑

ν∈Mm

‖aνFν‖p
p

)1/p

∼ 2m( 1
2 − 1

p
)

( ∑

λ∈�m

|aν |p
)1/p

, (4.11)

with the obvious modification when p = ∞.

Let the coefficients {Aθ,η
α,β} be determined from

Pθ,α =
∑

|β|<r

A
θ,η
α,βPη,β, θ ∈ �m, η ∈ �m+1. (4.12)

Let λ ∈ �m and λ = (θ,α). Then using (4.12) and (4.10) we obtain the following
meshless two-scale relationship

ϕλ = Pθ,αφ̃θ =
∑

η∈�m+1, η∩θ �=∅
Pθ,α(x)φ̃θ φ̃η =

∑

η∈�m+1, η∩θ �=∅, |β|<r

A
θ,η
α,βPη,β φ̃θ φ̃η

=
∑

η∈�m+1, η∩θ �=∅, |β|<r

A
θ,η
α,βFη,θ,β,

and hence ϕλ ∈ Wm. Also, if λ ∈ �m+1 and λ = (η,β), then

ϕλ = Pη,β φ̃η =
∑

θ∈�m:θ∩η �=∅
Pη,β φ̃ηφ̃θ =

∑

θ∈�m:θ∩η �=∅
Fη,θ,β .

Combining the last two results we get that �m ∪�m+1 ⊂ Wm. Recall that Sm(x, y) =∑
λ∈�m

ϕ̃λ(y)ϕλ(x) and that Dm(x, y) = Sm+1(x, y) − Sm(x, y). We use (3.9) and
(4.12) to obtain

Dm(x, y) =
∑

η∈�m+1

∑

|β|<r

ϕ̃η,β(y)Pη,β(x)φ̃η(x)
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−
∑

θ∈�m

∑

|α|<r

ϕ̃θ,α(y)Pθ,α(x)φ̃θ (x)

=
∑

θ∈�m

∑

η∈�m+1

∑

|β|<r

ϕ̃η,β(y)Pη,β(x)φ̃θ (x)φ̃η(x)

−
∑

θ∈�m

∑

|α|<r

ϕ̃θ,α(y)
∑

η∈�m+1

∑

|β|<r

A
θ,η
α,βPη,β(x)φ̃θ (x)φ̃η(x)

=
∑

η∈�m+1

∑

θ∈�m:θ∩η �=∅

∑

|β|<r

{
ϕ̃η,β(y) −

∑

|α|<r

A
θ,η
α,β ϕ̃θ,α(y)

}

× Pη,β(x)φ̃θ (x)φ̃η(x)

=:
∑

ν∈Mm

Gν(y)Fν(x),

where {Fν} are given by (4.10) and

Gν := G(η,θ,β) := ϕ̃η,β −
∑

|α|<r

A
θ,η
α,β ϕ̃θ,α. (4.13)

Observe that for each ν = (η, θ,β) ∈ Mm, since θ ∩ η �= ∅, then (3.18) implies that
the dual Gν has fast decay with respect to the quasi-distance induced by the cover.
Thus we obtain the two level split representation for the wavelet operators

Dm(f ) =
∑

ν∈Mm

〈f,Gν〉Fν, m ∈ Z, (4.14)

This also yields a representation for the elements of our discrete wavelet frame (4.5)

Dm(x, ym+N,k) =
∑

ν∈Mm+1

Gν(ym+N,k)Fν(x),

and thus implies that

span{Dm(x, ym+N,k) :k ∈ Im+N } ⊆ Wm.

We conclude with the main result of this subsection.

Corollary 4.2 The two level splits {Gν} defined in (4.13) are a frame (see Defini-
tion 1.1).

Proof Let f ∈ L2(R
n). Since I = ∑

m Dm, we have by (4.14)

f =
∑

m

Dm(f ) =
∑

m

∑

ν∈Mm

〈f,Gν〉Fν.



J Fourier Anal Appl (2009) 15: 634–662 661

We combine Proposition 4.1 with Proposition 4.2

‖f ‖2
2 ∼

∑

m

∫

Rn

|Dm(f )(x)|2dx

∼
∑

m

∑

ν∈Mm

‖〈f,Gν〉Fν‖2
2

∼
∑

m

∑

ν∈Mm

|〈f,Gν〉|2.
�
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