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1 Introduction

Anisotropic phenomena appear in various contexts in mathematical analysis and its
applications. The formation of shocks results in jump discontinuities of solutions of
hyperbolic conservation laws across lower dimensional manifolds, and sharp edges
often separate areas of little detail in digital images, to name just two examples. In the
first case such jumps cause a serious obstruction to appropriate regularity theorems,
since the available regularity scales are either inherently isotropic or coordinate bi-
ased or are subject to an uncontrollable restricted regularity range, as will be pointed
out below. In the second case the anisotropy makes it more difficult to come up with
efficient encoding strategies that are entropy optimal when using cartoons as model
classes. The central objective of this paper is to set up a sufficiently flexible frame-
work for anisotropic regularity notions that at least bear a potential for dealing with
questions of the above type.

Let us briefly relate now the present approach to earlier considerable efforts in
extending the theory of classical Besov and Triebel–Lizorkin spaces to non-isotropic
settings. One line of extension is concerned with function and distribution spaces
on R

n furnished with anisotropic dilation structures. Various authors have consid-
ered dilations of R

n induced by a one-parameter family of diagonal matrices of the
form diag(2b1t , . . . ,2bnt ), bj > 0. Calderón and Torchinsky [4, 5] have developed the
so-called parabolic Hardy spaces induced by certain one-parameter dilation groups,
which were further extended by Folland and Stein [12]. Bownik [1, 2] and Bownik
and Ho [3] have considered dilations on R

n induced by the powers Aj of an expansive
matrix A with eigenvalues λ satisfying |λ| > 1, and applied them to the development
of anisotropic Besov and Triebel–Lizorkin spaces.

Yet another line of generalization of the classical spaces originated from the work
of Coifman and Weiss [6, 7], where R

n was replaced by the more general spaces
of homogeneous type. Spaces on homogeneous spaces have been further developed
by several authors, in particular, more recently by Y. Han and his coauthors, see,
e.g., [13].

In this article we introduce and explore a new more general setting for anisotropic
Besov spaces (homogeneous and inhomogeneous) on R

n of any positive smoothness
that allows a lot more flexibility in dealing with anisotropic features of functions, e.g.,
singularities along curves and lower dimensional smooth manifolds. Our approach
is based on multilevel discrete (or continuous) anisotropic dilations of R

n, where
only mild conditions are imposed on the dilation matrices which still allow them to
rapidly change from point to point and in depth, from level to level. These dilations
are much more general than the dilations mentioned above which are shift invariant
and where the different levels are obtained from powers of the same matrix or from
a one-parameter family of matrices. Instead of “dilations” we shall use the more
convenient geometric term “ellipsoid cover of R

n.”
As will be shown, R

n equipped with a discrete or continuous ellipsoid cover be-
comes a homogeneous space, and therefore the general theory of Besov spaces on
homogeneous spaces applies. However, this theory only allows one to handle Besov
and Triebel–Lizorkin spaces of smoothness α with |α| < ε, where ε > 0 is sufficiently
small.
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Although very general, our setup allows us to overcome this latter principal lim-
itation. For a given discrete multilevel ellipsoid cover Θ of R

n (see Sect. 2.1), we
define the B-spaces Ḃα

pq(Θ) and Bα
pq(Θ) via local polynomial approximation on all

ellipsoids from Θ . This approach enables us indeed to develop the anisotropic Besov
spaces (B-spaces) Ḃα

pq and Bα
pq for arbitrarily large α > 0 which is the principal dif-

ference between our theory and the general theory of Besov spaces on homogeneous
spaces. Our B-spaces can be viewed as a generalization of the classical Besov spaces
as well as the anisotropic Besov spaces studied by Bownik [2] with weight 1 (see
Sect. 5.3). For the theory of classical Besov spaces we refer the reader to [16, 18, 19].

The highly anisotropic locally and scalewise varying structure of the dilations con-
sidered here prevents us from using Fourier analysis techniques; our approach relies
on algebraic polynomials instead. A key ingredient in our theory is a certain two-
level-split decomposition of B-spaces. For any given anisotropic cover Θ we con-
struct a multilevel sequence of bases which provide a means for decomposing the
associated B-spaces. The basis elements are compactly supported smooth functions
which are well aligned with the anisotropic space dilations induced by Θ . The two-
level-split decomposition of functions originates from [9], where it is applied in a
regular setup and used for the purpose of preconditioning systems of equations stem-
ming from mesh-free discretizations of elliptic boundary value problems.

Of course, the usefulness of any regularity notion relies on whether it actually con-
veys sufficient information about the intrinsic complexity of corresponding functions,
e.g., expressed in terms of (quasi-)sparse representations with respect to a suitable
system of building blocks. Just as one may expect, we show that the B-spaces Ḃα

ττ (Θ)

with 1/τ = α/n+ 1/p govern the rates of nonlinear m-term Lp-approximation from
the two-level-split bases induced by Θ . This suggests the adaptation of Θ to the ap-
proximand. Accordingly, we would like to put forward here a new adaptive strategy
for measuring the smoothness of functions, namely, by choosing from the collection
of all anisotropic B-spaces, induced by an admissible set of ellipsoid covers of R

n,
one that maximizes the regularity index, viz., the rate of best m-term approximation.

To better illustrate our adaptive approach to smoothness, we discuss two exam-
ples that are very simple but nevertheless reveal some perhaps unexpected effects.
As for the first example, we show in Sect. 7.1 that for a suitable ellipsoid cover Θ ,
the B-space smoothness of the characteristic function of the unit ball B(0,1) ⊂ R

2

in Ḃα
ττ (Θ) is essentially 4/p, while in the corresponding (classical isotropic) Besov

spaces it is 2/p. More strikingly, in the adaptive B-space scales Ḃα
ττ (Θ), the smooth-

ness of the characteristic function of any square Q ⊂ R
2 is arbitrarily high, i.e., can

be any α > 0, while in the corresponding isotropic Besov spaces it is essentially 2/p

(see Sect. 7.2). However, it is important to note that the cover Θ needed to describe
that level of smoothness depends on α, a fact that has some interesting consequences
worth a brief discussion (see Sect. 7.3). As a consequence, the rates of adaptive m-
term approximation for these model functions from the two-level-split bases are bet-
ter than, e.g., the rates of m-term approximation from wavelets.

Let us finally mention that more special anisotropic B-spaces of technically differ-
ent nature but somewhat similar in spirit have been introduced and used in [10, 14]
(see also [8, 15, 17]). These are B-spaces generated by multilevel nested triangula-
tions and are defined via local piecewise polynomial approximation. They are specif-
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ically designed for the purpose of nonlinear m-term spline approximation, and con-
sequently are much more specialized than the B-spaces of this paper. Moreover, it is
important to note that insisting on hierarchies of nested partitions entails a distinct
lack of flexibility compared to the present approach since, for instance, the succes-
sors of a triangle with a sharp angle will always exhibit angles at least that sharp. Yet
another type of anisotropic Besov spaces has been considered in [11].

The outline of the paper is the following. In Sect. 2 we introduce and give some
basic properties of the continuous and discrete multilevel covers of R

n. In Sect. 3 we
construct the bases induced by discrete multilevel covers of R

n and establish their
stability. In Sect. 4 we utilize the bases from Sect. 3 for the construction of two-level-
split bases and decompositions. In Sect. 5 we define the homogeneous and inhomo-
geneous B-spaces induced by multilevel covers of R

n and establish the equivalence
of various B-norms. Section 6 is devoted to nonlinear m-term approximation from
two-level-split bases. In Sect. 7 we show that the characteristic functions of the unit
ball and any square in R

n have higher adaptive B-space smoothness than their regular
Besov space smoothness. In Appendix we give the proof of the equivalence of several
B-space norms.

Throughout the paper we use the following notation: ‖f ‖p := ‖f ‖Lp(Rn); for a
measurable set E ⊂ R

n, |E| denotes the Lebesgue measure of E, 1E is the character-
istic function of E; Pk denotes the set of all algebraic polynomials in n variables of
total degree ≤ k − 1. The Schwartz class of rapidly decaying C∞ functions on R

n is
denoted by S and its dual by S ′. Positive constants are denoted by c, c1, c∗, . . . and
they may vary at every occurrence; A ∼ B means c1A ≤ B ≤ c2A for some unspeci-
fied but fixed constants c1, c2.

2 Anisotropic Multilevel Ellipsoid Covers of R
n

We begin with some preliminaries. The image of the unit ball B∗ := B(0,1) in R
n

via an affine transform will be called an ellipsoid. For a given ellipsoid θ ⊂ R
n, we

let Aθ be an affine transform such that θ = Aθ(B
∗). Denoting by vθ := Aθ(0) the

“center” of θ , we have

Aθ(x) = Mθx + vθ , (2.1)

where Mθ is a nonsingular n × n matrix.
It will be convenient for us to use the singular value decomposition of matrices,

that is, any nonsingular real matrix M ∈ R
n×n can be represented in the form M =

UDV , where the matrices U and V are n × n orthogonal matrices and D is diagonal
and D = diag (σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn > 0. It is easy to see that
σ 2

1 ≥ · · · ≥ σ 2
n are the eigenvalues of MT M and σ−2

1 ≤ · · · ≤ σ−2
n are the eigenvalues

of (M−1)T M−1. Hence

‖M‖	2→	2 = σ1 and
∥
∥M−1

∥
∥

	2→	2
= 1/σn. (2.2)

These norms have a clear geometric meaning. Thus if Mθ is as in (2.1), then diam θ =
2‖Mθ‖	2→	2 .
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2.1 Discrete Ellipsoid Covers (Dilations) of R
n

The notion of a discrete multilevel ellipsoid cover of R
n we introduce and explore

here will play a central role in this study.

Definition 2.1 We call

Θ =
⋃

m∈Z

Θm

a discrete multilevel ellipsoid cover of R
n if the following conditions are obeyed,

where a0, a1, . . . , a8, and N1 are positive constants:

(a) Every level Θm (m ∈ Z) consists of ellipsoids θ such that

a12−a0m ≤ |θ | ≤ a22−a0m

and Θm is a cover of R
n, i.e., R

n =⋃

θ∈Θm
θ .

(b) For each θ ∈ Θ let Aθ be an affine transform, associated with θ , of the form

Aθ(x) = Mθx + vθ , Mθ ∈ R
n×n,

such that θ = Aθ(B
∗) and vθ := A(0) is the center of θ . We postulate that for any

θ ∈ Θm (m ∈ Z) and θ ′ ∈ Θm+ν (ν ≥ 0) with θ ∩ θ ′ = ∅, we have

a32−a4ν ≤ 1/
∥
∥M−1

θ ′ Mθ

∥
∥

	2→	2
≤ ∥
∥M−1

θ Mθ ′
∥
∥

	2→	2
≤ a52−a6ν. (2.3)

(c) Each ellipsoid θ ∈ Θm can be intersected by at most N1 ellipsoids from Θm.
(d) For every x ∈ R

n and m ∈ Z there exists θ ∈ Θm such that x ∈ θ�, where θ� is
the dilated version of θ by a factor of a7 < 1, i.e., θ� = Aθ(B(0, a7)).

(e) If θ ∩ η = ∅ with θ ∈ Θm and η ∈ Θm ∪ Θm+1, then |θ ∩ η| > a8|η|.

Remarks 1. Any discrete multilevel ellipsoid cover Θ of R
n depends on a collection

of parameters (which are not necessarily independent) that contain all constants ap-
pearing in conditions (a)–(e) of Definition 2.1. We shall denote this set of parameters
by p(Θ).

2. It is important to note that the set of all ellipsoid covers of R
n is invariant under

affine transforms. More precisely, the images A(θ) of all ellipsoids θ ∈ Θ of a given
cover Θ of R

n via an affine transform A of the form A(x) = Mx +v with |detM| = 1
form an ellipsoid cover of R

n with the same parameters as the parameters of Θ . If
|detM| = 1, then only the constants a1 and a2 in condition (a) should be changed
accordingly.

3. Condition (b) indicates that if θ ∩ θ ′ = ∅, then the ellipsoids θ and θ ′ cannot
change uncontrollably in shape and orientation when they are from close levels. More
precisely, set M := M−1

θ Mθ ′ and let M = UDV be the singular value decomposition
of M , where U and V are orthogonal matrices, and D = diag (σ1, σ2, . . . , σn) is di-
agonal with σ1 ≥ σ2 ≥ · · · ≥ σn > 0. As in (2.2),

‖M‖	2→	2 = σ1 and
∥
∥M−1

θ ′ Mθ

∥
∥

	2→	2
= ∥
∥M−1

∥
∥

	2→	2
= 1/σn.
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Therefore, condition (b) is equivalently expressed as

a32−a4ν ≤ σn ≤ · · · ≤ σ1 ≤ a52−a6ν. (2.4)

This condition also has a clear geometric interpretation: The affine transform A−1
θ ,

which maps the ellipsoid θ onto the unit ball B∗, maps the ellipsoid θ ′ onto an ellip-
soid with semi-axes σ1, σ2, . . . , σn satisfying (2.4).

4. Evidently the sign of ν in condition (b) can be reversed. Namely, condition (b)
is equivalent to the following condition:

(b′) If θ ∈ Θm and θ ′ ∈ Θm−ν (ν ≥ 0), with θ ∩ θ ′ = ∅, then

(1/a5)2
a6ν ≤ 1/

∥
∥M−1

θ ′ Mθ

∥
∥

	2→	2
≤ ∥
∥M−1

θ Mθ ′
∥
∥

	2→	2
≤ (1/a3)2

a4ν . (2.5)

Therefore, if M := M−1
θ Mθ ′ = UDV with D = diag (σ1, σ2, . . . , σn) as above, then

(2.5) is equivalent to

(1/a5)2
a6ν ≤ σn ≤ · · · ≤ σ1 ≤ (1/a3)2

a4ν. (2.6)

5. We need to interrelate the semi-axes of intersecting ellipsoids from Θ . For a
given θ ∈ Θ , set

σmax(θ) := ‖Mθ‖	2→	2 and σmin(θ) := ∥
∥M−1

θ

∥
∥

−1
	2→	2

. (2.7)

These are the maximum and minimum semi-axes of the ellipsoid θ .

Lemma 2.2 If θ ∈ Θm, θ ′ ∈ Θm+ν , ν ≥ 0, and θ ∩ θ ′ = ∅, then

a32−a4νσmax(θ) ≤ σmax(θ
′) ≤ a52−a6νσmax(θ) (2.8)

and

a32−a4νσmin(θ) ≤ σmin(θ
′) ≤ a52−a6νσmin(θ). (2.9)

Proof Let us abbreviate ‖ · ‖ := ‖ · ‖	2→	2 . By property (b) of Θ we have

‖Mθ ′ ‖ ≤ ‖Mθ‖ · ∥∥M−1
θ Mθ ′

∥
∥≤ a52−a6ν‖Mθ‖,

and by (b′),

‖Mθ‖ ≤ ∥
∥M ′

θ

∥
∥ · ∥∥M−1

θ ′ Mθ

∥
∥≤ (1/a3)2

a4ν‖Mθ ′ ‖,
which yield (2.8). One similarly proves (2.9). �

6. Condition (b) can be replaced by the following slightly stronger but more con-
venient condition:

(b′′) For any θ, θ ′ ∈ Θm (m ∈ Z) with θ ∩ θ ′ = ∅,

a3 ≤ 1/
∥
∥M−1

θ ′ Mθ

∥
∥

	2→	2
≤ ∥
∥M−1

θ Mθ ′
∥
∥

	2→	2
≤ a5, a3 ≤ 1 ≤ a5, (2.10)
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and for any θ ∈ Θm and θ ′ ∈ Θm+1 (m ∈ Z) with θ ∩ θ ′ = ∅,

2−a4 ≤ 1/
∥
∥M−1

θ ′ Mθ

∥
∥

	2→	2
≤ ∥
∥M−1

θ Mθ ′
∥
∥

	2→	2
≤ 2−a6 . (2.11)

It is readily seen that this condition implies condition (b).
7. By property (b′) (which is equivalent to (b)) it follows that the ellipsoids of

Θm expand to R
n as m → −∞; more precisely, if (θm)m≤0 is a sequence of ellip-

soids θm ∈ Θm which contain a fixed point x ∈ R
n, then

⋃

m≤0 θm = R
n. In the other

direction, property (b) implies that for any compact K ⊂ R
n,

max{diam θ : θ ∈ Θm,θ ∩ K = ∅} → 0 as m → ∞.

8. Property (d) indicates that every point x ∈ R
n is “well covered” by at least one

ellipsoid from every level Θm.
9. Condition (e) may seem restrictive, but the next observation shows that this is

not the case.

Lemma 2.3 Suppose Θ is a discrete multilevel ellipsoid cover of R
n satisfying con-

ditions (a)–(d) above. Then there exists a discrete multilevel ellipsoid cover Θ̃ of
R

n with properties (a)–(e) (with possibly different constants a1 and a7) obtained by
dilating every ellipsoid θ ∈ Θ by a factor rθ satisfying (a7 + 1)/2 ≤ rθ ≤ 1.

Proof The idea is that slight dilations of each θ ∈ Θ , one at a time, allows one to
realize in addition (e). In fact, evidently, there exist constants N0 and N2 depending
on the parameters of Θ such that each ellipsoid θ ∈ Θm (m ∈ Z) can be intersected
by at most N2 ellipsoids from Θm+1 and by at most N0 ellipsoids from Θm−1. Now
set N := 2(N0 + N1 + N2) + 1, b := (a7 + 1)/2, and δ := (1 − b)/N .

For a fixed θ ∈ Θm, set θj := Aθ(B(0, b + jδ)), j = 0,1, . . . ,N . So, θj is the
dilated version of θ by a factor of b + j (1 − b)/N = (1 − j

N
)b + j

N
. Now let Sj :=

θj \ θj−1, j = 1,2, . . . ,N , be the shells induced by the ellipsoids θj . Also, set S0 :=
θ0 and SN+1 := R

n \ θ . We shall call a shell Sj (1 ≤ j ≤ N ) a “bad shell” if there
is an ellipsoid η ∈ Θm−1 ∪ Θm ∪ Θm+1, η = θ , such that η ∩ Sj = ∅ and either
η ∩ Sj−1 = ∅ or η ∩ Sj+1 = ∅. It is readily seen that a single ellipsoid η can spoil
at most two shells Sj and hence at most 2(N0 + N1 + N2) shells can be spoiled by
ellipsoids from Θm−1 ∪Θm ∪Θm+1. Since there are N = 2(N0 +N1 +N2)+1 shells
at least one shell, say, Sj0 (1 ≤ j0 ≤ N ), will be “good.” Then it is easy to see that
if η ∩ θj0 = ∅ for some η ∈ Θm−1 ∪ Θm ∪ Θm+1, then |θj0 ∩ η| ≥ a8|η| for some
constant a8 > 0 depending only on the parameters of Θ . Thus the dilated version θj0

of θ has the desired property.
One completes the proof of this proposition inductively by processing as above all

ellipsoids from Θ ordered in a sequence. The rule is that once an ellipsoid from Θ

has been processed it will never be touched again. �

Examples A first class of examples is based on the so-called Strong Locally Reg-
ular (SLR) multilevel triangulations that have been introduced in [14]. They pro-
vide another means for constructing discrete ellipsoid covers of R

2. Given an SLR-
triangulation T , one considers for each triangle � ∈ T the minimum area circum-
scribed ellipse. Then one dilates the resulting ellipses by a sufficiently large factor
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>1 to obtain a discrete ellipse cover of R
2. The main advantage of ellipse covers

over SLR-triangulations is that the latter are nested, which makes them less flexible
and harder to construct.

It will be shown in Lemma 2.9 how to derive discrete multilevel covers with the
above properties from so-called continuous or semi-continuous ellipsoid covers that
will be introduced next and are easier to construct. Any example of such a cover
therefore provides an example for the discrete setting as well.

2.2 Continuous Covers and Quasi-Distance

As mentioned before, the essential developments of this paper are based on the above
discrete multilevel covers. Nevertheless, we pause to introduce next two variants,
namely continuous and semi-continuous covers, for the following reasons. First,
while on the one hand these variants are easier to construct, as reflected by sev-
eral examples given below, we shall give, on the other hand, a general mechanism
that generates from any continuous cover a discrete one satisfying properties (a)–(e).
In this sense these relaxed notions simplify the realization of concrete examples of
discrete covers. Second, they will later be used for the regularity analysis of the ex-
amples in Sect. 7. Moreover, we shall see that (all versions of) covers give rise to
quasi-distances, which allows us to relate the present results to previously known
results concerning Besov spaces on homogeneous spaces.

Definition 2.4 We say that

Θ :=
⋃

t∈R

Θt

is a continuous multilevel ellipsoid cover of R
n or a continuous system of dilations of

R
n if it satisfies the following conditions, where a0, . . . , a6 are positive constants:

(a) For every v ∈ R
n and t ∈ R there exists an ellipsoid θ(v, t) ∈ Θt and an affine

transform Av,t such that

a12−a0t ≤ ∣
∣θ(v, t)

∣
∣≤ a22−a0t ,

θ(v, t) = Av,t (B
∗), and Av,t is of the form Av,t (x) = Mv,tx + v, where Mv,t is

a nonsingular n × n matrix.
(b) For any v, y ∈ R

n, t ∈ R, and s > 0, if θ(v, t) ∩ θ(y, t + s) = ∅, then

a32−a4s ≤ 1/
∥
∥M−1

y,t+sMv,t

∥
∥

	2→	2
≤ ∥
∥M−1

v,t My,t+s

∥
∥

	2→	2
≤ a52−a6s . (2.12)

For continuous covers also the scale is allowed to vary continuously. The following
variant takes us halfway towards the fully discrete setting introduced in the previous
setting.

Definition 2.5 We call

Θ =
⋃

m∈Z

Θm
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a multilevel semi-continuous ellipsoid cover of R
n if the following conditions are

obeyed, where a0, . . . , a6 are positive constants:

(a) For every v ∈ R
n and m ∈ Z there exists an ellipsoid θ(v,m) ∈ Θm and an affine

transform Av,m such that

a12−a0m ≤ ∣
∣θ(v,m)

∣
∣≤ a22−a0m,

θ(v,m) = Av,m(B∗), and Av,m is of the form Av,m(x) = Mv,mx+v, where Mv,m

is a nonsingular n × n matrix.
(b) For any v, y ∈ R

n, m ∈ Z, and ν > 0, if θ(v,m) ∩ θ(y,m + ν) = ∅, then

a32−a4ν ≤ 1/
∥
∥M−1

y,m+νMv,m

∥
∥

	2→	2
≤ ∥
∥M−1

v,mMy,m+ν

∥
∥

	2→	2
≤ a52−a6ν. (2.13)

It is readily seen that any continuous ellipsoid cover Θ of R
n induces a semi-

continuous ellipsoid cover by defining Θm as Θt with t = m.

Examples (i) The regular cover of R
n consisting of all balls in R

n is the simplest
example of a continuous ellipsoid (ball) cover of R

n.
(ii) The one-parameter family of diagonal dilation matrices

Dt = diag
(

2−tb1,2−tb2, . . . ,2−tbn
)

, bj > 0, j = 1, . . . , n,

apparently induces a continuous ellipsoid cover of R
n.

(iii) In [4, 5] Calderón and Torchinsky developed the so-called parabolic Hardy
spaces generated by continuous dilation matrices associated with a continuous semi-
group At , t > 0, Ast := AtAs of affine transforms on R

n leaving the origin fixed and
satisfying

tα ≤ ‖At‖	2→	2 ≤ tβ, t ≥ 1,

where 1 ≤ α ≤ β < ∞. One can easily see that any such semigroup of matrices gives
rise to a continuous ellipsoid cover (dilation) of R

n.
(iv) Consider an arbitrary n×n real matrix A with eigenvalues λ satisfying |λ| > 1.

Then it is easy to see that the affine transforms Av,m(x) := A−mx + v, v ∈ R
n,

m ∈ Z, define a semi-continuous ellipsoid cover (dilations) in the sense of Defini-
tion 2.5. These particular kinds of dilations are used in [1–3] for the development of
anisotropic Hardy, Besov, and Triebel–Lizorkin spaces.

(v) In Sect. 7, we construct two nontrivial continuous covers of R
2. These are

examples of anisotropic ellipsoid covers where the ellipsoids change rapidly from
point to point and in depth.

In the following we first show that a quasi-distance is naturally associated with any
continuous or semi-continuous or discrete ellipsoid covers of R

n. Second, we prove
that R

n equipped with a distance of this sort and the Lebesgue measure becomes a
space of homogeneous type. Thus the anisotropic Besov spaces we develop in this
paper are in particular spaces on homogeneous type spaces.

We begin by recalling the definition of a quasi-distance on a set X = ∅: A map
ρ : X × X → [0,∞) is called a quasi-distance on X if for any x, y, z ∈ X:
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(i) ρ(x, y) = 0 ⇐⇒ x = y,
(ii) ρ(y, x) = ρ(x, y),

(iii) ρ(x, z) ≤ K(ρ(x, y) + ρ(y, z)) with K ≥ 1.

Definition 2.6 Assuming that Θ is a continuous or semi-continuous or discrete el-
lipsoid cover of R

n, we define

ρ(x, y) := min
{|θ | : θ ∈ Θ and x, y ∈ θ

}

, x, y ∈ R
n. (2.14)

Note that in order to cover the standard Euclidean distance we should take the nth
root of ρ(x, y) defined above. But since this would only change the constant K in
(iii) while adding to technicalities, we prefer to work with the above version.

Proposition 2.7 For any continuous, semi-continuous or discrete cover Θ of R
n the

map ρ : R
n × R

n → [0,∞) defined above is a quasi-distance on R
n.

We shall prove this proposition only in the case when Θ is a discrete cover of R
n.

The proof when Θ is a continuous or semi-continuous cover is similar or even easier.
The claim will follow from the following lemma:

Lemma 2.8 There is an integer s∗ ≥ 1 depending only on p(Θ) such that for any
ellipsoids θ ∈ Θm (m ∈ Z) and θ ′ ∈ Θm+ν (ν ≥ 0) with θ ∩ θ ′ = ∅ and any j ≥ s∗
there exists an ellipsoid ηj ∈ Θm−j such that θ ∪ θ ′ ⊂ ηj .

Proof Let ω′ := A−1
θ (θ ′), and recall that A−1

θ (θ) = B∗. By property (b) of Θ it fol-
lows that

diamω′ = 2
∥
∥M−1

θ Mθ ′
∥
∥

	2→	2
≤ 2a52−a0ν ≤ 2a5,

and hence

A−1
θ (θ ∪ θ ′) = B∗ ∪ ω′ ⊂ B(0,1 + 2a5). (2.15)

By property (d) of Θ for any j ≥ 1 there exists θj ∈ Θm−j such that vθ ∈ θ�
j ,

where θ�
j := Aθj

(B(0, a7)) is the dilated θj by a factor of a7 < 1. Set ωj := A−1
θ (θj ),

and let ω�
j be the dilated ωj by a factor of a7. Also, denote by σ1 ≥ σ2 ≥ · · · ≥ σn

the semi-axes of the ellipsoid ωj . By property (b′) (see (2.6)), which is equivalent to
property (b), it follows that

σn ≥ (1/a5)2
a6j . (2.16)

On the other hand, by a simple geometric property of ellipsoids,

dist
(

ω�
j , ∂ωj

)= (1 − a7)σn,

where dist(E1,E2) denotes the Euclidean distance between the sets E1,E2 ⊂ R
n.

From this and (2.16) it follows that

dist
(

ω�
j , ∂ωj

)≥ 1 − a7

a5
2a6j . (2.17)
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Now choose s∗ ≥ 1 so that

1 − a7

a5
2a6s∗ ≥ 1 + 2a5. (2.18)

Let j ≥ s∗. Since vθ ∈ θ�
j , then 0 ∈ ω�

j , and using (2.15), (2.17) and (2.18) we

infer A−1
θ (θ ∪ θ ′) ⊂ ωj , which implies θ ∪ θ ′ ⊂ Aθ(ωj ) =: ηj . This completes the

proof. �

Proof of Proposition 2.7 Remark 7 gives property (i). Property (ii) is obvious by the
definition of ρ(·, ·). To show (iii), let x, y, z ∈ R

n, and assume that ρ(x, z) = |θ |,
x, z ∈ θ , and ρ(z, y) = |θ ′|, z, y ∈ θ ′, where θ ∈ Θm and θ ′ ∈ Θm+ν . Without loss
of generality we may assume that ν ≥ 0. We now apply Lemma 2.8 to conclude that
there exists an ellipsoid η ∈ Θm−s∗ such that θ ∪ θ ′ ⊂ η, and hence

ρ(x, y) ≤ |η| ≤ a22−a0(m−s∗) ≤ (a2/a1)2
a0s∗(|θ | + |θ ′|)≤ K

(

ρ(x, z) + ρ(z, x)
)

.�

The following observation justifies exploiting the greater comfort of continuous or
semi-continuous covers:

Lemma 2.9 For every continuous or semi-continuous ellipsoid cover Θ of R
n there

is a discrete ellipsoid cover Θ̂ such that each ellipsoid θ ∈ Θ̂ is obtained from an
ellipsoid in Θ by dilation by a factor rθ obeying (a7 + 1)/2 ≤ rθ ≤ 1.

Furthermore, the quasi-distances ρ(·, ·) and ρ̂(·, ·) induced by Θ and Θ̂ are equiv-
alent, i.e., ρ(x, y) ∼ ρ̂(x, y) for x, y ∈ R

n.

Proof We may assume that Θ is a semi-continuous ellipsoid cover of R
n, for other-

wise we construct one from the given continuous cover.
We first construct for every m ∈ Z a countable set Θ̂m ⊂ Θm satisfying conditions

(c)–(d) of Definition 2.1. This can be done, e.g., in two steps as follows: We first
choose countably many ellipsoids from Θm so that condition (d) is fulfilled, and
then inductively remove from this collection one-by-one all ellipsoids which do not
destroy condition (d). After that condition (c) will be automatically fulfilled with
some constant N1 because of condition (b) on Θ . Conditions (a)–(b) on Θ̂m will be
inherited from Θm.

Secondly, Lemma 2.3 enables us to correct {Θ̂m} so that condition (e) is obeyed
as well.

The equivalence of ρ(·, ·) and ρ̂(·, ·) is an easy consequence of the above con-
struction. �

Proposition 2.10 Let Θ be a continuous or semi-continuous or discrete ellipsoid
cover of R

n, and set Bρ(x, r) := {y ∈ R
n : ρ(x, y) < r}. Then

∣
∣Bρ(x, r)

∣
∣∼ r, x ∈ R

n, r > 0, (2.19)

where the constants of equivalence depend only on p(Θ). Therefore, the Lebesgue
measure on R

n is a doubling measure with respect to the quasi-distance ρ(·, ·), i.e.,
∣
∣Bρ(x,2r)

∣
∣≤ c

∣
∣Bρ(x, r)

∣
∣, x ∈ R

n, r > 0. (2.20)
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In other words, R
n equipped with the distance ρ(·, ·) defined by Definition 2.14 and

the Lebesgue measure is a space of homogeneous type.

Proof We only consider the case when ρ(·, ·) is generated by a discrete ellipsoid
cover of R

n. We first prove that |Bρ(x, r)| ≥ cr . Choose m so that a22−a0m < r ≤
a22−a0(m−1). There exists θ ∈ Θm such that x ∈ θ , and hence by property (a) of Θ ,

a12−a0m ≤ |θ | ≤ a22−a0m < r.

From this and the definition of ρ(·, ·) it follows that θ ⊂ Bρ(x, r), and hence
∣
∣Bρ(x, r)

∣
∣≥ |θ | ≥ a12−a0m ≥ (a1/a2)2

−a0r = cr.

In the other direction, note first that

Bρ(x, r) =
⋃

θ∈Θ:x∈θ,|θ |<r

θ.

Suppose θ ∈ Θm is of minimum level such that x ∈ θ and |θ | < r . Let θ ′ ∈ Θ be
any ellipsoid such that x ∈ θ ′ and |θ ′| < r . Then θ ′ ∈ Θm+l for some l ≥ 0. Setting
ω′ := A−1

θ (θ ′), one has, by property (b) of Θ ,

diamω′ = 2
∥
∥M−1

θ Mθ ′
∥
∥

	2→	2
≤ 2a5.

Therefore, A−1
θ (Bρ(x, r)) ⊂ B(0,2a5), and hence |A−1

θ (Bρ(x, r))| ≤ c, c = c(n, a5).
This leads to

∣
∣Bρ(x, r)

∣
∣≤ c|detMθ | = c|θ | < cr. �

3 Construction of a Multilevel System of Bases

Given a discrete ellipsoid cover Θ , we shall first construct for each level m ∈ Z a sta-
ble basis Φm whose elements are smooth functions supported on the ellipsoids of Θm.
Second, we shall utilize the bases {Φm} for the introduction of maps which locally
preserve polynomials.

3.1 Coloring the Ellipsoids in Θ

We begin by splitting the ellipsoid cover Θ into no more than 2N1 disjoint subsets
(colors) {Θν}2N1

ν=1 so that for any m ∈ Z neither two ellipsoids θ ′, θ ′′ ∈ Θm ∪ Θm+1
with θ ′ ∩ θ ′′ = ∅ are of the same color. Indeed, using property (c) of Θ it is easy to
color any level Θm by using no more than N1 colors. So, we use at most N1 colors to
color the ellipsoids in {Θ2j }j∈Z and, further, at most N1 colors to color the ellipsoids
in {Θ2j+1}j∈Z.

Thus, we may assume that we have the following disjoint splitting:

Θ =
2N1⋃

ν=1

Θν and Θ2j =
N1⋃

ν=1

Θν
2j , Θ2j+1 =

2N1⋃

ν=N1+1

Θν
2j+1, j ∈ Z, (3.1)

where if θ ′ ∈ Θ
ν1
m1 , θ ′′ ∈ Θ

ν2
m2 with |m1 − m2| ≤ 1, and θ ′ ∩ θ ′′ = ∅, then ν1 = ν2.
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3.2 Definition of Single-Level Bases

We first introduce 2N1 smooth piecewise polynomial bumps associated with the col-
ors from above. For fixed positive integers L and k (L ≥ k) we define

φν(x) := (

1 − |x|2)L+νk

+ , ν = 1,2, . . . ,2N1, x+ := max{x,0}. (3.2)

Notice that φν ∈ CL+νk−1 ⊂ CL.

Remark 3.1 The bumps φν can be modified to be C∞ functions. To this end, let
h ∈ C∞(Rn) be such that supph = B(0,1), h ≥ 0, and

∫

Rn h = 1. Denote hδ(x) :=
δ−nh(δ−1x). Then for 0 < δ < 1 the bumps φ∗

ν := φν ∗ hδ apparently have the prop-
erties: φ∗

ν ∈ C∞, φ∗
ν is a polynomial of degree exactly 2(L + νk) on B(0,1 − δ),

and suppφ∗
ν = B(0,1 + δ). Now the bumps {φ∗

ν }, dilated by a factor of 1 + δ with δ

sufficiently small (depending on the parameters of Θ), can be successfully used in
place of {φν}.

For any θ ∈ Θ we let Aθ denote the affine transform from Definition 2.1 such that
Aθ(B

∗) = θ (recall B∗ := B(0,1)) and set

φθ := φν ◦ A−1
θ if θ ∈ Θν, 1 ≤ ν ≤ 2N1. (3.3)

In a standard way we introduce mth level partitions of unity by defining for any
θ ∈ Θm

ϕθ := φθ
∑

θ ′∈Θm
φθ ′

. (3.4)

By the properties of the ellipsoids from Θ it follows that
∑

θ∈Θm

ϕθ (x) = 1 and 0 < c1 ≤
∑

θ∈Θm

φθ (x) ≤ c2 for x ∈ R
n. (3.5)

Also, for any multi-index β = (β1, . . . , βn) with |β| = β1 + · · ·+βn ≤ L, and θ, θ ′ ∈
Θm such that θ ∩ θ ′ = ∅,

∥
∥∂β(ϕθ ◦ Aθ ′)

∥
∥∞ ≤ c, (3.6)

where c depends only on L and p(Θ).
Let

{

Pβ : |β| ≤ k − 1
}

, where degPβ = |β|, (3.7)

be an orthonormal basis in L2(B
∗) for the space Pk of all polynomials in n variables

of total degree k − 1. Since ‖Pβ‖L2(B
∗) = 1, then ‖Pβ‖L∞(B∗) ∼ 1, and hence

‖Pβφν‖L2(B
∗) ∼ ‖Pβφν‖L∞(B∗) ∼ 1. (3.8)

For any θ ∈ Θ and |β| < k we define

Pθ,β := |θ |−1/2Pβ ◦ A−1
θ (3.9)
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and

gθ,β := ϕθPθ,β . (3.10)

Notice that ‖gθ,β‖2 ∼ 1, and in general ‖gθ,β‖p ∼ |θ |1/p−1/2 (0 < p ≤ ∞); also
gθ,β ∈ CL. Now we define the mth level basis Φm by

Φm := {

gθ,β : θ ∈ Θm, |β| ≤ k − 1
}

(3.11)

and set

Sm := span(Φm), (3.12)

i.e., Sm is the set of all functions f on R
n of the form

f (x) =
∑

θ∈Θm, |β|<k

cθ,βgθ,β(x), x ∈ R
n, (3.13)

where {cθ,β} is an arbitrary collection of real numbers. Notice that the sum in (3.13)
is finite for any x ∈ R

n and hence well defined.

Remark 3.2 (a) By the definition of gθ,β it readily follows that Pk ⊂ Sm.
(b) Φm is linearly independent, i.e., if

∑

θ∈Θm,|β|<k cθ,βgθ,β = 0 a.e., then cθ,β = 0
∀θ ∈ Θm, ∀|β| < k. More importantly, Φm is in a sense locally linearly independent
and Lp stable, which will be established in the next theorem.

Theorem 3.3 Any function f ∈ Sm has a unique representation

f (x) =
∑

θ∈Θm,|β|<k

〈f, g̃β,θ 〉gθ,β(x), (3.14)

where for every x ∈ R
n the sum is finite and the functions g̃β,θ have the following

properties: For every θ ∈ Θm there exists an ellipsoid Bθ := Aθ(B
∗
θ ) ⊂ θ for some

ball B∗
θ ⊂ B∗ with |Bθ | ∼ |θ | such that for 0 < p ≤ ∞,

〈gθ ′,β ′ , g̃θ,β〉 = δθ,θ ′δθ,θ ′ , supp g̃θ,β ⊂ Bθ , ‖g̃θ,β‖p ∼ |θ |1/p−1/2. (3.15)

Moreover, if f ∈ Sm ∩ Lp , 0 < p ≤ ∞, and f =∑

θ∈Θm,|β|<k cθ,βgθ,β , then

‖f ‖p ∼
(

∑

θ∈Θm, |β|<k

‖cθ,βgθ,β‖p
p

)1/p

, (3.16)

with the obvious modification when p = ∞. Here all constants of equivalence depend
only on p(Θ), L, p, and k.

Proof We first construct the balls B∗
θ ⊂ B∗. Fix θ ∈ Θm (m ∈ Z) and let Xθ be the

set of all θ ′ ∈ Θm such that θ ′ ∩ θ = ∅. Define

X ∗
θ := {

A−1
θ (θ ′) : θ ′ ∈ Xθ

}

.
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By the properties of Θ , for any η ∈ X ∗
θ we have |η ∩B∗| ≥ a8|B∗| = c > 0, and there

exist balls B1, B2 such that B1 ⊂ η ⊂ B2 and |B1| ∼ |B2| ∼ 1. From this and because
#X ∗

θ ≤ N1 it follows that there exists a ball B∗
θ ⊂ B∗ such that |B∗

θ | ∼ 1, and for each
η ∈ X ∗

θ either B∗
θ ⊂ η or B∗

θ ∩ η = ∅. Define Bθ := Aθ(B
∗
θ ).

Denote by Yθ the set of all θ ′ ∈ Xθ such that Bθ ⊂ θ ′, and set

Fθ := {

g�
θ ′,β := gθ ′,β1Bθ : θ ′ ∈ Yθ , |β| < k

}

.

It is an important observation that the set of functions Fθ is linearly independent.
Indeed, since all ellipsoids θ ′ ∈ Yθ contain Bθ , every two of them have distinct colors.
Thus, if θ ′ ∈ Yθ and θ ′ ∈ Θ

νj
m for some 1 ≤ νj ≤ 2N1, then φθ ′Pθ ′,β ′ is a polynomial

of degree exactly L+νj k+|β ′| on Bθ and L+νj k ≤ L+νj k+|β ′| < L+νj (k+1).
Consequently, the functions {φθ ′Pθ ′,β1Bθ : θ ′ ∈ Yθ , |β| < k} are linearly independent
on Bθ and hence Fθ is linearly independent.

Define g∗
θ ′,β := |θ |1/2g�

θ ′,β ◦ Aθ . Notice that suppg∗
θ ′,β = B∗

θ and ‖g∗
θ ′,β‖2 ∼

‖g∗
θ ′,β‖∞ ∼ 1. Let

F ∗
θ := {

g∗
θ ′,β : θ ′ ∈ Yθ , |β| < k

}

and �θ := {

λ := (θ ′, β) : θ ′ ∈ Yθ , |β| < k
}

.

As Fθ is linearly independent, F ∗
θ is linearly independent as well. Consequently, the

Gram matrix

Gθ := (〈

g∗
θ ′,β ′ , g∗

θ ′′,β ′′
〉)

(θ ′,β ′),(θ ′′,β ′′)∈�θ

is nonsingular, and hence its inverse

G−1
θ =: (R(θ ′,β ′),(θ ′′,β ′′))(θ ′,β ′),(θ ′′,β ′′)∈�θ

exists.
We next show that the functions

g̃θ,β :=
∑

(θ ′,β ′)∈�θ

R(θ,β),(θ ′,β ′)g
�
θ ′,β ′ (3.17)

form a dual system to Φm. Indeed, if θ ′ ∈ Θm and θ ′ ∈ Yθ , then θ ′ ∩ θ = ∅, and hence
〈gθ ′,β ′ , g̃θ,β〉 = 0. If θ ′ ∈ Yθ and |β ′| < k, then

〈gθ ′,β ′ , g̃θ,β〉 = |θ |〈gθ ′,β ′ ◦ Aθ, g̃θ,β ◦ Aθ 〉 =
∑

(θ ′′,β ′′)∈�θ

R(θ,β),(θ ′′,β ′′)
〈

g∗
θ ′,β ′ , g∗

θ ′′,β ′′
〉

= (

G−1
θ Gθ

)

(θ,β),(θ ′,β ′) = δ(θ,β),(θ ′,β ′)

as claimed.
Our next and most important step is to show that

|R(θ ′,β ′),(θ ′′,β ′′)| ≤ c ∀(θ ′, β ′), (θ ′′, β ′′) ∈ �θ, (3.18)

where c > 0 depends only on p(Θ), L, and k. We shall use a compactness argument.
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It is readily seen that the set F ∗
θ is a particular case of the general case when we

have a collection of linearly independent functions

F =
{

fj,β := (φνj
Pβ) ◦ Lj

∑J
j=1 φνj

◦ Lj

· 1B0 : j = 1,2, . . . , J, |β| < k

}

,

where B0 ⊂ B∗ is a ball with |B0| ≥ c1 > 0, the indices

1 ≤ ν1 < ν2 < · · · < νJ ≤ N1

are fixed, φν are from (3.2), and Pβ are as in (3.7) with the normalization from
(3.8), i.e., ‖Pβ‖2 = 1, which implies ‖φνPβ‖∞ ∼ 1. We also assume that Lj ,
j = 1,2, . . . , J , are affine transforms of the form Lj (x) = Mjx + vj satisfying the
following conditions:

(i) Mj = UjDjVj , where Uj and Vj are orthogonal n × n matrices,

Dj = diag
(

σ
j

1 , σ
j

2 , . . . , σ
j
n

)

with 0 < c2 ≤ min
	

σ
j
	 ≤ max

	
σ

j
	 ≤ c3, and |vj | ≤ c4;

(ii) 0 < c5 ≤∑J
j=1(φνj

◦ Lj )(x) ≤ c6 for x ∈ B∗;
(iii) Lj(B0) ⊂ B∗.

Let � := {λ := (j,β) : j = 1,2, . . . , J, |β| < k}. Since F is linearly indepen-
dent, the Gram matrix G := (〈fλ,fλ′ 〉)λ,λ′∈� is nonsingular, and hence G−1 =:
(Rλ,λ′)λ,λ′∈� exists.

Each of the affine transforms Lj depends on parameters from a subset, say, K ,
of the set R

n×n × R
n × R

n×n × R
n. The set of all orthogonal n × n matrices is a

compact subset of R
n×n. Hence the parameters of all affine transforms Lj satisfying

condition (i) belong to a compact subset, say, K1 of R
n×n × R

n × R
n×n × R

n. On
the other hand, condition (iii) on Lj can be expressed in the form

max|x−x0|≤a
|Mjx + vj | ≤ 1,

where x0 and a (a ∼ 1) are the center and radius of B0. Therefore, conditions (ii) and
(iii) define K as a closed subset of the compact K1, and hence K is compact.

The entries of G and detG apparently depend continuously on the parameters of
the affine transforms Lj , j = 1,2, . . . , J , and since K is compact,

∣
∣〈fλ,fλ′ 〉∣∣≤ c7 ∀λ,λ′ ∈ � and 0 < c8 ≤ detG ≤ c9.

From this it follows that

|Rλ,λ′ | ≤ c10 ∀λ,λ′ ∈ �, (3.19)

where c10 as well as c7, c8, and c9 depends only on c1, . . . , c6, p(Θ), L, and k. Fi-
nally, using that there are only finitely many possibilities for the indices 1 ≤ ν1 <
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ν2 < · · · < νJ ≤ N1 we conclude that the constant c10 in estimate (3.19) can be se-
lected independently of these indices.

Applying the above claim to the specific case at hand it follows that estimate (3.18)
holds. Then (3.15) follows by (3.17) and (3.18).

The stability properties (3.16) follow by a standard argument from properties
(3.15) of the dual. �

Let us now introduce the more compact notation

�m := {

λ := (θ,β) : θ ∈ Θm, |β| < k
}

, (3.20)

and if λ := (θ,β) we shall denote by θλ and βλ the components of λ.
We denote by Φ̃m := {g̃λ : λ ∈ �m} the dual system introduced in Theorem 3.3,

i.e., 〈gλ′ , g̃λ〉 = δλ,λ′ for λ,λ′ ∈ �m.

3.3 Local Projectors Onto Polynomials

The anisotropic regularity notions we are aiming at will rely on appropriate multilevel
decompositions of functions based on a given ellipsoid cover. These decompositions,
in turn, will be obtained with the aid of appropriate operators which map Lloc

p into
Sm and locally preserve Pk and hence provide good local approximation.

Recall first the definition of local and global moduli of smoothness that are stan-
dard means to describe the quality of approximation. The usual forward differences
of f in direction h ∈ R

n on a set E ⊂ R
n are defined by �hf (x) := �1

hf (x) :=
f (x +h)−f (x) if the line segment [x, x +h] is contained in E and by �hf (x) := 0
otherwise. Inductively, we set

�k
hf (x) := �h

(

�k−1
h f (x)

)

if [x, x + kh] ⊂ E and �k
hf (x) := 0 otherwise.

Then the kth Lp-moduli of smoothness on θ and R
n are defined by

ωk(f, θ)p := sup
h∈Rn

∥
∥�k

hf
∥
∥

Lp(θ)
and ωk(f, t)p := sup

|h|≤t

∥
∥�k

hf
∥
∥

p
, t > 0. (3.21)

The form of the operators will differ somewhat for p ≥ 1 and p < 1.
(a) The case 1 ≤ p ≤ ∞. There are actually a number of ways to construct suitable

operators. While the basic principles are known, some of the estimates to be used
are less familiar. Since these notions are essential for what follows, we sketch the
arguments for the reader’s convenience. A first natural idea is to use the bases {Φm}
and their duals {Φ̃m} to introduce projectors mapping Lloc

p onto the spaces Sm by

Qmf :=
∑

λ∈�m

〈f, g̃λ〉gλ, (3.22)

with g̃λ for λ = (θ,β) from (3.15).
Alternatively, simpler local projectors onto polynomials are obtained as follows:

As in (3.7), suppose {Pβ : |β| ≤ k − 1} is an arbitrary (but fixed) orthonormal basis
for Pk in L2(B

∗). Then for any θ ∈ Θ ,
{

Pθ,β := |θ |−1/2Pβ ◦ A−1
θ : |β| < k

}

(3.23)
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is an orthonormal basis for Pk in L2(θ). Using again our compact notation from
(3.10), we can write gθ,β := ϕθPθ,β , Pλ := Pθ,β, and gλ := gθ,β, λ := (θ,β). We de-
fine

Tmf :=
∑

θ∈Θm

∑

|β|≤k−1

〈f,Pθ,β1θλ〉gθ,β =
∑

λ∈�m

〈f,Pλ1θλ〉gλ, (3.24)

where �m is given by (3.20).
Evidently, Tm is a linear operator which maps Lloc

p into Sm and preserves locally
all polynomials from Pk . To be more specific, setting

θ∗ :=
⋃

{θ ′ ∈ Θm : θ ∩ θ ′ = ∅} for θ ∈ Θm, (3.25)

it is easy to see that if f |θ∗ = P |θ∗ with P ∈ Pk , then Tmf |θ = P |θ .
(b) The case 0 < p < 1. Apparently the above operators are no longer usable when

working in Lp with p < 1. Hence we need to modify them. In fact, the following
construction would cover the full range 0 < p ≤ ∞. For 0 < p ≤ ∞ and a given
ellipsoid θ ∈ Θ , we let Tθ,p : Lp(θ) → Pk|θ be a projector such that

‖f − Tθ,pf ‖Lp(θ) ≤ cωk(f, θ)p, f ∈ Lp(θ), (3.26)

where c > 0 depends only on p(Θ), L, k, and p. Note that Tθ,pf can simply be
defined as the best (or near best) approximation to f from Pk in Lp(θ). Then (3.26) is
a consequence of Whitney’s theorem. Also, Tθ,p can be realized as a linear projector
onto Pk|θ if p ≥ 1 by using, say, the Averaged Taylor polynomials, see e.g. [10]. Of
course, Tθ,p will be a nonlinear operator if p < 1.

We now define the operator Tm,p : Lloc
p → Sm by

Tm,pf :=
∑

θ∈Θm

ϕθ (x)Tθ,pf. (3.27)

Evidently, the operator Tm,p (0 < p ≤ ∞) is a local projector onto Pk (nonlinear if
p < 1) just like Tm. Since Tm,pf ∈ Sm, it can be represented in terms of the basis
functions gλ as

Tm,pf :=
∑

θ∈Θm

∑

|β|<k

bθ,β(f )gθ,β =
∑

λ∈�m

bλ(f )gλ, (3.28)

where bλ(f ) := 〈Tm,pf, g̃λ〉 depends nonlinearly on f if p < 1.
In summary, any T̂m ∈ {Qm,Tm,Tm,p} defined by (3.22), (3.24), or (3.28), has the

representation

T̂mf =
∑

λ∈�m

bλ(f )gλ, where bλ(f ) =
⎧

⎨

⎩

〈f, g̃λ〉 if T̂m = Qm,

〈f,Pλ1θλ〉 if T̂m = Tm,

〈Tm,pf, g̃λ〉 if T̂m = Tm,p.

(3.29)

We next record the most important properties of the operators Qm, Tm, and Tm,p

from above.
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Lemma 3.4 Assume that 0 < p ≤ ∞, and let T̂m be the operator Qm from (3.22)

or Tm from (3.24) or Tm,p from (3.27) if 1 ≤ p ≤ ∞, and T̂m := Tm,p if 0 < p < 1.
Then for f ∈ Lloc

p and θ ∈ Θm (m ∈ Z),

‖T̂mf ‖Lp(θ) ≤ c‖f ‖Lp(θ∗), (3.30)

where θ∗ is from (3.25), and

‖f − T̂mf ‖Lp(θ) ≤ c
∑

θ ′∈Θm:θ ′∩θ =∅
ωk(f, θ ′)p. (3.31)

Furthermore, if f ∈ Lloc
p ,

‖f − T̂mf ‖Lp(K) → 0 as m → ∞ for any compact K ⊂ R
n, (3.32)

and if f ∈ Lp (L∞ := C0),

‖f − T̂mf ‖p → 0 as m → ∞. (3.33)

Proof We first prove (3.30) in the case T̂m = Qm and 1 ≤ p ≤ ∞ (the proof in the
other cases is similar). By (3.22) and (3.15) it follows that

‖Qmf ‖Lp(θ) ≤
∑

λ∈�m:θλ∩θ =∅

∣
∣〈f, g̃λ〉

∣
∣‖gλ‖p

≤
∑

λ∈�m:θλ∩θ =∅
‖f ‖Lp(θλ)‖g̃λ‖p′‖gλ‖p ≤ c

∑

λ∈�m:θλ∩θ =∅
‖f ‖Lp(θλ)

≤ c‖f ‖Lp(θ∗) (1/p + 1/p′ = 1)

as claimed.
The proof of (3.31) relies on a Whitney-type estimate that will be given first. For

a given set E ⊂ R
n, denote by Ek(f,E)p the best Lp(E) approximation of f from

Pk , i.e.,

Ek(f,E)p := inf
P∈Pk

‖f − P ‖Lp(E). (3.34)

We claim now that for 0 < p ≤ ∞ and any θ ∈ Θm,

Ek(f, θ∗)p ≤ cp

∑

θ ′∈Xθ

ωk(f, θ ′)p, (3.35)

where θ∗ is defined in (3.25) and Xθ := {θ ′ ∈ Θm : θ ′ ∩ θ = ∅}. Indeed, by Whit-
ney’s estimate for a ball it follows by an affine transform that Ek(f, θ)p ≤ cωk(f, θ)p
for any ellipsoid θ . For any θ ′ ∈ Xθ , let Pθ ′ ∈ Pk be such that ‖f − Pθ ′ ‖Lp(θ ′) =
Ek(f, θ ′)p . Then using condition (e) on discrete covers we get

‖Pθ ′ − Pθ‖Lp(θ ′) ≤ c‖Pθ ′ − Pθ‖Lp(θ ′∩θ) ≤ c‖f − Pθ ′ ‖Lp(θ ′∩θ) + c‖f − Pθ‖Lp(θ ′∩θ)

≤ c‖f − Pθ ′ ‖Lp(θ ′) + c‖f − Pθ‖Lp(θ) ≤ cωk(f, θ ′)p + cωk(f, θ)p.
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By condition (c) on discrete covers, we know that #Xθ ≤ N1. From this and the
preceding estimate we conclude that

‖f − Pθ‖Lp(θ∗) ≤ c
∑

θ ′∈Xθ

‖f − Pθ‖Lp(θ ′)

≤ c
∑

θ ′∈Xθ

‖Pθ ′ − Pθ‖Lp(θ ′) + c
∑

θ ′∈Xθ

‖f − Pθ ′ ‖Lp(θ ′)

≤ c
∑

θ ′∈Xθ

ωk(f, θ ′)p, (3.36)

which yields (3.35).
To prove (3.31) when T̂m is Qm from (3.22) or Tm from (3.24) and 1 ≤ p ≤ ∞,

we pick P ∗ ∈ Pk so that ‖f − P ∗‖Lp(θ∗) realizes the estimate in (3.35), i.e.,

‖f − P ∗‖Lp(θ∗) ≤ c
∑

θ ′∈Xθ

ωk(f, θ ′)p. (3.37)

Then using that T̂m(P ∗) = P ∗ and (3.30) we get

‖f − T̂mf ‖Lp(θ) ≤ ‖f − P ∗‖Lp(θ) + ∥
∥T̂m(P ∗ − f )

∥
∥

Lp(θ)
≤ c‖f − P ∗‖Lp(θ∗),

and (3.31) follows.
We now establish (3.31) when T̂m := Tm,p . We pick P ∗ ∈ Pk as above, and using

that Tm,pP ∗ = P ∗ and (3.27) we get

P ∗ − Tm,pf = Tm,pP ∗ − Tm,pf =
∑

θ∈Θm

ϕθ (P
∗ − Tθ,pf ).

Hence

‖f − Tm,pf ‖Lp(θ) ≤ c‖f − P ∗‖Lp(θ) + c‖P ∗ − Tm,pf ‖Lp(θ)

≤ c‖f − P ∗‖Lp(θ) + c
∑

θ ′∈Θm: θ ′∩θ =∅
‖P ∗ − Tθ ′,pf ‖Lp(θ ′)

≤ c‖f − P ∗‖Lp(θ)

+ c
∑

θ ′∈Θm: θ ′∩θ =∅

(‖f − P ∗‖Lp(θ ′) + ‖f − Tθ ′,pf ‖Lp(θ ′)
)

,

which combined with (3.26) and (3.37) yields (3.31).
As was already mentioned in Sect. 2.1 (Remark 7), for any compact K ⊂ R

n,

max{diam θ : θ ∈ Θm,θ ∩ K = ∅} → 0 as m → ∞.

This and (3.31) readily imply (3.32), which leads to (3.33). �
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4 Two-Level-Split Bases

In this section we assume that Tj (j ∈ Z) is one of the operators Qj or Tj or Tj,p ,
if p ≥ 1, and Tj := Tj,p , if p < 1, defined in Sect. 3.3. We shall use these operators
and the bases {Φj }j∈Z from (3.11) to define two-level-split bases which will play an
important role in our further development. Further, we shall make use of the following
representation of consecutive level polynomial bases, defined in (3.9):

Pθ,α =
∑

|β|<k

m
θ,η
α,βPη,β, θ ∈ Θj , η ∈ Θj+1. (4.1)

Then since
∑

η∈Θj+1
ϕη = 1, we have

Pθ,α =
∑

η∈Θj+1:θ∩η =∅

∑

|β|<k

m
θ,η
α,βPη,βϕη on θ. (4.2)

This yields

Tj+1f − Tjf =
∑

η∈Θj+1

∑

|β|<k

bη,β(f )Pη,βϕη −
∑

θ∈Θj

∑

|α|<k

bθ,α(f )Pθ,αϕθ

=
∑

θ∈Θj

ϕθ

∑

η∈Θj+1

∑

|β|<k

bη,β(f )Pη,βϕη

−
∑

θ∈Θj

∑

|α|<k

bθ,α(f )
∑

θ∩η =∅

∑

|β|<k

m
θ,η
α,βPη,βϕθϕη

=
∑

η∈Θj+1

∑

θ∈Θj :θ∩η =∅

∑

|β|<k

{

bη,β(f ) −
∑

|α|<k

m
θ,η
α,βbθ,α(f )

}

× Pη,βϕηϕθ , (4.3)

where bλ(f ) is given by (3.29), depending of the choice of Tm. Thus, setting

Mj := {

μ = (η, θ,β) : η ∈ Θj+1, θ ∈ Θj , θ ∩ η = 0, |β| < k
}

, j ∈ Z,

the building blocks in (4.3) have the form

Fμ := Pη,βϕηϕθ , μ = (η, θ,β) ∈ Mj , (4.4)

where Pη,β are defined in (3.9) and ϕη, ϕθ are from (3.4). We define

Fj := {Fμ : μ ∈ Mj } and Wj := span Fj , j ∈ Z. (4.5)

To estimate the Lp-norms of the Fμ we shall make use of the following fact:

Lemma 4.1 The coefficients in (4.1) are uniformly bounded, that is,
∣
∣m

θ,η
α,β

∣
∣≤ c < ∞, (4.6)

where c depend only on p(Θ), L, and k.
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Proof Using (3.9), identity (4.1) can be rewritten as

Pα ◦ A−1
θ ◦ Aη =

∑

|β|<k

m
θ,η
α,βPβ,

and since {Pβ} is an orthonormal basis for Pk in L2(B
∗), we obtain

∣
∣m

θ,η
α,β

∣
∣=

∣
∣
∣
∣

∫

B∗

(

Pα ◦ A−1
θ ◦ Aη

)

(y)Pβ(y) dy

∣
∣
∣
∣
≤ c,

where we have used condition (b) on Θ (see Definition 2.1). �

Note that suppFμ = θ ∩ η if μ = (η, θ,β), and ‖Fμ‖2 ∼ 1, which implies
‖Fμ‖∞ ∼ |θ ∩ η|−1/2 ∼ |η|−1/2 and

‖Fμ‖p ∼ |η|1/p−1/2, 0 < p ≤ ∞. (4.7)

The main result of this section now reads as follows.

Theorem 4.2 Any f ∈ Wj has a unique representation

f =
∑

μ∈Mj

cμ(f )Fμ, (4.8)

where the dual functionals cμ(·) are of the following form: For each μ ∈ Mj , μ =
(η, θ,β), there is an ellipsoid Bμ ⊂ θ ∩η with |Bμ| ∼ |η| and Bμ = Aη(B

∗
μ) for some

ball B∗
μ ⊂ B∗ such that

cμ(f ) = 〈f, F̃μ〉, where supp F̃μ ⊂ Bμ, ‖F̃μ‖p ∼ |η|1/p−1/2. (4.9)

Moreover, if f ∈ Wj and f =∑

μ∈Mj
aμFμ, then

‖f ‖p ∼
(

∑

μ∈Mj

‖aμFμ‖p
p

)1/p

, 0 < p ≤ ∞, (4.10)

with the obvious modification when p = ∞. Here all constants depend only on p(Θ),
L, and k.

The proof of this theorem is a mere repetition of the proof of Theorem 3.3 and
is omitted. We observe, however, that the “coloring” scheme from Sect. 3.1 and the
definition of the single-level bases {Φm} in Sect. 3.2 were specifically designed to
ensure the linear independence of the two-level-split bases.

We are now prepared to derive multi-level decompositions of functions using the
two-level-split bases from above.

Theorem 4.3 For any f ∈ Lloc
p , 0 < p ≤ ∞,

f = T0f +
∑

j≥0

(Tj+1f − Tjf ) =
∑

j≥−1

∑

μ∈Mj

dμ(f )Fμ, (4.11)
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where the convergence is in Lp(K) for all compacta K ⊂ R
n. Here, for j ≥ 0,

dμ(f ) = bη,β(f ) −
∑

|α|<k

m
θ,η
α,βbθ,β(f ), μ := (η, θ,β), (4.12)

with m
θ,η
α,β from (4.1), while M−1 := �0, Fλ := gλ, and dλ(f ) := bλ(f ) if λ ∈ M−1.

Moreover, if f ∈ Lp (L∞ := C0), then (4.11) as well as

f =
∑

j∈Z

(Tj+1 − Tj )f (4.13)

hold in Lp .

Proof The relation (4.12) has been derived in (4.3) and the convergence of the left-
hand side identity in (4.11) in Lp(K), and in Lp follows from Lemma 3.4. To prove
the convergence of (4.13), one has to show that ‖Tjf ‖p → 0 when j → −∞. Since
this part of the claim will not be essential for the subsequent developments, we only
sketch the argument. Recall from Remark 7 in Sect. 2.1 that each θ ∈ Θj expands to
R

n as j → −∞. This implies that the basis elements Fμ, μ ∈ Mj , become flatter
and flatter as j → −∞, which easily leads to the desired convergence (also see the
proof of Remark 5.1 below). �

5 Anisotropic Besov Spaces (B-spaces)

In this section we introduce anisotropic Besov spaces induced by discrete ellipsoid
covers of R

n and show that they can be characterized by the two-level-split bases
from the previous section. Our approach to B-spaces is based on local polynomial
approximation on the ellipsoids of the underlying discrete ellipsoid cover Θ of R

n.
Recall that the classical Besov spaces can also be defined via local polynomial ap-
proximation (local oscillations), see, e.g., [19]. Furthermore, the anisotropic Besov
space from [10, 14] are defined via local piecewise polynomial approximation. We
maintain that local approximations rather than global means are more natural for the
definition of anisotropic (and even classical) Besov spaces of positive smoothness
since they more adequately reflect the nature of the spaces.

5.1 Homogeneous B-spaces

We now introduce the homogeneous B-spaces Ḃα
pq(Θ) induced by an arbitrary dis-

crete ellipsoid cover Θ of R
n. In the definition of the B-spaces Ḃα

pq(Θ) there is a
hidden parameter k which we choose to be the smallest integer satisfying the condi-
tion

k >
a0

a6
· α

n
. (5.1)

This will guarantee the equivalence of the norms in Ḃα
pq(Θ) introduced below. Here

a0 and a6 are two of the parameters of Θ (see Definition 2.1). It can be shown that
the norms in Ḃα

pq(Θ) with different k’s satisfying (5.1) are equivalent.
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Definition of Ḃα
pq(Θ) via Local Moduli of Smoothness For a given discrete ellipsoid

cover Θ of R
n and α > 0, 0 < p,q ≤ ∞, we define the space Ḃα

pq(Θ) as the set of

all functions f ∈ Lloc
p such that

‖f ‖Ḃα
pq (Θ) :=

(
∑

j∈Z

(
∑

θ∈Θj

|θ |−αp/nωk(f, θ)
p
p

)q/p)1/q

< ∞, (5.2)

where ωk(f, θ)p is the kth local modulus of smoothness of f (see (3.21)).
As in (3.34), let Ek(f, θ)p denote the best Lp approximation of f on θ from

Pk . By Whitney’s theorem, Ek(f, θ)p ∼ ωk(f, θ)p , and hence replacing ωk(f, θ)p
in (5.2) by Ek(f, θ)p will result in an equivalent norm.

The definition of Ḃα
pq(Θ) needs some additional clarification. Evidently the norm

in Ḃα
pq(Θ) is not a true norm because ‖P ‖Ḃα

pq (Θ) = 0 for P ∈ Pk . Hence Ḃα
pq(Θ) is a

quotient space modulo Pk . We shall use the operators Qj , Tj , and Tj,p from Sect. 3.3
to construct a representer for each f ∈ Ḃα

pq(Θ). As before, let Tj (j ∈ Z) be one of
the operators Qj or Tj or Tj,p if p ≥ 1, and Tj := Tj,p if p < 1. We define

‖f ‖T

Ḃα
pq(Θ)

:=
(
∑

j∈Z

(

2a0jα/n
∥
∥(Tj+1 − Tj )f

∥
∥

p

)q
)1/q

. (5.3)

On account of property (c) of ellipsoid covers, Lemma 3.4 yields

‖f − Tjf ‖p ≤ c

(
∑

θ∈Θj

ωk(f, θ)
p
p

)1/p

,

and using that ‖(Tj+1 − Tj )f ‖p ≤ c‖f − Tj+1f ‖p + c‖f − Tjf ‖p, we obtain

‖f ‖T

Ḃα
pq(Θ)

≤ c‖f ‖Ḃα
pq (Θ). (5.4)

To describe the nature of Ḃα
pq(Θ) we have to distinguish two basic cases.

Case 1: 0 < α < n/p or α = n/p and q ≤ 1.
We address first the scale components (Tj+1 − Tj )f for negative j .

Remark 5.1 Whenever f ∈ Ḃα
pq(Θ) for 0 < α < n/p or α = n/p and q ≤ 1, there

exists P ∈ Pk such that the series

−1
∑

j=−∞
(Tj+1 − Tj )f = T0f − P (5.5)

converges uniformly on R
n.

Proof Assume first that 0 < α < n/p. By (5.3)–(5.4) it follows that
∥
∥(Tj+1 − Tj )f

∥
∥

p
≤ c2−a0jα/n‖f ‖Ḃα

pq (Θ).
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Since (Tj+1 −Tj )f ∈ Wj as in Theorem 4.3, we have (Tj+1 −Tj )f =∑

μ∈Mj
dμFμ.

For μ = (η, θ,β) denote η by ημ. Now using Theorem 4.2 and (4.7),
∥
∥(Tj+1 − Tj )f

∥
∥∞

≤ c sup
μ∈Mj

‖dμFμ‖∞ ≤ c sup
μ∈Mj

|ημ|−1/p‖dμFμ‖p

≤ c2a0j/p
( ∑

μ∈Mj

‖dμFμ‖p

)1/p ≤ c2a0j/p
∥
∥(Tj+1 − Tj )f

∥
∥

p
. (5.6)

Therefore,
∥
∥(Tj+1 − Tj )f

∥
∥∞ ≤ c2a0j (1/p−α/n)‖f ‖Ḃα

pq (Θ),

which implies

−1
∑

j=−∞

∥
∥(Tj+1 − Tj )f

∥
∥∞ ≤ c‖f ‖Ḃα

pq (Θ), (5.7)

since by assumption α < n/p. Now setting P := T0f −∑−1
j=−∞(Tj+1 − Tj )f , and

noting that each Tjf belongs to C(Rn), we infer from (5.7) that P ∈ C(Rn) and

Tjf ⇒ P as j → −∞, uniformly on R
n. (5.8)

It is easy to see that P ∈ Pk . Indeed, since the ellipsoids in Θ expand to R
n (see

Remark 7 after Definition 2.1), any compact K ⊂ R
n is contained in a sequence

{θ�
ν }∞ν=1 of ellipsoids dilated by a factor a7 < 1 (see property (d) of Θ) such that

	(θ1) > 	(θ2) > · · · and
⋃

ν≥0 θν = R
n, where 	(θ) = j means θ ∈ Θj . This implies

ϕθν ⇒ 1 as ν → ∞ on K . Now taking into account the definition of Tj this leads to
Tjf ⇒ PK as j → −∞ for some PK ∈ Pk on all compact sets K . Therefore, (5.8)
holds for some P ∈ Pk , and (5.5) follows.

If α = n/p and q ≤ 1, we argue in a similar fashion that
( −1

∑

j=−∞

∥
∥(Tj+1 − Tj )f

∥
∥∞

)q

≤
−1
∑

j=−∞

∥
∥(Tj+1 − Tj )f

∥
∥q

∞

≤
−1
∑

j=−∞
2a0jqα/n

∥
∥(Tj+1 − Tj )f

∥
∥

q

p
≤ c‖f ‖q

Ḃα
pq(Θ)

,

which also yields (5.7) and allows us to continue as before. �

We now turn to the series
∑∞

j=0(Tj+1 − Tj )f .

Remark 5.2 If f ∈ Ḃα
pq(Θ), α > 0, 0 < p,q ≤ ∞, then

∞
∑

j=0

(Tj+1 − Tj )f = f − T0f in Lp. (5.9)
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Proof First let p ≥ 1. Since by (5.4)

∞
∑

j=0

(

2a0jα/n
∥
∥(Tj+1 − Tj )f

∥
∥

p

)q ≤ c‖f ‖q

Ḃα
pq

, (5.10)

we have ‖(Tj+1 − Tj )f ‖p ≤ c2−a0jα/n‖f ‖Ḃα
pq

, and therefore

∞
∑

j=0

∥
∥(Tj+1 − Tj )f

∥
∥

p
≤ c‖f ‖Ḃα

pq
. (5.11)

One readily infers from (5.11) that the partial sums
∑J

j=0(Tj+1 − Tj )f form a
Cauchy sequence in Lp . By Lemma 3.4 the limit must agree with f − T0f , which
confirms (5.10) for p ≥ 1.

For p < 1 we shall first show that

∞
∑

j=0

∥
∥(Tj+1 − Tj )f

∥
∥

p

p
≤ c‖f ‖p

Ḃα
pq

. (5.12)

In fact, when q ≤ p we deduce from (5.10) that

∞
∑

j=0

2a0jα/n
∥
∥(Tj+1 − Tj )f

∥
∥

p
≤ c‖f ‖Ḃα

pq
,

and therefore ‖(Tj+1 − Tj )f ‖p
p ≤ c2−a0jpα/n‖f ‖p

Ḃα
pq

, which yields (5.12) for q ≤ p.

When q > p we apply Hölder’s inequality to

∞
∑

j=0

∥
∥(Tj+1 − Tj )f

∥
∥

p

p
=

∞
∑

j=0

2−a0jαp/n
(

2a0jα/n
∥
∥(Tj+1 − Tj )f

∥
∥

p

)p

with p̃ := q/p > 1 to conclude (5.12) in this case as well. Now since

∥
∥
∥
∥
∥

J+l
∑

j=J

(Tj+1 − Tj )f

∥
∥
∥
∥
∥

p

p

≤
J+l
∑

j=J

∥
∥(Tj+1 − Tj )f

∥
∥

p

p
→ 0 as J → ∞,

and using again that Tjf → f in Lp(K) on each compact K ⊂ R
n (see Lemma 3.4),

we arrive at (5.9) also in the case p < 1. �

Remarks 5.1–5.2 reveal the structure of the functions in Ḃα
pq(Θ) under the above

circumstances.

Remark 5.3 Let 0 < α < n/p or α = n/p and q ≤ 1. Then for any f ∈ Ḃα
pq(Θ)

there exists P ∈ Pk such that f =∑

j∈Z
(Tj+1 −Tj )f +P in Lp(K) for all compact
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sets K ⊂ R
n. Thus, one can define Ḃα

pq(Θ), in this case, as the set of all functions

f ∈ Lloc
p such that ‖f ‖Ḃα

pq
< ∞ and

f =
∑

j∈Z

(Tj+1 − Tj )f in Lp(K) for all compact sets K ⊂ R
n. (5.13)

In addition, by (5.7) and (5.12) it follows that

‖f ‖Lp(K) ≤ c
(

1 + |K|1/p
)‖f ‖Ḃα

pq
for all compact sets K ⊂ R

n. (5.14)

In order to refine the above observations, we consider the following two subcases
corresponding to lower, and respectively higher, smoothness α.

Case 1 (a): 0 < α < n(1/p − 1) or 0 < α = n(1/p − 1) and q > 1.
In this case we necessarily have 0 < p < 1. Moreover, if we were to deal with the

classical Besov spaces, the above condition on α means that embedding in S ′ fails.
Thus, we are content with the convergence from above in this case.

Alternatively we have:
Case 1 (b): n(1/p − 1) < α < n/p or α = n(1/p − 1) and q ≤ 1 or α = n/p and

q ≤ 1.
For classical Besov spaces this is known to imply that Ḃα

pq is embedded in S ′,
which persists to hold here as well, as will be shown next. The main observation can
be stated as follows:

Remark 5.4 Let α > n(1/p − 1) or α = n(1/p − 1) and q ≤ 1. Then for any f ∈
Ḃα

pq(Θ),

∞
∑

j=0

(Tj+1 − Tj )f = f − T0f in S ′. (5.15)

Proof From Remark 5.2 we already know that
∑∞

j=0(Tj+1 − Tj )f converges in Lp

and thus in S ′ whenever p ≥ 1, i.e., (5.15) holds for p ≥ 1.
Suppose now that p < 1. Since (Tj+1 − Tj )f ∈ Wj similarly as in (5.6),

∥
∥(Tj+1 − Tj )f

∥
∥

1 ≤
∑

μ∈Mj

‖dμFμ‖1 ≤ c
∑

μ∈Mj

|ημ|1−1/p‖dμFμ‖p

≤ c2−a0j (1−1/p)

(
∑

μ∈Mj

‖dμFμ‖p
p

)1/p

≤ c2−a0j (1−1/p)
∥
∥(Tj+1 − Tj )f

∥
∥

p
.

Thus, on account of (5.10), we obtain

∞
∑

j=0

(

2a0j [α/n−(1/p−1)]∥∥(Tj+1 − Tj )f
∥
∥

p

)q ≤ c‖f ‖q

Ḃα
pq

,
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which implies
∞
∑

j=0

∥
∥(Tj+1 − Tj )f

∥
∥

1 ≤ c‖f ‖Ḃα
pq

.

By the argument in the proof of Remark 5.2, see (5.11), we conclude that

∞
∑

j=0

(Tj+1 − Tj )f = f − T0f in L1 and hence in S ′, (5.16)

which completes the proof. �

In summary, from Remark 5.1 and 5.4 we can state the following:

Remark 5.5 Let α > 0, and suppose n(1/p − 1) < α < n/p or α = n(1/p − 1) and
q ≤ 1 or α = n/p and q ≤ 1. Then, for any f ∈ Ḃα

pq(Θ) there exists P ∈ Pk such

that f = ∑

j∈Z
(Tj+1 − Tj )f + P converges in S ′. Thus, the space Ḃα

pq(Θ) can be
defined as the set of all regular tempered distributions f such that ‖f ‖Ḃα

pq (Θ) < ∞
and

f =
∑

j∈Z

(Tj+1 − Tj )f in S ′. (5.17)

Also, it follows from the above that
∣
∣〈f,φ〉∣∣≤ c‖f ‖Ḃα

pq (Θ)‖φ‖∞, ∀φ ∈ S,

i.e., Ḃα
pq(Θ) is continuously embedded in S ′.

We now turn to:
Case 2: α > n/p or α = n/p and q > 1.

As in Case 1 (b), since α > n(1/p − 1), we have

∞
∑

j=0

(Tj+1 − Tj )f = f − T0f in S ′. (5.18)

But now dealing with the series
∑−1

j=−∞(Tj+1 − Tj )f is more complicated because
it is not convergent. As in the classical case we need to renormalize this series.

Lemma 5.6 There exist polynomials P ∈ Pk and Pj ∈ Pk , j = −1,−2, . . . , such
that

T0f = P + lim
m→−∞

−1
∑

j=m

(Tj+1 − Tj )f − Pj in S ′ (5.19)

and also uniformly on every compact set K ⊂ R
n. Moreover, Pj (j ≤ −1) can be

defined as the k − 1 degree Taylor polynomial of the function (Tj+1 − Tj )f based
at 0.
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Proof From (5.3)–(5.4) it follows that

−1
∑

j=−∞

(

2a0jα/n
∥
∥(Tj+1 − Tj )f

∥
∥

p

)q ≤ c‖f ‖q

Ḃα
pq(Θ)

=: N q . (5.20)

Hence
∥
∥(Tj+1 − Tj )f

∥
∥

p
≤ 2−a0jα/nN ,

and as in (5.6),

∥
∥(Tj+1 − Tj )f

∥
∥∞ ≤ c2−a0j (α/n−1/p)N , j ≤ −1. (5.21)

Let Pj be the k − 1 degree Taylor polynomial of (Tj+1 − Tj )f based at x = 0.
We need to estimate |(Tj+1 − Tj )f (x) − Pj (x)| for all x ∈ R

n. To this end we next
estimate |∂β(Tj+1 − Tj )f (x)| whenever |β| = k.

As before, we can write (Tj+1 − Tj )f = ∑

μ∈Mj
dμFμ. From (3.6) it readily

follows that if μ = (η, θ,β), then

∥
∥∂βFμ

∥
∥∞ ≤ c

(∥
∥A−1

η

∥
∥

	2→	2

)|β|‖Fμ‖∞ ≤ c
[

σmin(η)
]−k‖Fμ‖∞.

Fix x ∈ R
n, and let η ∈ Θj+1 be such that x ∈ η. From above, Theorem 4.2, and

the properties of Θ , we infer

∣
∣∂β(Tj+1 − Tj )f (x)

∣
∣≤

∑

μ∈Mj :x∈ημ

∣
∣dμ∂βFμ(x)

∣
∣

≤ c
[

σmin(η)
]−k

∑

μ∈Mj :x∈ημ

‖dμFμ‖∞

≤ c
[

σmin(η)
]−k∥

∥(Tj+1 − Tj )f
∥
∥∞. (5.22)

Let θ0 ∈ Θ0 be such that 0 ∈ θ0, and denote briefly σ0 := σmin(θ0). Also, let θ ′ ∈ Θ

be an ellipsoid of maximum level ≤ j such that 0, x ∈ θ ′. Then θ ′ ∈ Θj−r for some
r ≥ 0.

Consider first the case when r ≥ 1. By Lemma 2.2 σmin(θ
′) ≥ (1/a5)2−a6(j−r)σ0,

and since η ∩ θ ′ = ∅, from this and again by Lemma 2.2, it follows that

σmin(η) ≥ a32−a4rσmin(θ
′) ≥ c2−a6(j−r)2−a4rσ0 = c2−(a4−a6)r2−a6j σ0.

From this and (5.21)–(5.22) we infer

∣
∣∂β(Tj+1 − Tj )f (x)

∣
∣≤ c

[

σmin(η)
]−k∥∥(Tj+1 − Tj )f

∥
∥∞

≤ cσ−k
0 2(a4−a6)rk2a6jk2−a0j (α/n−1/p)N

= cσ−k
0 2(a4−a6)rk2jε N . (5.23)
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We need a lower bound for |x| in terms of j and r . By property (d) of Θ there exists
an ellipsoid θ ′′ ∈ Θj−r+1 such that 0 ∈ θ ′′�, where θ ′′� is the dilated version of θ ′′
by a factor of a7 < 1. Since θ ′ was selected of minimum level so that 0, x ∈ θ ′, then
x /∈ θ ′′, and hence |x| ≥ (1 − a7)σmin(θ

′′). On the other hand, by Lemma 2.2,

σmin(θ
′′) ≥ cσmin(θ

′) ≥ cσ02−a6(j−r).

Hence |x| ≥ cσ02−a6(j−r) ≥ cσ02a6r . Combining this with (5.23), we get
∣
∣∂β(Tj+1 − Tj )f (x)

∣
∣≤ c′(|x| + 1

)γ 2jε N , x ∈ R
n, (5.24)

where γ := a4−a6
a6

k and c′ = cσ
−ka4/a6
0 .

The case when r = 0 is easier. Then σmin(η) ≥ cσmin(η0) ≥ c2−a6j σ0, and by
(5.22) it follows that (5.23) holds with r = 0. Hence (5.24) holds again.

Now, Taylor’s theorem gives
∣
∣(Tj+1 − Tj )f (x) − Pj (x)

∣
∣≤ c

∑

|β|=k

∥
∥∂β(Tj+1 − Tj )f

∥
∥

L∞(B(0,|x|)|x|k

≤ c
(|x| + 1

)γ+k2jε N . (5.25)

Therefore, for any R > 0

−1
∑

j=−∞

∥
∥(Tj+1 − Tj )f − Pj

∥
∥

L∞(B(0,R))
< ∞. (5.26)

Setting

P := T0f −
−1
∑

j=−∞
(Tj+1 − Tj )f − Pj and Qj :=

−1
∑

ν=j

Pν, Qj ∈ Pk,

we evidently have P ∈ C(Rn). Then by (5.26) Tjf +Qj ⇒ P as j → −∞ uniformly
on B(0,R) for all R > 0. As in Case 1, one easily shows that P ∈ Pk .

We now employ (5.25) to find that for any φ ∈ S ,
∣
∣
∣
∣
∣

〈
m
∑

j=−∞
(Tj+1 − Tj )f − Pj ,φ

〉∣
∣
∣
∣
∣
≤ c

m
∑

j=−∞
2jε N

∣
∣
〈(| · | + 1

)γ+k
, φ
〉∣
∣

≤ c2mε N ‖φ‖γ+k+n+1 → 0, m → −∞, (5.27)

where ‖φ‖s := ‖(|x| + 1)sφ(x)‖∞. Hence

−1
∑

j=−∞
(Tj+1 − Tj )f − Pj = T0f − P in S ′ (P ∈ Pk),

which completes the proof of Lemma 5.6. �

In summary, from (5.18) and Lemma 5.6 we conclude the following:
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Remark 5.7 Whenever α > n/p or α = n/p and q > 1, the space Ḃα
pq(Θ) can be

viewed as the set of all regular tempered distributions f such that ‖f ‖Ḃα
pq (Θ) < ∞

and

f =
∑

j∈Z

(Tj+1 − Tj )f,

where the convergence is in S′/Pk . This means that there exist polynomials P ∈ Pk

and Pj ∈ Pk , j ∈ Z, such that

f = P + lim
m→−∞

∞
∑

j=m

(Tj+1 − Tj )f + Pm in S ′.

Moreover, Ḃα
pq(Θ) can be defined as the set of all f ∈ S ′ such that ‖f ‖Ḃα

pq (Θ) < ∞
and

f =
∑

j∈Z

(Tj+1 − Tj )f − Pj in S ′,

where the polynomials Pj are defined as in Lemma 5.6 for j ≤ −1 and Pj := 0 if
j ≥ 0. In addition, Ḃα

pq(Θ) is continuously embedded in S ′, namely, there exists

s > 0 such that for any f ∈ Ḃα
pq(Θ),

∣
∣〈f,φ〉∣∣≤ c‖f ‖Ḃα

pq (Θ)‖φ‖s , ∀φ ∈ S.

This last estimate follows from (5.18) and (5.27).

Other Norms in Ḃα
pq(Θ) The understanding of the B-spaces relies to a great extent

on having several equivalent norms for Ḃα
pq(Θ) at hand, as will be exemplified later

for best m-term approximation with the two-level-split basis functions. Observe first
that if

(Tj+1 − Tj )f =
∑

μ∈Mj

dμ(f )Fμ,

then, using Theorem 4.2, we can write

‖f ‖T

Ḃα
pq(Θ)

∼
(
∑

j∈Z

(
∑

μ∈Mj

(|ημ|−α/n
∥
∥dμ(f )Fμ

∥
∥

p

)p
)q/p)1/q

. (5.28)

We also define

‖f ‖A

Ḃα
pq(Θ)

:= inf
f =∑

μ∈M aμFμ

(
∑

j∈Z

(
∑

μ∈Mj

(|ημ|−α/n‖aμFμ‖p

)p
)q/p)1/q

. (5.29)

Here the infimum is taken over all representations f =∑

μ∈M aμFμ, where the con-
vergence is to be understood as described above.

Central for this part is the equivalence of the above norms.
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Theorem 5.8 If α > 0, 0 < p,q ≤ ∞, and (5.1) is obeyed, then the norms ‖·‖Ḃα
pq(Θ),

‖ · ‖T

Ḃα
pq(Θ)

, and ‖ · ‖A

Ḃα
pq(Θ)

are equivalent.

We defer the somewhat lengthy proof of this theorem to the appendix.
One uses in a standard way the embedding of Ḃα

pq in S ′ or (5.14) to show its
completeness. We record this in the following proposition:

Proposition 5.9 For 0 < p,q ≤ ∞ and α > 0, the B-space Ḃα
pq is a quasi-Banach

space which is continuously embedded in S ′ if α > n(1/p − 1) or α = n(1/p − 1)

and q ≤ 1.

5.2 Inhomogeneous B-spaces

Sometimes it is more convenient to use the inhomogeneous version Bα
pq(Θ+) of the

B-spaces induced by anisotropic ellipsoid covers of R
n. For the inhomogeneous B-

spaces we only need ellipsoid covers with levels j = 0,1, . . . , i.e., covers of the form

Θ+ :=
∞
⋃

j=0

Θj .

In a certain sense, the spaces Bα
pq(Θ+) are simpler than the homogeneous counter-

parts Ḃα
pq(Θ), which justifies our fairly brief exposition.

As for the homogeneous B-spaces, there is a hidden index k which is also present
in the definition of basis elements. It will always be selected to be the minimum
integer such that

k >
a0

a6
· α

n
, (5.30)

where a0, a6 > 0 are from the definition of discrete ellipsoid covers in Sect. 2.1.

Definition of Bα
pq(Θ+) via Local Moduli of Smoothness For a given discrete ellip-

soid cover Θ+ of R
n and α > 0, 0 < p,q ≤ ∞, we define the space Bα

pq(Θ+) as the
set of all functions f ∈ Lp such that

|f |Bα
pq(Θ+) :=

(
∑

j≥0

(
∑

θ∈Θj

(|θ |−αp/n ωk(f, θ)
p
p

)q/p
))1/q

< ∞, (5.31)

where ωk(f, θ)p is the kth local modulus of smoothness of f in Lp(θ). The norm in
Bα

pq is defined by

‖f ‖Bα
pq(Θ+) := ‖f ‖p + |f |Bα

pq(Θ+).

Other Norms on Bα
pq(Θ+) As in the homogeneous case, let Tj (j ∈ Z) be one of

the operators Qj or Tj or Tj,p , if p ≥ 1, and Tj := Tj,p , if p < 1, defined in Sect. 3.3.
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In view of the representation of functions f ∈ Lp from Theorem 4.3, we define

‖f ‖T
Bα

pq(Θ+)
:= ‖T0f ‖p +

(
∑

j≥0

(

2a0jα/n
∥
∥(Tj+1 − Tj )f

∥
∥

p

)q
)1/q

. (5.32)

By Theorem 4.2 and (4.10),

‖f ‖T
Bα

pq(Θ+)
∼
(
∑

j≥−1

(
∑

μ∈Mj

(|ημ|−α/n
∥
∥dμ(f )Fμ

∥
∥

p

)p
)q/p)1/q

. (5.33)

Here M−1 := �0, Fλ := gλ, and dλ(f ) := bλ(f ) if λ ∈ M−1.
Finally, we define again yet another norm on Bα

pq(Θ+) via basis elements:

‖f ‖A
Bα

pq(Θ+)
:= inf

f =∑

μ∈M+ aμFμ

(
∑

j≥−1

(
∑

μ∈Mj

(|ημ|−α/n‖aμFμ‖p

)p
)q/p)1/q

,

(5.34)
where the infimum is taken over all representations f = ∑

μ∈M+ aμFμ in Lp with
M+ :=⋃

j≥−1 Mj .
It is important that the above norms are equivalent.

Theorem 5.10 Suppose α > 0, 0 < p,q ≤ ∞, and (5.1) holds. Then the norms
‖ · ‖Bα

pq(Θ+), ‖ · ‖T
Bα

pq(Θ+)
, and ‖ · ‖A

Bα
pq(Θ+)

are equivalent.

The proof of this theorem is quite similar to the proof of Theorem 5.8 and will be
omitted.

Similarly to Ḃα
pq(Θ), the inhomogeneous B-space Bα

pq(Θ+) is a quasi-Banach
space. We omit the details.

Remark 5.11 There are continuous and semi-continuous counterparts of the B-spaces
Ḃα

pq(Θ) and Bα
pq(Θ+) defined in this section. For instance, the B-space Ḃα

pq(Θ) can
be defined for any continuous ellipsoid cover Θ of R

n as the set of all functions
f ∈ Lloc

p such that

‖f ‖Ḃα
pq (Θ) :=

(∫ ∞

0

(

tα/d+1
∫

Rn

ωk

(

f, θ(v, t)
)p

p
dv

)q/p

dt/t

)1/q

< ∞. (5.35)

Here one should assume that |θ(v, t)| is a measurable function of v, t . We omit the
details.

5.3 Interrelation of B-spaces with Besov and Other B-Spaces

It is quite easy to show that if Θ is a regular ellipsoid (ball) cover of R
n, then the

B-spaces Ḃα
pq(Θ) and Bα

pq(Θ+) considered in this paper are the same as the corre-
sponding classical Besov spaces (see also [9]).
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As already mentioned, the powers Aj of a real n × n matrix A with eigenvalues λ

obeying |λ| > 1 generate a semi-continuous and hence discrete ellipsoid cover of R
n.

It can be shown that for α > n(1/p − 1)+, the associated B-spaces Ḃα
pq are exactly

the same (with equivalent norms) as the anisotropic Besov spaces (with weight 1)
developed in [2].

The B-spaces from this paper have a lot in common with the B-spaces introduced
in [10, 14]. The main distinctions are that the latter B-spaces are based on multilevel
nested triangulations of R

2 and local piecewise polynomial approximation, while the
former are based on ellipsoid covers and local polynomial approximation. Conse-
quently, the B-norms based on nested triangulations can be in general much smaller
than the B-norms from this paper.

As indicated in Proposition 2.10, R
n equipped with the distance introduced in De-

finition 2.6 and the Lebesgue measure is a space of homogeneous type, and hence
the general theory of Besov spaces on homogeneous spaces applies (see, e.g., [13]).
In fact, in the specific setting of this paper the anisotropic Besov spaces given by the
general theory are the same as the B-spaces from here for sufficiently small α > 0.
The main distinction between the two theories is that we can handle B-spaces of an
arbitrary smoothness α > 0, while the general theory of Besov spaces on homoge-
neous spaces is only feasible for smoothness α with |α| < ε for some sufficiently
small ε.

6 Nonlinear Approximation

In this section, we apply the B-spaces to nonlinear m-term approximation from the
two-level-split bases introduced in Sect. 4.

6.1 The B-spaces of Nonlinear Approximation

A specific type of B-spaces will play an important role in nonlinear m-term approxi-
mation in Lp . For 0 < p < ∞ and α > 0, let τ be determined by

1/τ = α/n + 1/p, (6.1)

which in the case of classical Besov spaces signifies the critical embedding in Lp .
For nonlinear approximation in L∞ := C0 (p = ∞) τ is determined by 1/τ = α/n,
and we shall necessarily assume that α ≥ 1 (otherwise the embedding (6.5) below is
not valid).

For a given discrete ellipsoid cover Θ of R
n, consider the homogeneous B-space

Ḃα
τ := Ḃα

ττ (Θ) . Then

‖f ‖Ḃα
τ (Θ) :=

(
∑

θ∈Θ

|θ |−ατ/nωk(f, θ)ττ

)1/τ

. (6.2)

Although in general τ < 1, it can be proved (similarly as in [14]) that for any 0 < q <

p,

‖f ‖Ḃα
τ (Θ) ∼

(
∑

θ∈Θ

|θ |(1/p−1/q)τωk(f, θ)τq

)1/τ

, (6.3)

which allows one to work in Lq with q ≥ 1 if p > 1.



Constr Approx (2010) 31: 149–194 183

From (5.28) and (4.7) one readily derives this representation of the norm in
Ḃα

τ (Θ):

‖f ‖Ḃα
τ (Θ) ∼

(
∑

μ∈M

∥
∥dμ(f )Fμ

∥
∥

τ

p

)1/τ

. (6.4)

The following embedding result indicates why these spaces work in nonlinear
approximation. In fact, it shows that Ḃα

τ (Θ) lies on the Sobolev embedding line.

Theorem 6.1 The B-space Ḃα
τ (Θ), with p, τ interrelated by (6.1), is continuously

embedded in Lp , that is, each f ∈ Ḃα
τ (Θ) can be identified as a function f ∈ Lp and

‖f ‖p ≤ c‖f ‖Ḃα
τ (Θ). (6.5)

Proof Properties (a) and (c) of discrete ellipsoid covers imply that for any x ∈ R
n

and θ ∈ Θj (j ∈ Z) such that x ∈ θ ,

∑

m≤j

∑

η∈Θm:x∈θ

(|θ |/|η|)1/p ≤ c, (6.6)

where c is independent of x and θ . We now invoke Theorem 3.3 from [14], which
shows that (6.6) leads to

∥
∥
∥
∥

∑

μ∈M

∣
∣dμ(f )Fμ(·)∣∣

∥
∥
∥
∥

p

≤ c

(
∑

μ∈M

∥
∥dμ(f )Fμ

∥
∥

τ

p

)1/τ

.
�

We now consider the inhomogeneous B-space Bα
τ := Bα

ττ(Θ
+) associated with a

discrete ellipsoid cover Θ+ =⋃

j≥0 Θj of R
n. The norm in Bα

τ has a representation
similar to (6.4), namely,

‖f ‖Bα
τ (Θ) ∼

(
∑

μ∈M+

∥
∥dμ(f )Fμ

∥
∥

τ

p

)1/τ

, M+ :=
⋃

j≥−1

Mj , (6.7)

and an embedding result similar to Theorem 6.1 holds.

6.2 Jackson Estimates for Nonlinear Approximation

Consider nonlinear m-term approximation from F :=⋃

j∈Z
Fj = {Fμ : μ ∈ M}. We

let Em denote the nonlinear set of all functions g of the form

g =
∑

μ∈Γm

aμFμ,

where Γm ⊂ M, #Γ ≤ m, and Γ is allowed to vary with g. We denote by σm(f )p
the error of best Lp-approximation to f ∈ Lp(Rn) from Em:

σm(f )p := inf
g∈Em

‖f − g‖p.
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Theorem 6.2 (Jackson estimate) If f ∈ Ḃα
τ (Θ), α > 0, 0 < p ≤ ∞, then

σm(f )p ≤ cm−α/n‖f ‖Ḃα
τ (Θ), (6.8)

where c depends only on α, p, and the parameters of Θ .

In the case 0 < p < ∞, estimate (6.8) follows by the general Theorem 3.4 from
[14], using (6.6). The proof of (6.8) in the case p = ∞ is more involved and can be
carried out as the proof of Theorem 3.1 in [15]. We omit it.

The nonlinear m-term approximation σm(f )p from F + := ⋃

j≥−1 Fj , where
F−1 := {gλ : λ ∈ �0}, can be defined as above by simply replacing M by M+.
Then the Jackson estimate (6.8) holds with Ḃα

τ (Θ) replaced by Bα
τ (Θ). We omit the

details.
The Jackson estimate (6.8) readily yields a direct estimate for nonlinear m-term

approximation from F (or F +) by the K-functional between Lp and Ḃα
τ (Θ) (or

Bα
τ (Θ)). It is a challenging open problem to prove a companion inverse estimate due

to the fact that F is possibly redundant and non-nested.

7 Measuring Smoothness via Anisotropic B-spaces

It is an ancient question in analysis: What is the smoothness of a given function and
how should the smoothness be measured? In this section we show how the anisotropic
B-spaces Ḃα

τ (Θ) developed in the previous sections can be employed for handling
this question and how it is related to nonlinear m-term approximation from the two-
level-split bases developed here.

We consider two “simple” examples of discontinuous functions on R
2, namely,

1B(0,1), the characteristic function of the unit disk B(0,1), and 1Q, the characteristic
function of a square Q ⊂ R

2. Both examples could be generalized at the expense of
additional technical efforts. But in the present simple form they already suffice to
reveal some interesting and perhaps surprising facts. Indeed, we shall show that each
of these functions has higher-order smoothness α in Ḃα

τ (Θ) for appropriately selected
ellipse cover Θ compared with its (classical) Besov space smoothness. Moreover,
their smoothness via suitable covers will be seen to differ substantially.

As in the previous section, for given 0 < p < ∞ and α > 0, τ is defined by 1/τ =
α/2 + 1/p.

7.1 The Anisotropic B-space Smoothness of 1B(0,1)

Theorem 7.1 There exists an anisotropic ellipsoid cover Θ of R
2 such that 1B(0,1) ∈

Ḃα
τ (Θ) for any α < 4/p. In comparison, in the scale of Besov spaces Ḃα

ττ one has
1B(0,1) ∈ Ḃα

ττ for α < 2/p. Here the bounds for α are sharp.

Proof We begin by constructing an appropriate continuous ellipse cover Θcon of R
2.

For arbitrary t ≤ 0 and v ∈ R
2, we define the ellipse θ(v, t) by

θ(v, t) := 2−t/2B(0,1) + v,
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that is the disk of radius 2−t/2 centered at v.
Let t > 0. For any v = (v1,0) on the positive x1-axis which obeys the condition

|1 − v1| ≤ 2−t/3, we define θ(v, t) as the set of all point x ∈ R
2 such that

(x1 − v1)
2

σ 2
1

+ x2
2

σ 2
2

≤ 1,

where σ1 := (|1 − v1| + 2−t/2)2−t/6 and σ2 := (|1 − v1| + 2−t/2)−12−5t/6.
If v = (v1,0), v1 ≥ 0, satisfies |1−v1| > 2−t/3, we set θ(v, t) := 2−t/2B(0,1)+v.

For any point v which does not lie on the positive x1-axis we define θ(v, t) by
a rotation of the ellipse θ(|v|, t) defined above about the origin which takes (|v|,0)

to v.
We now show that the collection of ellipses Θcon defined above is a continuous

ellipse cover of R
2 in the sense of Definition 2.4.

Fix v = (v1,0), v1 > 0. Let t, s > 0, and assume that |1 − v1| ≤ 2−(t+s)/3. (All
other cases are similar or trivial.) Denote by σ1(t) the x1-semi-axis of θ(v, t). By the
definition we have

σ1(t + s)

σ1(t)
= |1 − v1| + 2−(t+s)/2

|1 − v1| + 2−t/2
· 2−s/6,

which leads to

2−2s/3 ≤ σ1(t + s)/σ1(t) ≤ 2−s/6. (7.1)

The case when v does not lie on the positive x1-axis reduces to the above by rotation.
Now fix t > 0, and let θ := θ(v, t) and θ ′ := θ(v′, t) be such that θ ∩ θ ′ = ∅.

Assume that |1 − |v|| ≤ 2−t/3 and |1 − |v′|| ≤ 2−t/3; the other cases are similar or
trivial. Since Θcon is rotation invariant, we may assume that v = (v1,0), v1 > 0.
Denote by σ1, σ2 the semi-axes of θ and by σ ′

1, σ ′
2 (σ ′

1 < σ ′
2) the semi-axes of θ ′.

A simple rotation argument gives
∣
∣|v′| − |v|∣∣≤ σ ′

1 + σ1 = (∣
∣1 − |v′|∣∣+ ∣

∣1 − |v|∣∣+ 2 · 2−t/2)2−t/6 ≤ 4 · 2−t/2,

which implies

σ ′
1 ≤ (∣

∣1 − |v|∣∣+ ∣
∣|v′| − |v|∣∣+ 2−t/2)2−t/6 ≤ (∣

∣1 − |v|∣∣+ 5 · 2−t/2)2−t/6 ≤ 5σ1.

Therefore,

1/5 ≤ σ ′
1/σ1 ≤ 5, and hence 1/5 ≤ σ ′

2/σ2 ≤ 5. (7.2)

We may assume that t ≥ 3 (the case t < 3 is trivial). Then 1/2 ≤ |v|, |v′| ≤ 3/2.
Since θ ∩θ ′ = ∅, the ellipse θ ′ can be obtained by revolving θ(|v′|, t) about the origin
at an angle γ such that

|γ | ≤ 2σ2 + 2σ ′
2 ≤ 4 · 2−t/3. (7.3)

As in Sect. 2, let Aθ be the affine transform which maps B(0,1) onto θ . Then obvi-
ously Aθ(x) = Mθx + v, where Mθ = diag(σ1, σ2). The affine transform Aθ ′ map-
ping B(0,1) onto θ ′ is of the form Aθ ′(x) = Mθ ′x +v′, where Mθ ′ can be represented
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as the product of a diagonal and a rotation matrices, namely,

Mθ ′ = Aγ diag(σ ′
1, σ

′
2), Aγ :=

(

cosγ − sinγ

sinγ cosγ

)

.

It is straightforward to show that

M−1
θ Mθ ′ =

(

(σ ′
1/σ1) cosγ −(σ ′

2/σ1) sinγ

(σ ′
1/σ2) sinγ (σ ′

2/σ2) cosγ

)

.

From (7.3) it follows that

(σ ′
2/σ1)| sinγ | ≤ 4 and (σ ′

1/σ2)| sinγ | ≤ 4.

This and (7.2) imply that all entries of M−1
θ Mθ ′ are bounded in absolute value by 5.

Hence
∥
∥M−1

θ Mθ ′
∥
∥

	2→	2
≤ c and similarly

∥
∥M−1

θ ′ Mθ

∥
∥

	2→	2
≤ c.

From this and (7.1) it follows that Θcon is a continuous ellipse cover of R
2.

In applying Lemma 2.9 to Θcon, we conclude that there is a discrete ellipse cover
Θ of R

2 such that each ellipse θ ∈ Θ is a dilated version of an ellipse from Θcon by
a factor ρθ obeying (a7 + 1)/2 ≤ ρθ ≤ 1. Also, for any θ ∈ Θm we have a12−m ≤
|θ | ≤ a22−m, where a1, a2 are positive constants.

It remains to show that 1B(0,1) ∈ Ḃα
τ (θ) for all α < 4/p. Denote by Θ ′

m the set
of all ellipses from Θ which intersect the unit circle S1 in R

2. We need to estimate
#Θ ′

m. By condition (c) on discrete ellipsoid covers, only N1 ellipses from Θm may
intersect at a time. This and the construction of Θcon and Θ yield

#Θ ′
m ≤ c2m

∣
∣
∣
∣

⋃

θ∈Θ ′
m

θ

∣
∣
∣
∣
≤ c2m2−2m/3 = c2m/3, m > 0.

Evidently, #Θ ′
m ≤ c if m ≤ 0.

We use these to estimate ‖f ‖Ḃα
τ (Θ), where f := 1B(0,1). Evidently, ωk(f, θ)τ = 0

if θ ∈ Θm \ Θ ′
m, and hence

‖f ‖τ

Ḃα
τ (Θ)

=
∑

m∈Z

∑

θ∈Θ ′
m

|θ |−ατ/2ωk(f, θ)ττ

≤ c

0
∑

m=−∞
2mατ/2 + c

∞
∑

m=1

(#Θ ′
m)2−m(1−ατ/2)

≤ c + c

∞
∑

m=1

2−m(2/3−ατ/2) ≤ c < ∞,

where we used that 2/3 − ατ/3 = (2τ/3)(1/p − α/4) > 0, since α < 4/p. Conse-
quently, f ∈ Ḃα

τ (Θ). Here the bound 4/p for α is sharp, since S1 cannot be covered
by ≤ c2m/3 ellipsoids of area 2−m whenever c > 0 is sufficiently small.
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It is well known that 1B(0,1) belongs to the Besov space Bα
ττ for α < 2/p, and this

bound for α is sharp. �

As in Sect. 6.2, denote by σm(f )p the best m-term approximation of f from F
in Lp . The following estimate is immediate from Theorem 7.1 and Theorem 6.2:

Corollary 7.2 Let 0 < p < ∞. Then

σm(1B(0,1))p ≤ cm−γ for all γ < 2/p.

At the same time, if σW
m (f )p denotes the best m-term approximation of f in Lp

(p ≥ 1) from any reasonable wavelet basis, then

σW
m (1B(0,1))p ≤ cm−γ for all γ < 1/p.

Here both estimate are sharp.

7.2 The Anisotropic B-space Smoothness of 1Q

We assume the notation from Sect. 7.1.

Theorem 7.3 For any square Q in R
2 and any α > 0, there exists an anisotropic

ellipsoid cover Θ of R
2 such that 1Q ∈ Ḃα

τ , while in the scale of Besov spaces Ḃα
ττ

one has only 1Q ∈ Ḃα
ττ for α < 2/p, and this bound for α is sharp.

Proof Without loss of generality, we may assume that Q = [−1,1] × [0,2]. It is
convenient to first construct an appropriate continuous ellipse cover and then get the
desired discrete ellipse cover upon employing Lemma 2.9.

Our main step is to effectively define the ellipses θ(v, t) of our continuous cover
Θcon with centers v from the triangle �0 := [(0,0), (1,0), (0,1)] and t > 0. Then we
use symmetry about the x2-axis to define θ(v, t) for v in the triangle

[

(−1,0), (0,0), (0,1)
]

.

We next apply symmetry about the x1-axis to define the ellipses θ(v, t) for v in the
triangle [(−1,0), (0,−1), (1,0)]. Again, by symmetry about the line x2 = −x1 + 1,
we define θ(v, t) on the square [(1,0), (2,1), (1,2), (0,1)]. Symmetry about the line
x2 = x1 + 1 enables us to define θ(v, t) for v in the rectangle

[

(−1,0), (1,2), (0,3), (−2,1)
]

.

In this way the ellipses θ(v, t) would be defined with centers v from the square

S := [

(0,−1), (2,1), (0,3), (−2,1)
]

.

Finally, we define the ellipses θ(v, t) with centers v ∈ R
2 \ S by

θ(v, t) := 2−t/2B(0,1) + v.
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In going further, for t ≤ 0 we define θ(v, t) for all centers v ∈ R
2 by θ(v, t) :=

2−t/2B(0,1) + v.
It remains to define the ellipses θ(v, t) with centers v ∈ �0 and t > 0. We begin

by introducing a parameter δ determined by the condition

0 < δ < min

{
1

2
,

4

2 + pα

}

. (7.4)

For every v ∈ �0, v = (v1, v2), set u := uv := 1 − v1 − v2 and define θ(v, t) as the
set of all x ∈ R

2 such that

(x1 − v1)
2

σ 2
1

+ (x2 − v2)
2

σ 2
2

≤ 1,

where σ1 := (uv2t/2 + 1)1−δ2−t/2 and σ2 := (uv2t/2 + 1)δ−12−t/2. Evidently,
|θ(v, t)| = πσ1σ2 = π2−t . Notice also that θ(v, t) := 2−t/2B(0,1) + v if uv = 0,
which is the same as v ∈ [(1,0), (0,1)].

We next show that the collection of ellipses Θcon defined above is a continuous
ellipse cover of R

2 with parameters depending only on δ.
Fix v ∈ �0, and for any t ∈ R denote by σ1(t) and σ2(t) the semi-axes of θ(v, t).

Then from above we have for t, s > 0

σ1(t + s)

σ1(t)
=
(

uv + 2−(t+s)/2

uv + 2−t/2

)1−δ

2−δs/2,

which readily implies

2−s/2 ≤ σ1(t + s)/σ1(t) ≤ 2−δs/2. (7.5)

Now, fix t > 0 and let θ(v, t)∩ θ(v′, t) = ∅, v, v′ ∈ �0. Assume uv′ > uv . Clearly,

uv′ ≤ uv + σ1(v) + σ1(v
′)

≤ uv + (

uv + 2−t/2)1−δ2−δt/2 + (

uv′ + 2−t/2)1−δ2−δt/2

≤ uv + 2u1−δ
v 2−δt/2 + 2 · 2−t/2 + 2u1−δ

v′ 2−δt/2 + 2 · 2−t/2.

If uv′ ≥ 41/δ2−t/2, this leads to

uv′ ≤ 8
(

uv + u1−δ
v 2−δt/2 + 2−t/2)≤ 16

(

uv + 2−t/2),

which yields

σ1(v
′)/σ1(v) ≤ c, c = c(δ). (7.6)

If uv′ < 41/δ2−t/2, the same estimate follows immediately with a different constant c.
Estimates (7.5)–(7.6) readily imply that Θcon is a continuous ellipse cover of R

2

in the sense of Definition 2.4.
By Lemma 2.9, the above cover Θcon induces a discrete ellipse cover, say, Θ of

R
2, where every θ ∈ Θ is obtained by dilating an ellipse from Θcon (with the same
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center) by a factor ρθ obeying (a7 + 1)/2 ≤ ρθ ≤ 1. Also, for any θ ∈ Θm we have
a12−m ≤ |θ | ≤ a22−m for some positive constants a1, a2.

Our next task is to show that the function 1Q, where Q := [−1,1]×[0,2], belongs
to the B-space Ḃα

τ (Θ). To this end we need an upper bound for the number of all
ellipses from Θm which intersect the boundary of [−1,1] × [0,2]. Denote this set
by Θ ′

m. By condition (c) on discrete covers and the construction of Θcon and Θ , it
follows that for m > 0

#Θ ′
m ≤ c2m

∣
∣
∣
∣

⋃

θ∈Θ ′
m

θ

∣
∣
∣
∣
≤ c2m

∫ 1

0
σ2
(

θ(v1,0),2−m
)

dv1

≤ c2m/2
∫ 1

0

(

(1 − v1)2
m/2 + 1

)δ−1
dv1 = c2δm/2.

Evidently #Θm ≤ c if m ≤ 0.
We are now prepared to estimate ‖f ‖Ḃα

τ (Θ), where f := 1Q. Evidently,
ωk(f, θ)τ = 0 if θ ∈ Θm \ Θ ′

m. From this and the above estimates of #Θ ′
m, we get

‖f ‖τ

Ḃα
τ (Θ)

=
∑

m∈Z

∑

θ∈Θ ′
m

|θ |−ατ/2ωk(f, θ)ττ

≤ c

0
∑

m=−∞
2mατ/2 + c

∞
∑

m=1

(#Θ ′
m)2−m(1−ατ/2)

≤ c + c

∞
∑

m=1

2−m(1−ατ/2−δ/2) ≤ c < ∞.

Here we used that 1 − ατ/2 − δ/2 = τ(1/τ − α/2 − δ/2τ) = τ(1/p − δ/2τ) > 0
by (7.4). Thus, f ∈ Ḃα

τ (Θ).
It is standard and well known that 1Q belongs to the Besov space Bα

ττ if α < 2/p

and this bound for α is sharp. �

As above, Theorem 7.1 and Theorem 6.2 lead to the following approximation
result:

Corollary 7.4 For any α > 0 there exists a discrete ellipse cover of R
2 such that for

all 0 < p < ∞
σm(1Q)p ≤ cm−α.

In comparison, for wavelet m-term approximation of 1Q in Lp (p ≥ 1) one has only

σW
m (1Q)p ≤ cm−γ for all γ < 1/p,

and this estimate is sharp.
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7.3 Discussion

One of the basic goals in this paper is to advance regularity notions that better respect
anisotropic features of functions. The key idea is to measure the smoothness of func-
tions adaptively by means of anisotropic B-spaces, and in particular by the B-spaces
of nonlinear approximation Ḃα

τ (Θ), by allowing the underlying ellipsoid covers to
adapt to the given function. We have considered two model problems which clearly
shed some light on this idea. First, as was shown in Sects. 7.1–7.2 for appropriate
ellipse covers, the B-space smoothness of the characteristic functions of the unit ball
and any square in R

2 is higher than their Besov space smoothness. It is rather obvi-
ous that by using adaptive dilations the anisotropic B-spaces are better able to resolve
the singularities along smooth or piecewise smooth curves. As a result, the two-level-
split decompositions of these functions are sparser than their wavelet decompositions,
which leads to better rates of nonlinear m-term approximation. Second, it might be
surprising that characteristic functions of polygonal domains have infinite smooth-
ness while those of domains with smooth boundaries have limited regularity. Roughly
speaking, the positive curvature in the latter case limits the extent to which ellipses are
allowed to stretch. On the other hand, the covers that would yield higher and higher
smoothness in the polygonal case have to become less and less constrained, which
means that the parameters in p(Θ) are subjected to more and more generous bounds.
Keeping these parameters within a compact set would limit the regularity that could
be described in this way. Thus, the idea of describing smoothness by maximizing α

over covers Θ has to be treated with care. This maximum could be determined by a
saturated smoothness as in the first example. Or such a maximum would be achieved
only when constraining the parameter sets of the covers to some a-priori chosen com-
pact set which is not an intrinsic property of the underlying function. Finally, it is a
challenging open problem to devise a scheme which for a given function f finds an
optimal (or near optimal) ellipsoid cover Θ such that f exhibits the highest order α

of smoothness in Ḃα
τ (Θ) in the above sense.

Appendix

Proof of Theorem 5.8 Evidently, ‖f ‖A

Ḃα
pq(Θ)

≤ ‖f ‖T

Ḃα
pq(Θ)

, and we have already

shown that ‖f ‖T

Ḃα
pq(Θ)

≤ c‖f ‖Ḃα
pq (Θ).

It remains to prove that

‖f ‖Ḃα
pq (Θ) ≤ c‖f ‖A

Ḃα
pq(Θ)

. (A.1)

We only consider the least favorable case when 1 < p < q < ∞. Let f =
∑

μ∈M aμFμ. For any ellipsoid σ ∈ Θj we have

ωk(f,σ )p ≤ ωk

(
∑

μ:	(ημ)<j

aμFμ,σ

)

p

+ c

∥
∥
∥
∥

∑

μ:	(ημ)≥j

aμFμ

∥
∥
∥
∥

p
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≤ c

∞
∑

ν=1

(
∑

μ:ημ∈Θj−ν

|aμ|pωk(Fμ,σ )
p
p

)1/p

+ c

∞
∑

ν=0

(
∑

μ:ημ∈Θj+ν

‖aμFμ‖p
p

)1/p

. (A.2)

Here 	(η) stands for the level of η in Θ .

We next estimate ωk(Fμ,σ )p for any μ ∈ M such that ημ ∈ Θj−ν , ν ≥ 1. Let

η := ημ, θ := θμ, β := βμ, and F := Fμ. Also let σ ∗ := A−1
η σ = A−1

η Aσ B∗, θ∗ :=
A−1

η θ , and F ∗ := F ◦ Aη. Recall that F = Pη,βϕηϕθ with Pη,β := |η|−1/2Pβ ◦ A−1
η .

Hence F ∗ = |η|−1/2Pβ(ϕη ◦ Aη)(ϕθ ◦ Aη).

For any h ∈ R
n we have with h∗ := A−1

η h

∥
∥�k

hF
∥
∥

p

Lp(σ )
= |detMη|

∥
∥�k

h∗F ∗∥∥p

Lp(σ ∗) ≤ c|η||h∗|kp
∥
∥
∥
∥

(
∂

∂h

)k

F ∗
∥
∥
∥
∥

p

∞
|σ ∗|

≤ c|η||σ ∗|(diamσ ∗)kp‖F ∗‖p∞. (A.3)

Here we assumed that k|h∗| ≤ diamσ ∗, since otherwise �k
h∗F ∗(x) ≡ 0. We also used

that ‖( ∂
∂h

)kF ∗‖∞ ≤ c with c a constant depending only on p(Θ), k, and L.
Note that ‖F ∗‖∞ = ‖F‖∞, and hence ‖F‖p

p ∼ |η|‖F ∗‖p∞. Also, we have

|σ ∗| = ∣
∣det

(

M−1
η Mσ

)∣
∣= ∣

∣detM−1
η

∣
∣|detMσ | = |η|−1|σ |,

and diamσ ∗ = 2‖M−1
η Mσ ‖	2→	2 ≤ 2a52−a6ν using property (b) of Θ . We use the

above observations in (A.3) to obtain

ωk(Fμ,σ )
p
p ≤ c|σ ||ημ|−12−a6νkp‖Fμ‖p

p. (A.4)

Combining this with (A.2), we get

|σ |−αp/nωk(f,σ )
p
p

≤ c

[ ∞
∑

ν=1

(
∑

μ:ημ∈Θj−ν ,ημ∩σ =∅

( |ημ|
|σ |

)αp/n−1

2−a6νkp|ημ|−αp/n‖aμFμ‖p
p

)1/p
]p

+ c

[ ∞
∑

ν=0

(
∑

μ:ημ∈Θj+ν ,ημ∩σ =∅

( |ημ|
|σ |

)αp/n

|ημ|−αp/n‖aμFμ‖p
p

)1/p
]p

≤ c

[ ∞
∑

ν=1

(
∑

μ:ημ∈Θj−ν ,ημ∩σ =∅
2−νp(−a0α/n+a6k)−a0νUμ

)1/p
]p

+ c

[ ∞
∑

ν=0

(
∑

μ:ημ∈Θj+ν ,ημ∩σ =∅
2−a0ναp/nUμ

)1/p
]p

,

where Uμ := |ημ|−αp/n‖aμFμ‖p
p .
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Let ε := −a0α/n + a6k and δ := a0α/n > 0. Notice that ε > 0, since k >
a0
a6

· α
n

by (5.1). We use the above in the definition of ‖f ‖Ḃα
pq (Θ) to obtain

(‖f ‖Ḃα
pq

)q ≤ c
∑

j∈Z

{
∑

σ∈Θj

[ ∞
∑

ν=1

2−εν−a0ν/p

(
∑

μ:ημ∈Θj−ν ,ημ∩σ =∅
Uμ

)1/p
]p}q/p

+ c
∑

j∈Z

{
∑

σ∈Θj

[ ∞
∑

ν=0

2−δν

(
∑

μ:ημ∈Θj+ν ,ημ∩σ =∅
Uμ

)1/p
]p}q/p

=: Σ1 + Σ2.

To estimate Σ1 we apply Hölder’s inequality and get

Σ1 ≤ c
∑

j∈Z

[
∑

σ∈Θj

( ∞
∑

ν=1

2−ενp/2−a0ν
∑

μ:ημ∈Θj−ν ,ημ∩σ =∅
Uμ

)( ∞
∑

ν=1

2−ενp′/2

)p/p′]q/p

≤ c
∑

j∈Z

(
∑

σ∈Θj

∞
∑

ν=1

2−ενp/2−a0ν
∑

μ:ημ∈Θj−ν ,ημ∩σ =∅
Uμ

)q/p

(1/p + 1/p′ = 1).

In going further, we switch the order of summation and then apply again Hölder’s
inequality to obtain

Σ1 ≤ c
∑

j∈Z

[ ∞
∑

ν=1

2−ενp/2−a0ν

(
∑

μ:ημ∈Θj−ν

Uμ

)

#{σ ∈ Θj : σ ∩ ημ = ∅}
]q/p

≤ c
∑

j∈Z

[ ∞
∑

ν=1

2−ενp/2
∑

μ:ημ∈Θj−ν

Uμ

]q/p

≤ c
∑

j∈Z

[ ∞
∑

ν=1

2−ενq/4
(

∑

μ:ημ∈Θj−ν

Uμ

)q/p
][ ∞

∑

ν=1

2−ενpr ′/4

]q/pr ′

(r := q/p > 1),

where we used that #{σ ∈ Θj : σ ∩ ημ = ∅} ≤ c2a0ν , which is a consequence of
properties (a) and (c) of Θ .

Finally, we apply the substitution l := j − ν and switch the order of summation
above to obtain

Σ1 ≤ c
∑

j∈Z

j−1
∑

l=−∞
2−ε(j−l)q/4

(
∑

μ:ημ∈Θl

Uμ

)q/p

≤ c
∑

l∈Z

(
∑

μ:ημ∈Θl

Uμ

)q/p ∞
∑

j=l+1

2−ε(j−l)q/4 ≤ c
∑

l∈Z

(
∑

μ:ημ∈Θl

Uμ

)q/p

≤ (‖f ‖A

Ḃα
pq

)q
.
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We estimate Σ2 in a similar fashion. Applying Hölder’s inequality we get

Σ2 ≤ c
∑

j∈Z

[
∑

σ∈Θj

( ∞
∑

ν=0

2−δνp/2
∑

μ:ημ∈Θj+ν ,ημ∩σ =∅
Uμ

)( ∞
∑

ν=1

2−δνp′/2

)p/p′]q/p

≤ c
∑

j∈Z

(
∑

σ∈Θj

∞
∑

ν=0

2−δνp/2
∑

μ:ημ∈Θj+ν ,ημ∩σ =∅
Uμ

)q/p

.

Switching the order of summation and then applying Hölder’s inequality, we obtain

Σ2 ≤ c
∑

j∈Z

[ ∞
∑

ν=0

2−δνp/2
∑

μ:ημ∈Θj+ν

Uμ

]q/p

(r := q/p > 1)

≤ c
∑

j∈Z

[ ∞
∑

ν=0

2−δνq/4
(

∑

μ:ημ∈Θj+ν

Uμ

)q/p
][ ∞

∑

ν=0

2−δνpr ′/4

]q/pr ′

≤ c
∑

j∈Z

∞
∑

l=j

2−δ(l−j)q/4
(

∑

μ:ημ∈Θl

Uμ

)q/p

≤ c
∑

l∈Z

(
∑

μ:ημ∈Θl

Uμ

)q/p l
∑

j=−∞
2−δ(l−j)q/4 ≤ c

∑

l∈Z

(
∑

μ:ημ∈Θl

Uμ

)q/p

≤ (‖f ‖A

Ḃα
pq

)q
.

This completes the proof of (A.1). �

References

1. Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781) (2003)
2. Bownik, M.: Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250, 539–

571 (2005)
3. Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces.

Trans. Am. Math. Soc. 358, 1469–1510 (2006)
4. Calderón, A., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math.

16, 1–64 (1975)
5. Calderón, A., Torchinsky, A.: Parabolic maximal functions associated with a distribution II. Adv.

Math. 24, 101–171 (1977)
6. Coifman, R., Weiss, G.: Analyse harmonique non-comutative sur certains espaces homogenes. Lec-

ture Notes in Math., vol. 242. Springer, Berlin (1971)
7. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc.

83, 569–645 (1977)
8. Dahmen, W., Petrushev, P.: “Push-the-Error” algorithm for nonlinear n-term approximation. Constr.

Approx. 23, 261–304 (2006)
9. Dahmen, W., Dekel, S., Petrushev, P.: Multilevel preconditioning for partition of unity methods—

some analytic concepts. Numer. Math. 107, 503–532 (2007)



194 Constr Approx (2010) 31: 149–194

10. Davydov, O., Petrushev, P.: Nonlinear approximation from differentiable piecewise polynomials.
SIAM J. Math. Anal. 35, 708–758 (2003)

11. Dekel, S., Leviatan, D., Sharir, M.: On bivariate smoothness spaces associated with nonlinear approx-
imation. Constr. Approx. 20, 625–646 (2004)

12. Folland, G., Stein, E.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton
(1982)

13. Han, Y., Sawyer, E.: Littlewood–Paley theory on spaces of homogeneous type and classical f unction
spaces. Mem. Am. Math. Soc. 530 (1994)

14. Karaivanov, B., Petrushev, P.: Nonlinear piecewise polynomial approximation beyond Besov spaces.
Appl. Comput. Harmon. Anal. 15, 177–223 (2003)

15. Karaivanov, B., Petrushev, P., Sharpley, R.C.: Algorithms for nonlinear piecewise polynomial approx-
imation. Trans. Am. Math. Soc. 355, 2585–2631 (2003)

16. Peetre, J.: New Thoughts on Besov Spaces. Duke Univ. Math. Series. Duke Univ., Durham (1976)
17. Petrushev, P.: Anisotropic spaces and nonlinear n-term spline approximation. In: Approximation The-

ory XI: Gatlinburg 2004. Mod. Methods Math., pp. 363–394. Nashboro Press, Brentwood (2005)
18. Triebel, H.: Theory of Function Spaces. Monographs in Math, vol. 78. Birkhäuser, Basel (1983)
19. Triebel, H.: Theory of Function Spaces II. Monographs in Math., vol. 84. Birkhäuser, Basel (1992)


	Two-Level-Split Decomposition of Anisotropic Besov Spaces
	Abstract
	Introduction
	Anisotropic Multilevel Ellipsoid Covers of Rn
	Discrete Ellipsoid Covers (Dilations) of Rn
	Continuous Covers and Quasi-Distance

	Construction of a Multilevel System of Bases
	Coloring the Ellipsoids in Theta
	Definition of Single-Level Bases
	Local Projectors Onto Polynomials

	Two-Level-Split Bases
	Anisotropic Besov Spaces (B-spaces)
	Homogeneous B-spaces
	Definition of Balphapq(Theta) via Local Moduli of Smoothness
	Other Norms in Balphapq(Theta)

	Inhomogeneous B-spaces
	Definition of Balphapq(Theta+) via Local Moduli of Smoothness
	Other Norms on Balphapq(Theta+)

	Interrelation of B-spaces with Besov and Other B-Spaces

	Nonlinear Approximation
	The B-spaces of Nonlinear Approximation
	Jackson Estimates for Nonlinear Approximation

	Measuring Smoothness via Anisotropic B-spaces
	The Anisotropic B-space Smoothness of 1B(0, 1)
	The Anisotropic B-space Smoothness of 1Q
	Discussion

	Appendix
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


