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Abstract Nonlinear approximation from regular piecewise polynomials (splines)
supported on rings in R

2 is studied. By definition, a ring is a set in R
2 obtained

by subtracting a compact convex set with polygonal boundary from another such a
set, but without creating uncontrollably narrow elongated subregions. Nested structure
of the rings is not assumed; however, uniform boundedness of the eccentricities of the
underlying convex sets is required. It is also assumed that the splines have maximum
smoothness. Bernstein type inequalities for this sort of splines are proved that allow
us to establish sharp inverse estimates in terms of Besov spaces.

Keywords Spline approximation · Multivariate approximation · Nonlinear approxi-
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1 Introduction

Nonlinear approximation from piecewise polynomials (splines) in dimensions d > 1
is important from theoretical and practical points of view. We are interested in charac-
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terizing the rates of nonlinear spline approximation in L p. While this theory is simple
and well understood in the univariate case, it is underdeveloped and challenging in
dimensions d > 1.

In this article, we focus on nonlinear approximation in L p, 0 < p < ∞, from
regular piecewise polynomials in R

2 or on compact subsets of R2 with polygonal
boundaries. Our goal is to obtain complete characterization of the rates of approxi-
mation (the associated approximation spaces). To describe our results, we begin by
introducing in more detail our

Setting and approximation tool. We are interested in approximation in the space L p,
0 < p < ∞, from the class of regular piecewise polynomials S(n, k) of degree k − 1
with k ≥ 1 of maximum smoothness over n rings. More specifically, with � being
a compact polygonal domain in R

2 or � = R
2, we denote by S(n, k) the set of all

piecewise polynomials S of the form

S =
n∑

j=1

Pj · 1R j , S ∈ Ck−2(�), Pj ∈ �k−1, (1.1)

where R1, . . . , Rn are rings with disjoint interiors. Here �k−1 denotes the set of
all algebraic polynomials of (total) degree ≤ k − 1 in two variables, and as usual
S ∈ Ck−2(�) means that all partial derivatives ∂αS ∈ C(�), |α| ≤ k − 2. The
elements of S(n, 1) are simply piecewise constants.

A set R ⊂ R
2 is called a ring if R is a compact convex set with polygonal boundary

or the difference of two such sets. All convex sets we consider are with uniformly
bounded eccentricity, and we do not allow uncontrollably narrow elongated subre-
gions. For the precise definitions, see Sects. 3.1 and 4.1.

It is important to point out that although regular, our tool for approximation is highly
nonlinear. In particular, the rings in (1.1) may vary with S, and we do not assume any
nested structure of the rings involved in the definition of different splines S in (1.1).
Consequently, if S1, S2 ∈ S(n, k), then in general S1 ± S2 /∈ S(N , k) for any N .
The case of approximation from splines over nested (anisotropic) rings induced by
hierarchical nested triangulations is developed in [3,6].

Given a function f ∈ L p(�), we denote by Skn ( f )p the best L
p-approximation of

f from S(n, k). Our goal is to completely characterize the approximation spaces Aα
q ,

α > 0, 0 < q ≤ ∞, defined by the (quasi)norm

‖ f ‖Aα
q

:= ‖ f ‖L p +
( ∞∑

n=1

(
nαSkn ( f )p

)q 1

n

)1/q

,

with the �q -norm replaced by the sup-norm if q = ∞. To this end, we utilize the
standardmachinery of Jackson and Bernstein estimates. The Besov spaces Bs,k

τ :=Bs,k
ττ

with 1/τ = s/2 + 1/p naturally appear in our regular setting, see (2.1). The Jackson
estimate takes the form: For any f ∈ Bs,k

τ ,

Skn ( f )p ≤ cn−s/2| f |Bs,k
τ

. (1.2)
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For k = 1, 2, this estimate follows readily from the results in [6]. It is an open problem
to establish it for k > 2. Estimate (1.2) implies the direct estimate

Skn ( f )p ≤ cK
(
f, n−s/2

)
, (1.3)

where K ( f, t) = K ( f, t; L p, Bs,k
τ ) is the K -functional induced by L p and Bs,k

τ , see
(3.6). Note that estimate (1.2), for any k > 2, is well known and easy to prove when
approximating from discontinuous piecewise polynomials over rings. For example, it
follows from Theorems 2.25 and 3.10 in [6]. For smoother splines (but not splines of
maximal smoothness), (1.2) follows by Theorems 2.15 and 3.1 in [3].

It is a major problem to establish a companion matching inverse estimate. The
following Bernstein estimate would imply such an estimate:

|S1 − S2|Bs,k
τ

≤ cns/2‖S1 − S2‖L p , S1, S2 ∈ S(n, k). (1.4)

However, as is easy to show, this estimate is not valid. The problem is that S1 − S2
may have one or more uncontrollably elongated parts such as 1[0,ε]×[0,1] with small
ε, which create problems for the Besov norm, see Example 3.3 below.

The main idea of this article is to replace (1.4) by the Bernstein type estimate

|S1|λBs,k
τ

≤ |S2|λBs,k
τ

+ cnλs/2‖S1 − S2‖λ
L p , λ := min{τ, 1}, (1.5)

where 0 < s/2 < k − 1 + 1/p. This estimate leads to the needed inverse estimate

K ( f, n−s/2) ≤ cn−s/2

(
n∑

ν=1

1

ν

[
νs/2Sν( f )p

]λ + ‖ f ‖λ
p

)1/λ

. (1.6)

In turn, this estimate and (1.3) yield a characterization of the associated approximation
spaces Aα

q in terms of real interpolation spaces

Aα
q =

(
L p, Bs,k

τ

)
α
s ,q

, 0 < α < s, 0 < q ≤ ∞. (1.7)

See, e.g., [4,8].
A natural restriction on the Bernstein estimate (1.5) is the requirement that the

splines S1, S2 ∈ S(n, k) have maximum smoothness. For instance, if we consider
approximation from piecewise linear functions S (k = 2), it is assumed that S is
continuous. As will be shown in Example 4.4, estimate (1.5) is no longer valid for
discontinuous piecewise linear functions.

Motivation. Our setting would simplify considerably if the rings R j in (1.1) are
replaced by regular convex sets with polygonal boundaries or simply triangles. For
example, in many cases, people do adaptive approximation from piecewise linear
functions by local refinements resulting in nested triangulations. However, this would
restrict the approximation power of our approximation tool. The isotropic refinement
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schemes can give rate O(n−s/2) of L p-approximation for functions in the Besov space
Bs,k

τ with 1/τ < s/2+1/p, which is off the Sobolev embedding line. Formore details,
see [1] ([5] is also relevant). In contrast, the piecewise polynomials over rings as defined
above allow one to obtain the Jackson estimate (1.2), where 1/τ = s/2+ 1/p; i.e., in
this case the Besov space Bs,k

τ is just on the Sobolev embedding line. This leads to a
complete characterization of the associated approximation spaces. The idea of using
rings has already been utilized in [2]. In concluding, there are two main points that we
would like to make:

(i) In order to achieve the full strength of nonlinear spline approximation in dimen-
sion d = 2, the underlying partition should be in rings or a partition compatible with
rings.

(ii) In nonlinear approximation from regular splines in L p, p < ∞, in dimen-
sion d = 2 the rates of approximation are not sensitive to the particular underlying
partitions as long as these are in rings. For example, in regular piecewise linear approx-
imation asymptotically one cannot do better than if approximating by using a particular
hierarchy of Courant hat functions over regular nested triangulations.

The proof of the Bernstein estimate (1.5) is quite involved. To make it more under-
standable, we first prove it in Sect. 3 in the easier case of piecewise constants and
then in Sect. 4 for smoother splines. Our method is not limited to splines in dimension
d = 2. However, there is a great deal of geometric arguments involved in these proofs,
and to avoid more complicated considerations, we focus only on spline approximation
in dimension d = 2 here.

Useful notation. Throughout this article, we shall use |G| to denote the Lebesgue
measure of a set G ⊂ R

2, G◦, G, and ∂G will denote the interior, closure, and
boundary of G, d(G) := supx,y∈G |x − y| will stand for the diameter of G, and 1G

will denote the characteristic function of G; as usual, |x | will stand for the Euclidean
norm of x ∈ R

2. If G is finite, then #G will stand for the number of elements of G. If
γ is a polygonal curve in R2, then �(γ ) will denote its length. Positive constants will
be denoted by c1, c2, c′, . . . , and they may vary at every occurrence. Some important
constants will be denoted by c0, N0, β, . . . , and will remain unchanged throughout.
The notation a ∼ b will stand for c1 ≤ a/b ≤ c2.

2 Background

2.1 Besov Spaces

Besov spaces appear naturally in nonlinear spline approximation. For spline approxi-
mation in L p(�), 0 < p < ∞, we will utilize the Besov spaces Bs,k

τ = Bs,k
ττ , where

s > 0, k ≥ 1, 1/τ := s/2 + 1/p. The space Bs,k
τ is defined as the set of all functions

f ∈ Lτ (�) such that

| f |Bs,k
τ

:=
(∫ ∞

0

[
t−sωk( f, t)τ

]τ dt

t

)1/τ

< ∞. (2.1)

Here ωk( f, t)τ := sup|h|≤t ‖�k
h f (·)‖Lτ (�), with
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�k
h f (x) :=

k∑

ν=0

(−1)k+ν

(
k

ν

)
f (x + νh)

if the segment [x, x + kh] ⊂ � and �k
h f (x) := 0 otherwise.

Observe that for the standard Besov spaces Bs
pq with s > 0 and 1 ≤ p, q ≤ ∞,

the norm is independent of the index k > s. However, for the above Besov spaces in
general τ < 1, which changes the nature of the Besov space and k should no longer
be directly connected to s. For more details, see the discussion in [6, pp. 202–203].

2.2 Nonlinear Spline Approximation in Dimension d = 1

For comparison, here we provide a brief account of nonlinear spline approximation in
the univariate case. Denote by S̃kn ( f )p the best L

p-approximation of f ∈ L p(R) from
the set S̃(n, k) of all piecewise polynomials S of degree ≤ k−1 with n+1 free knots.
Thus, S ∈ S̃(n, k) if S = ∑n

j=1 Pj1I j , where Pj ∈ �k−1 and I j , j = 1, . . . , n,
are arbitrary compact intervals with disjoint interiors and ∪ j I j is an interval. No
smoothness of S is required.

Let s > 0, 0 < p < ∞, and 1/τ = s + 1/p. The following Jackson and Bernstein
estimates hold (see [7]): If f ∈ L p(R) and n ≥ 1, then

S̃kn ( f )p ≤ cn−s | f |Bs,k
τ

(2.2)

and
|S|Bs,k

τ
≤ cns‖S‖L p , S ∈ S̃(n, k), (2.3)

where c > 0 is a constant depending only on s and p. These estimates imply direct and
inverse estimates that allow the complete characterization of the respective approxi-
mation spaces. For more details, see [7] or [4,8].

Several remarks are in order. (1) Above no smoothness is imposed on the piecewise
polynomials from S̃(n, k). The point is that the rates of approximation from smooth
splines are the same as for nonsmooth splines. A key observation is that in dimension
d = 1, the discontinuous piecewise polynomials are infinitely smooth with respect to
the Besov spaces Bs,k

τ . This is not the case in dimensions d > 1, where smoothness
matters. (2) Unlike in the multivariate case, estimates (2.2–2.3) hold for every s > 0.
(3) If S1, S2 ∈ S̃(n, k), then S1 − S2 ∈ S̃(2n, k), and hence (2.3) is sufficient for
establishing the respective inverse estimate. This is not true in the multivariate case,
and one needs estimates like (1.4) (if valid) or (1.5) (in our case). (4) There is a great
deal of geometry involved in multivariate spline approximation, while in dimension
d = 1 there is none.

2.3 Nonlinear Nested Spline Approximation in Dimension d = 2

The rates of approximation in L p, 0 < p < ∞, from splines generated by multilevel
anisotropic nested triangulations in R

2 are studied in [3,6]. The respective approxi-
mation spaces are completely characterized in terms of Besov type spaces (B-spaces)
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defined via local piecewise polynomial approximation. The setting in [3,6] allows one
to deal with piecewise polynomials over triangulations with arbitrarily sharp angles.
However, the nested structure of the underlying triangulations is quite restrictive. In
this article, we consider nonlinear approximation from nonnested splines, but in a
regular setting. This is a setting that frequently appears in applications.

3 Nonlinear Approximation from Piecewise Constants

3.1 Setting

Here we describe all components of our setting, including the region � where the
approximation will take place and the tool for approximation we consider.

The region �. We shall consider two scenarios for �: (a) � is a compact polygonal
domain in R

2, or (b) � = R
2. More explicitly, in the first case, we assume that �

can be represented as the union of finitely many rings in the sense of Definition 3.1
with disjoint interiors. Therefore, the boundary ∂� of � is the union of finitely many
polygonal curves consisting of finitely many segments (edges).

The approximation tool. To describe our tool for approximation, we first introduce
rings in R2.

Definition 3.1 We say that R ⊂ R
2 is a ring if R can be represented in the form

R = Q1 \ Q2, where Q1, Q2 satisfy the following conditions:

(a) Q2 ⊂ Q1 or Q2 = ∅;
(b) Each of Q1 and Q2 is a compact regular convex set in R

2 whose boundary
is a polygonal curve consisting of no more than N0 (N0 ≥ 3 is fixed) line
segments. Here a compact convex set Q ⊂ R

2 is deemed regular if Q has a
bounded eccentricity; that is, there exist balls B1, B2, Bj = B(x j , r j ), such that
B2 ⊂ Q ⊂ B1 and r1 ≤ c0r2, where c0 > 0 is a universal constant.

(c) R contains no uncontrollably narrowand elongated subregions,which is specified
as follows: Each edge (segment) E of the boundary of R can be subdivided into
the union of at most two segments E1, E2 (E = E1 ∪ E2) with disjoint (one
dimensional) interiors such that there exist triangles 1 with a side E1 and
adjacent to E1 angles of magnitude β, and 2 with a side E2 and adjacent to E2
angles of magnitude β such that  j ⊂ R, j = 1, 2, where 0 < β ≤ π/3 is a
fixed constant.

Figure 1 illustrates the above definition of rings.

Remark Observe that from the above definition, it readily follows that for any ring R
in R2,

|R| ∼ d(R)2, (3.1)

with constants of equivalence depending only on the parameters N0, c0, and β.

Condition 3.2 In the case, when � is a compact polygonal domain in R2, we assume
that there exists a constant n0 ≥ 1 such that � can be represented as the union of n0
rings R j with disjoint interiors: � = ∪n0

j=1R j . If � = R
2, then we set n0 := 1.
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Fig. 1 Left a ring R = Q1 \ Q2. Right R with the triangles associated to the segments of ∂R

We now can introduce the class of regular piecewise constants.
Case 1: � is a compact polygonal domain in R

2. We denote by S(n, 1) (n ≥ n0)
the set of all piecewise constants S of the form

S =
n∑

j=1

c j1R j , c j ∈ R, (3.2)

where R1, . . . , Rn are rings with disjoint interiors such that � = ∪n
j=1R j .

Case 2:� = R
2. In this case, we denote by S(n, 1) the set of all piecewise constant

functions S of the form (3.2), where R1, . . . , Rn are rings with disjoint interiors such
that the support R := ∪n

j=1R j of S is a ring in the sense of Definition 3.1.

A simple case of the above setting is when � = [0, 1]2 and the rings R are of the
form R = Q1 \ Q2, where Q1, Q2 are dyadic squares in R

2. These kind of dyadic
rings have been used in [2].

A bit more general is the setting when � is a regular rectangle in R
2 with sides

parallel to the coordinate axes or� = R
2 and the rings R are of the form R = Q1\Q2,

where Q1, Q2 are regular rectangles with sides parallel to the coordinate axes, and no
narrow and elongated subregions are allowed in the sense of Definition 3.1 (c).

Clearly, the set S(n, 1) is nonlinear since the rings {R j } and the constants {c j } in
(3.2) may vary with S.

We denote by S1n ( f )p the best approximation of f ∈ L p(�) fromS(n, 1) in L p(�),
0 < p < ∞; i.e.,

S1n( f )p := inf
S∈S(n,1)

‖ f − S‖L p . (3.3)

Besov spaces. When approximating in L p, 0 < p < ∞, from piecewise constants the
Besov spaces Bs,1

τ with 1/τ = s/2 + 1/p naturally appear. In this section, we shall
use the abbreviated notation Bs

τ := Bs,1
τ .

3.2 Direct and Inverse Estimates

The following Jackson estimate is quite easy to establish (see [6]): If f ∈ Bs
τ , s > 0,

1/τ := s/2 + 1/p, 0 < p < ∞, then f ∈ L p(�) and
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S1n( f )p ≤ cn−s/2| f |Bs
τ

for n ≥ n0, (3.4)

where c > 0 is a constant depending only on s, p and the structural constants N0, c0,
and β of the setting.

This estimate leads immediately to the following direct estimate: If f ∈ L p(�),
then

S1n( f )p ≤ cK ( f, n−s/2), n ≥ n0, (3.5)

where K ( f, t) is the K -functional induced by L p and Bs
τ ; namely,

K ( f, t) = K ( f, t; L p, Bs
τ ) := inf

g∈Bs
τ

{‖ f − g‖p + t |g|Bs
τ
}, t > 0. (3.6)

The main problem here is to prove a matching inverse estimate. Observe that the
following Bernstein estimate holds: If S ∈ S(n, 1), n ≥ n0, and 0 < p < ∞,
0 < s < 2/p, 1/τ = s/2 + 1/p, then

|S|Bs
τ

≤ cns/2‖S‖L p , (3.7)

where the constant c > 0 depends only on s, p, and the structural constants of the
setting (see the proof of Theorem 4.5). The point is that this estimate does not imply
a companion to (3.5) inverse estimate. The following estimate would imply such an
estimate:

|S1 − S2|Bs
τ

≤ cns/2‖S1 − S2‖L p , S1, S2 ∈ S(n, 1). (3.8)

However, as the following example shows this estimate is in general not valid.

Example 3.3 Consider the function f := 1[0,ε]×[0,1], where ε > 0 is sufficiently
small. It is easy to see that

ω1( f, t)
τ
τ ∼

{
t if t ≤ ε,

ε if t > ε,

and hence for 0 < s < 2/p and 1/τ = s/2 + 1/p, we have

| f |Bs
τ

∼ ε1/τ−s ∼ ε1/p−s/2 ∼ ε−s/2‖ f ‖L p , implying | f |Bs
τ

�≤ c‖ f ‖L p ,

since ε can be arbitrarily small. It is easy to see that one comes to the same conclusion
if f is the characteristic function of any convex elongated set inR2. The point is that if
S1, S2 ∈ S(n, 1), then S1− S2 can be a constant multiple of the characteristic function
of one or more elongated convex sets inR2, and, therefore, estimate (3.8) is in general
not possible.

We overcome the problem with estimate (3.8) by establishing the following main
result:
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Theorem 3.4 Let 0 < p < ∞, 0 < s < 2/p, and 1/τ = s/2 + 1/p. Then for any
S1, S2 ∈ S(n, 1), n ≥ n0, we have

|S1|Bs
τ

≤ |S2|Bs
τ
+ cns/2‖S1 − S2‖L p if τ ≥ 1, and (3.9)

|S1|τBs
τ

≤ |S2|τBs
τ
+ cnτ s/2‖S1 − S2‖τ

L p if τ < 1, (3.10)

where the constant c > 0 depends only on s, p, and the structural constants N0, c0,
and β; n0 is from Condition 3.2.

In the limiting case, we have this result:

Theorem 3.5 If S1, S2 ∈ S(n, 1), n ≥ n0, then

|S1|BV ≤ |S2|BV + cn1/2‖S1 − S2‖L2 , (3.11)

where the constant c > 0 depends only on the structural constants N0, c0, and β.

The proof of this theorem is easier than the one of Theorem 3.4 and will be omitted.
We next show that estimates (3.9–3.10) and (3.11) imply the desired inverse esti-

mate.

Theorem 3.6 Let p, s, and τ be as in Theorem 3.4, and set λ := min{τ, 1}. Then for
any f ∈ L p(�), we have

K ( f, n−s/2) ≤ cn−s/2

⎛

⎝
n∑

�=n0

1

�

[
�s/2S1� ( f )p

]λ + ‖ f ‖λ
p

⎞

⎠
1/λ

, n ≥ n0. (3.12)

Here K ( f, t) = K ( f, t; L p, Bs
τ ) is the K -functional defined in (3.6), and c > 0 is a

constant depending only on s, p, and the structural constants of the setting.
Furthermore, in the case when p = 2 and s = 1, estimate (3.12) holds with Bs

τ

replaced by BV and λ = 1.

Proof Let τ < 1 and f ∈ L p(�). We may assume that for any n ≥ n0, there
exists Sn ∈ S(n, 1) such that ‖ f − Sn‖p = S1n( f )p. Clearly, for any m ≥ m0 with
m0 := �log2 n0�, we have

K ( f, 2−ms/2) ≤ ‖ f − S2m‖p + 2−ms/2|S2m |Bs
τ
. (3.13)

We now estimate |S2m |τBs
τ
using iteratively estimate (3.10). For ν ≥ m0 + 1, we get

|S2ν |τBs
τ

≤ |S2ν−1 |τBs
τ
+ c2τνs/2‖S2ν − S2ν−1‖τ

p

≤ |S2ν−1 |τBs
τ
+ c2τνs/2

(
‖ f − S2ν ‖τ

p + ‖ f − S2ν−1‖τ
p

)

≤ |S2ν−1 |τBs
τ
+ c′2τνs/2S12ν−1( f )

τ
p.
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From (3.7) we also have

|S2m0 |Bs
τ

≤ c‖S2m0 ‖p ≤ c‖ f − S2m0 ‖p + c‖ f ‖p = cS12m0 ( f )p + c‖ f ‖p.

Summing up these estimates, we arrive at

|S2m |τBs
τ

≤ c
m−1∑

ν=m0

2τνs/2S12ν ( f )τp + c‖ f ‖τ
p.

Clearly, this estimate and (3.13) imply (3.12). The proof in the cases λ ≥ 1 or p = 2,
s = 1, and Bs

τ replaced by BV is similar; we omit it. ��
Observe that the direct and inverse estimates (3.5) and (3.9–3.11) imply immediately

a characterization of the approximation spaces Aα
q associated with piecewise constant

approximation from above just like in (1.7).

3.3 Proof of Theorem 3.4

We shall only consider the casewhen� ⊂ R
2 is a compact polygonal domain, obeying

Condition 3.2. The proof in the case � = R
2 is similar.

Assume S1, S2 ∈ S(n, 1), n ≥ n0. Then S1, S2 can be represented in the form
S j = ∑

R∈R j
cR1R,whereR j is a set of at most n rings in the sense of Definition 3.1

with disjoint interiors and such that � = ∪R∈R j R, j = 1, 2.
We denote by U the set of all maximal compact connected subsetsU of � obtained

by intersecting all rings fromR1 andR2 with the propertyU ◦ = U (the closure of the
interior of U is U ). Here U being maximal means that it is not contained in another
such set.

Observe first that eachU ∈ U is obtained from the intersection of exactly two rings
R′ ∈ R1 and R′′ ∈ R2, and is a subset of � with polygonal boundary ∂U consisting
of ≤ 2N0 line segments (edges). Secondly, the sets in U have disjoint interiors and
� = ∪U∈UU .

It is easy to see that there exists a constant c > 0 such that

#U ≤ cn. (3.14)

Indeed, eachU ∈ U is obtained by intersecting two rings, say, R′ ∈ R1 and R′′ ∈ R2.
If |R′| < |R′′|, we associate R′ with U , if |R′| > |R′′| we associate R′′ with U , and
if |R′| = |R′′|, we associate either R′ or R′′ with U . However, because of condition
(b) in Definition 3.1, every ring R from R1 or R2 can be intersected by only finitely
many, say, N � rings from R2 or R1, respectively, of area ≥ |R|. Here N � depends
only on the structural constants N0 and c0. Also, the intersection of any two rings
may have only finitely many, say N ��, connected components. Therefore, every ring
R ∈ R1 ∪R2 can be associated with no more than N �N �� setsU ∈ U , which implies
(3.14) with c = 2N �N ��.
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Fig. 2 The ring from Fig. 1 with
good triangles (angles = β/2)

Example 3.3 clearly indicates that our main problem will be in dealing with sets
U ∈ U or parts of them with (diameter)2 much larger than their area. To overcome
the problem with these sets, we shall subdivide each of them using the following

Construction of good triangles. According to Definition 3.1, each segment E from
the boundary of every ring R ∈ R j can be subdivided into the union of at most two
segments E1, E2 (E = E1 ∪ E2) with disjoint interiors such that there exist triangles
1 with a side E1 and adjacent to E1 angles of size β > 0 and 2 with a side E2
and adjacent to E2 angles β such that � ⊂ R, � = 1, 2. We now associate with 1
the triangle ̃1 ⊂ 1 with one side E1 and adjacent to E1 angles of size β/2; just in
the same way we construct the triangle ̃2 ⊂ 2 with a side E2. We proceed in the
same way for each edge E from ∂R, R ∈ R j , j = 1, 2. We denote by TR the set of
all triangles ̃1, ̃2 associated in the above manner with all edges E from ∂R. We
shall call the triangles from TR the good triangles associated with R. Observe that due
to 1,2 ⊂ R for the triangles from above it readily follows that the good triangles
associated with R (R ∈ R j , j = 1, 2) have disjoint interiors; this was the purpose of
the above construction. To see this, one has simply to consider two arbitrary segments
on ∂R and the associated triangles.

From now on, for every segment E from ∂R that has been subdivided into E1 and
E2 as above, we shall consider E1 and E2 as segments from ∂R in place of E . We
denote by ER the set of all (new) segments from ∂R. We now associate with each
E ∈ ER the good triangle that has E as a side and denote it by E .

To summarize, we have subdivided the boundary ∂R of each ring R ∈ R j , j = 1, 2,
into a set ER of segments with disjoint interiors (∂R = ∪E∈ER E) and associated with
each E ∈ ER a good triangle E ⊂ R such that E is a side of E and the triangles
{E }E∈ER have disjoint interiors. In addition, if E ′ ⊂ E is a subsegment of E , then
we associate to E ′ the triangle E ′ ⊂ E with one side E ′ and the other two sides
parallel to the respective sides of E ; hence E ′ is similar to E . We shall call E ′
a good triangle as well. Fig. 2 illustrates the construction of good triangles (compare
with Fig. 1).

Subdivision of the sets from U . We next subdivide each set U ∈ U by using the
good triangles constructed above. Suppose U ∈ U is obtained from the intersection
of rings R′ ∈ R1 and R′′ ∈ R2. Then the boundary ∂U of U consists of two sets of
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Fig. 3 A set U with its good
triangles. Note also the
trapezoids

segments E ′
U and E ′′

U , where each E ∈ E ′
U is a segment or subsegment of a segment

from ER′ and each E ∈ E ′′
U is a segment or subsegment of a segment from ER′′ . Clearly,

∂U = ∪E∈E ′
U∪E ′′

U
E , and the segments from E ′

U ∪ E ′′
U have disjoint interiors. For each

E ∈ E ′
U ∪ E ′′

U , we denote by E the good triangle with a side E , defined above.

Definition of the set TU of trapezoids associated with U ∈ U . We consider the
collection of all nonempty sets of the form E1 ∩ E2 with the properties: (a) E1 ∈
EU ′ , E2 ∈ EU ′′ , and (b) There exists an isosceles trapezoid or an isosceles triangle
T ⊂ E1 ∩ E2 such that its two legs (of equal length) are contained in E1 and E2,
respectively, and its height is not smaller than its larger base. We assume that T is a
maximal isosceles trapezoid (or triangle) with these properties. We denote by TU the
set of all trapezoids as above.

Definition of the collection AU . We denote by AU the set of all maximal compact
connected subsets A of U \ ∪T∈TU T ◦.

Clearly, U = ∪T∈TU T ∪A∈AU A, and the sets in TU ∪ AU have disjoint interiors.
Figs. 3 and 8 illustrate of the above construction.
In the next lemma, we prove the “obvious” fact that as a result of the above subdi-

vision of every set U ⊂ U uncontrollably narrow and elongated subregions of U can
only be realized as trapezoids from TU .

Lemma 3.7 There exist constants c� > 1 and β� > 0 depending only on N0, c0, and
β, such that if A ∈ AU for some U ∈ U , then d(A)2 ≤ c�|A|, and there exists a
triangle  ⊂ A whose minimum angle is ≥ β� such that |A| ≤ c�||. Here d(A)

stands for the diameter of A.

Proof Let U ∈ U . There are only two possibilities for U : either U is of the form
U = (Q2 \ Q̃2)\ Q̃1 or of the formU = (Q1∩Q2)\(Q̃1∪ Q̃2), where R1 = Q1 \ Q̃1
and R2 = Q2 \ Q̃2 are two rings (see Definition 3.1), one of which belongs toR1 and
the other toR2, see Fig. 4.

We shall only consider the caseU = (Q2 \ Q̃2) \ Q̃1; the other case is similar. Let
A ∈ AU (observe that if TU = ∅, thenAU = {U } and A = U ). Define γ2 := ∂Q2∩A,
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Q1

Q̃2

Q̃1

Q2

Q1 Q2

Q̃1
Q̃2

Fig. 4 Two possible configurations for U : U = (Q2 \ Q̃2) \ Q̃1 (left) or U = (Q1 ∩ Q2) \ (Q̃1 ∪ Q̃2)

(right)

Fig. 5 One instance of A ∈ AU
(dark shade) and trapezoids
(light shade). Observe that in
this case, one of the trapezoids
arises from a segment of Q̃2

Q̃2

γ̃1 := ∂ Q̃1 ∩ A, and γ̃2 := ∂ Q̃2 ∩ A. Clearly, ∂A consists of γ2, γ̃1, γ̃2 (if γ̃2 �= ∅)
and at most two base segments of trapezoids from TU , see Fig. 5. Observe that from
Definition 3.1, it follows that the number of edges of ∂A is ≤ 3N0 + 2.

Let E� be the longest edge (line segment) of ∂A. There are four possibilities for
E� that we consider separately below.

Case 1: E� is the base of a trapezoid in TU . Then from the construction of the
trapezoids in TU , it readily follows that there exists a triangle  ⊂ A with a side E�

and minimal angle ≥ β/2. Hence,

d(A)2 ≤ (3N0 + 2)2�(E�)2 ≤ c(3N0 + 2)2|| ≤ c′|A|, (3.15)

and |A| ≤ d(A)2 ≤ c|| as claimed.
Case 2: E� is an edge (line segment) of γ2. LetE� ⊂ R2 be the good triangle with

a side E�. As such it follows that E� ∩ Q̃◦
2 = ∅. Denote by u1, u2, u3 the vertices

of E� , where u1, u2 are the end points of E�. Further, let u4 be the point on the side
[u1, u3] of E� such that |u1 − u4| = |u1 − u3|/4. Similarly, let u5 be the point on
the side [u2, u3] such that |u2 − u5| = |u2 − u3|/4. Also, denote by u6 and u7 the
points on E� such that |u1 − u6| = |u1 − u2|/4 and |u2 − u7| = |u1 − u2|/4. Let
′ := [u1, u4, u6] be the triangle with vertices u1, u4, u6, and let ′′ := [u2, u5, u7].
See Fig. 5.

If γ̃1 ∩ ′ = ∅, then ′ ⊂ A, and as in (3.15), we conclude that

d(A)2 ≤ 42(3N0 + 2)2(�(E�)/4)2 ≤ c|′| ≤ c|A|

as claimed. The same argument applies whenever γ̃1 ∩ ′′ = ∅.
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u1 u6 u7 u2

u4
u5

u3

γ2

γ̃1

Δ ΔE

Fig. 6 Illustration of Case 2

Consider the case when γ̃1 ∩ ′ �= ∅ and γ̃1 ∩ ′′ �= ∅, see Fig. 6. Define γ̃ �
1 :=

γ̃1 \ (′ ∪ ′′). Let Ẽ�
1 be the set of all edges of γ̃ �

1 . Clearly, �(γ̃
�
1 ) ≥ �(E�)/2 and

#Ẽ�
1 ≤ N0. Since each good triangle E ⊂ R1 associated with an edge E ∈ Ẽ�

1
does not form a trapezoid in TU , there exists a constant β̂, depending only on β, such
that 0 < β̂ < β/2 and the triangle ̂E (̂E ⊂ E ) with angles adjacent to E of
size β̂ does not intersect E�. Also, from the fact that E is contained in the trapezoid
[u4, u5, u7, u6], it follows that ̂E cannot intersect the other two sides ofE� . Hence,
̂E ⊂ E� . Using this, we obtain

d(A)2 ≤ (3N0 + 2)2�(E�)2 ≤ 4(3N0 + 2)2�(γ̃ �
1 )2 = 4(3N0 + 2)2

⎛

⎜⎝
∑

E∈Ẽ�
1

�(E)

⎞

⎟⎠

2

≤ 4(3N0 + 2)2N0

∑

E∈Ẽ�
1

�(E)2 ≤ c
∑

E∈Ẽ�
1

|̂E | ≤ c|A|, (3.16)

where we used that the triangles ̂E , E ∈ Ẽ�
1 , are with disjoint interiors and ̂E ⊂ A.

Observe also that if  ∈ {̂E : E ∈ Ẽ�
1 } is a triangle of largest area from this set of

triangles, then it follows from above that |A| ≤ d(A)2 ≤ c||. This completes the
proof of the lemma in Case 2.

Case 3: E� is an edge of γ̃2. In this case, the argument is just as the one in Case 2.
We omit the details.

Case 4: E� is an edge of γ̃1 (recall that E� is the longest edge of ∂A). LetE� ⊂ R1
be the good triangle with a side E�. Two subcases present themselves here depending
on whether E� ∩ Q̃◦

2 = ∅ or E� ∩ Q̃◦
2 �= ∅.

Case 4 (a): E� ∩ Q̃◦
2 = ∅. Let u1, u2, u3 be the vertices of E� , where u1, u2 are

the end points of E�. We define the points u4, u5, u6, u7 on the sides of E� just as
in Case 2 above, see Fig. 7.

Assume γ2 ∩ [u4, u5, u3] �= ∅, where [u4, u5, u3] stands for the triangle with
vertices u4, u5, u3. Pick a point u ∈ γ2 ∩ [u4, u5, u3]. Because of the convexity of
Q2, the triangle  := [u1, u2, u] is contained in A, and hence
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γ2

γ̃1

u6 u7 u2

u4 u5

u3

u1
E

Fig. 7 Illustration of Case 4 (a)

d(A)2 ≤ (3N0 + 2)2�(E�)2 ≤ c(3N0 + 2)2|| ≤ c′|A|

as claimed.
Assume γ2∩[u4, u5, u3] = ∅. Then γ2 intersects the segments [u4, u6] and [u5, u7].

Set γ �
2 := γ2 ∩ [u6, u7, u5, u4], where [u6, u7, u5, u4] is the trapezoid with vertices

u6, u7, u5, u4. Let E�
2 be the set of all edges of γ �

2 . Clearly, �(γ �
2 ) > �(E�)/2 and

#E�
2 ≤ N0. Just as in Case 2, we note that each good triangle E ⊂ R2 associated

with an edge E ∈ E�
2 does not form a trapezoid in TU , and hence the triangle ̂E

(̂E ⊂ E ) with angles adjacent to E of size β̂ with 0 < β̂ < β/2 as in Case 2 is
contained in Q2 ∩ E� . Therefore, as in (3.16),

d(A)2 ≤ (3N0 + 2)2�(E�)2 ≤ 4(3N0 + 2)2�(γ �
2 )2 = 4(3N0 + 2)2

⎛

⎝
∑

E∈E�
2

�(E)

⎞

⎠
2

≤ 4(3N0 + 2)2N0

∑

E∈E�
2

�(E)2 ≤ c
∑

E∈E�
2

|̂E | ≤ c|A|.

Furthermore, if  ∈ {̂E : E ∈ E�
2 } is a triangle of largest area from this set of

triangles, then |A| ≤ d(A)2 ≤ c||, which completes the proof in this subcase.
Case 4 (b): E� ∩ Q̃◦

2 �= ∅. Observe that A ∩ E� = (Q2 \ Q̃2) ∩ E� . Just as in
Case 4 (a), one shows that

�(E�)2 ≤ c|Q2 ∩ E� |. (3.17)

We next prove that there exists a constant c′ > 0 such that

|Q2 ∩ E� | ≤ c′|(Q2 ∩ E� ) \ Q̃2| = c′|A ∩ E� |. (3.18)

Define Q̃�
2 := E� ∩ Q̃2, γ̃ �

2 := γ̃2 ∩ E� , and let Ẽ�
2 be the set of all edges of γ̃ �

2 .
Note that just as in Case 2 and Case 4 (a), each good triangle E ⊂ R2 associated
with an edge E ∈ Ẽ�

2 does not form with E� a trapezoid in TU , and hence the triangle
̂E (̂E ⊂ E ) with angles adjacent to E of size β̂ with 0 < β̂ < β/2 as in Case 2
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does not intersect E�. We claim that there exists a constant c′′ > 0 such that

|Q̃2 ∩ E� | ≤ c′′|(∪E∈Ẽ�
2
̂E ) ∩ E� |. (3.19)

As in Case 4 (a), let E� =: [u1, u2, u3], where E� = [u1, u2]. Denote by n1 and
n2 the unit vectors that are orthogonal to the sides [u1, u3] and [u2, u3], respectively,
and exterior to E� . Observe that since E� is a good triangle, the angle made by the
sides [u1, u3] and [u2, u3] is of size ≥ π − β ≥ 2π/3. Further, denote by Ẽ�

2 the set
of all edges E ∈ Ẽ�

2 whose exterior (to Q̃2) normal vectors make angles ≥ π/2 with

n1 and n2. Clearly, ̂E ∩ ([u1, u3] ∪ [u2, u3]) = ∅, ∀E ∈ Ẽ�
2, and hence

̂E ⊂ (Q2 ∩ E� ) \ Q̃2, ∀E ∈ Ẽ�
2. (3.20)

On the other hand, since the convex set Q̃2 is with bounded eccentricity (Defini-
tion 3.1), it readily follows that there exist constants c1, c2 > 0 such that

∑

E∈Ẽ�
2

�(E) ≥ c1
∑

E∈Ẽ�
2

�(E) ≥ c2d(Q̃2 ∩ E� ). (3.21)

From (3.20–3.21) it follows that

|Q̃2 ∩ E� | ≤ d(Q̃2 ∩ E� )2 ≤ c

⎛

⎜⎝
∑

E∈Ẽ�
2

�(E)

⎞

⎟⎠

2

≤ cN0

∑

E∈Ẽ�
2

�(E)2

≤ cN0

∑

E∈Ẽ�
2

|̂E | ≤ c
∑

E∈Ẽ�
2

|̂E ∩ E� |,

which confirms (3.19).
To prove (3.18), we consider two cases. If |Q̃2∩E� | ≤ |Q2∩E� |/2, then (3.18)

follows trivially. Assume |Q̃2 ∩ E� | > |Q2 ∩ E� |/2. Then using (3.19),

|Q2 ∩ E� | ≤ 2|Q̃2 ∩ E� | ≤ c|(∪E∈Ẽ�
2
̂E ) ∩ E� | ≤ c′|(Q2 ∩ E� ) \ Q̃2|,

which completes the proof of (3.18).
Finally, (3.17) and (3.18) imply

d(A)2 ≤ (3N0 + 2)2�(E�)2 ≤ c|A ∩ E� | ≤ c|A|.

Therefore, d(A)2 ≤ c|A| as claimed.
In the case when |Q̃2 ∩ E� | ≤ |Q2 ∩ E� |/2, just as in Case 4 (a), the triangle

 ∈ {̂E : E ∈ E�
2 } of largest area has the property |A| ≤ d(A)2 ≤ c||. In the other

case, the triangle  ∈ {̂E : E ∈ Ẽ�
2 , ̂E ⊂ E�} of largest area has this property.

The proof of Lemma 3.7 is complete. ��
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In what follows, we shall need the following obvious property of the trapezoids
from T .

Property 3.8 There exists a constant 0 < ĉ < 1 such that if L = [v1, v2] is one
of the legs of a trapezoid T ∈ T and T ⊂ E1 ∩ E2 (see the construction of
trapezoids), then for any x ∈ L with |x − v j | ≥ ρ, j = 1, 2, for some ρ > 0 we
have B(x, ĉρ) ⊂ E1 ∪ E2 . Moreover, if D = [v1, v2] is one of the bases of the
trapezoid T , then for any x ∈ D with |x − v j | ≥ ρ, j = 1, 2, for some ρ > 0 we have
B(x, ĉρ) ⊂ E1 ∩ E2 .

Let A := ∪U∈UAU and T := ∪U∈UTU . We have � = ∪A∈AA ∪T∈T T , and,
clearly, the sets in A ∪ T have disjoint interiors. From these we obtain the following
representation of S1(x) − S2(x) for x ∈ � which is not on any of the edges:

S1(x) − S2(x) =
∑

A∈A
cA1A(x) +

∑

T∈T
cT1T (x), (3.22)

where cA and cT are constants.
For future reference, we note that

#A ≤ cn and #T ≤ cn. (3.23)

These estimates follow readily by (3.14) and the fact that the number of edges of each
U ∈ U is ≤ 2N0.

Let 0 < s/2 < 1/p, and assume τ ≤ 1. Fix t > 0, and let h ∈ R
2 with norm

|h| ≤ t . Write ν := |h|−1h, and assume ν =: (cos θ, sin θ), −π < θ ≤ π .
We shall frequently use the following obvious identities: If S is a constant on

a measurable set G ⊂ R
2 and H ⊂ G (H measurable), then

‖S‖Lτ (G) = |G|1/τ−1/p‖S‖L p(G) = |G|s/2‖S‖L p(G) (3.24)

and
‖S‖Lτ (H) = (|H |/|G|)1/τ‖S‖Lτ (G). (3.25)

We next estimate ‖�h S1‖τ
Lτ (G) − ‖�h S2‖τ

Lτ (G) for different subsets G of �.

Case 1

Let T ∈ T be such that d(T ) > 2t/ĉ with ĉ the constant from Property 3.8. Define

Th := {x ∈ � : [x, x + h] ⊂ � and [x, x + h] ∩ T �= ∅}.

We now estimate ‖�h S1‖τ
Lτ (Th)

− ‖�h S2‖τ
Lτ (Th)

.
We may assume that T is an isosceles trapezoid contained in E1 ∩ E2 , where

E j ( j = 1, 2) is a good triangle for a ring R j ∈ R j and T is positioned so that its
vertices are the points
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Fig. 8 A trapezoid T

ItT

v1 v2

v3v4

Bv1 Bv2

L1 L2

E2

E1

v1 := (−δ1/2, 0), v2 := (δ1/2, 0), v3 := (δ2/2, H), v4 := (−δ2/2, H),

where 0 ≤ δ2 ≤ δ1 and H > δ1. Let L1 := [v1, v4] and L2 := [v2, v3] be the
two equal (long) legs of T . We assume that L1 ⊂ E1 and L2 ⊂ E2. We denote by
D1 := [v1, v2] and D2 := [v3, v4] the two bases of T . Set VT := {v1, v2, v3, v4}. See
Fig. 8.

Furthermore, let γ ≤ π/2 be the angle between D1 and L1, and assume that
ν =: (cos θ, sin θ) with θ ∈ [γ, π ]. The case θ ∈ [−γ, 0] is just the same. The case
when θ ∈ [0, γ ] ∪ [−π,−γ ] is considered similarly.

Define Bv := B(v, 2t/ĉ), v ∈ VT ,

At
T := {

A ∈ A : d(A) > t and A ∩ (T + B(0, t)) �= ∅}
,

At
T := {

A ∈ A : d(A) ≤ t and A ∩ (T + B(0, t)) �= ∅}
,

and

T t
T := {

T ′ ∈ T : d(T ′) > 2t/ĉ and T ′ ∩ (T + B(0, t)) �= ∅}
,

Tt
T := {

T ′ ∈ T : d(T ′) ≤ 2t/ĉ and T ′ ∩ (T + B(0, t)) �= ∅}
.

Case 1 (a). If [x, x + h] ∈ ◦
E1
, then �h S1(x) = 0 because S1 is a constant on

E1 . Hence no estimate is needed.
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Case 1 (b). If [x, x + h] ⊂ ∪v∈VT Bv , we estimate |�h S1(x)| using the obvious
inequality

|�h S1(x)| ≤ |�h S2(x)| + |S1(x) − S2(x)| + |S1(x + h) − S2(x + h)|. (3.26)

Clearly, the contribution of this case to estimating ‖�h S1‖τ
Lτ (Th)

−‖�h S2‖τ
Lτ (Th)

is

≤ c
∑

v∈VT

∑

A∈At
T

‖S1 − S2‖τ
Lτ (Bv∩A) + c

∑

v∈VT

∑

T ′∈T t
T

‖S1 − S2‖τ
Lτ (Bv∩T ′)

+ c
∑

v∈VT

∑

A∈At
T

‖S1 − S2‖τ
Lτ (Bv∩A) + c

∑

v∈VT

∑

T ′∈Tt
T

‖S1 − S2‖τ
Lτ (Bv∩T ′)

≤
∑

A∈At
T

ct2d(A)τ s−2‖S1 − S2‖τ
L p(A) +

∑

T ′∈T t
T

ct1+τ s/2d(T ′)τ s/2−1‖S1 − S2‖τ
L p(T ′)

+
∑

A∈At
T

cd(A)τ s‖S1 − S2‖τ
L p(A) +

∑

T ′∈Tt
T

cd(T ′)τ s‖S1 − S2‖τ
L p(T ′).

Here we used these estimates, obtained using Lemma 3.7 and (3.24) or/and (3.25):
(1) If A ∈ At

T and v ∈ VT , then

‖S1 − S2‖τ
Lτ (Bv∩A) = (|Bv|/|A|)‖S1 − S2‖τ

Lτ (A)

≤ ct2d(A)−2‖S1 − S2‖τ
Lτ (A) ≤ ct2d(A)τ s−2‖S1 − S2‖τ

L p(A).

(2) If T ′ ∈ T t
T and δ1(T ′) > 2t/ĉ with δ1(T ′) being the maximal base of T ′, then for

any v ∈ VT , we have

‖S1 − S2‖τ
Lτ (Bv∩T ′) = (|Bv|/|T ′|)‖S1 − S2‖τ

Lτ (T ′) ≤ ct2|T ′|τ s/2−1‖S1 − S2‖τ
L p(T ′)

≤ ct2δ1(T
′)τ s/2−1d(T ′)τ s/2−1‖S1 − S2‖τ

L p(T ′)

≤ ct1+τ s/2d(T ′)τ s/2−1‖S1 − S2‖τ
L p(T ′),

where we used that τ s/2 < 1, which is equivalent to s < s + 2/p.
(3) If T ′ ∈ T t

T and δ1(T ′) ≤ 2t/ĉ, then for any v ∈ VT ,

‖S1 − S2‖τ
Lτ (Bv∩T ′) = (|Bv ∩ T ′|/|T ′|)‖S1 − S2‖τ

Lτ (T ′)

= |Bv ∩ T ′||T ′|τ s/2−1‖S1 − S2‖τ
L p(T ′)

≤ ctδ1(T
′)[δ1(T ′)d(T ′)]τ s/2−1‖S1 − S2‖τ

L p(T ′)

= ctδ1(T
′)τ s/2d(T ′)τ s/2−1‖S1 − S2‖τ

L p(T ′)

≤ ct1+τ s/2d(T ′)τ s/2−1‖S1 − S2‖τ
L p(T ′).
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(4) If A ∈ At
T , then

‖S1 − S2‖τ
Lτ (Bv∩A) ≤ ‖S1 − S2‖τ

Lτ (A) ≤ c|A|τ s/2‖S1 − S2‖τ
L p(A)

≤ cd(A)τ s‖S1 − S2‖τ
L p(A).

(5) If T ′ ∈ Tt
T , then

‖S1 − S2‖τ
Lτ (Bv∩T ′) ≤ ‖S1 − S2‖τ

Lτ (T ′) ≤ c|T ′|τ s/2‖S1 − S2‖τ
L p(T ′) (3.27)

≤ cd(T ′)τ s‖S1 − S2‖τ
L p(T ′).

Case 1 (c). If [x, x + h] �⊂ ∪v∈VT Bv and [x, x + h] intersects D1 or D2, then
δ1 > 2t/ĉ > 2t or δ2 > 2t and hence [x, x + h] ⊂ E1 ∩ E2 , which implies
�h S1(x) = 0. No estimate is needed.

Case 1 (d). Let I tT be the set defined by

I tT := {x ∈ T : x is between L1 and L1 + εe1} \ (
B(v1, t/ĉ) ∪ B(v4, t/ĉ)

)
, (3.28)

where ε := (δ1−δ2)M−1t , e1 := 〈1, 0〉, andM := |L1| = |L2|. Set JhT := I tT +[0, h].
See Fig. 8.

In this case, we again use (3.26) to estimate |�h S1(x)|. We obtain

‖�h S1‖τ
Lτ (I tT )

≤ ‖�h S2‖τ
Lτ (I tT )

+ ‖S1 − S2‖τ
Lτ (I tT )

+
∑

A∈At
T

‖S1 − S2‖τ

Lτ (JhT ∩A)
+

∑

A∈At
T

‖S1 − S2‖τ

Lτ (JhT ∩A)
.

Clearly, |I tT | ≤ ctδ1(T ) and |T | ∼ δ1(T )d(T ). Then using (3.24–3.25), we infer

‖S1 − S2‖τ
Lτ (I tT )

= (|I tT |/|T |)‖S1 − S2‖τ
Lτ (T ) ≤ ctd(T )−1‖S1 − S2‖τ

Lτ (T )

= ctd(T )−1|T |τ s/2‖S1 − S2‖τ
L p(T ) ≤ ctd(T )τ s−1‖S1 − S2‖τ

L p(T ).

Similarly, for A ∈ At
T , we use that |JhT ∩ A| ≤ ctd(A) and |A| ∼ d(A)2 to obtain

‖S1 − S2‖τ

Lτ (JhT ∩A)
≤ ctd(A)‖S1 − S2‖τ

L∞(A) = ctd(A)|A|−τ/p‖S1 − S2‖τ
L p(A)

≤ ctd(A)1−2τ/p‖S1 − S2‖τ
L p(A) ≤ ctd(A)τ s−1‖S1 − S2‖τ

L p(A).

For A ∈ At
T , we have

‖S1 − S2‖τ

Lτ (JhT ∩A)
≤ ‖S1 − S2‖τ

Lτ (A) = |A|τ s/2‖S1 − S2‖τ
L p(A)

≤ cd(A)τ s‖S1 − S2‖τ
L p(A).
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Putting the above estimates together, we get

‖�h S1‖τ
Lτ (I tT )

≤ ‖�h S2‖τ
Lτ (I tT )

+ ctd(T )τ s−1‖S1 − S2‖τ
L p(T )

+
∑

A∈At
T

ctd(A)τ s−1‖S1 − S2‖τ
L∞(A) +

∑

A∈At
T

cd(A)τ s‖S1 − S2‖τ
L p(A).

Case 1 (e) (Main). Let T �
h ⊂ Th be defined by

T �
h := {x ∈ Th : [x, x + h] ∩ L1 �= ∅, x /∈ I tT , [x, x + h] �⊂

⋃

v∈VT

Bv}. (3.29)

We next estimate ‖�k
h S1‖τ

Lτ (T �
h )
.

Recall that by assumption h = |h|ν with ν =: (cos θ, sin θ) and θ ∈ [γ, π ], where
γ ≤ π/2 is the angle between D1 and L1.

Let x ∈ T �
h . With the notation x = (x1, x2), we let (−a, x2) ∈ L1 and (a, x2) ∈ L2,

a > 0, be the points of intersection of the horizontal line through x with L1 and L2.
Set b := 2a − ε with ε := (δ1 − δ2)M−1t , see (3.28).

We associate the points x + be1 and x + be1 + h with x and x + h. A simple
geometric argument shows that x + be1 ∈ E1 \ T , while x + be1 + h ∈ T ◦.

Now, using that S1 = constant on ◦
E1
, we have S1(x) = S1(x + be1), and since

S2 = constant on ◦
E2
, we have S2(x + h) = S2(x + be1 + h). We use these two

identities to obtain

S1(x + h) − S1(x) = S2(x + be1 + h) − S2(x + be1)

+ [S1(x + h) − S2(x + h)] − [S1(x + be1) − S2(x + be1)],

and, therefore,

|�h S1(x)| ≤ |�h S2(x + be1)| (3.30)

+ |S1(x + h) − S2(x + h)| + |S1(x + be1) − S2(x + be1)|.

Some words of explanation are in order here. The purpose of the set I tT is that there
is one-to-one correspondence between pairs of points x ∈ T ◦ \ I tT , x + h ∈ E2 \ T
and x + be1 ∈ E1 \ T , x + be1 + h ∈ T ◦. Due to δ2 < δ1, this would not be true if
I tT was not removed from T ◦. Thus there is one-to-one correspondence between the
differences |�h S1(x)| and |�h S2(x + be1)| in the case under consideration. Also, it
is important that �h S1(x + be1) = 0, and hence |�h S2(x + be1)| need not be used to
estimate |�h S1(x + be1)|.

Another important point here is that x + h /∈ T ◦ and x + be1 /∈ T ◦. Therefore, no
quantities |S1(x) − S2(x)| with x ∈ T ◦ \ I tT are involved in (3.30), which is critical.

Observe that for x ∈ T �
h , we have

[x, x + h] �⊂
⋃

v∈VT

Bv, and hence [x + be1, x + be1 + h] �⊂
⋃

v∈VT

Bv.
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Therefore, by Property 3.8, it follows that [x, x + h] and [x + be1, x + be1 + h] do
not intersect any trapezoid T ′ ∈ T , T ′ �= T .

Let T ��
h := {x + be1 : x ∈ T �

h }. For any A ∈ A and t > 0, define

At := {x ∈ A : dist(x, ∂A) ≤ t}. (3.31)

From all of the above, we get

‖�h S1‖τ
Lτ (T �

h )
≤ ‖�h S2‖τ

Lτ (T ��
h )

+
∑

A∈At
T

‖S1 − S2‖τ
Lτ (At )

+
∑

A∈At
T

‖S1 − S2‖τ
Lτ (A).

Now, using that |At | ≤ ctd(A) and |A| ∼ d(A)2 for A ∈ At
T , we obtain

‖S1 − S2‖τ
Lτ (At )

= (|At |/|A|)|A|τ s/2‖S1 − S2‖τ
L p(A)

≤ ctd(A)τ s−1‖S1 − S2‖τ
L p(A). (3.32)

For A ∈ At
T , we use that |A| ∼ d(A)2 and obtain

‖S1 − S2‖τ
Lτ (A) = |A|τ s/2‖S1 − S2‖τ

L p(A) ≤ cd(A)τ s‖S1 − S2‖τ
L p(A). (3.33)

Inserting these estimates above, we get

‖�h S1‖τ
Lτ (T �

h )
≤ ‖�h S2‖τ

Lτ (T ��
h )

+
∑

A∈At
T

ctd(A)τ s−1‖S1 − S2‖τ
L p(A)

+
∑

A∈At
T

cd(A)τ s‖S1 − S2‖τ
L p(A). (3.34)

Case 2

Let ��
h be the set of all x ∈ � such that [x, x + h] ⊂ � and [x, x + h] ∩ T = ∅ for

all T ∈ T with d(T ) ≥ 2t/ĉ. To estimate |�h S1(x)|, we again use (3.26). With the
notation from (3.31), we get

‖�h S1‖τ
Lτ (��

h)
≤ ‖�h S2‖τ

Lτ (��
h)

+
∑

T∈T :d(T )≤2t/ĉ

‖S1 − S2‖τ
Lτ (T )

+
∑

A∈A:d(A)>t

‖S1 − S2‖τ
Lτ (At )

+
∑

A∈A:d(A)≤t

‖S1 − S2‖τ
Lτ (A).

For the first sum above, we have just as in (3.27),

∑

T∈T :d(T )≤2t/ĉ

‖S1 − S2‖τ
Lτ (T ) ≤

∑

T∈T :d(T )≤2t/ĉ

cd(T )τ s‖S1 − S2‖τ
L p(T ).
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We estimate the other two sums as in (3.32) and (3.33). We obtain

‖�h S1‖τ
Lτ (��

h)
≤ ‖�h S2‖τ

Lτ (��
h)

+
∑

T∈T :d(T )≤2t/ĉ

cd(T )τ s‖S1 − S2‖τ
L p(T )

+
∑

A∈A:d(A)>t

ctd(A)τ s−1‖S1 − S2‖τ
L p(A) +

∑

A∈A:d(A)≤t

cd(A)τ s‖S1 − S2‖τ
L p(A).

It is an important observation that each trapezoid T ∈ T with d(T ) > 2t/ĉ may
share trapezoids T ′ ∈ Tt

T and sets A ∈ At
T with only finitely many trapezoids with the

same properties. Also, for every such trapezoid T , we have #T t
T ≤ c and #At

T ≤ cwith
c > 0 a constant depending only on the structural constants of the setting. Therefore,
in the above estimates, only finitely many norms may overlap at a time. Putting all of
them together, we obtain

ω1(S1, t)
τ
τ ≤ ω1(S2, t)

τ
τ + Y1 + Y2,

where

Y1 =
∑

A∈A:d(A)>t

ctd(A)τ s−1‖S1 − S2‖τ
L p(A)

+
∑

A∈A:d(A)>t

ct2d(A)τ s−2‖S1 − S2‖τ
L p(A)

+
∑

A∈A:d(A)≤t

cd(A)τ s‖S1 − S2‖τ
L p(A)

and

Y2 =
∑

T∈T :d(T )>2t/ĉ

ctd(T )τ s−1‖S1 − S2‖τ
L p(T )

+
∑

T∈T :d(T )>2t/ĉ

ct1+τ s/2d(T )τ s/2−1‖S1 − S2‖τ
L p(T )

+
∑

T∈T :d(T )≤2t/ĉ

cd(T )τ s‖S1 − S2‖τ
L p(T ).

We now turn to the estimation of |S1|Bs
τ
. Using the above and interchanging the order

of integration and summation, we get

|S1|τBs
τ

=
∫ ∞

0
t−sτ−1ω1(S1, t)

τ
τdt ≤ |S2|τBs

τ
+ Z1 + Z2,
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where

Z1 =
∑

A∈A
cd(A)τ s−1‖S1 − S2‖τ

L p(A)

∫ d(A)

0
t−τ sdt

+
∑

A∈A
cd(A)τ s−2‖S1 − S2‖τ

L p(A)

∫ d(A)

0
t−τ s+1dt

+
∑

A∈A
cd(A)τ s‖S1 − S2‖τ

L p(A)

∫ ∞

d(A)

t−τ s−1dt

and

Z2 =
∑

T∈T
cd(T )τ s−1‖S1 − S2‖τ

L p(T )

∫ ĉd(T )/2

0
t−τ sdt

+
∑

T∈T
cd(T )τ s/2−1‖S1 − S2‖τ

L p(T )

∫ ĉd(T )/2

0
t−τ s/2dt

+
∑

T∈T
cd(T )τ s‖S1 − S2‖τ

L p(T )

∫ ∞

ĉd(T )/2
t−τ s−1dt.

Observe that −τ s > −1 is equivalent to s/2 < 1/p, which is one of the assumptions,
and −τ s/2 > −1 is equivalent to s < s + 2/p, which is obvious. Therefore, all of
the above integrals are convergent, and we obtain

|S1|τBs
τ

≤ |S2|τBs
τ
+

∑

A∈A
c‖S1 − S2‖τ

L p(A) +
∑

T∈T
c‖S1 − S2‖τ

L p(T ).

Finally, applying Hölder’s inequality and using (3.23), we arrive at

|S1|τBs
τ

≤ |S2|τBs
τ
+ c (#A)τ(1/τ−1/p)

(
∑

A∈A
‖S1 − S2‖p

L p(A)

)τ/p

+ c (#T )τ(1/τ−1/p)

(
∑

T∈T
‖S1 − S2‖p

L p(T )

)τ/p

≤ cnτ(1/τ−1/p)‖S1 − S2‖τ
L p(�) = cnτ s/2‖S1 − S2‖τ

L p(�).

This confirms estimate (3.10). The proof in the case when τ > 1 is the same. ��

4 Nonlinear Approximation from Smooth Splines

In this section, we focus on Bernstein estimates in nonlinear approximation in L p,
0 < p < ∞, from regular nonnested smooth piecewise polynomial functions in R

2.
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4.1 Setting and Approximation Tool

We first elaborate on our setting and consider examples. As in Sect. 3, we consider two
versions of the class of regular piecewise polynomials S(n, k) of degree k − 1 with
k ≥ 2 over n rings of maximum smoothness, depending on whether � is compact or
� = R

2.
Case 1:Assume � is a compact polygonal domain inR2 that can be represented as

the union of n0 rings with disjoint interiors, see Condition 3.2. We denote by S(n, k)
(n ≥ n0) the set of all piecewise polynomials S of the form

S =
n∑

j=1

Pj1R j , S ∈ Ck−2(�), Pj ∈ �k−1, (4.1)

where R1, . . . , Rn are rings in the sense of Definition 3.1 with disjoint interiors such
that � = ∪n

j=1R j . Recall that �k−1 stands for the set of all polynomials of degree

≤ k − 1 in two variables and S ∈ Ck−2(�) means that all partial derivatives ∂αS ∈
C(�), |α| ≤ k − 2.

Case 2: � = R
2. In this case, we denote by S(n, k) the set of all piecewise

polynomials S of degree k − 1 on R
2 of the form (4.1), where R1, . . . , Rn are rings

with disjoint interiors such that the support � = ∪n
j=1R j of S is a ring in the sense of

Definition 3.1.
Wedenote by Skn ( f )p the best approximation of f ∈ L p(�) fromS(n, k) in L p(�),

0 < p < ∞; i.e.,
Skn ( f )p := inf

S∈S(n,k)
‖ f − S‖L p . (4.2)

Remark Observe that in our setting, the splines are of maximum smoothness, and this
is critical for our development.Aswill be shown inExample 4.4 below in the nonnested
case our Bernstein type inequality is not valid in the case when the smoothness of the
splines is not maximal.

We next consider several scenarios for constructing regular piecewise polynomials
of maximum smoothness:

1. Piecewise linear functions induced by nested triangulations. Suppose that T0 is
an initial subdivision of � into triangles that obey the minimum angle condition and
is with no hanging vertices in the interior of �. In the case of � = R

2, we assume
for simplicity that the triangles  ∈ T0 are of similar areas; i.e., c1 ≤ |1|/|2| ≤ c2
for all 1,2 ∈ T0. Next we subdivide each triangle  ∈ T0 into 4 triangles by
introducing the midpoints on the sides of . The result is a triangulation T1 of �. In
the same way, we define the triangulations T2, T3, etc. Each triangulation T j supports
Courant hat functions (linear finite elements) ϕθ , each of them supported on the union
θ of all triangles from T j that have a common vertex, say, v. Thus ϕθ (v) = 1, ϕθ

takes values zero at all other vertices of triangles from T j , and ϕθ is continuous and
piecewise linear over the triangles from T j . Clearly, each piecewise linear function
over the triangles from T j can be represented as a linear combination of Courant hat
functions like these.
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Denote by � j the set of all supports θ of Courant elements supported by T j and
set � := ∪ j≥0� j . Consider the nonlinear set Sn of all piecewise linear functions S
of the form

S =
∑

θ⊂Mn

cθϕθ ,

whereMn ⊂ � and #Mn ≤ n; the elements θ ∈ Mn may come from different levels
and locations. It is not hard to see that Sn ⊂ S(cn, 2), see [6].

2. General piecewise linear functions.More generally, one can consider piecewise
linear functions S of the form

S =
∑

θ⊂Mn

cθϕθ ,

where {ϕθ } are Courant hat functions as above, #Mn ≤ n, andMn consists of cells θ

as above that are not necessarily induced by a hierarchical collection of triangulations
of �; however, there exists an underlying subdivision of � into rings obeying the
conditions from Sect. 3.1.

3. Piecewise quadratic or cubic splines. The C1 quadratic box-splines on the four-
directional mesh (the so-called “Powell–Zwart finite elements”) and the piecewise
cubics inR2 or on a rectangular domain, endowedwith the Powell–Sabin triangulation
generated by a uniform 6-direction mesh, provide examples of quadratic and cubic
splines of maximum smoothness.

Other examples are to be identified or developed.

Splines with defect. To make the difference between approximation from nonnested
and nested splines more transparent and for future references, we now introduce the
splines with arbitrary smoothness. Given a set � ⊂ R

2 with polygonal boundary or
� := R

2, k ≥ 2, and 0 ≤ r ≤ k − 1, we denote by S(n, k, r) (n ≥ n0) the set of all
piecewise polynomials S of the form

S =
n∑

j=1

Pj1R j , S ∈ Cr−1(�), Pj ∈ �k−1, (4.3)

where R1, . . . , Rn are rings with disjoint interiors such that � = ∪n
j=1R j . We set

Sk,rn ( f )p := inf
S∈S(n,k,r)

‖ f − S‖L p . (4.4)

4.2 Jackson Estimate

Jackson estimates in spline approximation are relatively easy to prove. Such estimates
(also in anisotropic settings) are established in [3,6]. For example, the Jackson estimate
we need in the case of approximation from piecewise linear functions (k = 2) follows
from [6, Theorem 3.6] and takes the form:
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Theorem 4.1 Let 0 < p < ∞, s > 0, and 1/τ = s/2 + 1/p. Assume � = R
2

or � ⊂ R
2 is a compact set with polygonal boundary and an initial triangulation

consistingof≤ n0 triangleswith nohanging interior vertices andobeying theminimum
angle condition. Then for any f ∈ Bs,2

τ , we have f ∈ L p(�) and

S2n ( f )p ≤ cn−s/2| f |Bs,2
τ

, n ≥ n0. (4.5)

Consequently, for any f ∈ L p(�),

S2n ( f )p ≤ cK ( f, n−s/2), n ≥ n0. (4.6)

Here K ( f, t) = K ( f, t; L p, Bs
τ ) is the K -functional defined in (3.6) and c > 0 is a

constant depending only on s, p, and the structural constants of the setting.

Similar Jackson and direct estimates for nonlinear approximation from splines of
degrees≥ 2 and of maximum smoothness do not follow automatically from the results
in [3], the reason being the fact that the basis functions for splines of degree 2 and 3
that we are familiar with are not stable. The stability is required in [3]. The problem
for establishing Jackson estimates for approximation from splines of degree ≥ 2 of
maximum smoothness remains open.

4.3 Bernstein Estimate in the Nonnested Case

We come now to one of the main results of this article. Here we operate in the setting
described above in Sect. 4.1.

Theorem 4.2 Let 0 < p < ∞, k ≥ 1, 0 < s/2 < k−1+1/p, and 1/τ = s/2+1/p.
Then for any S1, S2 ∈ S(n, k), n ≥ n0, we have

|S1|Bs,k
τ

≤ |S2|Bs,k
τ

+ cns/2‖S1 − S2‖L p if τ ≥ 1, and (4.7)

|S1|τBs,k
τ

≤ |S2|τBs,k
τ

+ cnτ s/2‖S1 − S2‖τ
L p if τ < 1, (4.8)

where the constant c > 0 depends only on s, p, k, and the structural constants of the
setting; n0 is from Condition 3.2.

An immediate consequence of this theorem is the inverse estimate given in

Corollary 4.3 Let 0 < p < ∞, k ≥ 1, 0 < s/2 < k−1+1/p, and 1/τ = s/2+1/p.
Set λ := min{τ, 1}. Then for any f ∈ L p(�), we have

K ( f, n−s/2) ≤ cn−s/2

⎛

⎝
n∑

�=n0

1

�

[
�s/2Sk� ( f )p

]λ + ‖ f ‖λ
p

⎞

⎠
1/λ

, n ≥ n0. (4.9)

Here K ( f, t) = K ( f, t; L p, Bs
τ ) is the K -functional defined just as in (3.6), and c > 0

is a constant depending only on s, p, k, and the structural constants of the setting.

123



170 Constr Approx (2017) 45:143–191

The proof of this corollary is just a repetition of the proof of Theorem 3.6. We omit
it.

In turn, estimates (4.6) and (4.9) imply a characterization of the approximation
spaces associated with nonlinear nonnested piecewise linear approximation, see (1.7).

The proof of Theorem 4.2 relies on the idea we used in the proof of Theorem 3.4.
However, there is an important complication to overcome. The fact that many rings
with relatively small supports can be located next to a large ring is a major obstacle
in implementing this idea in the case of smooth splines. An additional construction is
needed. To make the proof more accessible, we shall proceed in two steps. We first
develop the needed additional construction and implement it in Sect. 4.4 to prove the
respective Bernstein estimate in the nested case, and then we present the proof of
Theorem 4.2 in Sect. 4.5.

Before we proceed with the proofs of the Bernstein estimates, we show in the next
example that the assumption that in our setting the splines are ofmaximum smoothness
is essential.

Example 4.4 We now show that estimates (4.7–4.8) fail without the assumption that
S1, S2 ∈ Ck−2(�) (i.e., both splines have maximum smoothness). We shall only
consider the case when k = 2 and τ ≤ 1. Let � = [−1, 1] × [0, 1] and 0 < ε < 1/4.
Set

S1(x) := x11[0,1]2(x), S2(x) := x11[ε,1]×[0,1](x), x = (x1, x2).

Clearly, S1 is continuous on �, while S2 is discontinuous along x1 = ε. A straightfor-
ward calculation shows that

ω2(S1, t)
τ
τ = 2tτ+1

τ + 1
and ω2(S2, t)

τ
τ =

∫ t

−t
|w + ε|τdw for 0 ≤ t ≤ 1/4.

(4.10)
Further,

∫ t

−t
|w + ε|τdw = 1

τ + 1

[
(t + ε)τ+1 + sign(t − ε)|t − ε|τ+1

]
. (4.11)

On the other hand, obviously ω2(S1 − S2, t)ττ ≤ 4‖S1 − S2‖τ
Lτ ≤ 4ετ+1, yielding

ω2(S2, t)
τ
τ ≥ ω2(S1, t)

τ
τ − 4ετ+1. (4.12)

We shall use this estimate for t > 1/4. From (2.1) and (4.10–4.12), we obtain

|S2|τBs,2
τ

− |S1|τBs,2
τ

≥ 1

τ + 1

[∫ ε

0
t−sτ−1[(t + ε)τ+1 − (ε − t)τ+1 − 2tτ+1]dt

+
∫ 1/4

ε

t−sτ−1[(ε + t)τ+1 + (t − ε)τ+1 − 2tτ+1]dt
]

− 4ετ+1
∫ ∞

1/4
t−sτ−1dt

=: I1 + I2 − (4sτ+1/sτ)ετ+1.
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Substituting t = εu in I1 and I2, we get

I1 + I2 = ετ−sτ+1

τ + 1

[∫ 1

0
u−sτ−1φ1(u)du +

∫ 1/4ε

1
u−sτ−1φ2(u)du

]
,

where

φ1(u) = (1 + u)τ+1 − (1 − u)τ+1 − 2uτ+1

and

φ2(u) = (1 + u)τ+1 + (u − 1)τ+1 − 2uτ+1.

We clearly have φ1 ≥ 0 on [0, 1] and φ2 ≥ 0 on [1,∞). Therefore,

|S2|τBs,2
τ

− |S1|τBs,2
τ

≥ c1ε
τ−sτ+1 − c0ε

τ+1 = ετ−sτ+1(c1 − c0ε
sτ ),

where

c1 := 1

τ + 1

∫ 1

0
t−sτ−1φ1(u)du > 0 and c0 := 4sτ+1/sτ.

By taking ε sufficiently small, we get

|S2|τBs,2
τ

− |S1|τBs,2
τ

≥ (c1/2)ε
τ−sτ+1. (4.13)

Evidently, ‖S2 − S1‖L p ≤ ε1+1/p. This estimate coupled with (4.13) implies

|S2|τ
Bs,2

τ

− |S1|τ
Bs,2

τ

‖S2 − S1‖τ
L p

≥ (c1/2)ε
1−sτ−τ/p = (c1/2)ε

−sτ/2.

Therefore, since ε−sτ/2 → ∞ as ε → 0, estimate (4.8) cannot hold.

4.4 Additional Subdivision and Bernstein Estimate in the Nested Case

As already indicated above, the idea of the proof of the Bernstein estimate from
Theorem 3.4 is insufficient for the proof of the Bernstein estimate for approximation
from smooth splines (Theorem 4.2). In the case of smooth splines, we hit a snag when
“small” rings are located next to “large” rings. To overcome this obstacle, we next
introduce an additional subdivision of the underlying rings. As an application of this
construction and for comparison, we prove the following Bernstein estimate, which
yields an inverse estimate, in the case of nested spline approximation.
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Theorem 4.5 Let 0 < p < ∞, k ≥ 2, 0 ≤ r ≤ k − 1, 0 < s/2 < r + 1/p, and
1/τ = s/2 + 1/p. Then for any S ∈ S(n, k, r), n ≥ n0, we have

|S|Bs,k
τ

≤ cns/2‖S‖L p , (4.14)

where the constant c > 0 depends only on s, p, k, r , and the structural constant of
our setting.

Additional subdivision of �. We subdivide � in two steps.
Subdivision of all rings R ∈ Rn into nested hierarchies of rings.

Lemma 4.6 There exists a subdivision of every ring R ∈ Rn into a nested multilevel
collection of rings

KR = ∪∞
m=mR

KR
m

with the following properties, where we use the abbreviated notation Km := KR
m:

(a) Every level Km defines a partition of R into rings with disjoint interiors such
that R = ∪K∈Km K .

(b) The levels {Km}m≥mR are nested; i.e., Km+1 is a refinement of Km, and each
K ∈ Km has at least 4 and at most M children in Km+1, where M ≥ 4 is a
constant.

(c) |R| ≤ c1|K | for all K ∈ KmR .
(d) We have

c−1
2 4−m ≤ |K | ≤ c24

−m, ∀K ∈ Km, ∀m ≥ mR .

As a consequence, we have c−1
3 4−mR ≤ |R| ≤ c34−mR and

c−1
4 2−m ≤ d(K ) ≤ c42

−m, ∀K ∈ Km, ∀m ≥ mR .

(e) All rings K ∈ KR are rings without a hole, except for finitely many of them in
the case when R = Q1 \ Q2 and Q2 is small relative to Q1. Then the rings with
a hole form a chain R ⊃ K1 ⊃ K2 ⊃ · · · ⊃ K� ⊃ Q2. All sets K ∈ KR are
rings in the sense of Definition 3.1 with structural constants (parameters) N∗

0 ,
c�
0, and β�. These and the constants M and c1, c2, c3, c4 > 0 from above depend
only on the initial structural constants N0, c0, and β.

Proof Observe first that if we are in a setting as the one described in Scenario 1
from Sect. 4.1, then the needed subdivision is given by the hierarchy of triangulations
described there.

In the general case, let R = Q1 \ Q2 be a ring in the sense of Definition 3.1,
and assume that Q2 �= ∅. We subdivide the polygonal convex set Q1 into subrings
by connecting the center of eccentricity of Q1 with, say, 6 points from the boundary
∂R of R, preferably end points of segments on the boundary, so that the minimum
angle condition is obeyed. After that we subdivide the resulting rings using midpoints
and connecting them with segments. Necessary adjustments are made around Q2,
depending on the size and location of Q2. ��
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Subdivision of all rings from Rn into subrings with disjoint interiors. We first
pick up all rings from each KR , R ∈ Rn , see Lemma 4.6, that are needed to handle
situations where many small rings are located next to a large ring.

We shall only need the rings inKR that intersect the boundary ∂R of R. Denote the
set of all such rings by �R , and set �R

m := �R ∩ KR
m . We shall make use of the tree

structure in �R . More precisely, we shall use the parent-child relation in �R induced
by the inclusion relation: Each ring K ∈ �R

m has (contains) at least 1 and at most M
children in �R

m+1 and has a single parent in �R
m−1 or no parent.

We now construct a set �R of rings from �R which will help prevent situations
where a ring may have many small neighbors.

Given R ∈ Rn , we denote by RR
n the set of all rings R̃ ∈ Rn , R̃ �= R, such that

R̃ ∩ R �= ∅ and d(R̃) ≤ d(R). These are all rings from Rn that are small relative to
R and intersect R (are neighbors of R).

It will be convenient to introduce the following somewhat geometric terminology:
We say that a ring K ∈ �R can see R̃ ∈ RR

n or that R̃ is in the range of K if
d(K ) ≥ d(R̃) and K ∩ R̃ �= ∅.

We now construct �R by applying the following
Rule:We place K ∈ �R in �R if K can see some (at least one) rings fromRR

n but
neither of the children of K in �R can see all of them.

We now extend�R to �̃R by adding to�R all same level neighbors of all K ∈ �R ;
i.e., if K ∈ �R and K ∈ �R

m , then we add to�R each K ′ ∈ �R
m such that K ′ ∩K �= ∅.

The next step is to construct a subdivision of each R ∈ Rn into rings by using
�̃R . We fix R ∈ Rn and shall suppress the superscript R for the new sets that will be
introduced next and depend on R.

Let �̃ ⊂ �R be the minimal subtree of �R that contains �̃R ; i.e., �̃ is the set
of all K ∈ �R such that K ⊃ K ′ for some K ′ ∈ �̃R . We denote by �̃b the set
of all branching rings in �̃ (rings with more than one child in �̃) and by �̃′

b the set
of all children in �̃ of branching rings (each of them may or may not belong to �̃).
Furthermore, we let �̃� denote the set of all leaves in �̃ (rings in �̃ containing no other
rings from �̃).

Evidently, �̃� ⊂ �̃R . However, rings from �̃b and �̃′
b may or may not belong to

�̃R . We extend �̃R to ˜̃
�R := �̃R ∪ �̃b ∪ �̃′

b. In addition, we add to
˜̃
�R all rings from

KR
mR

, if they are not there yet.

It is readily seen that each ring R̃ ∈ RR
n can be in the range of only finitely many

K ∈ �̃� and each ring R̃ ∈ Rn may have only finitely many neighbors R ∈ Rn such
that d(R) ≥ d(R̃). Therefore,

∑

R∈Rn

#�̃R
� ≤ cn.

Obviously, #�̃b ≤ #�̃�, #�̃′
b ≤ M#�̃b ≤ M#�̃�, implying #�̃R ≤ #�̃�+#�̃b ≤ c#�̃�,

and hence # ˜̃
�R ≤ c′#�̃�. Putting these estimates together implies

∑

R∈Rn

# ˜̃
�R ≤ cn.
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Observe that, with the exception of all branching rings in �̃R , by construction every

other ring K ∈ �̃R is either a leaf, and hence contains no other rings from ˜̃
�R , or

contains only one ring K ′ ∈ ˜̃
�R of minimum level; i.e., K has one descendent K ′ in

˜̃
�R .

We now make the final step in our construction: We denote by F R the set of all

rings from �̃R
� along with all new rings of the form K \ K ′, where K ∈ �̃′

b, K
′ ∈ ˜̃

�R ,
K ′ ⊂ K and K ′ is of minimum level with these properties. Set F := ∪R∈RnF R .

The purpose of the above construction becomes clear from the following

Lemma 4.7 The setF consists of rings in the sense of Definition 3.1 with parameters
depending only on the structural constants N0, c0, and β. Also, for any R ∈ Rn, the

rings in F R have disjoint interiors, R = ∪K∈F R K , and #F R ≤ c# ˜̃
�R. Hence,

� =
⋃

R∈Rn

⋃

K∈F R

K and
∑

R∈Rn

#F R ≤ cn.

Most importantly, each ring K ∈ F has only finitely many neighbors in F; that is,
there exists a constant N1 such that for any K ∈ F there are at most N1 rings in F
intersecting K .

To prove the most important property of the set of rings F , namely, that each ring
K ∈ F has only finitely many neighbors in F , we shall need the following technical

Lemma 4.8 Suppose K ⊃ K1 ⊃ K2, K ∈ �R, K1, K2 ∈ �̃R, and both K1 and K2
share parts of an edge E of K located in the interior of R. Then there exists K � ∈ �̃R

such that K � ∩ K ◦ = ∅, K � ∩ E �= ∅, and K � is either a neighbor of K1 or K2, or
K � is a neighbor of the parent of K1 in �R.

Proof If K1 ∈ �R , then by construction all same level neighbors of K1 belong to �̃R

and hence the one that shares the edge of K1 contained in E will be in �̃R . We denote
this ring by K �, and apparently it has the claimed properties. By the same token, if
K2 ∈ �R , then one of its neighbors will do the job.

Suppose K1, K2 ∈ �̃R \ �R . Then K1 has a neighbor, say, K̂1 that belongs to �R

and K̂1 is at the level of K1. If K̂1 has an edge contained in E , then K � := K̂1 has the
claimed property. Similarly, K2 has a neighbor K̂2 ∈ �R at the level of K2. If K̂2 has
an edge contained in E , then K � := K̂2 will do the job.

Assume that neither of the above is true. Then since K1, K̂1 ∈ �R , they must have
the same parent in �R that has an edge contained in E . Denote this common parent
by K �. For the same reason, K2, K̂2 ∈ �R have a common parent, say, K �� in �R .
Clearly, K � and K �� have some edges contained in E . Also, K̂1 ⊂ K �, K̂2 ⊂ K �, and
K̂ ◦
1 ∩ K̂ ◦

2 = ∅.
We claim that K � belongs to �R . Indeed, the rings from Rn that are in the range

of K̂1 are also in the range of K �. Also, the rings fromRn that are in the range of K̂2
are also in the range of K �. However, obviously neither of the children of K � can have
the range of K �. Therefore, K � belongs to �R . Now, just as above, we conclude that
one of the neighbors of K � has the claimed property. ��
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Proof of Lemma 4.7 All properties of the newly constructed set of rings F , given in
Lemma 4.7, but the last one follow readily from their construction.

We now show that each ring K ∈ F has only finitely many neighbors inF . Indeed,
by the construction any K ∈ F R , R ∈ Rn , has only finitely many neighbors that
do not belong to F R . Thus, it remains to show that it cannot happen that there exist
rings K1 ⊂ K2 ⊂ · · · ⊂ KJ , K j ∈ �̃R , with J uncontrollably large that have edges
contained in an edge of a single ring K ∈ �̃R whose interior does not intersect K j ,
j = 1, . . . , J . But this assertion readily follows by Lemma 4.8. ��
The following lemma will be instrumental in the proof of Theorem 4.5.

Lemma 4.9 Assume 0 < p, q ≤ ∞, k ≥ 1, r ≥ 0, and ν ∈ R
2 with |ν| = 1. Let the

sets G, H ⊂ R
2 bemeasurable, G ⊂ H, and such that there exist balls B1, B2, B3, B4,

B j = B(x j , r j ), with the properties: B2 ⊂ G ⊂ B1, r1 ≤ c�r2, and B4 ⊂ H ⊂ B3,
r3 ≤ c�r4, where c� ≥ 1 is a constant. Then for any P ∈ �k−1,

‖P‖L p(G) ≤ c|G|1/p−1/q‖P‖Lq (G), (4.15)

‖Dr
ν P‖L p(G) ≤ cd(G)−r‖P‖L p(G), (4.16)

and
‖P‖L p(G) ≤ c(|G|/|H |)1/p‖P‖L p(H), (4.17)

where c > 0 is a constant depending on p, q, k, r, c�, and the parameters N0, c0, and
β from Definition 3.1. Here Dr

νS is the rth directional derivative of S in the direction
of ν.

Furthermore, inequality (4.17) holds with Q and H replaced by their images L(G)

and L(H), where L is a nonsingular linear transformation of R2.

Proof Inequality (4.15) holds whenever B2 = B(0, 1) and B1 = B(0, c�) with c� =
constant by the fact that any two (quasi)normson�k−1 are equivalent. This implies that
(4.15) is valid in the case when B2 = B(0, 1) and B2 ⊂ B1, where B1 = B(x2, c�/2).
Then (4.15), in general, follows by rescaling. Inequality (4.17) is obvious when p =
∞. In general, it follows from the case p = ∞ and application of (4.15) to G with p
and q = ∞ and to H with p = ∞, q = p. Inequality (4.16) is an easy consequence
of the Markov inequality for univariate polynomials whenever G is a square. Then in
general it follows by inscribing B1 in a smallest possible cube and then applying it for
the cube and using (4.17). The last claim in the lemma is obvious. ��
Proof of Theorem 4.5 With the preparations from above, we are ready to carry out this
proof. We shall only consider the case when � ⊂ R

2 is a compact polygonal domain.
Let S ∈ S(n, k, r), and suppose S is represented as in (4.1); that is,

S =
∑

R∈Rn

PR1R, S ∈ Cr−1(�), PR ∈ �k−1, (4.18)

whereRn is a collection of ≤ n rings with disjoint interiors such that � = ∪R∈Rn R.
LetF be the set of rings constructed above starting with the rings fromRn . Then from
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(4.18) and because F is a refinement ofRn , it follows that S can be represented in the
form

S =
∑

K∈F
PK1K , S ∈ Cr−1(�), PK ∈ �k−1. (4.19)

Recall that F is the collection of at most cn rings with disjoint interiors such that
� = ∪K∈FK (see Lemma 4.7).

We next introduce some convenient notation. For any ring K ∈ F , we denote by
NK the set of all rings K ′ ∈ F such that K ∩ K ′ �= ∅; EK will denote the set of all
segments (edges) from the boundary ∂K of K ; and VK will be the set of all vertices
of the polygonal curve ∂K (end points of edges from EK ).

The fact thatF consists of rings in the sense of Definition 3.1 implies the following

Property 4.10 There exists a constant 0 < č < 1 such that if E = [v1, v2] is an edge
shared by two rings K , K ′ ∈ F , then for any x ∈ E with |x − v j | ≥ ρ, j = 1, 2 for
some ρ > 0, we have B(x, čρ) ⊂ K ∪ K ′.

Fix t > 0. For each ring K ∈ F , we define

Kt := {x ∈ K : dist(x, ∂K ) ≤ kt}.
Write �t := ∪K∈FKt .

Let h ∈ R
2 with norm |h| ≤ t , and set ν := |h|−1h. For S is a polynomial of degree

≤ k − 1 on each K ∈ F , we have �k
h S(x) = 0 for x ∈ ∪K∈FK \ Kt . Therefore,

‖�k
h S‖Lτ (�) = ‖�k

h S‖Lτ (�t ).

Let K ∈ F , and assume d(K ) > 2kt/č with 0 < č < 1 the constant from
Property 4.10. Define N t

K := {K ′ ∈ NK : d(K ) > 2kt/č}, Bv := B(v, 2kt/č),
v ∈ VK , and

Nt
K := {K ′ ∈ F : d(K ′) > 2kt/č and K ′ ∩ (K + B(0, 2kt/č)) �= ∅}.

Observe that because d(K ) > 2kt/č, the number of rings inNt
K is uniformly bounded.

Let x ∈ �t be such that [x, x + kh] ∩ K �= ∅. Two cases are to be considered here.
(a) Let [x, x + kh] �⊂ ∪v∈VK Bv . Then [x, x + kh] intersects some edge E ∈ EK

such that �(E) ≥ 2kt/č, and [x, x + kh] cannot intersect another edge E ′ ∈ EK with
this property or an edge E ′ ∈ EK with �(E ′) < 2kt/č.

Suppose that the edge E =: [v1, v2] is shared with K ′ ∈ F and y := E ∩ [x, x +
kh]. Evidently, |y − v j | > kt/č, j = 1, 2, and in light of Property 4.10, we have
[x, x + kh] ⊂ B(y, kt) ⊂ K ∪ K ′. Clearly,

|�k
h S(x)| ≤ ctr‖Dr

νS‖L∞([x,x+kh]) ≤ ctr‖Dr
νS‖L∞(K ) + ctr‖Dr

νS‖L∞(K ′). (4.20)

(b) Let [x, x + kh] ⊂ ∪v∈VK Bv . Then we estimate |�k
h S(x)| trivially:

|�k
h S(x)| ≤ 2k

k∑

�=0

|S(x + �h)|. (4.21)
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Using (4.20–4.21), we obtain

‖�k
h S‖τ

Lτ (Kt )
≤ c

∑

K ′∈N t
K

td(K ′)trτ‖Dr
νS‖τ

L∞(K ′)

+ c
∑

K ′∈Nt
K

∑

v∈VK

‖S‖τ
Lτ (Bv∩K ′) + c

∑

K ′′∈F :d(K ′′)≤2kt/č

‖S‖τ
Lτ (K ′′∩(K+[0,kh])).

(4.22)

Note that the number of rings K ′ ∈ Nt
K such that K ′ ∩ Bv �= ∅ for some v ∈ VK is

uniformly bounded.
By Lemma 4.9, it follows that ‖Dr

νS‖L∞(K ′) ≤ cd(K ′)−r−2/p‖S‖L p(K ′), and if the
ring K ′ ∈ Nt

K and v ∈ VK , then

‖S‖τ
Lτ (Bv∩K ′) ≤ c(|Bv|/|K ′|)‖S‖τ

Lτ (K ′) ≤ ct2|K ′|−1‖S‖τ
Lτ (K ′)

≤ ct2|K ′|−1+τ(1/τ−1/p)‖S‖τ
L p(K ′) ≤ ct2d(K ′)τ s−2‖S‖τ

L p(K ′).

We use the above estimates in (4.22) to obtain

‖�k
h S‖τ

Lτ (Kt )
≤ c

∑

K ′∈N t
K

t1+rτd(K ′)1−rτ−2τ/p‖S‖τ
L p(K ′)

+ c
∑

K ′∈Nt
K

t2d(K ′)τ s−2‖S‖τ
L p(K ′)

+ c
∑

K ′′∈F :d(K ′′)≤2kt/č

‖S‖τ
Lτ (K ′′∩(K+[0,kh])). (4.23)

Denote by ��
t the set of all x ∈ �t such that [x, x + kh] ⊂ � and

[x, x + kh] ⊂ ∪{K ∈ F : d(K ) ≤ 2kt/č}.

In this case, we shall use the obvious estimate

‖�k
h S‖τ

Lτ (��
t )

≤ c
∑

K∈F :d(K )≤2kt/č

‖S‖τ
Lτ (K ).

This estimate along with (4.23) yields

ωk(S, t)ττ ≤ c
∑

K∈F :d(K )≥2kt/č

t1+rτd(K )1−rτ−2τ/p‖S‖τ
L p(K )

+ c
∑

K∈F :d(K )≥2kt/č

t2d(K )sτ−2‖S‖τ
L p(K ) + c

∑

K∈F :d(K )≤2kt/č

‖S‖τ
Lτ (K ).

Here we used the fact that only finitely many (uniformly bounded number) of the
rings involved in the above estimates may overlap at a time due to Lemma 4.7. For the
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norms involved in the last sum, we use the estimate ‖S‖τ
Lτ (K ) ≤ cd(K )sτ‖S‖τ

L p(K ),

which follows by Lemma 4.9, to obtain

ωk(S, t)ττ ≤ c
∑

K∈F :d(K )≥2kt/č

t1+rτd(K ′)1−rτ−2τ/p‖S‖τ
L p(K ′)

+ c
∑

K∈F :d(K )≥2kt/č

t2d(K )sτ−2‖S‖τ
L p(K ) + c

∑

K∈F :d(K )≤2kt/č

d(K )sτ‖S‖τ
L p(K ).

We insert this estimate in (2.1) and interchange the order of integration and summation
to obtain

|S|τ
Bs,k

τ
=

∫ ∞

0
t−sτ−1ωk(S, t)ττdt

≤ c
∑

K∈F
d(K )1−rτ−2τ/p‖S‖τ

L p(K )

∫ čd(K )/2k

0
t−sτ+rτdt

+ c
∑

K∈F
d(K )sτ−2‖S‖τ

L p(K )

∫ čd(K )/2k

0
t−sτ+1dt

+ c
∑

K∈F
d(K )sτ‖S‖τ

L p(K )

∫ ∞

čd(K )/2k
t−sτ−1dt.

Observe that −sτ + rτ > −1 is equivalent to s/2 < r + 1/p and −sτ + 1 > −1 is
equivalent to s < 2/τ = s + 2/p. Therefore, the above integrals are convergent, and
taking into account that 2 − 2τ/p − sτ = 2τ(1/τ − 1/p − s/2) = 0, we obtain

|S|τ
Bs,k

τ
≤ c

∑

K∈F
‖S‖τ

L p(K ) ≤ cnτ(1/τ−1/p)

(
∑

K∈F
‖S‖τ

L p(K )

)τ/p

= cnτ s/2‖S‖τ
L p(�),

where we used Hölder’s inequality. This completes the proof of Theorem 4.5. ��
4.5 Proof of the Bernstein Estimate (Theorem 4.2) in the Nonnested Case

For the proof of Theorem 4.2, we combine ideas from the proofs of Theorem 3.4
and Theorem 4.5. We shall adhere to a large extent to the notation introduced in the
proof of Theorem 3.4 in Sect. 3.3. An important distinction between this proof and the
proof of Theorem 3.4 is that the directional derivatives Dk−1

ν S of any S ∈ S(n, k) are
piecewise constants along the respective straight lines rather than S being a piecewise
constant.

We consider the case when � ⊂ R
2 is a compact polygonal domain. Assume

S1, S2 ∈ S(n, k), n ≥ n0. Then each S j ( j = 1, 2) can be represented in the form
S j = ∑

R∈R j
PR1R,whereR j is a set of at most n rings in the sense of Definition 3.1

with disjoint interiors and such that � = ∪R∈R j R, PR ∈ �k , and S j ∈ Wk−2(�).
Just as in the proof of Theorem 4.5, there exist subdivisions F1, F2 of the rings

fromR1,R2 with the following properties, for j = 1, 2:
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(a) F j consists of rings in the sense of Definition 3.1 with parameters N �
0 , c

�
0, and

β� depending only on the structural constants N0, c0, and β.
(b) ∪R∈F j R = � and #Fj ≤ cn.
(c) There exists a constant N1 such that for any R ∈ F j , there are at most N1 rings

in F j intersecting R (R has ≤ N1 neighbors in F j ).
(d) S j can be represented in the form S j = ∑

R∈F j
PR1R with PR ∈ �k .

Now, just as in the proof of Theorem 3.4, we denote by U the collection of all maximal
connected sets obtained by intersecting rings from F1 and F2. By (3.14), there exists
a constant c > 0 such that #U ≤ cn.

We claim that there exists a constant N2 such that for anyU ∈ U there are no more
than N2 setsU ′ ∈ U that intersectU ; i.e.,U has at most N2 neighbors in U . Indeed, let
U ∈ U be a maximal connected component of R1 ∩ R2 with R1 ∈ F1 and R2 ∈ F2.
Then using the fact that the ring R1 has finitely many neighbors in F1 and R2 has
finitely many neighbors in F2, we conclude that U has finitely many neighbors in U .

Further, we introduce the sets A and T just as in the proof of Theorem 3.4.

Trapezoids. Our main concern will be in dealing with the trapezoids T ∈ T . We
next use the fact that any ring from F j , j = 1, 2, has at most N1 neighbors in F j

to additionally subdivide the trapezoids from T into trapezoids whose long sides are
sides of good triangles for rings in F1 or F2.

Consider an arbitrary trapezoid T ∈ T . Just as in Sect. 3.3, we may assume that T
is a maximal isosceles trapezoid contained in E1 ∩ E2 , where E j ( j = 1, 2) is a
good triangle for a ring R j ∈ F j , and T is positioned so that its vertices are the points

v1 := (−δ1/2, 0), v2 := (δ1/2, 0), v3 := (δ2/2, H), v4 := (−δ2/2, H),

where 0 ≤ δ2 ≤ δ1 and H > δ1. Let L1 := [v1, v4] and L2 := [v2, v3] be the two
equal (long) legs of T . We assume that L1 ⊂ E1 and L2 ⊂ E2. See Fig. 8.

By Lemma 4.7, it follows that there exist less than N1 rings K ′
� ∈ F1, � = 1, . . . , ν′,

each of them with an edge or part of an edge contained in L1. By Definition 3.1,
each of them can be subdivided into at most two segments so that each of these is
a side of a good triangle. Denote by I ′

�, � = 1, . . . ,m′, these segments, and by I ′
�
,

� = 1, . . . ,m′, the respective good triangles attached to them. More precisely, I ′
� is

a side of I ′
�

⊂ K ′
�, and I ′

�
is a good triangle for K ′

�. Thus we have L1 = ∪m′
�=1 I

′
�,

where the segments I ′
�, � = 1, . . . ,m′, are with disjoint interiors.

Similarly, there exist segments I ′′
� , � = 1, . . . ,m′′, and attached to them good

triangles I ′′
�
, � = 1, . . . ,m′′, for rings from F2, so that L2 = ∪m′′

�=1 I
′′
� .

Denote by v′
�, � = 1, . . . ,m′ + 1, the vertices of the triangles I ′

�
, � = 1, . . . ,m′,

on L ′ so that I ′
� = [v′

�, v
′
�+1], and assume that their orthogonal projections onto the

x2-axis p′
�, � = 1, . . . ,m′ + 1, are ordered so that 0 = p′

1 < p′
2 < · · · < p′

m′+1 = H .
Exactly in the same way, we define the vertices v′′

� , � = 1, . . . ,m′′ +1, of the triangles
I ′′

�
and their projections onto the x2-axis 0 = p′′

1 < p′′
2 < · · · < p′′

m′′+1 = H .
For any q ∈ [0, H ], we let δ(q) be the distance between the points where the line

with equation x2 = q intersects L1 and L2. Thus δ(0) = δ1 and δ(H) = δ2, and δ(q)

is linear.
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Inductively, starting from q1 = 0, one can easily subdivide the interval [0, H ] by
means of points

0 = q1 < q2 < · · · < qm+1 = H, m ≤ m′ + m′′ ≤ 2N1,

with the following properties, for k = 1, . . . ,m, either

(a) δ(qk) ≤ qk+1 − qk < 2δ(qk)
or

(b) qk+1 − qk > δ(qk) and (qk, qk+1) contains no points p′
� or p

′′
� .

We use the above points to subdivide the trapezoid T . Let Tk , k = 1, . . . ,m, be the
trapezoid bounded by L1, L2, and the lines with equations x2 = qk and x2 = qk+1.

We now separate the “bad” from the “good” trapezoids Tk . Namely, if property (a)
from above is valid, then Tk is a ring and we place Tk in A; if property (b) is valid,
then Tk is a “bad” trapezoid and we place Tk in T . We apply the above procedure to
all trapezoids.

Properties of the new trapezoids. We now consider an arbitrary trapezoid T from
the above defined T (the set of bad trapezoids). We next summarise the properties of
T . It will be convenient to us to use the same notation as above as well as in the proof
of Theorem 3.4. We assume that T is an isosceles trapezoid contained in E1 ∩ E2 ,
where E j , j = 1, 2, is a good triangle for a ring R j ∈ F j , and T is positioned so
that its vertices are the points

v1 := (−δ1/2, 0), v2 := (δ1/2, 0), v3 := (δ2/2, H), v4 := (−δ2/2, H),

where 0 ≤ δ2 ≤ δ1 and H > δ1. Let L1 := [v1, v4] and L2 := [v2, v3] be the two
equal (long) sides of T . We assume that L1 ⊂ E1 and L2 ⊂ E2. See Fig. 9.

As a result of the above subdivision procedure, there exists a triangle L1 with a
side L1 such that L1 is a good triangle for some ring R̃1 ∈ F1 and ◦

L1
∩ ◦

E1
= ∅.

For the same reason, there exists a triangle L2 with a side L2 such that L2 is a good
triangle for some ring R̃2 ∈ F2 and ◦

L2
∩ ◦

E2
= ∅.

Observe thatE1 andE2 are good triangles, and hence the angles ofE j adjacent
to E j are of size β�/2, j = 1, 2. Likewise,L1 andL2 are good triangles, and hence
the angles ofL j adjacent to L j are of size β�/2, j = 1, 2. Therefore, wemay assume
that L1 ⊂ E2 and L1 ⊂ E2 . Consequently, S1 is a polynomial of degree < k

Fig. 9 Illustration of Case 4 (b)

γ2

γ̃1

Q̃2

E

123



Constr Approx (2017) 45:143–191 181

on L1 and another polynomial of degree < k on L2 . By the same token, S2 is a
polynomial of degree < k on L1 and another polynomial of degree < k on L2 . We
shall assume that L1 ⊂ A1 and L2 ⊂ A2, where A1, A2 ∈ A.

Further, denote by D1 and D2 the bottom and top sides of T . We shall denote by
VT = {v1, v2, v3, v4} the vertices of T , where v1 is the point of intersection of L1 and
D1 and the other vertices are indexed counterclockwise.

We shall use the notation δ1(T ) := δ1 and δ2(T ) := δ2. We always assume that
δ1(T ) ≥ δ2(T ). Clearly, d(T ) ∼ H ; more precisely, H < d(T ) < H + δ1 + δ2.

Observe that by the construction of the sets T ,A, and (3.14), it follows thatA∪ T
consists of polygonal sets with disjoint interiors, ∪A∈AA ∪T∈T T = �, there exists
a constant c > 0 such that

#A ≤ cn, #T ≤ cn,

and there exists a constant N3 such that each set fromA∪T has at most N3 neighbors
in A ∪ T .

We summarize the most important properties of the sets from T and A in the
following

Lemma 4.11 The following properties hold for some constant 0 < c̃ < 1 depending
only on the structural constants N0, c0, and β of the setting:

(a) Let T ∈ T , and assume the notation related to T from above. If x ∈ L1 with
|x − v j | ≥ ρ, j = 1, 4, then B(x, c̃ρ) ⊂ L1 ∪ L2 . Also, if x ∈ L2 with
|x − v j | ≥ ρ, j = 2, 3, then B(x, c̃ρ) ⊂ L1 ∪ L2 . Furthermore, if x ∈ D1
with |x − v j | ≥ ρ, j = 1, 2, then B(x, c̃ρ) ⊂ E1 ∩ E2 , and similarly for
x ∈ D2.

(b) Assume that E = [w1, w2] is an edge shared by two sets A, A′ ∈ A. Let VA be
the set of all vertices on ∂A (end points of edges) and let VA′ be the set of all
vertices on ∂A′. If x ∈ E with |x − w j | ≥ ρ, j = 1, 2, for some ρ > 0, then

B(x, c̃ρ) ⊂ A ∪ A′ ∪v∈VA∪VA′ B(v, ρ). (4.24)

Proof Part (a) of this lemma follows readily from the properties of the trapezoids. Part
(b) needs clarification. Suppose that for some x ∈ E with |x − w j | ≥ ρ, j = 1, 2,
ρ > 0, the inclusion (4.24) is not valid. Then there exists a point y from an edge
Ẽ = [u1, u2] of, say, ∂A such that |y − x | < ρ and |y − u j | ≥ ρ, j = 1, 2. A simple
geometric argument shows that if the constant c̃ is sufficiently small (depending only on
the parameter β of the setting), then there exists an isosceles trapezoid Ť ⊂ E ∩Ẽ
with two legs contained in E and Ẽ such that each leg is longer than its larger base.
But then the subdivision of the sets from U (see the proof of Theorem 3.4) would have
created a trapezoid in T that contains part of A. This is a contradiction, which shows
that Part (b) holds true. ��

We have the representation

S1(x) − S2(x) =
∑

A∈A
PA(x)1A(x) +

∑

T∈T
PT (x)1T (x), (4.25)
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where PA, PT ∈ �k . Note that S1 − S2 ∈ Ck−2(�).
Let 0 < s/2 < k − 1 + 1/p and τ ≤ 1. Fix t > 0, and let h ∈ R

2 with norm
|h| ≤ t . Write ν := |h|−1h, and assume ν =: (cos θ, sin θ), −π < θ ≤ π .

Since S1, S2 ∈ Ck−2(�), we have the following representation of �k−1
h S j (x):

�k−1
h S j (x) = |h|k−1

∫

R

Dk−1
ν S j (x + uν) Mk−1(u)du,

where Mk−1(u) is the B-spline with knots u0, u1, . . . , uk−1, u� := �|h|. In fact,
Mk−1(u) = (k − 1)[u0, . . . , uk−1](· − u)k−2+ is the divided difference. As is well
known, 0 ≤ Mk−1 ≤ c|h|−1, suppMk−1 ⊂ [0, (k − 1)|h|], and ∫

R
Mk−1(u)du = 1.

Therefore, by �k
h S j (x) = �k−1

h S j (x + h) − �k−1
h S j (x), whenever [x, x + kh] ⊂ �,

we arrive at the representation

�k
h S j (x) = |h|k−1

∫ k|h|

0
Dk−1

ν S j (x + uv) M∗
k (u)du, (4.26)

where M∗
k (u) := Mk−1(u − |h|) − Mk−1(u).

In what follows, we estimate ‖�k
h S1‖τ

Lτ (G) − ‖�k
h S2‖τ

Lτ (G) for different subsets G
of �.

Case 1

Let T ∈ T be such that d(T ) > 2kt/c̃ with c̃ the constant from Lemma 4.11. Denote

Th := {x ∈ � : [x, x + kh] ⊂ � and [x, x + kh] ∩ T �= ∅}.

We next estimate ‖�k
h S1‖τ

Lτ (Th)
− ‖�k

h S2‖τ
Lτ (Th)

.
Assume that T ∈ T is a trapezoid positioned as described above in Properties of

New Trapezoids. We adhere to the notation introduced there.
In addition, let v4 − v1 =: |v4 − v1|(cos γ, sin γ ) with γ ≤ π/2; i.e., γ is the

angle between D1 and L1. Assume that ν =: (cos θ, sin θ) with θ ∈ [γ, π ]. The case
θ ∈ [−γ, 0] is just the same. The case when θ ∈ [0, γ ] ∪ [−π,−γ ] is considered
similarly.

We set Bv := B(v, 2kt/c̃), v ∈ VT . Also, denote

At
T := {A ∈ A : d(A) > 2kt/c̃ and A ∩ (T + B(0, kt)) �= ∅},

At
T := {A ∈ A : d(A) ≤ 2kt/c̃ and A ∩ (T + B(0, kt)) �= ∅}

and

T t
T := {T ′ ∈ T : d(T ′) > 2kt/c̃ and T ′ ∩ (T + B(0, kt)) �= ∅},

Tt
T := {T ′ ∈ T : d(T ′) ≤ 2kt/c̃ and T ′ ∩ (T + B(0, kt)) �= ∅}.

Clearly, #At
T ≤ c and #T t

T ≤ c for some constant c > 0.
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Case 1 (a). If [x, x + kh] ⊂ E1 , then �k
h S1(x) = 0 because S1 is a polynomial

of degree < k on E1 . Hence no estimate is needed.
Case 1 (b). If [x, x + kh] ⊂ ∪v∈VT Bv , we estimate |�k

h S1(x)| trivially:

|�k
h S1(x)| ≤ |�k

h S2(x)| + 2k
k∑

�=0

|S1(x + �h) − S2(x + �h)|. (4.27)

Clearly, the contribution of this case to estimating ‖�k
h S1‖τ

Lτ (Th)
− ‖�k

h S2‖τ
Lτ (Th)

is

≤ c
∑

v∈VT

∑

A∈At
T

‖S1 − S2‖τ
Lτ (Bv∩A) + c

∑

v∈VT

∑

T ′∈T t
T

‖S1 − S2‖τ
Lτ (Bv∩T ′)

+ c
∑

v∈VT

∑

A∈At
T

‖S1 − S2‖τ
Lτ (Bv∩A) + c

∑

v∈VT

∑

T ′∈Tt
T

‖S1 − S2‖τ
Lτ (Bv∩T ′)

≤
∑

A∈At
T

ct2d(A)τ s−2‖S1 − S2‖τ
L p(A) +

∑

T ′∈T t
T

ct1+τ s/2d(T ′)τ s/2−1‖S1 − S2‖τ
L p(T ′)

+
∑

A∈At
T

cd(A)τ s‖S1 − S2‖τ
L p(A) +

∑

T ′∈Tt
T

cd(T ′)τ s‖S1 − S2‖τ
L p(T ′).

Here we used the following estimates, which are a consequence of Lemma 4.9:

(1) If A ∈ At
T , then

‖S1 − S2‖τ
Lτ (Bv∩A) ≤ c(|Bv|/|A|)‖S1 − S2‖τ

Lτ (A)

≤ ct2d(A)−2‖S1 − S2‖τ
Lτ (A) ≤ ct2d(A)τ s−2‖S1 − S2‖τ

L p(A).

(2) If T ′ ∈ T t
T and δ1(T ′) > 2kt/c̃, then for any v ∈ VT , we have

‖S1 − S2‖τ
Lτ (Bv∩T ′) ≤ c(|Bv |/|T ′|)‖S1 − S2‖τ

Lτ (T ′) ≤ ct2|T ′|τ s/2−1‖S1 − S2‖τ
L p(T ′)

≤ ct2δ1(T
′)τ s/2−1d(T ′)τ s/2−1‖S1 − S2‖τ

L p(T ′)

≤ ct1+τ s/2d(T ′)τ s/2−1‖S1 − S2‖τ
L p(T ′),

where we used that τ s/2 < 1, which is equivalent to s < s + 2/p.
(3) If T ′ ∈ T t

T and δ1(T ′) ≤ 2kt/c̃, then for any v ∈ VT ,

‖S1 − S2‖τ
Lτ (Bv∩T ′) ≤ c(|Bv ∩ T ′|/|T ′|)‖S1 − S2‖τ

Lτ (T ′)

≤ ctδ1(T
′)[δ1(T ′)d(T ′)]−1‖S1 − S2‖τ

Lτ (T ′)

≤ ctd(T ′)−1[δ1(T ′)d(T ′)]τ s/2‖S1 − S2‖τ
L p(T ′)

≤ ct1+τ s/2d(T ′)τ s/2−1‖S1 − S2‖τ
L p(T ′).
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(4) If A ∈ At
T , then

‖S1 − S2‖τ
Lτ (Bv∩A) ≤ ‖S1 − S2‖τ

Lτ (A) ≤ c|A|τ s/2‖S1 − S2‖τ
L p(A)

≤ cd(A)τ s‖S1 − S2‖τ
L p(A).

(5) If T ′ ∈ Tt
T , then

‖S1 − S2‖τ
Lτ (Bv∩T ′) ≤ ‖S1 − S2‖τ

Lτ (T ′) ≤ c|T ′|τ s/2‖S1 − S2‖τ
L p(T ′)

≤ cd(T ′)τ s‖S1 − S2‖τ
L p(T ′).

Case 1 (c). If [x, x + kh] �⊂ ∪v∈VT Bv and [x, x + kh] intersects D1 or D2, then
δ1 > 2kt/c̃ > 2kt or δ2 > 2kt and hence [x, x + kh] ⊂ E1 ∩ E2 , which implies
�k

h S1(x) = 0. No estimate is needed.
Case 1 (d). Let I hT ⊂ T be the quadrilateral bounded by the segments L1, L1 − kh,

D1 and the line with equation x = v2+uh, u ∈ R, where v2 is the point of intersection
of L2 with D1, whenever this straight line intersects L1. If the line x = v2+uh, u ∈ R,
does not intersect L1, thenwe replace it with the line x = v4+uh, u ∈ R. Furthermore,
we subtract Bv1 and Bv2 from I hT .

Set JhT := I hT + [0, kh].
A simple geometric argument shows that |JhT | ≤ 2δ1kt .
In estimating ‖�k

h S1‖τ

Lτ (I hT )
there are two subcases to be considered.

If δ1(T ) ≤ 2kt/c̃, we use (4.27) to obtain

‖�k
h S1‖τ

Lτ (I hT )
≤ ‖�k

h S2‖τ

Lτ (I hT )
+ ‖S1 − S2‖τ

Lτ (I hT )
+ ‖S1 − S2‖τ

Lτ (JhT ∩A1)
.

We estimate the above norms quite like in Case 1 (b), using Lemma 4.9. We have

‖S1 − S2‖τ

Lτ (I hT )
≤ c(|I hT |/|T |)‖S1 − S2‖τ

Lτ (T )

≤ ctδ1(T )[δ1(T )d(T )]−1‖S1 − S2‖τ
Lτ (T ) ≤ ctd(T )−1|T |τ s/2‖S1 − S2‖τ

L p(T )

≤ ctd(T )−1(δ1(T )d(T ))τ s/2‖S1 − S2‖τ
L p(T ) ≤ ct1+τ s/2d(T )τ s/2−1‖S1 − S2‖τ

L p(T ).

For the second norm, we get

‖S1 − S2‖τ

Lτ (JhT ∩A1)
≤ c|JhT |‖S1 − S2‖τ

L∞(A1)
≤ ct2|A1|−τ/p‖S1 − S2‖τ

L p(A1)

≤ ct2d(A1)
−2τ/p‖S1 − S2‖τ

L p(A1)
= ct2d(A1)

τ s−2‖S1 − S2‖τ
L p(A1)

,

where as before we used the fact that 2τ/p = 2 − τ s.
From the above estimates, we infer

‖�k
h S1‖τ

Lτ (I hT )
≤ ‖�k

h S2‖τ

Lτ (I hT )
+ ct1+τ s/2d(T )τ s/2−1‖S1 − S2‖τ

L p(T )

+ ct2d(A1)
τ s−2‖S1 − S2‖τ

L p(A1)
.
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Let δ1(T ) > 2kt/c̃. We use (4.26) to obtain

|�k
h S1(x)| ≤ |�k

h S2(x)| + |�k
h(S1 − S2)(x)|

≤ |�k
h S2(x)| + ctk−1‖Dk−1

ν (S1 − S2)‖L∞([x,x+kh]),

implying

‖�k
h S1‖τ

Lτ (I hT )
≤ ‖�k

h S2‖τ

Lτ (I hT )
+ c|I hT |tτ(k−1)‖Dk−1

ν (S1 − S2)‖τ

L∞(I hT ∩T )

+ c|I hT |tτ(k−1)‖Dk−1
ν (S1 − S2)‖τ

L∞(A1)
.

Clearly,

‖Dk−1
ν (S1 − S2)‖L∞(I hT ∩T ) ≤ cδ1(T )−(k−1)‖S1 − S2‖L∞(T )

≤ cδ1(T )−(k−1)|T |−1/p‖S1 − S2‖L p(T ) ≤ cδ1(T )−(k−1)−2/p‖S1 − S2‖L p(T ),

and

‖Dk−1
ν (S1 − S2)‖L∞(A1) ≤ cd(A1)

−(k−1)‖S1 − S2‖L∞(A1)

≤ cd(A1)
−(k−1)−2/p‖S1 − S2‖L p(A1). (4.28)

Therefore,

‖�k
h S1‖τ

Lτ (I hT )
≤ ‖�k

h S2‖τ

Lτ (I hT )
+ ct1+τ(k−1)δ1(T )1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(T )

+ ct1+τ(k−1)d(A1)
1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(A1)
.

Case 1 (e) (Main). Let T �
h ⊂ Th be the set defined by

T �
h :=

{
x ∈ Th : [x, x + kh] ∩ L1 �= ∅ and [x, x + kh] �⊂ I hT

⋃

v∈VT

Bv

}
. (4.29)

We next estimate ‖�k
h S1‖τ

Lτ (T �
h )
.

Let x ∈ T �
h . Denote by b1 and b2 the points where the line through x and x + kh

intersects L1 and L2. Set b = b(x) := b2 − b1. We associate the segment [x + b, x +
b + kh] with [x, x + kh] and �k

h S2(x + b) with �k
h S1(x).

Since S1 ∈ �k on E1 , we have Dk−1
ν S1(y) = constant on [b1, x + b], and hence

Dk−1
ν S1(b1 − uν) = Dk−1

ν S1(b2 − uν) for 0 ≤ u ≤ |x − b1|. (4.30)

Similarly, since S2 ∈ �k on E2 , we have Dk−1
ν S2(y) = constant on [x + kh, b2],

and hence

Dk−1
ν S2(b1 + uν) = Dk−1

ν S2(b2 + uν) for 0 ≤ u ≤ |x + kh − b1|. (4.31)
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We use (4.26) and (4.30–4.31) to obtain

�k
h S1(x) = |h|k−1

∫ k|h|

|b1−x |
Dk−1

ν S1(x + uν)M∗
k (u)du

+ |h|k−1
∫ |b1−x |

0
Dk−1

ν S1(x + uν)M∗
k (u)du

= |h|k−1
∫ k|h|

|b1−x |
Dk−1

ν S1(x + uν)M∗
k (u)du

+ |h|k−1
∫ |b1−x |

0
Dk−1

ν S1(x + b + uν)M∗
k (u)du

and

�k
h S2(x + b) = |h|k−1

∫ k|h|

|b1−x |
Dk−1

ν S2(x + b + uν)M∗
k (u)du

+ |h|k−1
∫ |b1−x |

0
Dk−1

ν S2(x + b + uν)M∗
k (u)du

= |h|k−1
∫ k|h|

|b1−x |
Dk−1

ν S2(x + uν)M∗
k (u)du

+ |h|k−1
∫ |b1−x |

0
Dk−1

ν S2(x + b + uν)M∗
k (u)du.

Therefore,

�k
h S1(x) = �k

h S2(x + b) + �k
h(S1 − S2)(x)

= �k
h S2(x + b) + |h|k−1

∫ k|h|

|b1−x |
Dk−1

ν [S1 − S2] (x + uν) M∗
k (u)du

+ |h|k−1
∫ |b1−x |

0
Dk−1

ν [S1 − S2] (x + b + uν) M∗
k (u)du,

and hence

|�k
h S1(x)| ≤ |�k

h S2(x + b)| + ctk−1‖Dk−1
ν (S1 − S2)‖L∞([b1,x+kh]) (4.32)

+ ctk−1‖Dk−1
ν (S1 − S2)‖L∞([x+b,b2]).

The key here is that ([b1, x + kh] ∪ [x + b, b2]) ∩ T ◦ = ∅.
Let T ��

h := {x + b(x) : x ∈ T �
h }, where T �

h is from (4.29) and b(x) is defined
thereafter. By (4.32), we get

‖�k
h S1‖τ

Lτ (T �
h )

≤ ‖�k
h S2‖τ

Lτ (T ��
h )

+ ctd(A1)t
τ(k−1)‖Dk−1

ν (S1 − S2)‖τ
L∞(A1)

+ ctd(A2)t
τ(k−1)‖Dk−1

ν (S1 − S2)‖τ
L∞(A2)

.
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Just as (4.28) we have

‖Dk−1
ν (S1 − S2)‖L∞(A1) ≤ cd(A1)

−(k−1)‖S1 − S2‖L∞(A1)

≤ cd(A1)
−(k−1)−2/p‖S1 − S2‖L p(A1),

and similar estimates hold with A1 replaced by A2. We use all of the above to obtain

‖�k
h S1‖τ

Lτ (T �
h )

≤ ‖�k
h S2‖τ

Lτ (T ��
h )

+ ct1+τ(k−1)d(A1)
1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(A1)

+ ct1+τ(k−1)d(A2)
1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(A2)
.

It is an important observation that no part of ‖�k
h S2‖τ

Lτ (T ��
h )

has been used for estima-

tion of quantities ‖�k
h S1‖τ

Lτ (·) from previous cases.
Putting all of the above estimates together, we arrive at

‖�k
h S1‖τ

Lτ (Th)
≤ ‖�k

h S2‖τ
Lτ (Th)

+ Y1 + Y2 + Y3 + Y4, (4.33)

where

Y1 :=
∑

A∈At
T

ct2d(A)τ s−2‖S1 − S2‖τ
L p(A) +

∑

A∈At
T

cd(A)τ s‖S1 − S2‖τ
L p(A),

Y2 := ct1+τ(k−1)d(A1)
1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(A1)

+ ct1+τ(k−1)d(A2)
1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(A2)
,

Y3 :=
∑

T ′∈T t
T

ct1+τ s/2d(T ′)τ s/2−1‖S1 − S2‖τ
L p(T ′)

+
∑

T ′∈Tt
T

cd(T ′)τ s‖S1 − S2‖τ
L p(T ′) + ct1+τ s/2d(T )τ s/2−1‖S1 − S2‖τ

L p(T ),

and

Y4 := ct1+τ(k−1)δ1(T )1−τ(k−1)−2τ/p‖S1 − S2‖τ
L p(T ), if δ1(T ) > 2kt/c̃,

otherwise Y4 := 0.

Remark In all cases we considered above but Case 1 (e), we used the simple inequal-
ity |�k

h S1(x)| ≤ |�k
h S2(x)| + |�k

h(S1 − S2)(x)| to estimate ‖�k
h S1‖τ

Lτ (G) for various
sets G, and this works because these sets are of relatively small measure. As Exam-
ple 3.3 shows, this approach in principle cannot be used in Case 1 (e), and this is the
main difficulty in this proof. The gist of our approach in going around is to estimate
|�k

h S1(x)| by using |�k
h S2(x +b)| with some shift b, where |�k

h S2(x +b)| is not used
to estimate other terms |�k

h S1(x
′)| (there is a one-to-one correspondence between

these quantities).
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Case 2

Let ��
h be the set of all x ∈ � such that [x, x + kh] ⊂ �, [x, x + kh] ∩ A �= ∅

for some A ∈ A with d(A) > 2kt/c̃, and [x, x + kh] ∩ T = ∅ for all T ∈ T with
d(T ) ≥ 2kt/c̃.

Denote by VA the set of all vertices on ∂A, and set Bv := B(v, 4kt/c̃), v ∈ VA.
We next indicate how we estimate |�k

h S1(x)| in different cases.
Case 2 (a). If [x, x + kh] ⊂ A, then �k

h S1(x) = �k
h S2(x) = 0 and no estimate is

needed.
Case 2 (b). If [x, x + kh] ⊂ ∪v∈VA B(v, 2kt/c̃), we estimate |�k

h S1(x)| trivially:

|�k
h S1(x)| ≤ |�k

h S2(x)| + 2k
k∑

�=0

|S1(x + �h) − S2(x + �h)|.

Case 2 (c). Let [x, x+kh] intersect the edge E =: [w1, w2] from ∂A, that is shared
with A′ ∈ A and [x, x + kh] �⊂ ∪v∈VA Bv . Let y := E ∩ [x, x + kh]. Evidently,
|y − w j | > kt/c̃, j = 1, 2, and in light of Lemma 4.11, we have [x, x + kh] ⊂
B(y, kt) ⊂ A ∪ A′. In this case, we use the inequality

|�k
h S1(x)| ≤ |�k

h S2(x)| + |�k
h(S1 − S2)(x)|

≤ |�k
h S2(x)| + ctk−1‖Dk−1

ν (S1 − S2)‖L∞([x,x+kh]),

which follows by (4.26).
The case when [x, x + kh] intersects an edge from ∂A that is shared with some

T ∈ T is covered in Case 1 above.
We proceed further similarly as in Case 1 and in the proof of Theorem 4.5 to obtain

‖�k
h S1‖τ

Lτ (��
t )

≤ ‖�k
h S2‖τ

Lτ (��
t )

+ Y1 + Y2, (4.34)

where

Y1 :=
∑

A∈A:d(A)≥2kt/c̃

t1+τ(k−1)cd(A)1−τ(k−1)−2τ/p‖S1 − S2‖τ
L p(A)

+
∑

A∈A:d(A)≥2kt/c̃

ct2d(A)τ s−2‖S1 − S2‖τ
L p(A)

and

Y2 :=
∑

A∈A:d(A)≤2kt/c̃

cd(A)τ s‖S1 − S2‖τ
L p(A)

+
∑

T∈T :d(T )≤2kt/c̃

cd(T )τ s‖S1 − S2‖τ
L p(T ).
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Case 3

Let ���
h be the set of all x ∈ � such that

[x, x + kh] ⊂ ∪{A ∈ A : d(A) ≤ 2kt/c̃} ∪ {T ∈ T : d(T ) ≤ 2kt/c̃}.

In this case, we estimate |�k
h S1(x)| trivially just as in (4.27). We obtain

‖�k
h S1‖τ

Lτ (���
h )

≤ ‖�k
h S2‖τ

Lτ (���
h )

+
∑

A∈A:d(A)≤2kt/c̃

c‖S1 − S2‖τ
Lτ (A)

+
∑

T∈T :d(T )≤2kt/c̃

c‖S1 − S2‖τ
Lτ (T )

≤ ‖�k
h S2‖τ

Lτ (���
h )

+
∑

A∈A:d(A)≤2kt/c̃

cd(A)τ s‖S1 − S2‖τ
L p(A)

+
∑

T∈T :d(T )≤2kt/c̃

cd(T )τ s‖S1 − S2‖τ
L p(T ).

Just as in the proof of Theorem 3.4, it is important to note that in the above estimates
only finitely many norms may overlap at a time. From above, (4.33), and (4.34), we
obtain

ωk(S1, t)
τ
τ ≤ ωk(S2, t)

τ
τ + At + Tt ,

where

At :=
∑

A∈A:d(A)>2kt/c̃

t1+τ(k−1)cd(A)1−τ(k−1)−2τ/p‖S1 − S2‖τ
L p(A)

+
∑

A∈A:d(A)>2kt/c̃

ct2d(A)τ s−2‖S1 − S2‖τ
L p(A)

+
∑

A∈A:d(A)≤2kt/c̃

cd(A)τ s‖S1 − S2‖τ
L p(A),

and

Tt :=
∑

T∈T :δ1(T )>2kt/c̃

ct1+τ(k−1)δ1(T )1−τ(k−1)−2τ/p‖S1 − S2‖τ
L p(T )

+
∑

T∈T :δ2(T )>2kt/c̃

ct1+τ(k−1)δ2(T )1−τ(k−1)−2τ/p‖S1 − S2‖τ
L p(T )

+
∑

T∈T :d(T )>2kt/c̃

ct1+τ s/2d(T )τ s/2−1‖S1 − S2‖τ
L p(T )

+
∑

T∈T :d(T )≤2kt/c̃

cd(T )τ s‖S1 − S2‖τ
L p(T ).
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We insert this estimate in (2.1) and interchange the order of integration and sum-
mation to obtain

|S1|τBs,k
τ

≤ |S2|τBs,k
τ

+ Z1 + Z2,

where

Z1 := c
∑

A∈A
d(A)1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(A)

∫ c̃d(A)/2k

0
t−τ s+τ(k−1)dt

+ c
∑

A∈A
d(A)τ s−2‖S1 − S2‖τ

L p(A)

∫ c̃d(A)/2k

0
t−τ s+1dt

+ c
∑

A∈A
d(A)τ s‖S1 − S2‖τ

L p(A)

∫ ∞

c̃d(A)/2k
t−τ s−1dt

and

Z2 := c
∑

T∈T
δ1(T )1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(T )

∫ c̃δ1(T )/2k

0
t−τ s+τ(k−1)dt

+ c
∑

T∈T
δ2(T )1−τ(k−1)−2τ/p‖S1 − S2‖τ

L p(T )

∫ c̃δ2(T )/2k

0
t−τ s+τ(k−1)dt

+ c
∑

T∈T
d(T )τ s/2−1‖S1 − S2‖τ

L p(T )

∫ c̃d(T )/2k

0
t−τ s/2dt

+ c
∑

T∈T
d(T )sτ‖S1 − S2‖τ

L p(T )

∫ ∞

c̃d(T )/2k
t−τ s−1dt.

Observe that −τ s + τ(k − 1) > −1 is equivalent to s/2 < k − 1+ 1/p, which holds
true by the hypothesis, and −τ s/2 > −1 is equivalent to s < 2/τ = s + 2/p, which
is obvious. Therefore, all integrals above are convergent, and taking into account that
2 − 2τ/p − τ s = 2τ(1/τ − 1/p − s/2) = 0, we obtain

|S1|τBs,k
τ

≤ |S2|τBs,k
τ

+ c
∑

A∈A∪T
‖S1 − S2‖τ

L p(A)

≤ |S2|τBs,k
τ

+ cnτ(1/τ−1/p)

(
∑

A∈A∪T
‖S1 − S2‖τ

L p(A)

)τ/p

= |S2|τBs,k
τ

+ cnτ s/2‖S‖τ
L p(�),

where we used Hölder’s inequality. This completes the proof of Theorem 4.2. ��
Acknowledgements Wewould like to give credit to Peter Petrov (Sofia University) with whom the second
author discussed the theme of this article some years ago.
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