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Constructive Approximation

1 Introduction

The purpose of this article is to develop nonlinear approximation from product wavelets
in L? and Hardy (H?) spaces. Homogeneous product Besov and Triebel-Lizorkin
spaces naturally appear in this theory. The inhomogeneous product Besov and Triebel—
Lizorkin spaces are part of the biparameter or multiparameter harmonic analysis
and have been developed for quite sometime. For this theory we refer the reader
to [23,24,29] and the references therein. It has been developed analogously to the
classical (one parameter) Besov and Triebel-Lizorkin spaces, see [22,26-28]. The
theory of homogeneous product Besov and Triebel-Lizorkin spaces, however, seems
underdeveloped.

In this paper we develop rapidly the Littlewood—Paley theory of homogeneous
product Besov spaces B; o and Triebel-Lizorkin spaces F pg ONR™M X R™ .y np > 1,
where the smoothness parameter s is a vector in R? and 0 < p, ¢ < oo are as in the
classical one parameter case. To this end we introduce product frames and utilize them
for characterization of the product Besov and Triebel-Lizorkin spaces in the spirit
of the ¢-transform of Frazier and Jawerth [11-14]. Almost diagonal operators are
also introduced, and their boundedness on the respective product Besov and Triebel—-
Lizorkin sequence spaces is obtained. In turn, the almost diagonal operators are used
for establishing the product wavelet characterization of the product spaces Bf, q and

FIS, 4 that is also a focal point in this study.

One should not think that all results for product spaces can be obtained by iterating
ideas from the one parameter setting. The product Hardy spaces provide a typical
example where one parameter ideas do not work. There are a number of papers on this
subject that reinforce this claim. For example the atomic decomposition of the product
Hardy spaces H” takes more complicated form than in the classical one parameter
theory. We refer the reader to [1,2,9,10,16,18,19] and the references therein for the
theory of product Hardy spaces.

The main focus of this article is on nonlinear m-term approximation from product
wavelets and product frames in L? (R x R™), 1 < p < o0, and in the product
Hardy spaces HP” (R™ x R"2), 0 < p < 1. The product wavelets used here are
constructed based on the univariate Meyer’s wavelets, but our theory is not restricted to
such wavelets only. Product Besov spaces are naturally involved in the approximation
process. More explicitly these are the Besov spaces B?, = Bg? 2) with smoothness
s1:=n1(1/t—1/p)andsy :=ny(1/t—1/p),where 1/t :=a+1/panda > Oisthe
parameter that determines the rate of approximation; « can be arbitrarily large. Jackson
and Bernstein estimates for product wavelet nonlinear approximation are established
that allow almost complete characterization of the rates of approximation. To be more
specific, denote by o0y, ( f) p the best m-term approximation of f from product wavelets
in L? if 1 < p < oo orin the Hardy space H” if 0 < p < 1 on R* x R"2. Our

Jackson estimates (Theorem 7.2) assert that for any f € Bﬁr, we have

Um(f)p = Cm_a”f”[;;rv p =<2, and

om(f)p < em™(Anm) > VP fllgs , p > 2.
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Constructive Approximation

Almost matching companion Bernstein estimates (Theorem 7.3) are also established.
Both estimates above are sharp, but there is a logarithmic factor in the estimate on
the right that is a reflection of the fact that the “essential supports” of a (logarithmic)
number of wavelets of the same size overlap at any point. The establishment of these
results (in particular, Lemma 7.9) exhibits the difficulties one has to overcome when
working in the product space setting.

Similar results are valid in the inhomogeneous setting and involve the respective
inhomogeneous Besov spaces. But to keep the size of this article limited we will not
elaborate on these sorts of results.

We would like to point out that the linear approximation from product wavelets has
been studied in [7].

The organization of the paper is as follows. In Sect. 2 we introduce our notation
and collect all basic facts that are needed for the development of our theory. The
homogeneous product Besov and Triebel-Lizorkin spaces BIS, q and F 1s7 ¢ are defined in
Sect. 3, and some of their basic features are discussed. In Sect. 4, we establish the frame
characterization of the product spaces B;q and Fls,q in the spirit of the p-transform
of Frazier and Jawerth. Almost diagonal operators are introduced in Sect. 5 and their
boundedness on product Besov and Triebel-Lizorkin sequence spaces Bj, q and fﬁ, g 18
established. Product wavelets are introduced in Sect. 6, and the wavelet characteriza-
tion of the product spaces B; and F$_ is established. The nonlinear approximation
theory from product wavelets and frames is developed in Sect. 7. Section 8 is an
appendix where the proofs of some claims from previous sections are placed.

2 Preliminaries

In this section we present the background material we need for the development of
the homogeneous product Besov and Triebel-Lizorkin spaces.

2.1 Notation

The action will be in the product space R*! x R"2, ny, ny € N. We first introduce some

convenient notation in the single parameter case of R”. Forany x = (x!, ..., x") e R”
and @ := (ap,...,a,) € Nj (Ng := NU {0}), we write x* := (her .. (xmyan,
o] ;= a1 + -+ 4+ ay, and 3% = (%)0‘1 ... (%)a”. The inner product of x, y € R"
will be denoted by x - y. However, |x| will stand for the £°° norm of x, i.e. |x| :=
maxilxj|:j = 1,...,n}. The Fourier transform fof a function f on R” is defined
by f(€) i= [gu f(X)e ¥ ¥dx.

We will use the notation x := (x1, xp) € R* x R"2, x; := (xl.l, R xi"") e R%,

i = 1,2. The £°° norm of x; € R" will be denoted by |x;| and |x| := max{|xy][, |x2|}.
Also, x-y will stand for the inner product of x, y € R"! x R"2. Foraset A C R"! x R"2
orA C R",i =1,2,wedenote by |A| its Lebesgue measure and 1 4 will stand for its
characteristic function. We will denote by || - ||, = || - [|» the LP-norm on R"! x R"2.

Positive constants will be denoted by c, c1, etc., and they may vary at every occur-
rence. The notation a ~ b will stand for ¢; < a/b < c5.
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Remark 2.1 A word of caution is in order. As was indicated above, we denote by |x; |
or |x| the £*°-norm of x; € R™ (i = 1,2) or x € R™ x R"2. We use these norms
throughout because they are well aligned with the product structure of the spaces in
this article.

2.2 The Classes S (R™ x R™) and S (R™ x R"2)

In the single parameter case on R”, the Schwartz class S(R") is defined as the set
of all C*°(R") rapidly decreasing functions with topology induced by the family of
semi-norms || - [lo, g := SUP,crn |X¢ PO, o, B e Np. Then the space of tempered
distributions §'(R") is its topological dual.

Letnow S := S(R™ x R"2) be the Schwartz space on R"! x R"2. It is easily seen
that if ¢ € S(R™! x R"™), then for any x = (x1, xp) € R* x R"2, M|, M> > 0, and
o€ N81+"2, there exists a constant ¢ = ¢(Ny, Na, &) > 0 such that

2
0% ()| < cﬂ L Jx]) @.1)

The dual of S is the space of tempered distributions &' := §'(R"! x R"2).
We define Sop 1= Soo (R x R"2) as the subspace of S consisting of all functions
¢ € S that in addition satisfy

/ x;”'qﬁ(xl,xz)dxi =0, WYy e Ngi, i=1,2. (2.2)

Note that Sy is a closed subspace of S and therefore complete.
Since the Fourier transform is a continuous linear transformation from S onto S, it
is not hard to see that the topology in S, can be generated by the family of semi-norms

2
Ils == sup  sup [0°®I] [ (1&I™ +1&17™), M eNo.

lo|<M ER"1 xR"2 i=1

Therefore,
Soo = {& € S:119ll3y < 00, VM € No}.

The space S, := S, (R"! x R"2) is the dual of S (With the week-* topology); that
is, f € Sgo if and only if there exist constants ¢ > 0 and M € Ny such that

([, o) = cligly, Yo € Se,
where (f, ¢) = f(¢).

2.3 Calderén Reproducing Formula on S__(R™ x R")

Here we generalize the classical Calderén formula in the case of product spaces.
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We begin by recalling the relevant decomposition results in the single parameter
case. We consider two decomposition identities. For the first we assume that ¢ € S(R")
is such that ¢ is compactly supported, bounded away from the origin, and

D 9eTE =1, £ eR"\{0). 23)

VEZ

Then for any f € Soo(R") (or f € S, (R")),

f=> oxf. (2.4)

VEZ

where the convergence is in S (or in S’Oo) and we used the notation
fr(x) =2 F(2%x)

for any function (or distribution) defined on R".
The second version of Calderon’s formula relies on a pair of functions ¢, i that
satisfy the conditions:

i) @, ¢ e SR,
(ii) supp@, ¥ C{E e R 271 < g <2}, (2.5)
(i) |P&) >c >0 if 273* <& <234,

and in addition, R '
Y o eHYE e =1, &eR\(0). (2.6)

JEZ

Then for any f € Seo(R") (or f € S, (R™)),

f=) @ixvjxf inS(orin ). Q2.7

JEZ

where ¢ (x) = ¢;(—x).

The existence of pairs of functions ¢, ¥ obeying (2.5)—(2.6) is well known. In fact,
for any ¢ satisfying conditions (2.5) there is ¥ satisfying (2.5) such that (2.6) is valid.
For details we refer the reader to [13,14]. Also, observe that (2.4) and (2.7) hold for
any f € L?(R") with convergence in L.

To extend Calderon’s formulas to the biparameter case we need some additional
notation: For any function (or distribution) f defined on R™! x R"2 and v = (v{, vp) €
72, we define

folxr,x2) :=2""f(2"x1,2"x2), v-mn=vin + vno. (2.8)
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Proposition 2.2 (a) Let @', ¢? satisfy (2.3), (2.5) with n = ny, n», respectively. Set
¢ = @' ® p>. Then for any f € Sx (or f € Sy),

f=) oxf 2.9)

veZ?

with convergence in S (orin S.).

(b) Let o', ¥' and ¢*, ¥?* be two pairs of functions satisfying (2.5)~(2.6) with n =
ni, ny, respectively. Set ¢ = @' ® ¢ and y := ¥' @ 2. Then for any f € Sxo
(or f € 8y),

f=) ko f (2.10)

veZ?

with convergence in S (orin S.).
Furthermore, both (2.9) and (2.10) are valid for any f € L*(R™ x R™) with
convergence in L?.

For the proof of this proposition in the more general case of spaces with anisotropic
dilations, see Lemma 3.15 and Proposition 3.16 in [1].

2.4 Construction of Frames on R™ x R

We next introduce the product analog of the Frazier—Jawerth frames (the ¢-transform).
We denote by D the set of all dyadic cubes in R" (i = 1,2) and by Df) (v € Z) the
set of all cubes I € D' of side-length £(I) = 27". For any I; € D' we denote by x;,
its lower-left corner.

Dyadic Rectangles Let R be the set of all dyadic rectangles in R"! x R"2. Namely,
this is the set of all rectangles I of the form I = I} x I, with 1 € D!, I, € D?, and
we set X := (x7,, xp,). Further, Ry, v = (v1, 1) € 72, will stand for the set of all
rectangles I = I} x I, € R such that I; € in,i.

Given f € S(R" x R") and I € R, we set

X1 — X, X2 —X|,

on) o) ) X = (x1,x) €R" xR™. (2.11)

fito =172 (

As usual (2.11) is extended by duality to the corresponding spaces of tempered distri-
butions.
With ¢ := ¢! ® ¢? and ¢ := ' ® ¥ just as in Proposition 2.2 (b), we consider
the systems
{prhier and {Yr}iex. (2.12)

Proposition 2.3 For any f € Sy (or f € S.,) we have

f= Z(f, envi (2.13)

IeR
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with convergence in S (or in S,,). Also, representation (2.13) is valid for each f €
L2(R™ x R") with convergence in L?; i.e., {¢r}1ex, {V1}1eR is a pair of dual frames.

The decomposition (2.13) follows by Proposition 2.2 just as in the one parameter
case, see [13].

We next give some properties of the frame elements. Clearly, ¢ and ¢ obey (2.1),
and hence for any N1, N > 0 there exists a constant ¢ > 0 such that

2
et )], Y] < 2™ [T +2%xi —x;, DN, x e R" xR™, T€R,.
i=1
(2.14)
Also,

/ x{or(x;, x2)dx; =0, Ve e Nj, i=1,2. (2.15)
R"
Furthermore, if v € Z2 and I € R,, then

supp @y, supp @1 C {£ e R" x R™2:2" 1 < g < 2"t i =1,2}, (2.16)

and the same is true for supp {ﬂ\v and supp 1?1

It is sometimes beneficial to work with a single frame, i.e. to have ¢ = V7. It is
easy to construct (see, e.g., [13]) real-valued functions oL, 62 that satisfy conditions
(2.5) on R™, R™2 and such that

Yo UEP =1, &eRY, i=12.

JEZ
Set 6 := 0! ® 6%. Then {1}iex is a (tight) frame for LZ(R"! x R"2), and for any
f €8x (or f €8y)wehave f =1 x(f, 6061

2.5 The Strong Maximal Operator

The strong maximal operator is defined by

1
M f (x) = sup —/If(Y)Idy, x € R" x R™, (2.17)
xet 1] Jx

where the sup is taken over all rectangles I = I} x I C R™! x R with sides parallel
to the coordinate axes. It will be convenient to us to use the following modification of
the strong maximal operator:

1 1/t
M f(x) = (M| £]' )" = SUP( /I|f(Y)|tdY> , >0 (2.18)

xel \ |

The following version of the Fefferman—Stein vector-valued maximal inequality
(see [25]) follows readily by applying the single parameter one twice: If 0 < p < oo,
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0 < g <o00,and 0 < ¢t < min{p, ¢}, then for any sequence of functions { f,} on

R™ x R"2,
S o) <o (i) (2.19)
2 p veZ? b

VEZ

We will also need the following estimate on a Peetre-type maximal function:

Lemma24 Lett, by, by > 0. Then there exists a constant ¢ = c(t, by, by) > 0 such
that for any function f € S’ (R™ x R"2) with supp f C [—by, b1]"! x [—b2, ba]"
we have

I/ Ol

sup — <M, f(x), x=(x1,x2) € R" x R™,
yermxm T2, (1+ bylx; — yil)"/"

(2.20)

The above inequality is well known, see, e.g., [24, Theorem 1.6.4].

3 Homogeneous Product Besov and Triebel-Lizorkin Spaces

In this section we introduce the homogeneous product Besov and Triebel-Lizorkin
spaces and list some of their basic properties.
Let ¢ := ¢! ® ¢?, where each of the functions ¢!, ¢? satisfies conditions (2.5).

Definition3.1 (i) Lets = (s51,82) € R? and 0 < p,q < oo. The homogeneous
product Besov space B}, := B} (R"! x R"2) is defined as the setof all f € S
such that

1/q
||f||[gls)q = ||f||B;q(Rn1 xRM2) = ( Z (ZS'u”(pv * f”p)q> <oo. (3.1

veZ?

(i1) For s = (s1,5) € R2, 0 < q = oo, gmd 0 < p < oo, the homogeneous
product Triebel-Lizorkin space F' [5, g = F; ¢ (R x R"2) is defined as the set of
all f € & such that

) 1/q
1 g, = 1 g sy = | (32 @ lgw s 1)) 7| <00 32)

veZ?

As usual the ¢9-norm above is replaced by the sup-norm if g = oo.
Several remarks are in order.

(1) The definitions of the spaces B[S, g and F[s, 4 are independent of the particular selec-

tion of the functions ¢!, ¢2, satisfying conditions (2.5). This follows similarly to
the wavelet characterization of the spaces B; g and F ; 4 in Theorem 6.4 below.

(2) The homogeneous product Besov spaces B; o, and Triebel-Lizorkin spaces B;q
are continuously embedded in S .
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(3) The homogeneous product Besov spaces B;q and Triebel-Lizorkin spaces B;q
are (quasi-)Banach spaces. )
(4) The space Sy is dense in Bls,q and F ;q whenever g < oco.

(5) The norms in the spaces B;q and F ;q do not recognize algebraic polynomials;
that is, || f + P”B,s,q = ||f||3;q and || f + P”F;q = ”f”F;q for any polynomial
P onR" x R"™. Therefore, the spaces Bj,, and F,, consist of equivalent classes
(modulo polynomials).

4 Frame Decomposition of Product Besov and Triebel-Lizorkin
Spaces

The frame decomposition of the homogeneous product Besov and Triebel-Lizorkin
spaces is a central component of our theory. We develop it analogously to the single
parameter p-transform of Frazier and Jawerth [11-14].

The discrete product Besov and Triebel-Lizorkin spaces will be spaces of sequences
{a1}1ex of complex numbers indexed by the set R of all dyadic rectangles in R"! x R"2.
Recall that R, stands for the set of all dyadic rectangles I € R such thatI = I} x I,
with I; € Di i =1,2.

Definition 4.1 Lets = (s, s2) € RZand 0 < q < oo.

(i) The product Besov sequence space Ej,q = E.qu (R), 0 < p < o0, is defined as the
set of all complex-valued sequences a = {aj}ier such that

lalgy, = (X2 (X (2w 2a))") " <o @y

veZ? IEiRv

(i) The product Triebel-Lizorkin sequence space f;q = 'fyq (R),0 < p < o0, is
defined as the set of all complex-valued sequences a = {ay}jex such that

. ~ 1/q
laly, = llally @ = | (2 @afi0)’ ) 7| <o @2

IeR

where r; := v if I € R, and I := |I|_1/2111 with 1y being the characteristic
function of the rectangle I. Above, the standard modification is used when g = oo.

In our further development we will use the “analysis” and “synthesis” operators
defined by

Spi f = {(fronhex and Ty f{arher — ) aryr. (4.3)
IeR

One of the central assertions in this theory is the following:

Theorem 4.2 Lets = (s1, 52) € R? and 0 < g < oo.
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@) If 0 < p < oo, then the operators Ssz;q — [']qu and Ty : vaq — B;q are
bounded, and Ty o S, is the identity on B; - In particular,

1 g, ~ IS et lgs . V€ By

(ii) If 0 < p < oo, then the operators S, :.Fls,q — "fqu and Ty : ﬁ,q — Fls,q are
bounded, and Ty, o S, is the identity on F Is,q. In particular,

£ W gy, ~ HCF oDl - VS € By

Theorem 4.2 is the analogue in the product space setting of the results of Frazier
and Jawerth on the ¢-transform from [11-13]. Its proof depends on the following:

Lemmad3 LetO <t < 1,7 >n;/t,i =1,2, and p = (1, u2) € 72, Then for any
sequence a = {ayljer of complex numbers and any J € R, v = (v1, 12) € 72,

2

Z |a1| 1_[ (1 + 2min{ﬂi,vi}|xli _ x],' |)_Ti

IeR,  i=I

2
< e[ max {12070 (3 larlly) @), Ve el @4

i=1 IeR,

We defer the proof of this lemma to the appendix.

Proof of Theorem 4.2 'We will only prove the result for Triebel-Lizorkin spaces. The
proof of the result for Besov spaces is similar and we omit it. Assume s = (s1, 52) € R2,
0 < p<oo,and 0 < g < oo. The case g = oo is similar; we omit it.

(a) We next prove the boundedness of the synthesis operator 7y,. We first consider the
case of finitely supported sequences. Let a = {ay} € fj,q be a finitely supported

sequence. We define f := Tya = > yaryr. Letv = (v, 12) € 72. From (2.13)
and (2.16) it follows that

vi+1 v +1
prf®= Y Y > agyrx). xeR" xR2. (45)

ni=vi—1 pr=m—1IeR,

Assumethatt; > n;/t,i = 1,2,and0 < t < min{l, p, g}. Because |u; —vi| < 1,
(2.1) and (2.14) imply

oy * Y1(x)] Sf oy (x = Y[[Y1(y)Idy
Rrpt+n2

2
<c[[2¥m2 / (1428 — yil) 7 (14 2% |y — xp, 1) " dyi.
i=1 R
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As is well known, if 7; > n;, then

/ M (L4 2M |x; — yi ) (127 [y —xg, 1) dyy < e(T4+2M |x; —xp]) "
R

Therefore,
2
o * Y| < e [ ]2 72 (14 2% i — x]) " (4.6)
i=1
By (4.5) and (4.6) we obtain
vi+1 va+1 2
BVgprfl<c Y > Y a2 AT (12— ])
ni=vi—1 pa=m—1IeR, i=1

where rp := . = (1, u2) whenl € Ry.
Fix x = (x1,x3) € R" x R and o = (1, u2) € Z2. Evidently, there exists a
unique dyadic rectangle J := J(x, p) := J1 x J» € R, that contains x. Clearly,

L4 2Mx; — xp| < 142 (x; — x| + |xg, — xp ) < 2(1+ 2% |xy, — xz,1),

and, therefore,

2
Z |al|25.r1|1|—1/21—[ (1 + 2ui|le_ _ xl,-|)_n
i=1

IeR,

2
= > I [T +2% 0y =) = e (Y oalt) ),

IeR, i=1 IeR,

where by := |ay|25™|I|~!/2 and we applied Lemma 4.3. Putting the above together
we arrive at

vi+1 v +1

Ppsf@l=e Y Y MY Il @.7)

ni=vi—1 py=vr—1 IeR,
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We use (4.7) in the definition of || || i, and the maximal inequality (2.19) to obtain

171, = (X @t )) |

veZ?
vi+1 vy+1 o\ 1/q
=(X( 2 2 (X mu))) "
veZ? pi=vi—I po=v—1 IeR, P
g\ 1/q
=c|( X 0u( X 1eim))’) |
nez? IeRy, r
a\1/q
=e|( X (2 mm))
nez? IeRy P
~ 1/q
(%, 3 i)
= Z Z lax| 1) )
neZ?IeRy,
= clallj, .

Consequently, || Tyall s =< cllall js for all finitely supported sequences a = {ay}.
rq pq

But, it is easy to show that finitely supported sequences are dense in f;q (g < 00),
and the boundedness of Ty in the general case follows by a limiting argument.

(b) We now prove the boundedness of the “analysis” operator S,. Let f € F > 4- Define
ox) == p(—x),x e R" x R™. Forany Il = I} x I € Ry, v = (v, 1) € 72,
we have using (2.8) and (2.11),
[(foen] =27""21f % Gy (xp)].

This and the fact that 1 + 2" [x;, — x;] <2, Vx; € [;, yield

2 @I enllie)! = 30 21 5 ol L0

IeR, IeR,
2
<e 32w gy Gl [ (142, —xl) " 1)
IeR, i=1
2 q
<c Y (27 s £+ eI (1+ 2"y — ) ™") 1,
IeR, yel i=1

where 0 < t < min{p, ¢q}. From (2.16) it follows that

SUpp  * Gy = SUpp (F - Gy) C© [—21F1, 20 5 [pvatl guatipm
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We now invoke the maximal inequality (2.20) and obtain

Z (2s-v|<f’ (PI>|]~II(X))q < 25V [Mt (f * @v)(x)]q, vx € R™ x R"2,
IeR,

We use this and the maximal inequality (2.19) to obtain

s otliy, = (2 X @i i) |

VEZZ IE:RV

=] (X s xa))

veZ?

<e|(Z eiran?) |

veZ?

=clfllgs,-

p

Y

p

Here for the last inequality we also used the fact that the definition of the norm in
F ; 4 1s independent of the particular selection of the function ¢ in (3.2). Therefore,
the “analysis” operator S, is bounded.

The fact that Ty o S, is the identity on FIS, 4 follows immediately from (2.13). O

5 Almost Diagonal Operators

Almost diagonal operators acting on Besov or Triebel-Lizorkin sequence spaces are

an important tool in dealing with these spaces. In this section we develop almost

diagonal operators in the product framework. We use them in the next section to

establish wavelet characterization of the product Besov and Triebel-Lizorkin spaces.
We will use the notation

6 :=2"" for IeR,, v=(vi,m)eZ? i=1,2.

Also, let J; := n;/min{l, p} in the case of the space ['Ji,q(iR), and J; =
n;/ min{l, p, g} in the case offj,q(fR),i =1,2.

Definition 5.1 Assume s = (s;, 57) € R%,0 < g < oo, and let 0 < p < oo in the
case of the space b;q (R) and 0 < p < oo in the case of f; q (R). A linear operator

A with matrix {a;s}; jex is called almost diagonal on B;q (R) or on fj,q (R) if there
exists ¢ > 0 such that
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[Alle := sup |ayg|/wry(e) < oo,
L)

where

2

= @ i M —Ji—e
e =[1G5) (+ mmitmcan)

i=1

X min {(%)“’f”)/{ (%)(’H%ﬂ/%—h—m} .

We next establish the boundedness of almost diagonal operators on Ej,q (R) and
(.
Theorem 5.2 Lets = (s1,57) € R%, 0 < g < o0.

(a) If A is an almost diagonal operator on [.J‘;q (R), 0 < p < o0, then for any sequence
he E;q (R) we have
Ah||is < s . .1
l h”[,pq(jz) = c”h”bpq(iR) 5.1

(b) If A is an almost diagonal operator on f*;, q (R), 0 < p < o0, then for any sequence
h e f*},q (R) we have

The constant ¢ > 0 in (5.1) and (5.2) above is independent of the sequence h.

For the proof of Theorem 5.2 we will need the following well-known Hardy inequal-
ities:

Lemma5.3 (a) Let y,q > 0. There exist a constant ¢ = c(y, q) > 0 such that for
any sequence of non-negative numbers {a,, }mez,

q
> ( > 2<mf>yam) <c) ap (5.3)
JEZ “m>j mez

and

Z ( Z 2—(j—m)Vam)q <c Z al. 5.4)

Jj€Z “m<j mez

(b) Let y1, v2,q > 0. There exists a constant ¢ = c(y1, 2, q) > 0 such that for any
sequence {dy},c72 of non-negative numbers,

q
Z Z ( Z Z 2—(#1—111))/12—(U2—M2)V2dﬂ) <c Z Z dﬁ' (5.5)

VIEZ vaE€Z \H1ZV] 2 <V2 U1EZL ur€l

Inequality (5.5) follows by a simple combination of inequalities (5.3) and (5.4).
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Proof of Theorem 5.2 'We will only prove the boundedness of the almost diagonal oper-

ators on the Triebel-Lizorkin sequence spaces fj,q (R). The proof in the case of the

Besov space Ej,q (R) is similar and will be omitted.

Lets = (s1,5) € R2and 0 < p < 00. Assume g < o0; the case ¢ = 00 is easier
and we omit it.

Let A be a linear operator with matrix {agy}1 yex that is almost diagonal on f;q (R).
We have to show that estimate (5.2) is valid. Given I € R we split R into four subsets:
R = Uff: 13%;, where

Ri =T eR D) < 6D, LA) < LD,
Ri =T e R (D) < (D, L) > LD},
R =T e R (D) > (D), L) < LD},
Rf =T eR ) > (D), LA) > LD).

Then

4

[(AR < Y langllhgl =" > lawgllhyl.

JeR i=1 JeRi

Applying the (quasi-)norm in fj,q (R) (see (4.2)) we obtain

4
4l 0 =€ 3 |( (27 X tawiinaiT)”) | =3 m

i=1 IeR JGfRi i=1

Recall thatry ;= v ifI € R,.

We will only estimate N»; the estimation of Ny, N3, N4 is carried out along the
same lines. Observe that if I € R,,, v = (v, 1n) € 72, and J € R?, then J € Ry, for
some u = (1, U2) € 72 such that (1 > vy and py < vy. Therefore,

=X (X X > |aIJ||hJ|bI('))q)l/qua (5.6)

viEZ vaeZIeR, H1ZVI k2<V2 JeR,

where by(x) := 25T I1(x).
Since A is almost diagonal, there exist constants ¢, & > 0 such that

£

lagy] < 2D s1=Ji+F = 5)p(ua—v) (2% +5)

x (142" gy =, )75 (14 22 gy — )7
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and therefore

lagy||hy|br(x) < c2#$27H (7 —”7‘+%)2V1 (*71"‘%)2“2(”2“'8)/22_5”2/2|hJ|]lI(X)

x (12" gy, — 2, [) 777 (1 202 gy — gy )T

We choose t > 0 so that

1 1 e

t  min{l, p, g} + 4max{ny, na}’

&

Then 0 < ¢t < min{l, p, g} and % < Ji + 7 < Ji +¢&. Applying Lemma 4.3 we get

2
Z |y H (1 + 2min{m,v,~}|xji B x1i|)7‘7"*5

JeRy i=1

< cz(ulful)nl/tMt< Z |hJ|1J)(X) < Cz(ltlfvl)(J1+s/4)Ml< Z |hJ|]lJ)(x),
JeR, JeRy,

which in turn leads to

> lawgllhylbr)

JeRy

< Czlmzulm/22—(u1—V1)8/42#2('12+8)/22—SV2/2Mt( Z |hJ|1J)(X)
JeRy

— Cz*(ll-l*V|)€/42*(V2*M2)6‘/2Mt( Z |hJ|bJ)(X).
JeRy

Putting all of the above together we obtain

(X XX ki)’

IeR, H1zvip2<v2 JeRy,

< C( Z Z 2*(#17v1)6/427(v27m)£/2M1( Z |hJ|bJ)(X)>q,

H1ZV] U2 <V2 JeRy

From this and (5.6), and using the discrete Hardy-type inequality (5.5) and the maximal
inequality (2.19), we obtain
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(L X (X X s (Y mim))')"|)

VIEZ V€L M1ZV] J2<V2 JeRy

=A(Z 2 0z ),

W1EZ prel

= |(X X (X zmmin))"]

MIEL o€l JeR,

= cllhlls,

The proof is complete. O

6 Product Wavelet Bases

In this section we introduce product wavelets on R"! x R"2 and show that they can
be used for characterization of the product Besov and Triebel-Lizorkin spaces. The
product wavelets will be defined as products of two families of regular tensor-product
wavelets on R"! and R"2. For simplicity our construction of product wavelets will
be based on the orthogonal univariate Mayer’s wavelets. However, any other wavelet
bases can be used instead as long as the wavelets are sufficiently smooth and have
sufficiently fast decay and sufficiently many vanishing moments.

6.1 Regular Tensor-Product Wavelets on R"

We will use notation similar to the notation from Sect. 2.4. We denote by D the set of
all dyadic cubes in R" and by D the set of all cubes / € D of side-length £(I) = 27/.
For any I € D we denote by x; its lower-left corner and by |/| its volume. Also, for
any function g on R"” we define

L 71/2 .x_.x[
¢1(x) = 1] g<—w) ) IeD. 6.1)

We assume that ¢ is the scaling function and v is the associated wavelet in Meyer’s
wavelet system [20]. We also assume both ¢ and ¥ normalized in LZ(R), that is,
loll2 = ¥z = 1. Therefore, {2//2y/(2/x — k)} jez ez is an orthonormal basis
for L2(R). Define ¥* := ¢ and ¢! := v. Let E be the set of all nonzero vertices of
[0, 17". Set

vee) = ]ve @), e=('.....e") € E. 6.2)

j=1
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Then the set
{vj:1€D,ecE}

is the regular tensor-product wavelet basis on R”, see, e.g., [30].
The most important properties of the wavelets {7} can be summarized as follows:
Each ¢ is in S(R"),

suppIY/\f C [—b2j, b2j]", I e 'Dj, for some constant » > 0, (6.3)
and for any constants M, K > 0,
0%y ¢ (x)| < 272D 1271y —x; )™, T €Dy, o <K, (6.4)

and

f x*Yi(x)dx =0, o] <K. (6.5)
Rn

Note that from ||¥{]|;2 = 1 and (6.4), it follows that
Il ~ [I1VP120 0 < p < 0. (6.6)

Remark 6.1 Other wavelets can be used in place of Meyer’s wavelets, where the con-
ditions ¢, ¥ € S(R™) and (6.3) are relaxed, but some limited smoothness is assumed,
and conditions (6.4)—(6.5) are satisfied with the constant M, K < oo fixed. For exam-
ple, the compactly supported orthogonal Daubechies wavelets [5] or bi-orthogonal
wavelets [3] can be used. Then the theory that follows can be developed in full but
with limited smoothness of the product Besov and Triebel-Lizorkin spaces and limited
rates of approximation. We will not elaborate on these aspects of the theory.

6.2 Definition of Product Wavelets on R™ x RM

We now use the regular tensor-product wavelets from above to define product wavelets
on R" x R"2 ny,ny € N.

We will use the notation x := (x1, xp) € R" x R"2, x; := (xl.l, R xi"") e R",
i = 1, 2. We consider two regular tensor-product wavelet bases on R"! and R"2:

Yi(x), 1e€D', ¢ ek,

where we used (6.1) and

n )
Vi) = [[ve o). e=(.....dHeE, i=12

j=1

Here D' is the set of all dyadic cubes in R" and E' is the set of all nonzero vertices
of the cube [0, 1]".
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Recall that R is the set of all dyadic rectangles in R"! x R"2. We set E := E! x E2.
Now, the product wavelets are defined by

Y =Y DY (), x=(x1,x2), I=h xheR, e=(er,e) € E.
Proposition 6.2 The family
W:={yj:1€R, e cE}

is an orthonormal basis for L>(R™ x R™). Furthermore, forany f € Soo(R" x R"2)
(or f € S, (R" x R"™)), we have

f= > (fuhi. (6.7)

IeR ecE

where the convergence is in S (or in S.).

This proposition relies on the following:

Lemma 6.3 For any M, K > 0 there exists a constant ¢ > 0 such that for all €
SR xR™), veZ:I=1 x I, € Ry, and e € E, we have

2= K(vil+v2)
<
| = (1 +2le0|xll|)M(1 +2v2A0|x12|)M’

[(f.¥]) VI €Z, vy €L, (6.8)

where we used the notation: a N b := min{a, b}.
The proof of this lemma is in the appendix.

Proof of Proposition 6.2 By the definition of the product wavelets {1} it is obvious
that VV is an orthonormal sequence in L2(R™ x R"2). Further, as is well known (see,
e.g., [30,85.1]), {y;': I; € D', e € E'} is an orthonormal basis for R", i = 1,2, and
L2(R™) @ L?>(R™) = L2(R™ x R"2). Consequently, W is an orthonormal basis for
L2(R™ x R"2).

Let f € Soo(R™ x R™2). To show that (6.7) holds with convergence in S, it suffices
to show that for any multi indices o, 8 € Ng‘ X Ngz,

> supl(f, YD1y ()] < oo.

IeR,ecE X

Assume |a| < £, |B] < m for some £, m > 0. Consider the case when I € R,,
v = (v1, vp) with vy > 0, v» < 0. Then using (6.4) and (6.8), we obtain

(S U IX 1198 yrf ()

c2—K(v \+|v2\)(1 4 |x|)@2V1(n|/2+m)+v2(nz/2+m)
< .
T A e DMA 422 0x, DML 42V xg — xp DM+ 272|x0 — xp, DM
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Here M, K > 0 can be arbitrarily large. We choose K :=m + € +3n1/2 +ny + 1
and M := K +n| + ny + 1. Clearly, because v; > 0, v» < 0, we have

(L+ i) - (1+ < pmat
A+ lxp DEA 42wy —xp DE T 7 (L4272 |x, DAL 422 x2 — xp )¢~ ’
and hence

2~ Nvil+v2))
, ey x® 8;3 ex)| < ,

ARV O] < e e e

where N := n| + ny + 1. It easy to see that for any I € R,
1 2v1(n1+1)
<
(14 | DAL 422 |xp 2t = (14 2V g (1 4 292 xpy )2t
JVing+vang
< Vit dx,
- E (2 (L 4 2% )2

implying

> :

G (T e T (1 4 22 e T

2V1n|+v2n2
< C2v1(n1+1)/ - dx < C2v1(n|+1).
R11]+n2 Hi:l(l + 2Uf|xi|)ni+l

Therefore,
Z Z Z WRGILS ||3ﬂwl x)| <c Z Z = N(vil+vaDovim+1) e
V1 >0y <0IeR, ecE v1=>01vy<0

One similarly shows that this inequality is valid when the summation Zv1>0 sz -0

is replaced by >, 0> ,50 OF D), 20 D_y=0 OF D_y; <0 D, <0- Consequently, the
series in (6.7) converges in S, and because W is a basis for L2, it follows that this
series converges to f.
By duality it follows that (6.7) is valid for any f € S, with convergence in S.
O

6.3 Characterization of Product Besov and Triebel-Lizorkin Spaces
In this section we show that the wavelet basis
= {gﬁletl = xhekR e=(e,e) < E},

defined above, can be used for decomposition of the product Besov and Triebel—-
Lizorkin spaces.
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Theorem 6.4 Lets = (s1,52) € R%, 0 < g < 00, and f € S,.
(1) If0 < p < oo, thenfeB if and only if {(f, V) }ebpq,eeE,and

1/ 0y, ~ DI ¥y, - (6.9)

ecE

@) If0 < p < o0, then f € F;q if and only if {(f, ¥y)} € ﬁ,q, ec E, and

11y, ~ D M0, - (6.10)

ecE

In addition, if f € B;q or f € F;q with p, q # oo, then

f= > (fuh. (6.11)

IcR,ecE

where the convergence is unconditional in the norm of BS or F5 g Tespectively.

Proof We will utilize the frame {6y} from Sect. 2.4 (this is the case when ¢y = Y1 = 6f)
and the frame characterization of the spaces B; q and F f, g from Theorem 4.2 via {0y}.
The almost diagonal operators from Theorem 5.2 will also play an important role. We
will carry out the proof for Besov spaces only; the proof for Triebel-Lizorkin spaces
is the same.

The following estimate on inner products will play an important role: For any
M, K > 0 there exists a constant ¢ > O such that forall LJ € R, I = I} x Iy,
J=Ji x Jp,and e = (e, e2) € E, we have

2
e (L) LK lxr, — x,1 -M
'”"‘”ﬁ'fi[[mm o) U amian con) ©612)

This inequality follows at once from

L) LK —xy -M
o )1 < emin [ 20D BUONEG P Xl 3T
! L0 L) max{€(l;), £(J;)}

This estimate is well known and due to the infinite smoothness, fast decay, and van-
ishing moments of 6;, and 1/f§l_. It can be derived from [13, Lemma B.1], see also [17,
Lemma 2.1]. In essence its proof is contained in the proof of the more complicated
Lemma 6.3 above. )

Assume that f* € Bj,,. Using Proposition 2.3 we have [ = > _jer (S 0y)0y with
convergence in Sgo and hence forany I € R, e € E,

(Fouf) =Y (. 00Wf 00 =Y afy(f.0),  afy = (Yf, 0).

JeR JeR

@ Springer



Constructive Approximation

From (6.12) and Theorem 5.2 it readily follows that the operator A® with matrix
{aIeJ}L Jex is almost diagonal on b“;,q and hence it is bounded. We use this and Theo-
rem 4.2 with {01} instead of {¢g} to obtain

I gy, = IASCLF 0} Iy, < clCf- O lgs, < clfllgs . €€ E.

) (6.13)
Hence, {(f, ¥1)} € b, Ve € E.
For the other direction, assume that f € S and {(f, ¥)} € fli,q,e € E. Appealing

to Proposition 6.2, we have f = Zleﬂa,ee £{f, Y1) ¥t with convergence in S, and
hence

(f.00= Y (fUPOLY = D biyf v, by = (0L v

JeR ecE JeR ecE

Let B¢ be the operator with matrix {bf;}1 e, € € E. As above from (6.12) and

Theorem 5.2, it follows that B¢ is an almost diagonal operator on b;, o, and hence it is
bounded. This along with Theorem 4.2 implies

IIfIIB;q =< CII{(f,GI)}IIf,sM =< CZ IBE{(f, wf)}llf% < cZ I{(f, Wf>}llg,7,q-
ecE eckE

(6.14)

Therefore, [ € Bf,q. The equivalence (6.9) follows by (6.13) and (6.14).
The unconditional convergence in (6.11) follows readily by the wavelet character-
ization of the norms in Bf, g and F, ; o, from above. O

6.4 Product Hardy Spaces

As elsewhere in harmonic analysis and approximation theory, it is natural to work in
Hardy spaces H?” rather than in L” when O < p < 1. The theory, of product Hardy
spaces HP, 0 < p < 1, was initiated by Gundy and Stein [16] and has attracted
considerable attention. We refer the reader to [1,2,9,10,19] and the references therein
for more information on product Hardy spaces.

The product Hardy spaces H? = HP(R" x R"™), 0 < p < 1, are usually
defined via the Lusin-area function, but there is also a Littlewood—Paley character-
ization of these spaces as well as characterization via the g-transform (see [1,19]).
The Littlewood—Paley characterization of the product Hardy spaces H?,0 < p <1,
simply asserts that H” = F;?z (R™ x R") with equivalent norms. We will take this
as a definition for product Hardy space H? and set (see Definition 3.1)

e = | (X oo £2) 6.15)

veZ?

However, this needs some further clarification because the space ng(R”‘ x R"2)
consists of equivalence classes modulo polynomials.
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Proposition 6.5 Let f € F,?z(R”' x R™), 0 < p < oo.

(@) Let ¢ = @' @ @2, where @', ¢? satisfy (2.3), (2.5) with n = ny, ns, respectively.
Then there exists fy € S in the equivalent class determined by f such that

fo= Z @y * f, with convergence in S'. (6.16)

veZ?

Moreover, fy € S is independent of the specific selection of ¢.
(b) Let (pl, 1,//1 and @2, 1//2 be two pairs of functions satisfying (2.5)—(2.6) withn =
ny, na, respectively. Set ¢ := @' ® ¢* and  := ' ® 2. Then

Jfo= Z Uy % @y % f,  with convergence in S

veZ?

(c) Let {yf:,e) € R x E} be the wavelet basis defined in Sect. 6.2. Then

fo= Z (f ) ¥f, with convergence in S'.

IcR ecE

This claim is analogous to [13, Remark B.4]. We include its proof in the appendix.
Convention From now on we will identify f € HP(R" x R"2) = F SZ(R’“ x R"2),
0 < p < oo, with its canonical representative

Yowvxf=) Uvxgurf= Y (f UYL,

veZ? veZ? IeR,ecE

see Proposition 6.5.

Observe that f € HP (R" x R™),1 < p < oo,ifandonlyif f € LP(R" x R"2)
and || fllLe ~ [ f e, see [1].

We will need the ¢-transform (Theorem 4.2) and wavelet (Theorem 6.4) character-

izations of H? (R™ x R"2) = FSZ(R’” x R"2):

||f||m~ﬂ(1€292 (o enie) H ~[C > Do, wf>|il<.>]z)1/zup.

IeR,ecE

7 Nonlinear m-Term Approximation from Product Wavelets

Here we consider nonlinear m-term approximation from the product wavelet basis
{¥1 heR,eck defined in Sect. 6.2in L?, 1 < p < 0o, or H?,0 < p < 1. Denote by
., the set of all functions on R"”! x R"2 of the form

8= Z ale‘ﬁle,

Le)eA,
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where A, C R x E, #A,;, < m, and A,, is allowed to vary with g. We define
= inf — , 7.1
om(f) glenEm lf—glp (7.1)
where | - |, = |- lzrif 1 < p <ooand |- |l, = |- llar if0 < p < 1.
In what follows we assume that
1 1

O<p<oo, >0, —i=a+ —, s1:=n, s :=mwa, S:=(s1,s). (7.2)
T p

Thus s1 := n (% — %) and sy := ng(% — %) The Besov spaces

B = B

will play an important role here. Our goal is to establish a sharp Jackson estimate for
o (f) and companion Bernstein estimate in terms of the Besov spaces BS .

1_1
Observe that from Theorem 6.4 and the fact that ||yfllze ~ [I]7 2,0 < ¢ < o0,

[a consequence of (6.6)], it follows that for any f € Bfr,

g, ~ (X 10w (13)

IeR,ecE
The embedding of B?T into L? or H? will play a critical role.

Proposition 7.1 Let f € BS_, where s and t are as in (1.2).

@ If1 < p <oo, then f € LP and

1fllze < el fllgs. (7.4)
(b) If0 < p <1, then f € HP and

I lar < el fll s, - (7.5)

Above, ¢ > 0 is a constant independent of f.
We now come to the main results in this section.

Theorem 7.2 (Jackson estimate) If f € BS_, then form > 2,

T

om(f)p <em | fllgs . 0<p=2, (7.6)
om(f)p < cm™*(Anm)' 27 VP| fllg, 2 < p < oo, (7.7)

where the constant ¢ > 0 is independent of m.
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Theorem 7.3 (Bernstein estimate) If g € X, m > 2, then
1/p—1/2
Igll gy, < em®(Inm) /" g, 0 < p <2, (7.8)
lgllgs, <cm®lglp. 2= p <o, (7.9)

where the constant ¢ > 0 is independent of m.

Before proving these theorems we derive direct and inverse estimates that follow
from the above Jackson and Bernstein estimates. Denote by K (f, ¢) the K -functional
associated with L? and BSif 1 < p < coor H? and B if0 < p < 1; namely (see,
e.g., [8]),for f € LP,1 < p < o0,

K(f.0)=K(f.t; L7, BS) o= inf (If —gllp +tlighgs ). ¢ >0,

geB3,

and L? above is replaced by H” whenever f € HP,0 < p < 1.

Theorem 7.4 (Direct estimate) If f € LP, 1 < p < oo, 0r f € HP,0 < p <1, then

om(f)p <cK(f,m™), 0<p<=<2,
om(f)p < cK(f,miO‘(lnm)l/zfl/p), 2<p<oo, m=>2.

Theorem 7.5 (Inverse estimate) If f € LP, 1 < p <oo,or f € HP,0 < p <1, then

1 1/
K(fom™) < em™(nm) /772 (30 2 k(D)) "+ 171, 0 < p <2,

K(Fm ) = em[(3 s W) "+ 1s,) 2= p <00 m=2
k=1

Here pu := min{z, 1}.

The proofs of Theorems 7.4, 7.5 are standard and will be omitted, see, e.g., [8,
Chapter 7, Theorem 5.1].

Corollary7.6 Let f € LP, 1 < p <oo,or f € HP,0 < p <1,and0 <y < «.
Then: (a) If0 < p < 2, then

K(f,1%) = 0") implies 0(f)p=0(m7),
and
on(f)p = 0(m™") implies K(f.1*)=0(t"(nl/0)f), B:=1/p—1/2.
(b) If2 < p < o0, then

K(f, 1% = 0@") implies on(f)p=0(m Y (nm)P), B:=(1/2—1/p)y/e,
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and
om(f)p=0m™7) implies K(f,t%) =0@").

The next proposition shows that the Jackson and Bernstein estimates from Theo-
rems 7.2, 7.3 are sharp. In particular, the logarithmic terms in (7.7) and (7.8) cannot
be removed and they are of the correct form.

Proposition 7.7 The Jackson estimates (7.6)—(7.7) as well as the Bernstein estimates
(7.8)—(7.9) are sharp in the following sense: Let p, «, T, s1, 52 be as in (7.2). Then for
anym > 2,

sup o (f)p =em ™, 0<p <2, (7.10)
£l s, =1
sup o (f)p = em @ (Inm)!27VP 2 < p < o0, (7.11)
£l s, =1
sup llgllgs = em®(Inm)/P=12 0 < p <2, (7.12)
g€Zm.lgllp=1 o
sup  lgllgs =cem®, 2<p <oo. (7.13)
g€ lgllp=1 o

Above, the constant ¢ > 0 is independent of m.
The proof of this proposition is deferred to the appendix.

Remark 7.8 (a) Note that the parameter ¢ > 0 above can be arbitrarily large due to the
fact that the product wavelets that we work with are based on Meyer’s wavelets and

characterize the spaces B;q , F [s,q in the complete range of the parameters s, p, q.
The above approximation results can be obtained for product wavelets based on,
e.g., compactly supported orthogonal Daubechies wavelets [5] or bi-orthogonal
wavelets [3], but with a limited range for o depending on their smoothness, decay,
and number of vanishing moments.

(b) In the Jackson estimate (7.7) and Bernstein estimate (7.8) there are logarithmic
factors (Inm)'/2~1/P and (In m)'/P~1/2 that prevent them from perfectly matching
their respective counterparts. However, as is shown in Proposition 7.7, they cannot
be removed and are of the right form. These logarithmic factors are due to the fact
that the “essential supports” of a (logarithmic) number of product wavelets of the
same size overlap at any point.

The proofs of Proposition 7.1 and Theorems 7.2, 7.3 rely on the following lemma,
where as before R stands for the set of all dyadic rectangles in R"! x R"2.

Lemma7.9 If F = Y ;v [|7'/P1y, where X, C R, #Y, < m, m > 2, and
1 < p < oo, then
IFlp < cm"P(nm)' =17, (7.14)

where the constant ¢ > 0 depends only on p. Furthermore, this estimate is sharp.
Evidently, | F|l, < cm'P in the case 0 < p <L

The proof of Lemma 7.9 depends on the following:
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Constructive Approximation

Lemma7.10 If1 < p <ocoand N € N, then

N N
(617)_”(22-//”xj)p <Y 2, 0=x<1. (7.15)
=1 =

Proof Consider the function
N . N . P
h(x) :=A22ij—(22f/l’xj) S x= (1. xn), A= (6p)P. (1.16)
j=1 j=1

We have to show that 4 (x) > 0 on the set [0, 1]V. We may assume that N > 2. Clearly,

oh al !
o, (x) = A2/ — p2//P ( E 2 va) ,

v=1
and hence
oh .
—x)=0,j=1...,N
ax]'
if and only if
N
3 2vrx, = (AP ) VPTD = LN,
v=1
Evidently, this system for xi,...,xy has no solutions if N > 2. Therefore, the

function £ has no critical points on (0, 1)V, and hence min.po v 7(x) is attained on
the boundary of [0, V. Clearly, the boundary of [0, 11V is contained in the union of
sets ¢ of the form

Qi={xeRV:0<x, <1, k=1,....¢ andx; =0orx; =1, j # ji}

for some set of indices {j,}‘’_,, 1 < ji <+ < je < N,with € € {1,..., N}.
Consider 4 (x) on £, in the case when £ > 2. Then in the definition of 4 (x) in (7.16)
x;j =0orx; =1for j # ji. Justas above we conclude that the system %(x) =0,
k=1,...,¢, (¢ > 2)has no solutions in the interior of €2y, and hence min,cgq, /(x)
is attained on the boundary of 2, if £ > 2.
Consequently, it suffices to show that 2(x) > 0 on any set €21 of the form

Q= {x eRM:0<x; < 1forsomefe{l,...,N}, andx; =0or I, j#¢)
(7.17)
It is readily seen that minyeq, A(x) > 0ifin (7.17) x; = O for all j # £.
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Assume that 1 is the set of all x € RY such that0 < x;, < 1 forsome1 < ¢ < N,
xj, =1forl1 < ji <--- < ju=<N,j #L and x; = 0for j # j, and j # £;
> 1. We use that (a + b)? < 2P(a? + b?), a, b > 0, to obtain for x € 1,

p

N I P
> ailrx; | <2r [(2‘/1’)@)1’ + <Z 2fr/P> ] < 2P (2% + (3p)P2in).
j=1

r=1
(7.18)
Here we used that 0 < xy < 1 and

2/t 1

(Z 2Jr/p) < Zz]/P — <m> < (3p)P2ir.
r=1 j=1

From (7.18) it follows that

N P N

sz/l’xj < (6p)pz2jx]~, x € Q,

j=1 j=1

implying minyeg, h(x) > 0. Consequently, min, ;o ;v £(x) > 0, which implies
(7.15). The proof of the lemma is complete. O

Proofof Lemma 7.9 Assume 1 < p < oo. Clearly, Lemma 7.9 is invariant under
dyadic dilations, and hence we may assume that [I| < 1 for all I € Y;,. Assume
1| > 27N, VI € Y, for some N € N. Define R, := {I € R: [I| =27/}

We denote by A! and A? the sets of all dyadic cubes I; € D', I, € D? such that
I =1 x I € Y},. Further, we denote by Bl (i =1, 2) the collection of all nonempty
sets ©2; C R"™ of the form

Qi =I\U{J:Jie A J C L}, I eA. (7.19)
Thus each set Q; € B', Q; # #, is obtained by subtracting from a dyadic cube I; € A’
all smaller dyadic cubes from A’ that are contained in /;. It is readily seen that B’

consists of disjoint sets and #B <m,i=1,2.
Now, denote by X; the collection of all sets & C R"! x R"? of the form

Q=QxQ, UeB,i=12 QqxWchxheR,

where I, I, are the cubes from the definition of €; in (7.19). We set X := U?’:ODC]-.
It is easy to see that X consists of sets with disjoint interiors,

Uler,, I C UgeQ, and #X < m?. (7.20)

Also, observe that forany I € Y, and Q € X, either Q CTor QNI =¢.
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Clearly, the function F can be represented in the form

Fx) = 1o@)(ko(Q) +2"7ki(Q) + - + 2V Pky (). (7.21)
QeX

where k; (€2) is the number of rectangles I € Y,, N R; (|1j=/P = 2J/P) that contain
QO <kj <m).
Define m j := #X;. It is readily seen that

Y@k = Y M=mi27/, j=1....N. (7.22)

QeX €Y, NR,

We claim that

Q] <2277 vo e X;. (7.23)
Indeed, let 2 = Q] x Q, € f)Cj (j = 0), and assume k; := k;(€2) > 2. Then Q
is containf;d in k; distinct dyadic rectangles Il, R 1% from R jiie., I" € R and
" =27/,v=1,...,k;. We may assume that the dyadic rectangles I" = I} x I

. ki . .
are indexed so that Q1 C [ 11 - 112 C --- C I}’ Since these are nested dyadic cubes
in R"! we get

k:
17,
2n|(kj71)

ki ki
IS

1
il < I1}] < 2D = 3

, implying [Q| = |Q21]22] <

where we used that 2, C I;j . Because nj > 1, the above estimate implies (7.23).
Let K := (2p 4 2) log, m. From (7.21) it follows that

N I4 14
IFIG = Y 1@l Y 2P k@) <22 Y@ D) 2//7k@)
QeX,, j=0 QeX,, ki (=<K
P
+2r el > 2Pk | =01+ 02 (7.24)
QeXm kj(Q)>K

We next estimate Q». Using (7.20), (7.23), and that k; (£2) < m, we obtain

P
20/Pk () m% \pr
p+1 I A S p+1 2( " __Ap+l
CEADI DY @y | =M <2K/p) =27 (025
QeX, \kj(Q)>K
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To estimate Q1 we set x; :=k; /K, k;j := k;(2), and use Lemma 7.10 to obtain

p p
Z 2]/ij — KP Z 2j/17xj
kj<K kj<K
< (6p)’KP Y 2/x;=(6p)PKP™" Y 2/k;.
kjSK kjSK

Here we used that 0 < x; < 1 and p > 1. The above and (7.22) lead to

N N
Q1= (12p)P K" Y 1QIY 27ki(@) = (12p)P KTy N Q127K ()

QeX j=0 J=0QeXy
N

< (12p)PKP~! ij = c(p)m(logy m)P =1,
j=0

This combined with (7.24) and (7.25) yields (7.14).

It remains to show that estimate (7.14) is sharp. For simplicity, we consider the case
whenn; =ny = 1. Fix N € N sufficiently large and let Y ;, j =0, ..., N, be the set
of all dyadic rectangles I = I} x I, C [0, 11? such that [I}| =277 and || = 2~ N1/,
hence |I| = 2~". Consider the function

N
F(x) = Z Z I~ YP1y(x), 1< p < oo.

j=0 Ie‘dj

Clearly, #Y; = 2V and hence m := #( U?’:O Y;) = 2V(N + 1). Furthermore,
F(x) =2N/P(N 4 1)1y )2, implying

IFll, = 2N/P(N +1) = ml/P(N + l)l—l/p o ml/p(lnm)l_l/p,

Therefore, estimate (7.14) is sharp. The proof of Lemma 7.9 is complete. O

Lemma7.11 If F = Z(I,e)e./lm areyy, where Ay, C R x E, #A,,, <m, m € N, and
lareVfllLr < Aforall I, e) € Ay, 0 < p < 00, then

IFl, <em'PA, 0<p=<2, (7.26)
IF|l, <emPnm)/?7VPA, 2 < p <oo, m=>2. (7.27)

Proof The proof of inequality (7.26) is just like the proof of [4, Lemma 4.1], and
the proof of (7.27) is carried out along the same lines but uses Lemma 7.9. For
completeness we next give the details.

From [|[yf]lL» ~ [1]'/7=1/2 (see (6.6)) and the condition [lageyf | L» < A, it follows
that |are] < cA|I|'/2~V/? Define B,, := {I € R:(I,e) € A,,} and observe that
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#B,, < #A, < 2"T2#B,,. We now use that [|F||, ~ ||F||F02 and the wavelet
)2

characterization of F ’92 to obtain

”F””SCH( > [Iatlel|I|*1/21L1(.)]2)1/2

LeeA,

=eAl(X [|I|‘1/"111(')]2)1/2

IeB,,

Lp

. (7.28)
Lr

(a) Let0 < p < 2. Then from the above,

Fll, < cAH( Z [|I|—1/p]ll(.)]p)l/p

Lp
I€B,,
—cAH 3! "= cAWB,)" " < cAm!/P,
IeB,,

which confirms (7.26).
(b) Let2 < p < oo. From (7.28) it follows that

1/2
“2/P (.
1Flp <eal (X2 m2rme) |

1B,

1/2
_ =2/p1 .
o CA(H IZ i Li( )HLF/Z)

€Dm

< cA[#B,)YP (n#B,)! 2/P]" < cm"/P(nm)'/>~V/P A,

Here for the former inequality we used Lemma 7.9 with p replaced by p/2 > 1.
Therefore, (7.27) is valid. O

Proof of Proposition 7.1 and Theorem 7.2 This proof uses well-known ideas, see, e.g.,
[6, Corollary 1, p. 117] or [4, Corollary 4.1] or [21, Theorem 6.2]. Define

1/t
N =D aedfly) = (v, (7.29)

(I,e)eRxE

We may assume N (f) > 0. Further, we introduce the notation
X, = {(I, e) € R x E:27"N(f) < llare¥fll, < 2—’+1N(f)}, reNo, (7.30)
andsetJ, := {I € R: (I, e) € X, }. Observe that #J, < #X, < 2"172(#J,). Clearly,
Uy = { @ 0) € R x E:laevfll, = 27" N(D).
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From this and (7.29) it follows that
#X) < #(Ur<p ) <27, (7.31)

Define
G, := Z areVy -

(Le)eX,

From (7.30) it follows that [areyy Il , < 27VFIN(f) for (I, e) € X,. We now invoke
Lemma 7.11 to obtain in the case 2 < p < 00,

1GullLr < 27" N(A)HI)VP(In@3,)) >P < en (2 A=e/myl/2=1p,

(7.32)
In the case 0 < p < 2, we appeal again to Lemma 7.11 and obtain
IGullp < eN(H2MTTP 0 < p<2. (7.33)
Using (7.32) we obtain for 2 < p < oo,
T L =2 NGl < eN(p) Y a7 Ty
v>j v>j v>j
< eN(H2IITT G DR (134
and similarly from (7.33) it follows that
H 2G|, =2 NGl <eN(fITT 1< p <2 (7.35)
v>j v=j
Inthe case 0 < p < 1, we use (7.33) to obtain
1/p _ _ 1/p
136, = (3u6a5,) " senin(Fara—m) ™,
v>j =] =)
implying
H Y6, =eN2ITIP o< p <, (7.36)

v>j

Estimates (7.34)—(7.36) with j = 0 readily imply (7.4)—(7.5).

Assume 2 < p < oo and m > 2. Choose j € Ny so that 20T < m < 20U+DT,
Define Y; = U,<;X,. By (7.31) #Y; < 2/ and using (7.34) and the fact that
= X2 1.e)erx £ AleVy, Where the series converges unconditionally in L, we obtain

onNp == X aerf],, <[ X0

Le)ey; V>

< eN(H)27TVT=UP (G4 DI2ZVP < em=Anm) 27VP ) s

Lr
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which confirms (7.7).
Inthecasewhen 1 < p <2or0 < p < I exactly as above, we use (7.35) or (7.36)
instead of (7.34) to obtain (7.6). O

Proof of Theorem 7.3 This proof uses the idea of the proof of [4, Theorem 4.3]. Let
g= Z(Le) cA, arey, where #A,, < m. There are two cases to distinguish.

Case 12 < p < oo. Using (7.3) and Holder’s inequality, we obtain

1/t _ 1/p
gz, <c( Y laevfly) =m0 faevfl)

(Le)eAn Le)eA,

On the other hand, from (6.6), || || , ~ [I|'/7~!/2. Therefore,

_ 1/p
Iglgs, < em=V0 (3 Jaelrm=r2)
(Le)eA,
=cm‘/f—‘/1’(/ > larel”|N p/zlll(x)dx)
R?1+72
Le)eAy,
I/pqp I/p
=cm‘/f*‘/1’(/ [( |ale|1’|1|*1’/2111(x)) ] dx)
Rn1+n2
@Le)eAn,
/290 \1/p
om0 ([ (Xl P reof) ] ax)
Rnﬁ»nz
@Le)eAm

=cem'VP|Sg|, < em®ligl .

Here we used that p > 2 and the characterization of ||g||, by the square function

12
Sg = (2“&)6% [|aIe||1|—1/2111(x)]2) . Thus (7.9) is established.

Case20 < p <2 . WesetJ, :={l € D:(I,e) € Ay}. From (7.3) and ||y, ~
[1|1/P=1/2 we get

—r(1/2-1
||g||g.§zic Z lare¥s 1%, < ¢ Z lage| Y|~ 1/2=1/P)

(I e)eAm (I e)EA
_c/ D larel TP 1y (x)dx
R”1+"2
de)eA,
—c Y el 1 L
RUT2 1 e)e A
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We now apply Holder’s inequality ) a;b; < (Z|aj|q)l/q(2|bj|q/)l/q/ with
g = 2/t to obtain

|are| 11(x) |7\ 7/2 11(x) L \1-7/2
”g”Bs - /R"1+"2( Z |: |eI|1/2 :|) (Iezj(ml—r/p)l /2) dx

Le)eA,

l-t/p 1—=1/2
=c Sgx)I* I =2 1y(x dx.
[ seor (2 m i nw)

Iedy

We next apply Holder’s inequality [ fg < (f |f|q)l/q(f |g|q/)l/q/ with g = p/t
and get

1-1/2 T

||g||Bs < (/R"1+"2[5g(X)]pdx);(/Rnl+n2 (Z 1~ = r/2 Ti(x )>1 TP gy )1 »

I jm
—: clISgls - @ < cliglly - ©.

To estimate O we use Lemma 7.9 with ] 32 > 1 in place of p and obtain

—7/2 1—-t/p ]7‘[/2

((/l‘vﬁnz ( Z I =5 r/Z RI(X))I P ik )14/2)

I€J,,

I=t/ 17/; 1—7/2 B
<c (ml f/g(lnm) /’2) T/ :cml_r/p(lnm)r/p r/2.

0

This leads to
_ 1/p—1/2 1/p—1/2
I8l gy, < em" =12 (lnm) /P72 g, < em® (Inm) /P2 g

The proof is complete. O

7.1 Nonlinear m-Term Frame Approximation
In this subsection we consider nonlinear m-term approximation from the product frame

{f1}1ex defined in Sect. 2.4in LP, 1 < p < oo, or H”,0 < p < 1. Denote by E,,
the set of all functions on R"! x R"2 of the form

g= > amb (7.37)

Ieym

where Y,, C R, #Y,, < m, and Y,, is allowed to vary with g. We define
Fn(f) = giencf If—gllp, (7.38)
where || - ||, = |- lrifl < p <oocand |-l =-lgrif0 <p <1
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Just as in (7.2) we assume that

1 1
O<p<oo, a>0, —=a+—, s|:=n1a, $:=nw, S:=(s1,s2).
T

As in Sect. 7 the Besov space B?T naturally appears here.

Theorem 7.12 (Jackson estimate) If f € BS_, then

T’

Fu(F)p <em™@fllgs . 0<p=2.

Fn(f)p < em™nm) 2P| fllge . 2< p<oo, m=2,

where ¢ > 0 is a constant depending only on p, a, ny, nj.

The proof of this theorem is almost identical to the proof of Theorem 7.2 because
all ingredients needed for this proof are in place; we omit it.

We conjecture that the analogs of the Bernstein inequalities (7.8) and (7.9) are valid.
The main obstacle in proving these inequalities is that unlike the basis {y/{} the frame
{61} is redundant and hence the norm ||g|| , (even when p = 2) of g from (7.37) cannot
be estimated from below by any reasonable quantity in terms of the coefficients {ay}.

8 Appendix
8.1 Proof of Lemma 4.3

We only consider the case when vy < 1 and v» > pp; the proof in all other cases is
similar. Under the hypothesis of the lemma we assume that xy = 0. We next split R
into a disjoint union of subsets. We define

Q= (T e Ry: 28717 <y | < 2k7v1 and 2ke=1=m2 < |y | < 2kemr2y
ifk = (ki, k2) € N? and set

Qey.0) = T € Ry: 287177 < xp | < 2877 and |xp,| <2712}, Kk €N,
Qoky = I € Ry |xpy| <27 and 25271712 < x| < 2R7H2) 0 I €N,
Q(o’o) ={P € fR,L: |x11| <27V and |XI2| < 27”'2}.

Evidently, R,L = UkeNg Qx and the sets Q, k € N(Z), are disjoint.

LetI = I x I, € Q. From the preceding, it readily follows that 1 4+ 2" |x7,| >
2Ki=1and 1 + 2#2|xy,| > 2%~ and hence

(1 + 2min{u,-,u,~}|xli —in|)7ti < 627k1r1 szzrz'

2
=1

1
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Therefore,

2
by= Y larl [ (1 + 2y, — 2 0) 7"

IeR, i=1

00 00
3 T A T
ko=0 k1=0

IEQk
1/t

o] oo
<cy alem Yy athn | S arl | 8.1)
ko=0 k1=0

Ier

where for the last inequality we used that 0 < ¢ < 1.
The set R, is a disjoint partition of R"! x R"? and hence we have

> larl =f

TeQy R xR"2

(3 talit 1) ay. (8.2)

TeQy
LetI € Qg andy = (y1, 2) € L. Then since vi < 1 and vy > up, we have
Ivil < Iy1 — x| + |xp | <2741 42k < g pkimw
and
Iyal < ly2 — xp,| + |xp,| < 27#2 42k < g pkeia,
Therefore,
Ureg I € [=3 - 207w 3. gkimvipm o 3. pkemma 3 pha—napma —. R,

Because x5 = 0, J € R,, and since vo > uy, it follows that J C R and hence x € R.
From (8.2) and the definition of the maximal operator M, in (2.18), it follows that for
anyx € JC R,

20( 3 Jarl1a(y)) dy

TeQy

< clR2# [ (Y lanl )|

IEQk

— okm(ui—vin [M,( 3 |a1|11) (x)]t.

IEQk

> larl’ =f

TeQy R
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This coupled with (8.1) yields

o o
by < 2 (mi—vnn/t Z 9 —ka(r2—n2/1) Z 2—k1(T1—n1/f)Mt< Z |a1|111)(x)
ko=0 k1=0 IeQx

< cz(MI*VI)nl/lMt( Z |a1|11>(x), x €],
IeR,

where we used that t; > n;/t, i = 1, 2. This confirms inequality (4.4) in the case
under consideration. The proof of Lemma 4.3 is complete. O

8.2 Proof of Lemma 6.3

Let K € Nand M > K + ny + ny + 1. We will consider only the case when
I=1 xI; €Ry,v = (v, ) with vy > 0 and v, < 0. The proof in the other cases
is carried out similarly.

Assume f € Soo(R™ x R"2) and consider the Taylor polynomials

Bi
b X7, X
Pi(x1, x2) := E M(M —x)P,

1BiI<K —1 (B!
P77 (02)
P2(x2) = Z —Zxﬁz’
1Bol<K—1 B! 2

where B1 € Nj', B2 € N2, and 0, stands for the origin in R"2. From (2.2) and (6.5),
it follows that

(f.¥q) = /Rnwzz [f (x1, x2) = Pr(xr, x2) |9y () [ (x2) — Pa(x2) Jdxidaca.

Assume |x; — x| < 1. Then by Taylor’s theorem and (2.1),

| sup max |98 £ (21, x2)|

|f(-xla xZ) - Pl(Xl,.x2)| < c|x1 — X1
lz1—xpy |<lx1—xp, | |B1|=K

1
K
< clxr —xp| sup
lz1=xp [l —xp | (1 + |Zl|)M(l + |x2|)M
Cl)C] — XL |K

. 8.3
= W e DY+ )™ 83)
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Here we used that |x;,| < |z1| + |z1 — x| < |z1| + |x1 — x1,| < |z1] + 1. On the
other hand, for |x; — x;,| > 1, using again (2.1) we get

clxy — x|
(1 + [xp, DML+ [ hM”

|P1(x1,x2)| < ¢ Z 1081 f (xpy, x| lxy — xp, P11 <

IBiI=K—1
8.4)
We have
I(f v 5/ / |f(x1, 22) = Pr(xr, )19y, (k)] -+ - dxidoxo
2 i) 1<1

+/ / (If 1, x2) |+ [P (xr, x2) DI ()] - - - dxrdx.
R Jixi—xyy 21

From this, (8.3), (8.4), and (2.1), i.e., | f(x1, x2)| < c(1 + X D™MA + |x2)M, it
follows that

e v )l [ o1 — 0 1K 19 (o)
, < —d ! d
e <C(/|m_le|zl T+ T e T A

/ g, (x2) — Pa(x2)]
X
g (L+|x2hM

dxy =: c(J1 + Jp) J3.

To estimate J; we use (6.4) and obtain

2v1n1/2
Ji < c/ dxy
=y 121 (LA i DML+ 22y —xp DM
/ 2—vi(M—n1/2) q 2~ Vi(M—n1/2) ®5)
= X1 ——. .
rer (L4 [xi DM+ [x1 = xp DM (I + |x, DM
We now estimate J». Using again (6.4) we get
J < ¢ /- 21;1n1/2|x1 — Xy, |K ax,
T (L4 |y DM Jre (142202 — xp DM
- 2~ vi(K+n1/2) / oving e < 2~ Vi(K+n1/2) 86)
= X1 = v .
I+ DM Jrm (142 xg — x M=K (1 +lxp, DM

where we used that M — K > nj.
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In estimating J3 we proceed similarly as above. Assume |xp| < 27"2. Then by
Taylor’s theorem and (6.4),

W2 (x2) — P2(e)| < clxal® sup max [07972 (z0)]

|z2|<|xo| 1B21=K
V2 (K+n2/2) C|x2|K2v2(K+n2/2)
< c|xz| sup ” = ” T
loal<lx) (1427222 — xp[) (I +272xp])

8.7)

Here we used that |xp,| < |z — x| + 22| < |22 — xp| + |x2] < |22 — xp| +272
implying 2*2|x,| < 2"2|z2 — x,| + 1. Further, for |x2| > 27"2 using (6.4), we have

Pyl < ¢ D 10P972(00)] x|
[B2]<K—1
2v2(1B2l+n2/2) |, [1B2] xo|2V2)Kvan2/2
e ¥ a2l e(xal2%) . 8:8)

TG 2D T (2, Y

To estimate J3 we introduce the sets:

Uy := {x2: |xo| <272}, Uy ={x2:|x2| =272, |x2 —xp| < Ixp1/2},
Us: = (i lxal 2 272, |wo — x| > [xpl/2), R™ = U3 U, U Us.

We have

; ._/ W (x2) — Pz(xz)ldx _/ +/ +f
3= o T a2 v o Juy

Using (8.7) and that M — K > nj, we get

C2v2(K+n2/2) |x2|K czvz(K—l—nz/Z)
[ - l -

d -
A+ 22D S At D™ 2= A5 22w )

Now from (6.4) and (8.8) we infer that

V20| + | Pax) A
M dxz =c M v de2
Uz Us (I + [x2]) vy (14 x2aDM (1 4+ 2"2|xp — xp,|)

c(lxs[27)K 22212
+ c/ 7 M
vy, (I |2 DM (1 + 22 |xp, |)

X2

Note thatif xp € U, then |x3| > |xp, | —|x2 —xp,| > |x1,]/2, and because x| > 2772,
we have 1 + |xa| > 272711 4+ 22 |x3)) = (1/4)2772(1 + 2™ |x1,]). We use this in
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estimating the first integral on the right above. We get

C2U2(M—n2/2) qvana
.
v, (L+2720xp, DY Jreo (14 272|x2 — xp,|)

c2v2(K+n2/2) / |x2| K c2v2(K+n2/2)

X < —\
A+ 221, DM Jom (+ D7 = A+ 22 [x, DM

(8.10)
Here we used that M — K > n». Again by (6.4) and (8.8) we get

Y2 ()] + | Pa(x2)] Qv 2
< i dx; <c i dez
v Ju, (1 + [x2]) us (L4 x2D™ (1 + 22 |xp — xp, )

C(|x2|2v2)K2vzn2/2
—i—c/ 7 7 dx
vs (14 2 DM (1 4+ 2V2|xp, [)

2.

If xo € Us, then |x3 — xp,| > |x1,]/2 and 1 + |x2| > 27"2. We use these inequalities
and the fact that M — K > n; to obtain

Czugnz/Z 1 Czuz(KJrnz/Z) |x2|K
= v M arde + v I e
vs (1 +22x, DM Jree (14 |x2]) (1 +2%2]x, DM Jrra (1 + |x2])
c2ven2/2 / K o+ V2 (K+n2/2)
= X2
(1422 x, DM Jgna (1 + [x2 )M =K (1 +2v2|xp, hM
c2v2(K+ny/2)

< -
(1 +22xp, M

This along with (8.9) and (8.10) yields
c2v2(K+n2/2)
Hh<—
(L 4272|x, )M
In turn, this and (8.5)—(8.6) lead to

2V (K—n1/2)4+v2(K+ny/2)

| < .
(1 + e DML +2v2x, )M

IS5 )

Since M, K > 0 with M > K + nj + ny + 1 can be arbitrarily large, the above
estimate implies (6.8). The proof is complete. O

8.3 Proof of Proposition 6.5

We will use ideas from [13, Remerk B.4]. To prove part (a) we first use the product
version of the standard Plancherel-Polya—Nikolskii inequality (see, e.g., [24, Theo-
rem 1.6.2]) to obtain

lgw # flloo < 2MMT2D Py 5 £, < QVMTRDIPY Fllpo o (81D
D
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Set by := n1/2n; and by := ny/2n;. Define

X = {v € Z21v1 <0, 1< —blvl}, X = {v € ZZIVZ <0, 1 < —bsz},

V= {v € Zzzvl >0, v, > —bz_lvl}, W= {v € Zzzvz >0, vy > —bl_ll)z}.

Evidently, 72 = X; UX, UY; Us. From (8.11) it follows that

Z llow * flloo < Cllfllp'gz Z vim/p Z ovanz/p

velX)] v1<0 v <—byv;
—b 2
<clfllpo, Y 2MM7PmIP = ¢|| fllzo Y 2 < el f o
p2 p2 p2
v1 <0 v <0

and similarly » v, lloy * flloo < c||f||F£2. Therefore, } v, x, ¥v * f converges
inS.

We will next prove that Zveyluyz @y * f converges in &' by only using that
f € & Since the Fourier transform is an isomorphism of &', it suffices to show
that 3, v, .y, $v f converges in §'. From f € S it follows that there exist £, m > 1
such that for any ¢ € S,

(o)l <c ymax l¢llap. Nlap = sup €105 ().

la|=<€,1B1= EcRn1+m2

Hence,

U o o) =, @) <c  max  [Godllap-
loe] <€,|B|<m

Clearly, ,(§) = ¢! 2 ™"1£1)9?(2 &) and for any y = (1. y2).
gy (E) =2~ vilyil— Vzlyz\(a)/l )(2 ”151)(8’/2 )(2 V2£5).

From (2.5), <;>\l is supported on {&;: 2~ < |&] < 2},i = 1,2, and hence @, is supported
on the rectangle R, := {£:2"17 < |g| <2Vt 2v271 < |&| < 2"2+1) From all of
the above, it follows that

(@o [ @) < 20 m+2ms qup (1 4 [£])° max |aﬂ¢<s>| (8.12)
EcR,

Here y; := max{y,0}. Choose ri > (b, + D)m, 2 > (b;' + m, r,ra € N.
Clearly, (8.12) implies

(G Fod) <2172 max  [pllag, v =0,m <0, (8.13)
lo|<€4r1,|Bl<m

(G F o) <2772 max  |§llag. vi <0, >0, (8.14)
lo|<4r2,|Bl<m

Hov f. )| < c27mmmn max ¢lle,p. Vi =0,v2=0.  (8.15)

la|<€+ri+r2,|Bl1<m
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From (8.13) and (8.15) it follows that

o f <c max 27vin 2-vam
D UGS ) < ees X 9l > >

ve)) v1>0 vzz—bglvl

_ -1
Ipllap Y 27011 702m

v1>0

lolla.p-

<c max
la|<€+ri+r2,|Bl<m

<c max
la|<€+ri+r2,|Bl<m

Similarly, Zveyz @y [, @) < cmaX|q|<¢4ri+r,81<m |Plla, - These estimates yield
that ) .y, 0y, v f converges in §'. Therefore, 3", ;2 ¢y * f convergence in S'.

We now show that the limit fj in (6.16) is independent of the specific selection
of ¢. Assume that § = @' ® @2, where @', @2 is another pair of functions satisfying
(2.3), (2.5) with n = ny, ny, respectively. Let fo = ZveZZ ¢y * f. From above it
follows that this series convergences in &'. Then for any ¢ € S, we have

(fo—ford)=lim 37 37 ((pw—@n)xf.0)

vi=2—N vn>-N

where the series converges absolutely. Further, by (2.3) and (2.5) it follows that

supp (D D (o=@ f)") g gl =270,

vi=—=Nv>—N

Let w € S(R" x R"2) be such that ®(§) = 1if |§] < 1 and w(§) = 0 if |§] > 2.
Then

Z Z(¢V_¢v)*f:w—N* Z Z(¢v_¢v)*f

vi=2—=N1n>-N vi>—Nvn>—N
—N+1 —N+1

YooY (ovkpuxf—onxgxf),

vi=—N v»p=—N

and hence
—N+1 —N+1
o= Fodl=| Jim > 3" (oo gurf —Gux .4
V1=7NV2=7N
—N+1 —N+1
< Jim 37 3 lonlii ey fll + 16y % Flli) Il =0.
vi=—N v=—N

Here for the last equality we used (8.11) and the fact that (8.11) holds with ¢, replaced
by ¢,. This completes the proof of part (a) of Proposition 6.5. The proofs of parts (b)
and (c) are carried out in a similar manner. We omit them. O
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8.4 Proof of Proposition 7.7

For simplicity we assume thatn; = np = 1.

Fix N € 2N and denote by Y;, j = 1,..., N, the set of all dyadic rectangles
I=1 x I, C [0, 1]? such that |I;| =27/ and |Ir| = 2~V */; hence |I| = 2~V Set
Y= UjY:lHj. Clearly, #Y; = 2N and hence #Y = #( U;V:O Hj) = N2V,

For any I € Y, we write yr1(x) := vy, (x1)¥, (x2). Consider the function

Fx) =Y y1(x). U{I:IeY}c o0, 1] (8.16)

1Y

By the wavelet characterization of B?t in (4.1) along with (6.6), it follows that

1/t 3 1/t
Il gs ~ (Z ||1/;I||;) ~ (Z (7 1/2)1)
IeyY

IeY
~ 2—N(1/P—1/2)(#y)1/f ~ 2N(1/2—1/[7)(N2N)1/T. (8.17)

(a) We next prove estimate (7.11) (the sharpness of (7.7)). Assume 2 < p < oo. Let
m = #Y/2 = N2V /2. We claim that

om(F) = ¢'m ™= (Inm)' 2=VP| Fj g, (8.18)
where ¢* > 0 is a constant independent of m. Indeed, clearly
om(F)p = glenzfm IF—glp = cglenzfm IF = gl o,

=X muor) | =¥ (Y uo)”

IeY\ X, I1eY\ X,

for some set X,,, C Y with #X,, = m.

Set h(X) = Y ey, L1(x) and let Q := {x:h(x) > N/4}. We claim that
|2] > 1/5. Indeed, assume |2] < 1/5. Then

N/2 = / h(x)dx = / h(x)dx—}—/ h(x)dx < N/5+ N/4 < N/2,
[0,1]2 Q [0,112\

where we used that ||h].o < N. We got a contradiction that proves that |Q2] > 1/5.
This coupled with (8.19) leads to

om(F)p = 2V B2 | 1o = 2N B2 oy = ¢2VPNT2,

A little algebra shows that this and (8.17) yield (8.18). Estimate (7.11) follows at once
from (8.18).
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To prove (7.10) (assuming 0 < p < 2) is easier. One simply takes F' := Zley Y1,
where Y consists of 2m disjoint rectangles of the same area. Then it is easy to verify
that 0,, (F) > cm™%|| F|| s , which implies (7.10).

(b) We now prove estimate (7.12). Let 0 < p < 2. We will use again the function
F from (8.16). This time we choose m := N2V and let g := F. Observe that
g € X,,. We have

I8l ~ gl jo, ~ I Z[|1—1/2]11(.)]2)1/2 ”LP ~2[(Y 111(.))1/2 HLP
1eY

IeY

1/2
~ 7N/2 . ~ AN/271/2
2 (”Zh()HMﬂ) TN
IeY

On the other hand, from (8.17) we know that ||g|zs ~ 2NU/2=1/P)(N2N)V/T,
Now again a straightforward calculation shows that

gl gs, ~ m®Anm)" /P~ 2|ig]]

which readily implies (7.12).

To prove (7.13) we take g := ) y.y Y1, where Y consists of m disjoint rectangles
of the same area. Then it is easy to see that ||g|| ;s > cm®]|g||p, which yields (7.13).
The proof is complete. O
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