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Constructive Approximation

1 Introduction

Thepurpose of this article is to developnonlinear approximation fromproductwavelets
in L p and Hardy (H p) spaces. Homogeneous product Besov and Triebel–Lizorkin
spaces naturally appear in this theory. The inhomogeneous product Besov and Triebel–
Lizorkin spaces are part of the biparameter or multiparameter harmonic analysis
and have been developed for quite sometime. For this theory we refer the reader
to [23,24,29] and the references therein. It has been developed analogously to the
classical (one parameter) Besov and Triebel–Lizorkin spaces, see [22,26–28]. The
theory of homogeneous product Besov and Triebel–Lizorkin spaces, however, seems
underdeveloped.

In this paper we develop rapidly the Littlewood–Paley theory of homogeneous
productBesov spaces Ḃs

pq andTriebel–Lizorkin spaces Ḟ
s
pq onR

n1 × R
n2 , n1, n2 ≥ 1,

where the smoothness parameter s is a vector in R
2 and 0 < p, q ≤ ∞ are as in the

classical one parameter case. To this end we introduce product frames and utilize them
for characterization of the product Besov and Triebel–Lizorkin spaces in the spirit
of the ϕ-transform of Frazier and Jawerth [11–14]. Almost diagonal operators are
also introduced, and their boundedness on the respective product Besov and Triebel–
Lizorkin sequence spaces is obtained. In turn, the almost diagonal operators are used
for establishing the product wavelet characterization of the product spaces Ḃs

pq and

Ḟ s
pq that is also a focal point in this study.
One should not think that all results for product spaces can be obtained by iterating

ideas from the one parameter setting. The product Hardy spaces provide a typical
example where one parameter ideas do not work. There are a number of papers on this
subject that reinforce this claim. For example the atomic decomposition of the product
Hardy spaces H p takes more complicated form than in the classical one parameter
theory. We refer the reader to [1,2,9,10,16,18,19] and the references therein for the
theory of product Hardy spaces.

The main focus of this article is on nonlinear m-term approximation from product
wavelets and product frames in L p(Rn1 × R

n2), 1 < p < ∞, and in the product
Hardy spaces H p(Rn1 × R

n2), 0 < p ≤ 1. The product wavelets used here are
constructed based on the univariateMeyer’s wavelets, but our theory is not restricted to
such wavelets only. Product Besov spaces are naturally involved in the approximation
process. More explicitly these are the Besov spaces Ḃs

ττ := Ḃ(s1,s2)
ττ with smoothness

s1 := n1(1/τ −1/p) and s2 := n2(1/τ −1/p), where 1/τ := α+1/p andα > 0 is the
parameter that determines the rate of approximation;α can be arbitrarily large. Jackson
and Bernstein estimates for product wavelet nonlinear approximation are established
that allow almost complete characterization of the rates of approximation. To be more
specific, denote by σm( f )p the bestm-term approximation of f from product wavelets
in L p if 1 < p < ∞ or in the Hardy space H p if 0 < p ≤ 1 on R

n1 × R
n2 . Our

Jackson estimates (Theorem 7.2) assert that for any f ∈ Ḃs
ττ , we have

σm( f )p ≤ cm−α‖ f ‖Ḃs
ττ

, p ≤ 2, and

σm( f )p ≤ cm−α(lnm)1/2−1/p‖ f ‖Ḃs
ττ

, p > 2.
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Constructive Approximation

Almost matching companion Bernstein estimates (Theorem 7.3) are also established.
Both estimates above are sharp, but there is a logarithmic factor in the estimate on
the right that is a reflection of the fact that the “essential supports” of a (logarithmic)
number of wavelets of the same size overlap at any point. The establishment of these
results (in particular, Lemma 7.9) exhibits the difficulties one has to overcome when
working in the product space setting.

Similar results are valid in the inhomogeneous setting and involve the respective
inhomogeneous Besov spaces. But to keep the size of this article limited we will not
elaborate on these sorts of results.

We would like to point out that the linear approximation from product wavelets has
been studied in [7].

The organization of the paper is as follows. In Sect. 2 we introduce our notation
and collect all basic facts that are needed for the development of our theory. The
homogeneous product Besov and Triebel–Lizorkin spaces Ḃs

pq and Ḟ s
pq are defined in

Sect. 3, and some of their basic features are discussed. In Sect. 4, we establish the frame
characterization of the product spaces Ḃs

pq and Ḟ s
pq in the spirit of the ϕ-transform

of Frazier and Jawerth. Almost diagonal operators are introduced in Sect. 5 and their
boundedness on product Besov and Triebel–Lizorkin sequence spaces ḃspq and ḟspq is
established. Product wavelets are introduced in Sect. 6, and the wavelet characteriza-
tion of the product spaces Ḃs

pq and Ḟ s
pq is established. The nonlinear approximation

theory from product wavelets and frames is developed in Sect. 7. Section 8 is an
appendix where the proofs of some claims from previous sections are placed.

2 Preliminaries

In this section we present the background material we need for the development of
the homogeneous product Besov and Triebel–Lizorkin spaces.

2.1 Notation

The action will be in the product spaceR
n1 ×R

n2 , n1, n2 ∈ N. We first introduce some
convenient notation in the single parameter case ofRn . For any x = (x1, . . . , xn) ∈ R

n

and α := (α1, . . . , αn) ∈ N
n
0 (N0 := N ∪ {0}), we write xα := (x1)α1 · · · (xn)αn ,

|α| := α1 + · · · + αn , and ∂α := ( ∂
∂x1
)α1 . . .

(
∂

∂xn
)αn . The inner product of x, y ∈ R

n

will be denoted by x · y. However, |x | will stand for the �∞ norm of x , i.e. |x | :=
max{|x j |: j = 1, . . . , n}. The Fourier transform f̂ of a function f on R

n is defined
by f̂ (ξ) := ∫

Rn f (x)e−i x ·ξdx .
We will use the notation x := (x1, x2) ∈ R

n1 × R
n2 , xi := (x1i , . . . , x

ni
i ) ∈ R

ni ,
i = 1, 2. The �∞ norm of xi ∈ R

ni will be denoted by |xi | and |x| := max{|x1|, |x2|}.
Also, x·ywill stand for the inner product of x, y ∈ R

n1 ×R
n2 . For a set A ⊂ R

n1 ×R
n2

or A ⊂ R
ni , i = 1, 2, we denote by |A| its Lebesgue measure and 1A will stand for its

characteristic function. We will denote by ‖ · ‖p = ‖ · ‖L p the L p-norm on R
n1 ×R

n2 .
Positive constants will be denoted by c, c1, etc., and they may vary at every occur-

rence. The notation a ∼ b will stand for c1 ≤ a/b ≤ c2.
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Remark 2.1 A word of caution is in order. As was indicated above, we denote by |xi |
or |x| the �∞-norm of xi ∈ R

ni (i = 1, 2) or x ∈ R
n1 × R

n2 . We use these norms
throughout because they are well aligned with the product structure of the spaces in
this article.

2.2 The ClassesS∞(Rn1 × R
n2) andS′∞(Rn1 × R

n2)

In the single parameter case on R
n , the Schwartz class S(Rn) is defined as the set

of all C∞(Rn) rapidly decreasing functions with topology induced by the family of
semi-norms ‖ · ‖α,β := supx∈Rn |xα∂β(·)(x)|, α, β ∈ N

n
0. Then the space of tempered

distributions S′(Rn) is its topological dual.
Let now S := S(Rn1 × R

n2) be the Schwartz space on R
n1 × R

n2 . It is easily seen
that if φ ∈ S(Rn1 × R

n2), then for any x = (x1, x2) ∈ R
n1 × R

n2 , M1, M2 > 0, and
α ∈ N

n1+n2
0 , there exists a constant c = c(N1, N2, α) > 0 such that

|∂αφ(x)| ≤ c
2∏

i=1

(
1 + |xi |

)−Mi . (2.1)

The dual of S is the space of tempered distributions S′ := S′(Rn1 × R
n2).

We define S∞ := S∞(Rn1 × R
n2) as the subspace of S consisting of all functions

φ ∈ S that in addition satisfy

∫

R
ni
xνi
i φ(x1, x2)dxi = 0, ∀νi ∈ N

ni
0 , i = 1, 2. (2.2)

Note that S∞ is a closed subspace of S and therefore complete.
Since the Fourier transform is a continuous linear transformation from S onto S, it

is not hard to see that the topology inS∞ can be generated by the family of semi-norms

‖φ‖∗
M := sup

|α|≤M
sup

ξ∈Rn1×R
n2

|∂αφ̂(ξ)|
2∏

i=1

(|ξi |M + |ξi |−M), M ∈ N0.

Therefore,
S∞ = {φ ∈ S: ‖φ‖∗

M < ∞, ∀ M ∈ N0
}
.

The space S′∞ := S′∞(Rn1 × R
n2) is the dual of S∞ (with the week-∗ topology); that

is, f ∈ S′∞ if and only if there exist constants c > 0 and M ∈ N0 such that

|〈 f , φ〉| ≤ c‖φ‖∗
M , ∀φ ∈ S∞,

where 〈 f , φ〉 := f (φ̄).

2.3 Calderón Reproducing Formula onS′∞(Rn1 × R
n2)

Here we generalize the classical Calderón formula in the case of product spaces.
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We begin by recalling the relevant decomposition results in the single parameter
case.We consider twodecomposition identities. For the firstwe assume thatϕ ∈ S(Rn)

is such that ϕ̂ is compactly supported, bounded away from the origin, and

∑

ν∈Z
ϕ̂(2−νξ) = 1, ξ ∈ R

n\{0}. (2.3)

Then for any f ∈ S∞(Rn) (or f ∈ S′∞(Rn)),

f =
∑

ν∈Z
ϕν ∗ f , (2.4)

where the convergence is in S (or in S′∞) and we used the notation

fν(x) := 2νn f (2νx)

for any function (or distribution) defined on R
n .

The second version of Calderon’s formula relies on a pair of functions ϕ,ψ that
satisfy the conditions:

(i) ϕ, ψ ∈ S(Rn),

(i i) supp ϕ̂, ψ̂ ⊂ {ξ ∈ R
n : 2−1 ≤ |ξ | ≤ 2},

(i i i) |ϕ̂(ξ)| ≥ c > 0 if 2−3/4 ≤ |ξ | ≤ 23/4,
(2.5)

and in addition, ∑

j∈Z
ϕ̂(2− jξ)ψ̂(2− jξ) = 1, ξ ∈ R

n\{0}. (2.6)

Then for any f ∈ S∞(Rn) (or f ∈ S′∞(Rn)),

f =
∑

j∈Z
ϕ̃ j ∗ ψ j ∗ f in S (or in S′∞), (2.7)

where ϕ̃ j (x) = ϕ j (−x).
The existence of pairs of functions ϕ,ψ obeying (2.5)–(2.6) is well known. In fact,

for any ϕ satisfying conditions (2.5) there is ψ satisfying (2.5) such that (2.6) is valid.
For details we refer the reader to [13,14]. Also, observe that (2.4) and (2.7) hold for
any f ∈ L2(Rn) with convergence in L2.

To extend Calderon’s formulas to the biparameter case we need some additional
notation: For any function (or distribution) f defined onR

n1 ×R
n2 and ν = (ν1, ν2) ∈

Z
2, we define

fν(x1, x2) := 2ν·n f
(
2ν1x1, 2

ν2x2
)
, ν · n = ν1n1 + ν2n2. (2.8)
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Proposition 2.2 (a) Let ϕ1, ϕ2 satisfy (2.3), (2.5) with n = n1, n2, respectively. Set
ϕ := ϕ1 ⊗ ϕ2. Then for any f ∈ S∞ (or f ∈ S′∞),

f =
∑

ν∈Z2

ϕν ∗ f (2.9)

with convergence in S (or in S′∞).
(b) Let ϕ1, ψ1 and ϕ2, ψ2 be two pairs of functions satisfying (2.5)–(2.6) with n =

n1, n2, respectively. Set ϕ := ϕ1 ⊗ ϕ2 and ψ := ψ1 ⊗ ψ2. Then for any f ∈ S∞
(or f ∈ S′∞),

f =
∑

ν∈Z2

ψ̃ν ∗ ϕν ∗ f (2.10)

with convergence in S (or in S′∞).
Furthermore, both (2.9) and (2.10) are valid for any f ∈ L2(Rn1 × R

n2) with
convergence in L2.

For the proof of this proposition in the more general case of spaces with anisotropic
dilations, see Lemma 3.15 and Proposition 3.16 in [1].

2.4 Construction of Frames onR
n1 × R

n2

We next introduce the product analog of the Frazier–Jawerth frames (the ϕ-transform).
We denote by Di the set of all dyadic cubes in R

ni (i = 1, 2) and by Di
ν (ν ∈ Z) the

set of all cubes I ∈ Di of side-length �(I ) = 2−ν . For any Ii ∈ Di we denote by xIi
its lower-left corner.

Dyadic Rectangles Let R be the set of all dyadic rectangles in R
n1 × R

n2 . Namely,
this is the set of all rectangles I of the form I = I1 × I2 with I1 ∈ D1, I2 ∈ D2, and
we set xI := (xI1 , xI2). Further, Rν , ν = (ν1, ν2) ∈ Z

2, will stand for the set of all
rectangles I = I1 × I2 ∈ R such that Ii ∈ Di

νi
.

Given f ∈ S(Rn1 × R
n2) and I ∈ R, we set

fI(x) := |I|−1/2 f
( x1 − xI1

�(I1)
,
x2 − xI2
�(I2)

)
, x = (x1, x2) ∈ R

n1 × R
n2 . (2.11)

As usual (2.11) is extended by duality to the corresponding spaces of tempered distri-
butions.

With ϕ := ϕ1 ⊗ ϕ2 and ψ := ψ1 ⊗ ψ2 just as in Proposition 2.2 (b), we consider
the systems

{ϕI}I∈R and {ψI}I∈R. (2.12)

Proposition 2.3 For any f ∈ S∞ (or f ∈ S′∞) we have

f =
∑

I∈R
〈 f , ϕI〉ψI (2.13)
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with convergence in S (or in S′∞). Also, representation (2.13) is valid for each f ∈
L2(Rn1 × R

n2)with convergence in L2; i.e., {ϕI}I∈R, {ψI}I∈R is a pair of dual frames.

The decomposition (2.13) follows by Proposition 2.2 just as in the one parameter
case, see [13].

We next give some properties of the frame elements. Clearly, ϕ and ψ obey (2.1),
and hence for any N1, N2 > 0 there exists a constant c > 0 such that

|ϕI(x)|, |ψI(x)| ≤ c2ν·n/2
2∏

i=1

(1 + 2νi |xi − xIi |)−Ni , x ∈ R
n1 × R

n2 , I ∈ Rν .

(2.14)
Also, ∫

R
ni
xα
i ϕI(x1, x2)dxi = 0, ∀α ∈ N

ni
0 , i = 1, 2. (2.15)

Furthermore, if ν ∈ Z
2 and I ∈ Rν , then

supp ϕ̂ν, supp ϕ̂I ⊂ {ξ ∈ R
n1 × R

n2 : 2νi−1 ≤ |ξi | ≤ 2νi+1, i = 1, 2
}
, (2.16)

and the same is true for supp ψ̂ν and supp ψ̂I.
It is sometimes beneficial to work with a single frame, i.e. to have ϕI = ψI. It is

easy to construct (see, e.g., [13]) real-valued functions θ1, θ2 that satisfy conditions
(2.5) on R

n1 , Rn2 and such that

∑

j∈Z
|θ̂ i (2− jξi )|2 = 1, ξi ∈ R

ni , i = 1, 2.

Set θ := θ1 ⊗ θ2. Then {θI}I∈R is a (tight) frame for L2(Rn1 × R
n2), and for any

f ∈ S∞ (or f ∈ S′∞) we have f =∑I∈R〈 f , θI〉θI.

2.5 The StrongMaximal Operator

The strong maximal operator is defined by

Ms f (x) = sup
x∈I

1

|I|
∫

I
| f (y)|dy, x ∈ R

n1 × R
n2 , (2.17)

where the sup is taken over all rectangles I = I1 × I2 ⊂ R
n1 ×R

n2 with sides parallel
to the coordinate axes. It will be convenient to us to use the following modification of
the strong maximal operator:

Mt f (x) := (Ms | f |t (x)
)1/t = sup

x∈I

(
1

|I|
∫

I
| f (y)|tdy

)1/t
, t > 0. (2.18)

The following version of the Fefferman–Stein vector-valued maximal inequality
(see [25]) follows readily by applying the single parameter one twice: If 0 < p < ∞,
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0 < q ≤ ∞, and 0 < t < min{p, q}, then for any sequence of functions { fν} on
R
n1 × R

n2 , ∥
∥∥
( ∑

ν∈Z2

(Mt fν)
q
)1/q∥∥∥

p
≤ c
∥
∥∥
( ∑

ν∈Z2

| fν |q
)1/q∥∥∥

p
. (2.19)

We will also need the following estimate on a Peetre-type maximal function:

Lemma 2.4 Let t, b1, b2 > 0. Then there exists a constant c = c(t, b1, b2) > 0 such
that for any function f ∈ S′(Rn1 × R

n2) with supp f̂ ⊂ [−b1, b1]n1 × [−b2, b2]n2
we have

sup
y∈Rn1×R

n2

| f (y)|
∏2

i=1

(
1 + bi |xi − yi |

)ni /t ≤ cMt f (x), x = (x1, x2) ∈ R
n1 × R

n2 .

(2.20)

The above inequality is well known, see, e.g., [24, Theorem 1.6.4].

3 Homogeneous Product Besov and Triebel–Lizorkin Spaces

In this section we introduce the homogeneous product Besov and Triebel–Lizorkin
spaces and list some of their basic properties.

Let ϕ := ϕ1 ⊗ ϕ2, where each of the functions ϕ1, ϕ2 satisfies conditions (2.5).

Definition 3.1 (i) Let s = (s1, s2) ∈ R
2 and 0 < p, q ≤ ∞. The homogeneous

product Besov space Ḃs
pq := Ḃs

pq(R
n1 × R

n2) is defined as the set of all f ∈ S′∞
such that

‖ f ‖Ḃs
pq

:= ‖ f ‖Ḃs
pq (Rn1×R

n2 ) :=
( ∑

ν∈Z2

(
2s·ν‖ϕν ∗ f ‖p

)q)1/q
< ∞. (3.1)

(ii) For s = (s1, s2) ∈ R
2, 0 < q ≤ ∞, and 0 < p < ∞, the homogeneous

product Triebel–Lizorkin space Ḟ s
pq := Ḟ s

pq(R
n1 × R

n2) is defined as the set of
all f ∈ S′∞ such that

‖ f ‖Ḟs
pq

:= ‖ f ‖Ḟs
pq (Rn1×R

n2 ) :=
∥
∥∥
( ∑

ν∈Z2

(
2s·ν |ϕν ∗ f |)q

)1/q∥∥∥
p

< ∞. (3.2)

As usual the �q -norm above is replaced by the sup-norm if q = ∞.

Several remarks are in order.

(1) The definitions of the spaces Ḃs
pq and Ḟ s

pq are independent of the particular selec-
tion of the functions ϕ1, ϕ2, satisfying conditions (2.5). This follows similarly to
the wavelet characterization of the spaces Ḃs

pq and Ḟ s
pq in Theorem 6.4 below.

(2) The homogeneous product Besov spaces Ḃs
pq and Triebel–Lizorkin spaces Ḃs

pq

are continuously embedded in S′∞.
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(3) The homogeneous product Besov spaces Ḃs
pq and Triebel–Lizorkin spaces Ḃs

pq
are (quasi-)Banach spaces.

(4) The space S∞ is dense in Ḃs
pq and Ḟ s

pq whenever q < ∞.

(5) The norms in the spaces Ḃs
pq and Ḟ s

pq do not recognize algebraic polynomials;
that is, ‖ f + P‖Ḃs

pq
= ‖ f ‖Ḃs

pq
and ‖ f + P‖Ḟs

pq
= ‖ f ‖Ḟs

pq
for any polynomial

P on R
n1 × R

n2 . Therefore, the spaces Ḃs
pq and Ḟ s

pq consist of equivalent classes
(modulo polynomials).

4 Frame Decomposition of Product Besov and Triebel–Lizorkin
Spaces

The frame decomposition of the homogeneous product Besov and Triebel–Lizorkin
spaces is a central component of our theory. We develop it analogously to the single
parameter ϕ-transform of Frazier and Jawerth [11–14].

The discrete productBesov andTriebel–Lizorkin spaceswill be spaces of sequences
{aI}I∈R of complexnumbers indexedby the setRof all dyadic rectangles inR

n1 × R
n2 .

Recall that Rν stands for the set of all dyadic rectangles I ∈ R such that I = I1 × I2
with Ii ∈ Di

νi
, i = 1, 2.

Definition 4.1 Let s = (s1, s2) ∈ R
2 and 0 < q ≤ ∞.

(i) The product Besov sequence space ḃspq := ḃspq(R), 0 < p ≤ ∞, is defined as the
set of all complex-valued sequences a = {aI}I∈R such that

‖a‖ḃspq :=
( ∑

ν∈Z2

( ∑

I∈Rν

(
2s·ν |I|1/p−1/2|aI|

)p)q/p)1/q
< ∞. (4.1)

(ii) The product Triebel–Lizorkin sequence space ḟspq := ḟspq(R), 0 < p < ∞, is
defined as the set of all complex-valued sequences a = {aI}I∈R such that

‖a‖ḟspq := ‖a‖ḟspq (R) :=
∥∥∥
(∑

I∈R

(
2s·rI |aI|1̃I(·)

)q )1/q∥∥∥
p

< ∞, (4.2)

where rI := ν if I ∈ Rν and 1̃I := |I|−1/21I with 1I being the characteristic
function of the rectangle I. Above, the standard modification is used when q = ∞.

In our further development we will use the “analysis” and “synthesis” operators
defined by

Sϕ : f → {〈 f , ϕI〉}I∈R and Tψ : {aI}I∈R →
∑

I∈R
aIψI. (4.3)

One of the central assertions in this theory is the following:

Theorem 4.2 Let s = (s1, s2) ∈ R
2 and 0 < q ≤ ∞.
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(i) If 0 < p ≤ ∞, then the operators Sϕ : Ḃs
pq → ḃspq and Tψ : ḃspq → Ḃs

pq are

bounded, and Tψ ◦ Sϕ is the identity on Ḃs
pq . In particular,

‖ f ‖Ḃs
pq

∼ ‖{〈 f , ϕI〉}‖ḃspq , ∀ f ∈ Ḃs
pq .

(ii) If 0 < p < ∞, then the operators Sϕ : Ḟ s
pq → ḟspq and Tψ : ḟspq → Ḟ s

pq are

bounded, and Tψ ◦ Sϕ is the identity on Ḟ s
pq . In particular,

‖ f ‖Ḟs
pq

∼ ‖{〈 f , ϕI〉}‖ḟspq , ∀ f ∈ Ḟ s
pq .

Theorem 4.2 is the analogue in the product space setting of the results of Frazier
and Jawerth on the ϕ-transform from [11–13]. Its proof depends on the following:

Lemma 4.3 Let 0 < t ≤ 1, τi > ni/t , i = 1, 2, and μ = (μ1, μ2) ∈ Z
2. Then for any

sequence a = {aI}I∈R of complex numbers and any J ∈ Rν , ν = (ν1, ν2) ∈ Z
2,

∑

I∈Rμ

|aI|
2∏

i=1

(
1 + 2min{μi ,νi }|xIi − xJi |

)−τi

≤ c
2∏

i=1

max
{
1, 2(μi−νi )ni /t

}
Mt

( ∑

I∈Rμ

|aI|1I

)
(x), ∀x ∈ J. (4.4)

We defer the proof of this lemma to the appendix.

Proof of Theorem 4.2 We will only prove the result for Triebel–Lizorkin spaces. The
proof of the result forBesov spaces is similar andweomit it.Assume s = (s1, s2) ∈ R

2,
0 < p < ∞, and 0 < q < ∞. The case q = ∞ is similar; we omit it.

(a) We next prove the boundedness of the synthesis operator Tψ . We first consider the
case of finitely supported sequences. Let a = {aI} ∈ ḟspq be a finitely supported
sequence. We define f := Tψa = ∑I aIψR . Let ν = (ν1, ν2) ∈ Z

2. From (2.13)
and (2.16) it follows that

ϕν ∗ f (x) =
ν1+1∑

μ1=ν1−1

ν2+1∑

μ2=ν2−1

∑

I∈Rμ

aIϕν ∗ ψI(x), x ∈ R
n1 × R

n2 . (4.5)

Assume that τi > ni/t , i = 1, 2, and 0 < t < min{1, p, q}. Because |μi −νi | ≤ 1,
(2.1) and (2.14) imply

|ϕν ∗ ψI(x)| ≤
∫

R
n1+n2

|ϕν(x − y)||ψI(y)|dy

≤ c
2∏

i=1

23μi ni /2
∫

R
ni

(
1 + 2μi |xi − yi |

)−τi
(
1 + 2μi |yi − xIi |

)−τi dyi .
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As is well known, if τi > ni , then

∫

R
ni
2μi ni

(
1+2μi |xi − yi |

)−τi
(
1+2μi |yi − xIi |

)−τi dyi ≤ c
(
1+2μi |xi − xIi |

)−τi .

Therefore,

|ϕν ∗ ψI(x)| ≤ c
2∏

i=1

2μi ni /2
(
1 + 2μi |xi − xIi |

)−τi . (4.6)

By (4.5) and (4.6) we obtain

2s·ν |ϕν ∗ f (x)| ≤ c
ν1+1∑

μ1=ν1−1

ν2+1∑

μ2=ν2−1

∑

I∈Rμ

|aI|2s·rI |I|−1/2
2∏

i=1

(
1+2μi |xi −xIi |

)−τi ,

where rI := μ = (μ1, μ2) when I ∈ Rμ.

Fix x = (x1, x2) ∈ R
n1 × R

n2 and μ = (μ1, μ2) ∈ Z
2. Evidently, there exists a

unique dyadic rectangle J := J(x,μ) := J1 × J2 ∈ Rμ that contains x. Clearly,

1 + 2μi |xi − xIi | ≤ 1 + 2μi (|xi − xJi | + |xJi − xIi |) ≤ 2
(
1 + 2μi |xJi − xIi |

)
,

and, therefore,

∑

I∈Rμ

|aI|2s·rI |I|−1/2
2∏

i=1

(
1 + 2μi |xJi − xIi |

)−τi

=
∑

I∈Rμ

|bI|
2∏

i=1

(
1 + 2μi |xJi − xIi |

)−τi ≤ cMt

( ∑

I∈Rμ

|bI|1I

)
(x),

where bI := |aI|2s·rI |I|−1/2 and we applied Lemma 4.3. Putting the above together
we arrive at

2s·ν |ϕν ∗ f (x)| ≤ c
ν1+1∑

μ1=ν1−1

ν2+1∑

μ2=ν2−1

Mt

( ∑

I∈Rμ

|bI|1I

)
(x). (4.7)
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We use (4.7) in the definition of ‖ f ‖Ḟs
pq

and the maximal inequality (2.19) to obtain

‖ f ‖Ḟs
pq

=
∥∥∥
( ∑

ν∈Z2

(
2s·ν |ϕν ∗ f |)q

)1/q∥∥∥
p

≤ c
∥∥∥
( ∑

ν∈Z2

( ν1+1∑

μ1=ν1−1

ν2+1∑

μ2=ν2−1

Mt

( ∑

I∈Rμ

|bI|1I

))q)1/q∥∥∥
p

≤ c
∥∥∥
( ∑

μ∈Z2

(
Mt

( ∑

I∈Rμ

|bI|1I

))q)1/q∥∥∥
p

≤ c
∥
∥∥
( ∑

μ∈Z2

( ∑

I∈Rμ

|bI|1I

)q)1/q∥∥∥
p

≤ c
∥
∥∥
( ∑

μ∈Z2

∑

I∈Rμ

2ν·s|aI|1̃I
)q)1/q∥∥∥

p

= c‖a‖ḟspq .

Consequently, ‖Tψa‖Ḟs
pq

≤ c‖a‖ḟspq for all finitely supported sequences a = {aI}.
But, it is easy to show that finitely supported sequences are dense in ḟspq (q < ∞),
and the boundedness of Tψ in the general case follows by a limiting argument.

(b) We now prove the boundedness of the “analysis” operator Sϕ . Let f ∈ Ḟ s
pq . Define

ϕ̃(x) := ϕ(−x), x ∈ R
n1 × R

n2 . For any I = I1 × I2 ∈ Rν , ν = (ν1, ν2) ∈ Z
2,

we have using (2.8) and (2.11),

|〈 f , ϕI〉| = 2−ν·n/2| f ∗ ϕ̃ν(xI)|.

This and the fact that 1 + 2νi |xIi − xi | ≤ 2, ∀xi ∈ Ii , yield

∑

I∈Rν

(
2s·ν |〈 f , ϕI〉|1̃I(x)

)q =
∑

I∈Rν

2s·νq | f ∗ ϕ̃ν(xI)|q1I(x)

≤ c
∑

I∈Rν

2s·νq | f ∗ ϕ̃ν(xI)|q
2∏

i=1

(
1 + 2νi |xIi − xi |

)−ni q/t
1I(x)

≤ c
∑

I∈Rν

(
2s·ν sup

y∈I
| f ∗ ϕ̃ν(y)|

2∏

i=1

(
1 + 2νi |yi − xi |

)−ni /t
)q

1I(x),

where 0 < t < min{p, q}. From (2.16) it follows that

supp f̂ ∗ ϕ̃ν = supp ( f̂ · ̂̃ϕν) ⊂ [−2ν1+1, 2ν1+1]n1 × [−2ν2+1, 2ν2+1]n2 .
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We now invoke the maximal inequality (2.20) and obtain

∑

I∈Rν

(
2s·ν |〈 f , ϕI〉|1̃I(x)

)q ≤ c2s·νq
[
Mt
(
f ∗ ϕ̃ν

)
(x)
]q

, ∀x ∈ R
n1 × R

n2 .

We use this and the maximal inequality (2.19) to obtain

‖{〈 f , ϕI〉}‖ḟspq =
∥
∥∥
( ∑

ν∈Z2

∑

I∈Rν

(
2s·ν |〈 f , ϕI〉|1̃I

)q)1/q∥∥∥
p

≤ c
∥∥∥
( ∑

ν∈Z2

(
Mt
(
2s·ν f ∗ ϕ̃ν

))q)1/q∥∥∥
p

≤ c
∥∥∥
( ∑

ν∈Z2

(
2s·ν | f ∗ ϕ̃ν |

)q)1/q∥∥∥
p

≤ c‖ f ‖Ḟs
pq

.

Here for the last inequality we also used the fact that the definition of the norm in
Ḟ s
pq is independent of the particular selection of the function ϕ in (3.2). Therefore,

the “analysis” operator Sϕ is bounded.

The fact that Tψ ◦ Sϕ is the identity on Ḟ s
pq follows immediately from (2.13). ��

5 Almost Diagonal Operators

Almost diagonal operators acting on Besov or Triebel–Lizorkin sequence spaces are
an important tool in dealing with these spaces. In this section we develop almost
diagonal operators in the product framework. We use them in the next section to
establish wavelet characterization of the product Besov and Triebel–Lizorkin spaces.

We will use the notation

�i (I) := 2−νi for I ∈ Rν, ν = (ν1, ν2) ∈ Z
2, i = 1, 2.

Also, let Ji := ni/min{1, p} in the case of the space ḃspq(R), and Ji :=
ni/min{1, p, q} in the case of ḟspq(R), i = 1, 2.

Definition 5.1 Assume s = (s1, s2) ∈ R
2, 0 < q ≤ ∞, and let 0 < p ≤ ∞ in the

case of the space ḃspq(R) and 0 < p < ∞ in the case of ḟspq(R). A linear operator

A with matrix {aI J }I ,J∈R is called almost diagonal on ḃspq(R) or on ḟspq(R) if there
exists ε > 0 such that
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‖A‖ε := sup
I,J

|aIJ|/ωIJ(ε) < ∞,

where

ωIJ(ε) :=
2∏

i=1

( �i (I)
�i (J)

)si(
1 + |xIi − xJi |

max{�i (I), �i (J)}
)−Ji−ε

× min

{( �i (I)
�i (J)

)(ni+ε)/2
,
(�i (J)

�i (I)

)(ni+ε)/2+Ji−ni
}

.

We next establish the boundedness of almost diagonal operators on ḃspq(R) and

ḟspq(R).

Theorem 5.2 Let s = (s1, s2) ∈ R
2, 0 < q ≤ ∞.

(a) If A is an almost diagonal operator on ḃspq(R), 0 < p ≤ ∞, then for any sequence

h ∈ ḃspq(R) we have
‖Ah‖ḃspq (R) ≤ c‖h‖ḃspq (R). (5.1)

(b) If A is an almost diagonal operator on ḟspq(R), 0 < p < ∞, then for any sequence

h ∈ ḟspq(R) we have
‖Ah‖ḟspq (R) ≤ c‖h‖ḟspq (R). (5.2)

The constant c > 0 in (5.1) and (5.2) above is independent of the sequence h.

For the proof of Theorem5.2wewill need the followingwell-knownHardy inequal-
ities:

Lemma 5.3 (a) Let γ, q > 0. There exist a constant c = c(γ, q) > 0 such that for
any sequence of non-negative numbers {am}m∈Z,

∑

j∈Z

(∑

m≥ j

2−(m− j)γ am

)q
≤ c

∑

m∈Z
aqm (5.3)

and
∑

j∈Z

(∑

m≤ j

2−( j−m)γ am

)q
≤ c

∑

m∈Z
aqm . (5.4)

(b) Let γ1, γ2, q > 0. There exists a constant c = c(γ1, γ2, q) > 0 such that for any
sequence {dμ}μ∈Z2 of non-negative numbers,

∑

ν1∈Z

∑

ν2∈Z

(
∑

μ1≥ν1

∑

μ2<ν2

2−(μ1−ν1)γ12−(ν2−μ2)γ2dμ

)q

≤ c
∑

μ1∈Z

∑

μ2∈Z
dqμ. (5.5)

Inequality (5.5) follows by a simple combination of inequalities (5.3) and (5.4).
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Proof of Theorem 5.2 Wewill only prove the boundedness of the almost diagonal oper-
ators on the Triebel–Lizorkin sequence spaces ḟspq(R). The proof in the case of the

Besov space ḃspq(R) is similar and will be omitted.
Let s = (s1, s2) ∈ R

2 and 0 < p < ∞. Assume q < ∞; the case q = ∞ is easier
and we omit it.

Let A be a linear operator with matrix {aIJ}I,J∈R that is almost diagonal on ḟspq(R).
We have to show that estimate (5.2) is valid. Given I ∈ R we split R into four subsets:
R = ∪4

i=1R
i
I, where

R1
I := {J ∈ R: �1(J) ≤ �1(I), �2(J) ≤ �2(I)},

R2
I := {J ∈ R: �1(J) ≤ �1(I), �2(J) > �2(I)},

R3
I := {J ∈ R: �1(J) > �1(I), �2(J) ≤ �2(I)},

R4
I := {J ∈ R: �1(J) > �1(I), �2(J) > �2(I)}.

Then

|(Ah)I| ≤
∑

J∈R
|aIJ||hJ| =

4∑

i=1

∑

J∈Ri
I

|aIJ||hJ|.

Applying the (quasi-)norm in ḟspq(R) (see (4.2)) we obtain

‖Ah‖ḟspq (R) ≤ c
4∑

i=1

∥∥∥
(∑

I∈R

(
2s·rI

∑

J∈Ri
I

|aIJ||hJ|1̃I

)q)1/q∥∥∥
p

=: c
4∑

i=1

Ni .

Recall that rI := ν if I ∈ Rν .
We will only estimate N2; the estimation of N1, N3, N4 is carried out along the

same lines. Observe that if I ∈ Rν , ν = (ν1, ν2) ∈ Z
2, and J ∈ R2

I , then J ∈ Rμ, for
some μ = (μ1, μ2) ∈ Z

2 such that μ1 ≥ ν1 and μ2 < ν2. Therefore,

N2 =
∥∥∥
( ∑

ν1∈Z

∑

ν2∈Z

∑

I∈Rν

( ∑

μ1≥ν1

∑

μ2<ν2

∑

J∈Rμ

|aIJ||hJ|bI(·)
)q)1/q∥∥∥

p
, (5.6)

where bI(x) := 2s·rI 1̃I(x).
Since A is almost diagonal, there exist constants c, ε > 0 such that

|aIJ| ≤ c2(μ1−ν1)
(
s1−J1+ n1

2 − ε
2

)
2(μ2−ν2)

(
s2+ n2

2 + ε
2

)

× (
1 + 2ν1

∣∣xI1 − xJ1
∣∣)−J1−ε(1 + 2μ2

∣∣xI2 − xJ2
∣∣)−J2−ε

,
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and therefore

|aIJ||hJ|bI(x) ≤ c2μ·s2−μ1
(J1− n1

2 + ε
2

)
2ν1(J1+ ε

2 )2μ2(n2+ε)/22−εν2/2|hJ|1I(x)

× (1 + 2ν1
∣∣xI1 − xJ1

∣∣)−J1−ε(1 + 2μ2
∣∣xI2 − xJ2

∣∣)−J2−ε
.

We choose t > 0 so that

1

t
= 1

min{1, p, q} + ε

4max{n1, n2} .

Then 0 < t < min{1, p, q} and ni
t ≤ Ji + ε

4 < Ji + ε. Applying Lemma 4.3 we get

∑

J∈Rμ

|hJ|
2∏

i=1

(
1 + 2min{μi ,νi }|xJi − xIi |

)−Ji−ε

≤ c2(μ1−ν1)n1/tMt

( ∑

J∈Rμ

|hJ|1J

)
(x) ≤ c2(μ1−ν1)(J1+ε/4)Mt

( ∑

J∈Rμ

|hJ|1J

)
(x),

which in turn leads to

∑

J∈Rμ

|aIJ||hJ|bI(x)

≤ c2μ·s2μ1n1/22−(μ1−ν1)ε/42μ2(n2+ε)/22−εν2/2Mt

( ∑

J∈Rμ

|hJ|1J

)
(x)

= c2−(μ1−ν1)ε/42−(ν2−μ2)ε/2Mt

( ∑

J∈Rμ

|hJ|bJ
)
(x).

Putting all of the above together we obtain

∑

I∈Rν

( ∑

μ1≥ν1

∑

μ2<ν2

∑

J∈Rμ

|aIJ||hJ|bI(x)
)q

≤ c
( ∑

μ1≥ν1

∑

μ2<ν2

2−(μ1−ν1)ε/42−(ν2−μ2)ε/2Mt

( ∑

J∈Rμ

|hJ|bJ
)
(x)
)q

.

From this and (5.6), and using the discreteHardy-type inequality (5.5) and themaximal
inequality (2.19), we obtain
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N2 ≤ c
∥
∥∥
( ∑

ν1∈Z

∑

ν2∈Z

( ∑

μ1≥ν1

∑

μ2<ν2

2−(μ1−ν1)ε/42−(ν2−μ2)ε/2Mt

( ∑

J∈Rμ

|hJ|bJ
))q)1/q∥∥∥

p

≤ c
∥
∥∥
( ∑

μ1∈Z

∑

μ2∈Z

(
Mt

( ∑

J∈Rμ

2s·rJ |hJ|1̃J

))q)1/q∥∥∥
p

≤ c
∥∥
∥
( ∑

μ1∈Z

∑

μ2∈Z

( ∑

J∈Rμ

2s·rJ |hJ|1̃J

)q)1/q∥∥
∥
p

= c‖h‖ḟspq .

The proof is complete. ��

6 Product Wavelet Bases

In this section we introduce product wavelets on R
n1 × R

n2 and show that they can
be used for characterization of the product Besov and Triebel–Lizorkin spaces. The
product wavelets will be defined as products of two families of regular tensor-product
wavelets on R

n1 and R
n2 . For simplicity our construction of product wavelets will

be based on the orthogonal univariate Mayer’s wavelets. However, any other wavelet
bases can be used instead as long as the wavelets are sufficiently smooth and have
sufficiently fast decay and sufficiently many vanishing moments.

6.1 Regular Tensor-ProductWavelets onR
n

We will use notation similar to the notation from Sect. 2.4. We denote byD the set of
all dyadic cubes inR

n and byD j the set of all cubes I ∈ D of side-length �(I ) = 2− j .
For any I ∈ D we denote by xI its lower-left corner and by |I | its volume. Also, for
any function g on R

n we define

gI (x) := |I |−1/2g
( x − xI

�(I )

)
, I ∈ D. (6.1)

We assume that ϕ is the scaling function and ψ is the associated wavelet in Meyer’s
wavelet system [20]. We also assume both ϕ and ψ normalized in L2(R), that is,
‖ϕ‖L2 = ‖ψ‖L2 = 1. Therefore, {2 j/2ψ(2 j x − k)} j∈Z,k∈Z is an orthonormal basis
for L2(R). Define ψ0 := ϕ and ψ1 := ψ . Let E be the set of all nonzero vertices of
[0, 1]n . Set

ψe(x) :=
n∏

j=1

ψe j (x j ), e = (e1, . . . , en) ∈ E . (6.2)
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Then the set {
ψe
I : I ∈ D, e ∈ E

}

is the regular tensor-product wavelet basis on R
n , see, e.g., [30].

The most important properties of the wavelets {ψe
I } can be summarized as follows:

Each ψe
I is in S(Rn),

supp ψ̂e
I ⊂ [−b2 j , b2 j ]n, I ∈ D j , for some constant b > 0, (6.3)

and for any constants M, K > 0,

|∂αψe
I (x)| ≤ c2 j(n/2+|α|)(1 + 2 j |x − xI |)−M , I ∈ D j , |α| ≤ K , (6.4)

and ∫

Rn
xαψe

I (x)dx = 0, |α| ≤ K . (6.5)

Note that from ‖ψe
I ‖L2 = 1 and (6.4), it follows that

‖ψe
I ‖L p ∼ |I |1/p−1/2, 0 < p ≤ ∞. (6.6)

Remark 6.1 Other wavelets can be used in place of Meyer’s wavelets, where the con-
ditions ϕ,ψ ∈ S(Rn) and (6.3) are relaxed, but some limited smoothness is assumed,
and conditions (6.4)–(6.5) are satisfied with the constant M, K < ∞ fixed. For exam-
ple, the compactly supported orthogonal Daubechies wavelets [5] or bi-orthogonal
wavelets [3] can be used. Then the theory that follows can be developed in full but
with limited smoothness of the product Besov and Triebel–Lizorkin spaces and limited
rates of approximation. We will not elaborate on these aspects of the theory.

6.2 Definition of ProductWavelets onR
n1 × R

n2

We now use the regular tensor-product wavelets from above to define product wavelets
on R

n1 × R
n2 , n1, n2 ∈ N.

We will use the notation x := (x1, x2) ∈ R
n1 × R

n2 , xi := (x1i , . . . , x
ni
i ) ∈ R

ni ,
i = 1, 2. We consider two regular tensor-product wavelet bases on R

n1 and R
n2 :

ψ
ei
I (xi ), I ∈ Di , ei ∈ Ei ,

where we used (6.1) and

ψei (xi ) :=
ni∏

j=1

ψe ji (x j
i ), ei = (e1i , . . . , e

ni
i ) ∈ Ei , i = 1, 2.

Here Di is the set of all dyadic cubes in R
ni and Ei is the set of all nonzero vertices

of the cube [0, 1]ni .
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Recall thatR is the set of all dyadic rectangles inR
n1 ×R

n2 . We set E := E1× E2.
Now, the product wavelets are defined by

ψe
I (x) := ψ

e1
I1

(x1)ψ
e2
I2

(x2), x = (x1, x2), I = I1 × I2 ∈ R, e = (e1, e2) ∈ E .

Proposition 6.2 The family

W := {ψe
I : I ∈ R, e ∈ E}

is anorthonormal basis for L2(Rn1 × R
n2). Furthermore, for any f ∈ S∞(Rn1 × R

n2)

(or f ∈ S′∞(Rn1 × R
n2)), we have

f =
∑

I∈R,e∈E
〈 f , ψe

I 〉ψe
I , (6.7)

where the convergence is in S (or in S′∞).

This proposition relies on the following:

Lemma 6.3 For any M, K > 0 there exists a constant c > 0 such that for all f ∈
S∞(Rn1 × R

n2), ν ∈ Z
2, I = I1 × I2 ∈ Rν , and e ∈ E, we have

|〈 f , ψe
I 〉| ≤ c2−K (|ν1|+|ν2|)

(1 + 2ν1∧0|xI1 |)M (1 + 2ν2∧0|xI2 |)M
, ν1 ∈ Z, ν2 ∈ Z, (6.8)

where we used the notation: a ∧ b := min{a, b}.
The proof of this lemma is in the appendix.

Proof of Proposition 6.2 By the definition of the product wavelets {ψe
I } it is obvious

thatW is an orthonormal sequence in L2(Rn1 × R
n2). Further, as is well known (see,

e.g., [30, §5.1]), {ψei
Ii

: Ii ∈ Di , e ∈ Ei } is an orthonormal basis for R
ni , i = 1, 2, and

L2(Rn1) ⊗ L2(Rn2) = L2(Rn1 × R
n2). Consequently,W is an orthonormal basis for

L2(Rn1 × R
n2).

Let f ∈ S∞(Rn1 × R
n2). To show that (6.7) holds with convergence inS, it suffices

to show that for any multi indices α, β ∈ N
n1
0 × N

n2
0 ,

∑

I∈R,e∈E
sup
x

|〈 f , ψe
I 〉||xα||∂βψe

I (x)| < ∞.

Assume |α| ≤ �, |β| ≤ m for some �,m ≥ 0. Consider the case when I ∈ Rν ,
ν = (ν1, ν2) with ν1 ≥ 0, ν2 < 0. Then using (6.4) and (6.8), we obtain

|〈 f , ψe
I 〉||xα||∂βψe

I (x)|

≤ c2−K (|ν1|+|ν2|)(1 + |x|)�2ν1(n1/2+m)+ν2(n2/2+m)

(1 + |xI1 |)M (1 + 2ν2 |xI2 |)M (1 + 2ν1 |x1 − xI1 |)M (1 + 2ν2 |x2 − xI2 |)M
.
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Here M, K > 0 can be arbitrarily large. We choose K := m + � + 3n1/2 + n2 + 1
and M := K + n1 + n2 + 1. Clearly, because ν1 ≥ 0, ν2 < 0, we have

(1 + |x1|)�
(1 + |xI1 |)�(1 + 2ν1 |x1 − xI1 |)�

≤ 1,
(1 + |x2|)�

(1 + 2ν2 |xI2 |)�(1 + 2ν2 |x2 − xI2 |)�
≤ 2−ν2�,

and hence

|〈 f , ψe
I 〉||xα||∂βψe

I (x)| ≤ c2−N (|ν1|+|ν2|)

(1 + |xI1 |)n1+1(1 + 2ν2 |xI2 |)n2+1 ,

where N := n1 + n2 + 1. It easy to see that for any I ∈ Rν ,

1

(1 + |xI1 |)n1+1(1 + 2ν2 |xI2 |)n2+1 ≤ 2ν1(n1+1)

(1 + 2ν1 |xI1 |)n1+1(1 + 2ν2 |xI2 |)n2+1

≤ c2ν1(n1+1)
∫

I

2ν1n1+ν2n2

(1 + 2ν1 |x1|)n1+1(1 + 2ν2 |x2|)n2+1 dx,

implying

∑

I∈Rν

1

(1 + |xI1 |)n1+1(1 + 2ν2 |xI2 |)n2+1

≤ c2ν1(n1+1)
∫

R
n1+n2

2ν1n1+ν2n2

∏2
i=1(1 + 2νi |xi |)ni+1

dx ≤ c2ν1(n1+1).

Therefore,
∑

ν1≥0

∑

ν2<0

∑

I∈Rν ,e∈E
|〈 f , ψe

I 〉||xα||∂βψe
I (x)| ≤ c

∑

ν1≥0

∑

ν2<0

2−N (|ν1|+|ν2|)2ν1(n1+1) < ∞.

One similarly shows that this inequality is valid when the summation
∑

ν1≥0
∑

ν2<0
is replaced by

∑
ν1≥0

∑
ν2≥0 or

∑
ν1<0

∑
ν2≥0 or

∑
ν1<0

∑
ν2<0. Consequently, the

series in (6.7) converges in S, and because W is a basis for L2, it follows that this
series converges to f .

By duality it follows that (6.7) is valid for any f ∈ S′∞ with convergence in S′∞.
��

6.3 Characterization of Product Besov and Triebel–Lizorkin Spaces

In this section we show that the wavelet basis

W =
{
ψe
I : I = I1 × I2 ∈ R, e = (e1, e2) ∈ E

}
,

defined above, can be used for decomposition of the product Besov and Triebel–
Lizorkin spaces.
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Theorem 6.4 Let s = (s1, s2) ∈ R
2, 0 < q ≤ ∞, and f ∈ S′∞.

(i) If 0 < p ≤ ∞, then f ∈ Ḃs
pq if and only if {〈 f , ψe

I 〉} ∈ ḃspq , e ∈ E, and

‖ f ‖Ḃs
pq

∼
∑

e∈E
‖{〈 f , ψe

I 〉}‖ḃspq . (6.9)

(ii) If 0 < p < ∞, then f ∈ Ḟ s
pq if and only if {〈 f , ψe

I 〉} ∈ ḟspq , e ∈ E, and

‖ f ‖Ḟs
pq

∼
∑

e∈E
‖{〈 f , ψe

I 〉}‖ḟspq . (6.10)

In addition, if f ∈ Ḃs
pq or f ∈ Ḟ s

pq with p, q �= ∞, then

f =
∑

I∈R,e∈E
〈 f , ψe

I 〉ψe
I , (6.11)

where the convergence is unconditional in the norm of Ḃs
pq or Ḟs

pq , respectively.

Proof Wewill utilize the frame {θI} fromSect. 2.4 (this is the casewhen ϕI = ψI = θI)
and the frame characterization of the spaces Ḃs

pq and Ḟ s
pq from Theorem 4.2 via {θI}.

The almost diagonal operators from Theorem 5.2 will also play an important role. We
will carry out the proof for Besov spaces only; the proof for Triebel–Lizorkin spaces
is the same.

The following estimate on inner products will play an important role: For any
M, K > 0 there exists a constant c > 0 such that for all I, J ∈ R, I = I1 × I2,
J = J1 × J2, and e = (e1, e2) ∈ E , we have

|〈θI, ψe
J〉| ≤ c

2∏

i=1

min
{ �(Ii )

�(Ji )
,
�(Ji )

�(Ii )

}K(
1 + |xIi − xJi |

max{�(Ii ), �(Ji )}
)−M

. (6.12)

This inequality follows at once from

|〈θIi , ψe
Ji 〉| ≤ cmin

{ �(Ii )

�(Ji )
,
�(Ji )

�(Ii )

}K(
1 + |xIi − xJi |

max{�(Ii ), �(Ji )}
)−M

, i = 1, 2.

This estimate is well known and due to the infinite smoothness, fast decay, and van-
ishing moments of θIi and ψe

Ji
. It can be derived from [13, Lemma B.1], see also [17,

Lemma 2.1]. In essence its proof is contained in the proof of the more complicated
Lemma 6.3 above.

Assume that f ∈ Ḃs
pq . Using Proposition 2.3 we have f = ∑

J∈R〈 f , θJ〉θJ with
convergence in S′∞ and hence for any I ∈ R, e ∈ E ,

〈 f , ψe
I 〉 =

∑

J∈R
〈 f , θJ〉〈ψe

I , θJ〉 =
∑

J∈R
aeIJ〈 f , θJ〉, aeIJ := 〈ψe

I , θJ〉.
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From (6.12) and Theorem 5.2 it readily follows that the operator Ae with matrix
{aeIJ}I,J∈R is almost diagonal on ḃspq and hence it is bounded. We use this and Theo-
rem 4.2 with {θI} instead of {ϕI} to obtain

‖{〈 f , ψe
I 〉}‖ḃspq = ‖Ae{〈 f , θJ〉}‖ḃspq ≤ c‖{〈 f , θJ〉}‖ḃspq ≤ c‖ f ‖Ḃs

pq
, e ∈ E .

(6.13)
Hence, {〈 f , ψe

I 〉} ∈ ḃspq , ∀e ∈ E .

For the other direction, assume that f ∈ S′∞ and {〈 f , ψe
I 〉} ∈ ḃspq , e ∈ E . Appealing

to Proposition 6.2, we have f = ∑
I∈R,e∈E 〈 f , ψe

I 〉ψe
I with convergence in S′∞, and

hence

〈 f , θI〉 =
∑

J∈R,e∈E
〈 f , ψe

J〉〈θI, ψe
J〉 =

∑

J∈R,e∈E
beIJ〈 f , ψe

J〉, beIJ := 〈θI, ψe
J〉.

Let Be be the operator with matrix {beIJ}I,J∈R, e ∈ E . As above from (6.12) and

Theorem 5.2, it follows that Be is an almost diagonal operator on ḃspq and hence it is
bounded. This along with Theorem 4.2 implies

‖ f ‖Ḃs
pq

≤ c‖{〈 f , θI〉}‖ḃspq ≤ c
∑

e∈E
‖Be{〈 f , ψe

J〉}‖ḃspq ≤ c
∑

e∈E
‖{〈 f , ψe

J〉}‖ḃspq .
(6.14)

Therefore, f ∈ Ḃs
pq . The equivalence (6.9) follows by (6.13) and (6.14).

The unconditional convergence in (6.11) follows readily by the wavelet character-
ization of the norms in Ḃs

pq and Ḟ s
pq from above. ��

6.4 Product Hardy Spaces

As elsewhere in harmonic analysis and approximation theory, it is natural to work in
Hardy spaces H p rather than in L p when 0 < p ≤ 1. The theory, of product Hardy
spaces H p, 0 < p ≤ 1, was initiated by Gundy and Stein [16] and has attracted
considerable attention. We refer the reader to [1,2,9,10,19] and the references therein
for more information on product Hardy spaces.

The product Hardy spaces H p = H p(Rn1 × R
n2), 0 < p ≤ 1, are usually

defined via the Lusin-area function, but there is also a Littlewood–Paley character-
ization of these spaces as well as characterization via the ϕ-transform (see [1,19]).
The Littlewood–Paley characterization of the product Hardy spaces H p, 0 < p ≤ 1,
simply asserts that H p = Ḟ0

p2(R
n1 × R

n2) with equivalent norms. We will take this
as a definition for product Hardy space H p and set (see Definition 3.1)

‖ f ‖H p :=
∥∥∥
( ∑

ν∈Z2

|ϕν ∗ f |2
)1/2∥∥∥

p
. (6.15)

However, this needs some further clarification because the space Ḟ0
p2(R

n1 × R
n2)

consists of equivalence classes modulo polynomials.
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Proposition 6.5 Let f ∈ Ḟ0
p2(R

n1 × R
n2), 0 < p < ∞.

(a) Let ϕ = ϕ1 ⊗ ϕ2, where ϕ1, ϕ2 satisfy (2.3), (2.5) with n = n1, n2, respectively.
Then there exists f0 ∈ S′ in the equivalent class determined by f such that

f0 =
∑

ν∈Z2

ϕν ∗ f , with convergence in S′. (6.16)

Moreover, f0 ∈ S′ is independent of the specific selection of ϕ.
(b) Let ϕ1, ψ1 and ϕ2, ψ2 be two pairs of functions satisfying (2.5)–(2.6) with n =

n1, n2, respectively. Set ϕ := ϕ1 ⊗ ϕ2 and ψ := ψ1 ⊗ ψ2. Then

f0 =
∑

ν∈Z2

ψ̃ν ∗ ϕν ∗ f , with convergence in S′.

(c) Let {ψe
I : (I, e) ∈ R × E} be the wavelet basis defined in Sect. 6.2. Then

f0 =
∑

I∈R,e∈E
〈 f , ψe

I 〉ψe
I , with convergence in S′.

This claim is analogous to [13, Remark B.4]. We include its proof in the appendix.
Convention From now on we will identify f ∈ H p(Rn1 × R

n2) = Ḟ0
p2(R

n1 × R
n2),

0 < p < ∞, with its canonical representative

∑

ν∈Z2

ϕν ∗ f =
∑

ν∈Z2

ψ̃ν ∗ ϕν ∗ f =
∑

I∈R,e∈E
〈 f , ψe

I 〉ψe
I ,

see Proposition 6.5.
Observe that f ∈ H p(Rn1 × R

n2), 1 < p < ∞, if and only if f ∈ L p(Rn1 × R
n2)

and ‖ f ‖L p ∼ ‖ f ‖H p , see [1].
We will need the ϕ-transform (Theorem 4.2) and wavelet (Theorem 6.4) character-

izations of H p(Rn1 × R
n2) = Ḟ0

p2(R
n1 × R

n2):

‖ f ‖H p ∼
∥∥∥
(∑

I∈R

[|〈 f , ϕI〉|1̃I(·)
]2)1/2∥∥∥

p
∼
∥∥∥
( ∑

I∈R,e∈E

[|〈 f , ψe
I 〉|1̃I(·)

]2)1/2∥∥∥
p
.

7 Nonlinearm-Term Approximation from Product Wavelets

Here we consider nonlinear m-term approximation from the product wavelet basis
{ψe

I }I∈R,e∈E defined in Sect. 6.2 in L p, 1 < p < ∞, or H p, 0 < p ≤ 1. Denote by
�m the set of all functions on R

n1 × R
n2 of the form

g =
∑

(I,e)∈�m

aIeψ
e
I ,
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where �m ⊂ R × E , #�m ≤ m, and �m is allowed to vary with g. We define

σm( f ) := inf
g∈�m

‖ f − g‖p, (7.1)

where ‖ · ‖p = ‖ · ‖L p if 1 < p < ∞ and ‖ · ‖p = ‖ · ‖H p if 0 < p ≤ 1.
In what follows we assume that

0 < p < ∞, α > 0,
1

τ
:= α + 1

p
, s1 := n1α, s2 := n2α, s := (s1, s2). (7.2)

Thus s1 := n1
( 1

τ
− 1

p

)
and s2 := n2

( 1
τ

− 1
p

)
. The Besov spaces

Ḃs
ττ := Ḃ(s1,s2)

ττ

will play an important role here. Our goal is to establish a sharp Jackson estimate for
σm( f ) and companion Bernstein estimate in terms of the Besov spaces Ḃs

ττ .

Observe that from Theorem 6.4 and the fact that ‖ψe
I ‖Lq ∼ |I| 1q − 1

2 , 0 < q ≤ ∞,
[a consequence of (6.6)], it follows that for any f ∈ Ḃs

ττ ,

‖ f ‖Ḃs
ττ

∼
( ∑

I∈R,e∈E
‖〈 f , ψe

I 〉ψe
I ‖τ

L p

)1/τ
. (7.3)

The embedding of Ḃs
ττ into L p or H p will play a critical role.

Proposition 7.1 Let f ∈ Ḃs
ττ , where s and τ are as in (7.2).

(a) If 1 < p < ∞, then f ∈ L p and

‖ f ‖L p ≤ c‖ f ‖Ḃs
ττ

. (7.4)

(b) If 0 < p ≤ 1, then f ∈ H p and

‖ f ‖H p ≤ c‖ f ‖Ḃs
ττ

. (7.5)

Above, c > 0 is a constant independent of f .

We now come to the main results in this section.

Theorem 7.2 (Jackson estimate) If f ∈ Ḃs
ττ , then for m ≥ 2,

σm( f )p ≤ cm−α‖ f ‖Ḃs
ττ

, 0 < p ≤ 2, (7.6)

σm( f )p ≤ cm−α(lnm)1/2−1/p‖ f ‖Ḃs
ττ

, 2 < p < ∞, (7.7)

where the constant c > 0 is independent of m.
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Theorem 7.3 (Bernstein estimate) If g ∈ �m, m ≥ 2, then

‖g‖Ḃs
ττ

≤ cmα
(
lnm

)1/p−1/2‖g‖p, 0 < p < 2, (7.8)

‖g‖Ḃs
ττ

≤ cmα‖g‖p, 2 ≤ p < ∞, (7.9)

where the constant c > 0 is independent of m.

Before proving these theorems we derive direct and inverse estimates that follow
from the above Jackson and Bernstein estimates. Denote by K ( f , t) the K -functional
associated with L p and Ḃs

ττ if 1 < p < ∞ or H p and Ḃs
ττ if 0 < p ≤ 1; namely (see,

e.g., [8]), for f ∈ L p, 1 < p < ∞,

K ( f , t) = K ( f , t; L p, Ḃs
ττ ) := inf

g∈Ḃs
ττ

(‖ f − g‖p + t‖g‖Ḃs
ττ

)
, t > 0,

and L p above is replaced by H p whenever f ∈ H p, 0 < p ≤ 1.

Theorem 7.4 (Direct estimate) If f ∈ L p, 1 < p < ∞, or f ∈ H p, 0 < p ≤ 1, then

σm( f )p ≤ cK ( f ,m−α), 0 < p ≤ 2,

σm( f )p ≤ cK
(
f ,m−α(lnm)1/2−1/p), 2 < p < ∞, m ≥ 2.

Theorem 7.5 (Inverse estimate) If f ∈ L p, 1 < p < ∞, or f ∈ H p, 0 < p ≤ 1, then

K ( f ,m−α) ≤ cm−α(lnm)1/p−1/2
[( m∑

k=1

1

k
(kασk( f )p)

μ
)1/μ + ‖ f ‖p

]
, 0 < p < 2,

K ( f ,m−α) ≤ cm−α
[( m∑

k=1

1

k
(kασk( f )p)

μ
)1/μ + ‖ f ‖p

]
, 2 ≤ p < ∞, m ≥ 2.

Here μ := min{τ, 1}.
The proofs of Theorems 7.4, 7.5 are standard and will be omitted, see, e.g., [8,

Chapter 7, Theorem 5.1].

Corollary 7.6 Let f ∈ L p, 1 < p < ∞, or f ∈ H p, 0 < p ≤ 1, and 0 < γ < α.
Then: (a) If 0 < p ≤ 2, then

K ( f , tα) = O(tγ ) implies σm( f )p = O(m−γ ),

and

σm( f )p = O(m−γ ) implies K ( f , tα) = O
(
tγ (ln 1/t)β

)
, β := 1/p − 1/2.

(b) If 2 < p < ∞, then

K ( f , tα) = O(tγ ) implies σm( f )p = O
(
m−γ (lnm)β

)
, β := (1/2 − 1/p)γ /α,
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and
σm( f )p = O(m−γ ) implies K ( f , tα) = O(tγ ).

The next proposition shows that the Jackson and Bernstein estimates from Theo-
rems 7.2, 7.3 are sharp. In particular, the logarithmic terms in (7.7) and (7.8) cannot
be removed and they are of the correct form.

Proposition 7.7 The Jackson estimates (7.6)–(7.7) as well as the Bernstein estimates
(7.8)–(7.9) are sharp in the following sense: Let p, α, τ, s1, s2 be as in (7.2). Then for
any m ≥ 2,

sup
‖ f ‖Ḃsττ

=1
σm( f )p ≥ cm−α, 0 < p ≤ 2, (7.10)

sup
‖ f ‖Ḃsττ

=1
σm( f )p ≥ cm−α(lnm)1/2−1/p, 2 < p < ∞, (7.11)

sup
g∈�m ,‖g‖p=1

‖g‖Ḃs
ττ

≥ cmα(lnm)1/p−1/2, 0 < p ≤ 2, (7.12)

sup
g∈�m ,‖g‖p=1

‖g‖Ḃs
ττ

≥ cmα, 2 ≤ p < ∞. (7.13)

Above, the constant c > 0 is independent of m.

The proof of this proposition is deferred to the appendix.

Remark 7.8 (a) Note that the parameter α > 0 above can be arbitrarily large due to the
fact that the product wavelets that weworkwith are based onMeyer’s wavelets and
characterize the spaces Ḃs

pq , Ḟ
s
pq in the complete range of the parameters s, p, q.

The above approximation results can be obtained for product wavelets based on,
e.g., compactly supported orthogonal Daubechies wavelets [5] or bi-orthogonal
wavelets [3], but with a limited range for α depending on their smoothness, decay,
and number of vanishing moments.

(b) In the Jackson estimate (7.7) and Bernstein estimate (7.8) there are logarithmic
factors (lnm)1/2−1/p and (lnm)1/p−1/2 that prevent them from perfectlymatching
their respective counterparts. However, as is shown in Proposition 7.7, they cannot
be removed and are of the right form. These logarithmic factors are due to the fact
that the “essential supports” of a (logarithmic) number of product wavelets of the
same size overlap at any point.

The proofs of Proposition 7.1 and Theorems 7.2, 7.3 rely on the following lemma,
where as before R stands for the set of all dyadic rectangles in R

n1 × R
n2 .

Lemma 7.9 If F = ∑
I∈ϒm

|I|−1/p1I, where ϒm ⊂ R, #ϒm ≤ m, m ≥ 2, and
1 < p < ∞, then

‖F‖p ≤ cm1/p(lnm)1−1/p, (7.14)

where the constant c > 0 depends only on p. Furthermore, this estimate is sharp.
Evidently, ‖F‖p ≤ cm1/p in the case 0 < p ≤ 1.

The proof of Lemma 7.9 depends on the following:
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Lemma 7.10 If 1 < p < ∞ and N ∈ N, then

(6p)−p
( N∑

j=1

2 j/px j
)p ≤

N∑

j=1

2 j x j , 0 ≤ x j ≤ 1. (7.15)

Proof Consider the function

h(x) := A
N∑

j=1

2 j x j −
( N∑

j=1

2 j/px j
)p

, x = (x1, . . . , xN ), A := (6p)p. (7.16)

We have to show that h(x) ≥ 0 on the set [0, 1]N . Wemay assume that N ≥ 2. Clearly,

∂h

∂x j
(x) = A2 j − p2 j/p

(
N∑

ν=1

2ν/pxν

)p−1

,

and hence

∂h

∂x j
(x) = 0, j = 1, . . . , N

if and only if

N∑

ν=1

2ν/pxν = (A2 j(1−1/p)/p
)1/(p−1)

, j = 1, . . . , N .

Evidently, this system for x1, . . . , xN has no solutions if N ≥ 2. Therefore, the
function h has no critical points on (0, 1)N , and hence minx∈[0,1]N h(x) is attained on
the boundary of [0, 1]N . Clearly, the boundary of [0, 1]N is contained in the union of
sets �� of the form

�� := {x ∈ R
N : 0 ≤ x jk ≤ 1, k = 1, . . . , �, and x j = 0 or x j = 1, j �= jk

}

for some set of indices { jr }�r=1, 1 ≤ j1 < · · · < j� ≤ N , with � ∈ {1, . . . , N }.
Consider h(x) on�� in the case when � ≥ 2. Then in the definition of h(x) in (7.16)

x j = 0 or x j = 1 for j �= jk . Just as above we conclude that the system ∂h
∂x jk

(x) = 0,

k = 1, . . . , �, (� ≥ 2) has no solutions in the interior of ��, and hence minx∈��
h(x)

is attained on the boundary of �� if � ≥ 2.
Consequently, it suffices to show that h(x) ≥ 0 on any set �1 of the form

�1 := {x ∈ R
N : 0 ≤ x� ≤ 1 for some � ∈ {1, . . . , N }, and x j = 0 or 1, j �= �

}
.

(7.17)
It is readily seen that minx∈�1 h(x) ≥ 0 if in (7.17) x j = 0 for all j �= �.
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Assume that �1 is the set of all x ∈ R
N such that 0 ≤ x� ≤ 1 for some 1 ≤ � ≤ N ,

x jr = 1 for 1 ≤ j1 < · · · < jμ ≤ N , jr �= �, and x j = 0 for j �= jr and j �= �;
μ ≥ 1. We use that (a + b)p ≤ 2p(a p + bp), a, b ≥ 0, to obtain for x ∈ �1,

⎛

⎝
N∑

j=1

2 j/px j

⎞

⎠

p

≤ 2p
[

(2�/px�)
p +

(
μ∑

r=1

2 jr /p

)p]

≤ 2p
(
2�x� + (3p)p2 jμ

)
.

(7.18)
Here we used that 0 ≤ x� ≤ 1 and

(
μ∑

r=1

2 jr /p

)p

≤
⎛

⎝
jμ∑

j=1

2 j/p

⎞

⎠

p

=
(
2 jμ+1 − 1

21/p − 1

)p

≤ (3p)p2 jμ.

From (7.18) it follows that

⎛

⎝
N∑

j=1

2 j/px j

⎞

⎠

p

≤ (6p)p
N∑

j=1

2 j x j , x ∈ �1,

implying minx∈�1 h(x) ≥ 0. Consequently, minx∈[0,1]N h(x) ≥ 0, which implies
(7.15). The proof of the lemma is complete. ��
Proof of Lemma 7.9 Assume 1 < p < ∞. Clearly, Lemma 7.9 is invariant under
dyadic dilations, and hence we may assume that |I| ≤ 1 for all I ∈ ϒm . Assume
|I| ≥ 2−N , ∀I ∈ ϒm , for some N ∈ N. Define R j := {I ∈ R: |I| = 2− j }.

We denote by A1 and A2 the sets of all dyadic cubes I1 ∈ D1, I2 ∈ D2 such that
I = I1 × I2 ∈ ϒm . Further, we denote by Bi (i = 1, 2) the collection of all nonempty
sets �i ⊂ R

ni of the form

�i = Ii\ ∪ {Ji : Ji ∈ Ai , Ji ⊂ Ii
}
, Ii ∈ Ai . (7.19)

Thus each set�i ∈ Bi ,�i �= ∅, is obtained by subtracting from a dyadic cube Ii ∈ Ai

all smaller dyadic cubes from Ai that are contained in Ii . It is readily seen that Bi

consists of disjoint sets and #Bi ≤ m, i = 1, 2.
Now, denote by X j the collection of all sets � ⊂ R

n1 × R
n2 of the form

� = �1 × �2, �i ∈ Bi , i = 1, 2, �1 × �2 ⊂ I1 × I2 ∈ R j ,

where I1, I2 are the cubes from the definition of �i in (7.19). We set X := ∪N
j=0X j .

It is easy to see that X consists of sets with disjoint interiors,

∪I∈ϒm I ⊂ ∪�∈X�, and #X ≤ m2. (7.20)

Also, observe that for any I ∈ ϒm and � ∈ X, either � ⊂ I or � ∩ I = ∅.
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Clearly, the function F can be represented in the form

F(x) =
∑

�∈X
1�(x)

(
k0(�) + 21/pk1(�) + · · · + 2N/pkN (�)

)
, (7.21)

where k j (�) is the number of rectangles I ∈ ϒm ∩ R j (|I|−1/p = 2 j/p) that contain
� (0 ≤ k j ≤ m).

Define m j := #X j . It is readily seen that

∑

�∈X
|�|k j (�) =

∑

I∈ϒm∩R j

|I| = m j2
− j , j = 1, . . . , N . (7.22)

We claim that
|�| ≤ 2 · 2− j−k j (�), ∀� ∈ X j . (7.23)

Indeed, let � = �1 × �2 ∈ X j ( j ≥ 0), and assume k j := k j (�) ≥ 2. Then �

is contained in k j distinct dyadic rectangles I1, . . . , Ik j from R j ; i.e., Iν ∈ R and
|Iν | = 2− j , ν = 1, . . . , k j . We may assume that the dyadic rectangles Iν = I ν

1 × I ν
2

are indexed so that �1 ⊂ I 11 ⊂ I 21 ⊂ · · · ⊂ I
k j
1 . Since these are nested dyadic cubes

in R
n1 , we get

|�1| ≤ |I 11 | ≤ |I k j1 |
2n1(k j−1)

, implying |�| = |�1||�2| ≤ |I k j1 ||I k j2 |
2n1(k j−1)

= 1

2 j2n1(k j−1)
,

where we used that �2 ⊂ I
k j
2 . Because n1 ≥ 1, the above estimate implies (7.23).

Let K := (2p + 2) log2 m. From (7.21) it follows that

‖F‖p
p =

∑

�∈Xm

|�|
⎛

⎝
N∑

j=0

2 j/pk j (�)

⎞

⎠

p

≤ 2p
∑

�∈Xm

|�|
⎛

⎝
∑

k j (�)≤K

2 j/pk j (�)

⎞

⎠

p

+ 2p
∑

�∈Xm

|�|
⎛

⎝
∑

k j (�)>K

2 j/pk j (�)

⎞

⎠

p

=: Q1 + Q2. (7.24)

We next estimate Q2. Using (7.20), (7.23), and that k j (�) ≤ m, we obtain

Q2 ≤ 2p+1
∑

�∈Xm

⎛

⎝
∑

k j (�)>K

2 j/pk j (�)

2 j/p+k j (�)/p

⎞

⎠

p

≤ 2p+1m2
( m2

2K/p

)p = 2p+1. (7.25)
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To estimate Q1 we set x j := k j/K , k j := k j (�), and use Lemma 7.10 to obtain

⎛

⎝
∑

k j≤K

2 j/pk j

⎞

⎠

p

= K p

⎛

⎝
∑

k j≤K

2 j/px j

⎞

⎠

p

≤ (6p)pK p
∑

k j≤K

2 j x j = (6p)pK p−1
∑

k j≤K

2 j k j .

Here we used that 0 ≤ x j ≤ 1 and p > 1. The above and (7.22) lead to

Q1 ≤ (12p)pK p−1
∑

�∈Xm

|�|
N∑

j=0

2 j k j (�) = (12p)pK p−1
N∑

j=0

∑

�∈Xm

|�|2 j k j (�)

≤ (12p)pK p−1
N∑

j=0

m j = c(p)m(log2 m)p−1.

This combined with (7.24) and (7.25) yields (7.14).
It remains to show that estimate (7.14) is sharp. For simplicity, we consider the case

when n1 = n2 = 1. Fix N ∈ N sufficiently large and let Y j , j = 0, . . . , N , be the set
of all dyadic rectangles I = I1 × I2 ⊂ [0, 1]2 such that |I1| = 2− j and |I2| = 2−N+ j ;
hence |I| = 2−N . Consider the function

F(x) :=
N∑

j=0

∑

I∈Y j

|I|−1/p1I(x), 1 < p < ∞.

Clearly, #Y j = 2N and hence m := #
( ∪N

j=0 Y j
) = 2N (N + 1). Furthermore,

F(x) = 2N/p(N + 1)1[0,1)2 , implying

‖F‖p = 2N/p(N + 1) = m1/p(N + 1)1−1/p ∼ m1/p(lnm)1−1/p.

Therefore, estimate (7.14) is sharp. The proof of Lemma 7.9 is complete. ��
Lemma 7.11 If F = ∑(I,e)∈Am

aIeψe
I , where Am ⊂ R × E, #Am ≤ m, m ∈ N, and

‖aIeψe
I ‖L p ≤ A for all (I, e) ∈ Am, 0 < p < ∞, then

‖F‖p ≤ cm1/p A, 0 < p ≤ 2, (7.26)

‖F‖p ≤ cm1/p(lnm)1/2−1/p A, 2 < p < ∞, m ≥ 2. (7.27)

Proof The proof of inequality (7.26) is just like the proof of [4, Lemma 4.1], and
the proof of (7.27) is carried out along the same lines but uses Lemma 7.9. For
completeness we next give the details.

From ‖ψe
I ‖L p ∼ |I|1/p−1/2 (see (6.6)) and the condition ‖aIeψe

I ‖L p ≤ A, it follows
that |aIe| ≤ cA|I|1/2−1/p. Define Bm := {I ∈ R: (I, e) ∈ Am} and observe that
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#Bm ≤ #Am ≤ 2n1+n2#Bm . We now use that ‖F‖p ∼ ‖F‖Ḟ0
p2

and the wavelet

characterization of Ḟ0
p2 to obtain

‖F‖p ≤ c
∥∥∥
( ∑

(I,e)∈Am

[|aIe||I|−1/21I(·)
]2)1/2∥∥∥

L p

≤ cA
∥∥∥
( ∑

I∈Bm

[|I|−1/p1I(·)
]2)1/2∥∥∥

L p
. (7.28)

(a) Let 0 < p ≤ 2. Then from the above,

‖F‖p ≤ cA
∥∥∥
( ∑

I∈Bm

[|I|−1/p1I(·)
]p)1/p∥∥∥

L p

= cA
∥∥∥
∑

I∈Bm

|I|−11I(·)
∥∥∥
1/p

L1
= cA

(
#Bm

)1/p ≤ cAm1/p,

which confirms (7.26).
(b) Let 2 < p < ∞. From (7.28) it follows that

‖F‖p ≤ cA
∥∥∥
( ∑

I∈Bm

|I|−2/p1I(·)
)1/2∥∥∥

L p

= cA
(∥∥∥
∑

I∈Bm

|I|−2/p1I(·)
∥∥∥
L p/2

)1/2

≤ cA
[
(#Bm)2/p(ln #Bm)1−2/p]1/2 ≤ cm1/p(lnm)1/2−1/p A.

Here for the former inequality we used Lemma 7.9 with p replaced by p/2 > 1.
Therefore, (7.27) is valid. ��

Proof of Proposition 7.1 and Theorem 7.2 This proof uses well-known ideas, see, e.g.,
[6, Corollary 1, p. 117] or [4, Corollary 4.1] or [21, Theorem 6.2]. Define

N ( f ) :=
( ∑

(I,e)∈R×E

‖aIeψe
I ‖τ

p

)1/τ
, aIe := 〈 f , ψe

I 〉. (7.29)

We may assume N ( f ) > 0. Further, we introduce the notation

Xr :=
{
(I, e) ∈ R × E : 2−r N ( f ) ≤ ‖aIeψe

I ‖p < 2−r+1N ( f )
}
, r ∈ N0, (7.30)

and set Ir := {I ∈ R: (I, e) ∈ Xr }. Observe that #Ir ≤ #Xr ≤ 2n1+n2(#Ir ). Clearly,

∪r≤νXr :=
{
(I, e) ∈ R × E : ‖aIeψe

I ‖p ≥ 2−νN ( f )
}
.
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From this and (7.29) it follows that

#Xν ≤ #(∪r≤νXr ) ≤ 2ντ . (7.31)

Define
Gν :=

∑

(I,e)∈Xν

aIeψ
e
I .

From (7.30) it follows that ‖aIeψe
I ‖p < 2−ν+1N ( f ) for (I, e) ∈ Xν . We now invoke

Lemma 7.11 to obtain in the case 2 < p < ∞,

‖Gν‖L p ≤ c2−νN ( f )(#Iν)
1/p( ln(#Iν)

)1/2−1/p ≤ cN ( f )2−ν(1−τ/p)ν1/2−1/p.

(7.32)
In the case 0 < p ≤ 2, we appeal again to Lemma 7.11 and obtain

‖Gν‖p ≤ cN ( f )2−ν(1−τ/p), 0 < p ≤ 2. (7.33)

Using (7.32) we obtain for 2 < p < ∞,

∥∥∥
∑

ν≥ j

Gν

∥∥∥
L p

≤
∑

ν≥ j

‖Gν‖L p ≤ cN ( f )
∑

ν≥ j

2−ν(1−τ/p)ν1/2−1/p

≤ cN ( f )2− j(1−τ/p)( j + 1)1/2−1/p, (7.34)

and similarly from (7.33) it follows that

∥∥∥
∑

ν≥ j

Gν

∥∥∥
L p

≤
∑

ν≥ j

‖Gν‖L p ≤ cN ( f )2− j(1−τ/p), 1 < p ≤ 2. (7.35)

In the case 0 < p ≤ 1, we use (7.33) to obtain

∥∥∥
∑

ν≥ j

Gν

∥∥∥
H p

≤
(∑

ν≥ j

‖Gν‖p
H p

)1/p ≤ cN ( f )
(∑

ν≥ j

2−ν p(1−τ/p)
)1/p

,

implying ∥∥∥
∑

ν≥ j

Gν

∥∥∥
H p

≤ cN ( f )2− j(1−τ/p), 0 < p ≤ 1. (7.36)

Estimates (7.34)–(7.36) with j = 0 readily imply (7.4)–(7.5).
Assume 2 < p < ∞ and m ≥ 2. Choose j ∈ N0 so that 2 jτ ≤ m < 2( j+1)τ .

Define Y j := ∪ν≤ jXν . By (7.31) #Y j ≤ 2 jτ and using (7.34) and the fact that
f =∑(I,e)∈R×E aIeψe

I , where the series converges unconditionally in L p, we obtain

σm( f )p ≤
∥∥
∥ f −

∑

(I,e)∈Y j

aIeψ
e
I

∥∥
∥
L p

≤
∥∥
∥
∑

ν> j

Gν

∥∥
∥
L p

≤ cN ( f )2− jτ(1/τ−1/p)( j + 1)1/2−1/p ≤ cm−α(lnm)1/2−1/p‖ f ‖Ḃs
ττ

,
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which confirms (7.7).
In the case when 1 < p ≤ 2 or 0 < p ≤ 1 exactly as above, we use (7.35) or (7.36)

instead of (7.34) to obtain (7.6). ��

Proof of Theorem 7.3 This proof uses the idea of the proof of [4, Theorem 4.3]. Let
g =∑(I,e)∈�m

aIeψe
I , where #�m ≤ m. There are two cases to distinguish.

Case 1 2 ≤ p < ∞. Using (7.3) and Hölder’s inequality, we obtain

‖g‖Ḃs
ττ

≤ c
( ∑

(I,e)∈�m

‖aIeψe
I ‖τ

p

)1/τ ≤ m1/τ−1/p
( ∑

(I,e)∈�m

‖aIeψe
I ‖p

p

)1/p
.

On the other hand, from (6.6), ‖ψe
I ‖p ∼ |I|1/p−1/2. Therefore,

‖g‖Ḃs
ττ

≤ cm1/τ−1/p
( ∑

(I,e)∈�m

|aIe|p|I|1−p/2
)1/p

= cm1/τ−1/p
( ∫

R
n1+n2

∑

(I,e)∈�m

|aIe|p|I|−p/21I(x)dx
)1/p

= cm1/τ−1/p
( ∫

R
n1+n2

[( ∑

(I,e)∈�m

|aIe|p|I|−p/21I(x)
)1/p]p

dx
)1/p

≤ cm1/τ−1/p
( ∫

R
n1+n2

[( ∑

(I,e)∈�m

[|aIe||I|−1/21I(x)
]2)1/2]p

dx
)1/p

= cm1/τ−1/p‖Sg‖p ≤ cmα‖g‖p.

Here we used that p > 2 and the characterization of ‖g‖p by the square function

Sg =
(∑

(I,e)∈�m

[|aIe||I|−1/21I(x)
]2)1/2

. Thus (7.9) is established.

Case 2 0 < p < 2. We set Im := {I ∈ D: (I, e) ∈ �m}. From (7.3) and ‖ψe
I ‖p ∼

|I|1/p−1/2, we get

‖g‖τ

Ḃs
ττ

≤ c
∑

(I,e)∈�m

‖aIeψe
I ‖τ

p ≤ c
∑

(I,e)∈�m

|aIe|τ |I|−τ(1/2−1/p)

= c
∫

R
n1+n2

∑

(I,e)∈�m

|aIe|τ |I|−τ(1/2−1/p)−11I(x)dx

= c
∫

R
n1+n2

∑

(I,e)∈�m

|aIe|τ |I|−τ/21I(x) · |I|τ/p−11I(x)dx.
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We now apply Hölder’s inequality
∑

a jb j ≤ (∑ |a j |q
)1/q(∑ |b j |q ′)1/q ′

with
q = 2/τ to obtain

‖g‖τ

Ḃs
ττ

≤ c
∫

R
n1+n2

( ∑

(I,e)∈�m

[ |aIe|1I(x)
|I|1/2

]2 )τ/2( ∑

I∈Im

( 1I(x)
|I|1−τ/p

) 1
1−τ/2

)1−τ/2
dx

= c
∫

R
n1+n2

[Sg(x)]τ
( ∑

I∈Im
|I|− 1−τ/p

1−τ/2 1I(x)
)1−τ/2

dx.

We next apply Hölder’s inequality
∫

f g ≤ ( ∫ | f |q)1/q( ∫ |g|q ′)1/q ′
with q = p/τ

and get

‖g‖τ

Ḃs
ττ

≤ c
( ∫

R
n1+n2

[Sg(x)]pdx
) τ

p
( ∫

R
n1+n2

( ∑

I∈Im
|I|− 1−τ/p

1−τ/2 1I(x)
) 1−τ/2

1−τ/p
dx
)1− τ

p

=: c‖Sg‖τ
p · Q ≤ c‖g‖τ

p · Q.

To estimate Q we use Lemma 7.9 with 1−τ/2
1−τ/p > 1 in place of p and obtain

Q =
(( ∫

R
n1+n2

( ∑

I∈Im
|I|− 1−τ/p

1−τ/2 1I(x)
) 1−τ/2

1−τ/p
dx
) 1−τ/p

1−τ/2
)1−τ/2

≤ c
(
m

1−τ/p
1−τ/2 (lnm)

1− 1−τ/p
1−τ/2

)1−τ/2 = cm1−τ/p( lnm
)τ/p−τ/2

.

This leads to

‖g‖Ḃs
ττ

≤ cm1/τ−1/p( lnm
)1/p−1/2‖g‖p ≤ cmα

(
lnm

)1/p−1/2‖g‖p.

The proof is complete. ��

7.1 Nonlinearm-Term Frame Approximation

In this subsectionwe consider nonlinearm-term approximation from the product frame
{θI}I∈R defined in Sect. 2.4 in L p, 1 < p < ∞, or H p, 0 < p ≤ 1. Denote by �m

the set of all functions on R
n1 × R

n2 of the form

g =
∑

I∈Ym

aIθI, (7.37)

where Ym ⊂ R, #Ym ≤ m, and Ym is allowed to vary with g. We define

Fm( f ) := inf
g∈�m

‖ f − g‖p, (7.38)

where ‖ · ‖p = ‖ · ‖L p if 1 < p < ∞ and ‖ · ‖p = ‖ · ‖H p if 0 < p ≤ 1.
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Just as in (7.2) we assume that

0 < p < ∞, α > 0,
1

τ
:= α + 1

p
, s1 := n1α, s2 := n2α, s := (s1, s2).

As in Sect. 7 the Besov space Ḃs
ττ naturally appears here.

Theorem 7.12 (Jackson estimate) If f ∈ Ḃs
ττ , then

Fm( f )p ≤ cm−α‖ f ‖Ḃs
ττ

, 0 < p ≤ 2,

Fm( f )p ≤ cm−α(lnm)1/2−1/p‖ f ‖Ḃs
ττ

, 2 < p < ∞, m ≥ 2,

where c > 0 is a constant depending only on p, α, n1, n2.

The proof of this theorem is almost identical to the proof of Theorem 7.2 because
all ingredients needed for this proof are in place; we omit it.

We conjecture that the analogs of the Bernstein inequalities (7.8) and (7.9) are valid.
The main obstacle in proving these inequalities is that unlike the basis {ψe

I } the frame
{θI} is redundant and hence the norm ‖g‖p (even when p = 2) of g from (7.37) cannot
be estimated from below by any reasonable quantity in terms of the coefficients {aI}.

8 Appendix

8.1 Proof of Lemma 4.3

We only consider the case when ν1 ≤ μ1 and ν2 > μ2; the proof in all other cases is
similar. Under the hypothesis of the lemma we assume that xJ = 0. We next split R
into a disjoint union of subsets. We define

�k := {I ∈ Rμ: 2k1−1−ν1 < |xI1 | ≤ 2k1−ν1 and 2k2−1−μ2 < |xI2 | ≤ 2k2−μ2},

if k = (k1, k2) ∈ N
2 and set

�(k1,0) := {I ∈ Rμ: 2k1−1−ν1 < |xI1 | ≤ 2k1−ν1 and |xI2 | ≤ 2−μ2}, k1 ∈ N,

�(0,k2) := {I ∈ Rμ: |xI1 | ≤ 2−ν1 and 2k2−1−μ2 < |xI2 | ≤ 2k2−μ2}, k2 ∈ N,

�(0,0) := {P ∈ Rμ: |xI1 | ≤ 2−ν1 and |xI2 | ≤ 2−μ2}.

Evidently, Rμ = ∪k∈N2
0
�k and the sets �k, k ∈ N

2
0, are disjoint.

Let I = I1 × I2 ∈ �k. From the preceding, it readily follows that 1 + 2ν1 |xI1 | >

2k1−1 and 1 + 2μ2 |xI2 | > 2k2−1, and hence

2∏

i=1

(
1 + 2min{μi ,νi }|xIi − xJi |

)−τi ≤ c2−k1τ12−k2τ2 .
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Therefore,

bJ :=
∑

I∈Rμ

|aI|
2∏

i=1

(
1 + 2min{μi ,νi }|xIi − xJi |

)−τi

≤ c
∞∑

k2=0

2−k2τ2
∞∑

k1=0

2−k1τ1
∑

I∈�k

|aI|

≤ c
∞∑

k2=0

2−k2τ2
∞∑

k1=0

2−k1τ1

⎛

⎝
∑

I∈�k

|aI|t
⎞

⎠

1/t

, (8.1)

where for the last inequality we used that 0 < t ≤ 1.
The set Rμ is a disjoint partition of R

n1 × R
n2 and hence we have

∑

I∈�k

|aI|t =
∫

R
n1×R

n2

( ∑

I∈�k

|aI||I|−1/t1I(y)
)t
dy. (8.2)

Let I ∈ �k and y = (y1, y2) ∈ I. Then since ν1 ≤ μ1 and ν2 > μ2, we have

|y1| ≤ |y1 − xI1 | + |xI1 | ≤ 2−μ1 + 2k1−ν1 < 2 · 2k1−ν1

and

|y2| ≤ |y2 − xI2 | + |xI2 | ≤ 2−μ2 + 2k2−ν2 < 2 · 2k2−μ2 .

Therefore,

∪I∈�kI ⊂ [−3 · 2k1−ν1 , 3 · 2k1−ν1 ]n1 × [−3 · 2k2−μ2 , 3 · 2k2−μ2 ]n2 =: R.

Because xJ = 0, J ∈ Rν , and since ν2 > μ2, it follows that J ⊂ R and hence x ∈ R.
From (8.2) and the definition of the maximal operatorMt in (2.18), it follows that for
any x ∈ J ⊂ R,

∑

I∈�k

|aI|t =
∫

R
2μ·n( ∑

I∈�k

|aI|1I(y)
)t
dy

≤ c|R|2μ·n[Mt

( ∑

I∈�k

|aI|1I

)
(x)
]t

= c2k·n2(μ1−ν1)n1
[
Mt

( ∑

I∈�k

|aI|1I

)
(x)
]t

.
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This coupled with (8.1) yields

bJ ≤ c2(μ1−ν1)n1/t
∞∑

k2=0

2−k2(τ2−n2/t)
∞∑

k1=0

2−k1(τ1−n1/t)Mt

( ∑

I∈�k

|aI|1I

)
(x)

≤ c2(μ1−ν1)n1/tMt

( ∑

I∈Rμ

|aI|1I

)
(x), x ∈ J,

where we used that τi > ni/t , i = 1, 2. This confirms inequality (4.4) in the case
under consideration. The proof of Lemma 4.3 is complete. ��

8.2 Proof of Lemma 6.3

Let K ∈ N and M ≥ K + n1 + n2 + 1. We will consider only the case when
I = I1 × I2 ∈ Rν , ν = (ν1, ν2) with ν1 ≥ 0 and ν2 < 0. The proof in the other cases
is carried out similarly.

Assume f ∈ S∞(Rn1 × R
n2) and consider the Taylor polynomials

P1(x1, x2) :=
∑

|β1|≤K−1

∂
β1
x1 f (xI1 , x2)

(β1)! (x1 − xI1)
β1 ,

P2(x2) :=
∑

|β2|≤K−1

∂β2ψ
e2
I2

(02)

(β2)! xβ2
2 ,

where β1 ∈ N
n1
0 , β2 ∈ N

n2
0 , and 02 stands for the origin in R

n2 . From (2.2) and (6.5),
it follows that

〈 f , ψe
I 〉 =

∫

R
n1+n2

[
f (x1, x2) − P1(x1, x2)

]
ψ

e1
I1

(x1)
[
ψ

e2
I2

(x2) − P2(x2)
]
dx1dx2.

Assume |x1 − xI1 | ≤ 1. Then by Taylor’s theorem and (2.1),

| f (x1, x2) − P1(x1, x2)| ≤ c|x1 − xI1 |K sup
|z1−xI1 |≤|x1−xI1 |

max|β1|=K
|∂β1

x1 f (z1, x2)|

≤ c|x1 − xI1 |K sup
|z1−xI1 |≤|x1−xI1 |

1

(1 + |z1|)M (1 + |x2|)M

≤ c|x1 − xI1 |K
(1 + |xI1 |)M (1 + |x2|)M . (8.3)
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Here we used that |xI1 | ≤ |z1| + |z1 − xI1 | ≤ |z1| + |x1 − xI1 | ≤ |z1| + 1. On the
other hand, for |x1 − xI1 | ≥ 1, using again (2.1) we get

|P1(x1, x2)| ≤ c
∑

|β1|≤K−1

|∂β1
x1 f (xI1 , x2)||x1 − xI1 ||β1| ≤ c|x1 − xI1 |K

(1 + |xI1 |)M (1 + |x2|)M .

(8.4)
We have

|〈 f , ψe
I 〉| ≤

∫

R
n2

∫

|x1−xI1 |≤1
| f (x1, x2) − P1(x1, x2)||ψe1

I1
(x1)| · · · dx1dx2

+
∫

R
n2

∫

|x1−xI1 |≥1
(| f (x1, x2)| + |P1(x1, x2)|)|ψe1

I1
(x1)| · · · dx1dx2.

From this, (8.3), (8.4), and (2.1), i.e., | f (x1, x2)| ≤ c(1 + |x1|)−M (1 + |x2|)−M , it
follows that

|〈 f , ψe
I 〉| ≤ c

(∫

|x1−xI1 |≥1

|ψe1
I1

(x1)|
(1 + |x1|)M dx1 +

∫

R
n1

|x1 − xI1 |K |ψe1
I1

(x1)|
(1 + |xI1 |)M

dx1

)

×
∫

R
n2

|ψe2
I2

(x2) − P2(x2)|
(1 + |x2|)M dx2 =: c(J1 + J2)J3.

To estimate J1 we use (6.4) and obtain

J1 ≤ c
∫

|x1−xI1 |≥1

2ν1n1/2

(1 + |x1|)M (1 + 2ν1 |x1 − xI1 |)M
dx1

≤ c
∫

R
n1

2−ν1(M−n1/2)

(1 + |x1|)M (1 + |x1 − xI1 |)M
dx1 ≤ c2−ν1(M−n1/2)

(1 + |xI1 |)M
. (8.5)

We now estimate J2. Using again (6.4) we get

J2 ≤ c

(1 + |xI1 |)M
∫

R
n1

2ν1n1/2|x1 − xI1 |K
(1 + 2ν1 |x1 − xI1 |)M

dx1

≤ c2−ν1(K+n1/2)

(1 + |xI1 |)M
∫

R
n1

2ν1n1

(1 + 2ν1 |x1 − xI1 |)M−K
dx1 ≤ c2−ν1(K+n1/2)

(1 + |xI1 |)M
, (8.6)

where we used that M − K > n1.
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In estimating J3 we proceed similarly as above. Assume |x2| ≤ 2−ν2 . Then by
Taylor’s theorem and (6.4),

|ψe2
I2

(x2) − P2(x2)| ≤ c|x2|K sup
|z2|≤|x2|

max|β2|=K
|∂β2ψ

e2
I2

(z2)|

≤ c|x2|K sup
|z2|≤|x2|

2ν2(K+n2/2)

(1 + 2ν2 |z2 − xI2 |)M
≤ c|x2|K 2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M
.

(8.7)

Here we used that |xI2 | ≤ |z2 − xI2 | + |z2| ≤ |z2 − xI2 | + |x2| ≤ |z2 − xI2 | + 2−ν2

implying 2ν2 |xI2 | ≤ 2ν2 |z2 − xI2 | + 1. Further, for |x2| ≥ 2−ν2 using (6.4), we have

|P2(x2)| ≤ c
∑

|β2|≤K−1

|∂β2ψ
e2
I2

(02)||x2||β2|

≤ c
∑

|β2|≤K−1

2ν2(|β2|+n2/2)|x2||β2|
(1 + 2ν2 |xI2 |)M

≤ c(|x2|2ν2)K 2ν2n2/2

(1 + 2ν2 |xI2 |)M
. (8.8)

To estimate J3 we introduce the sets:

U1 := {x2: |x2| ≤ 2−ν2}, U2: = {x2: |x2| ≥ 2−ν2 , |x2 − xI2 | ≤ |xI2 |/2},
U3: = {x2: |x2| ≥ 2−ν2 , |x2 − xI2 | ≥ |xI2 |/2}, R

n2 = U1 ∪U2 ∪U3.

We have

J3 :=
∫

R
n2

|ψe2
I2

(x2) − P2(x2)|
(1 + |x2|)M dx2 =

∫

U1

+
∫

U2

+
∫

U3

.

Using (8.7) and that M − K > n2, we get

∫

U1

≤ c2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M
∫

R
n2

|x2|K
(1 + |x2|)M dx2 ≤ c2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M
. (8.9)

Now from (6.4) and (8.8) we infer that

∫

U2

≤
∫

U2

|ψe2
I2

(x2)| + |P2(x2)|
(1 + |x2|)M dx2 ≤ c

∫

U2

2ν2n2/2

(1 + |x2|)M (1 + 2ν2 |x2 − xI2 |)M
dx2

+ c
∫

U2

c(|x2|2ν2)K 2ν2n2/2

(1 + |x2|)M (1 + 2ν2 |xI2 |)M
dx2.

Note that if x2 ∈ U2, then |x2| ≥ |xI2 |−|x2−xI2 | ≥ |xI2 |/2, and because |x2| ≥ 2−ν2 ,
we have 1 + |x2| ≥ 2−ν2−1(1 + 2ν2 |x2|) ≥ (1/4)2−ν2(1 + 2ν2 |xI2 |). We use this in
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estimating the first integral on the right above. We get

∫

U2

≤ c2ν2(M−n2/2)

(1 + 2ν2 |xI2 |)M
∫

R
n2

2ν2n2

(1 + 2ν2 |x2 − xI2 |)M
dx2

+ c2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M
∫

R
n2

|x2|K
(1 + |x2|)M dx2 ≤ c2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M
. (8.10)

Here we used that M − K > n2. Again by (6.4) and (8.8) we get

∫

U3

≤
∫

U2

|ψe2
I2

(x2)| + |P2(x2)|
(1 + |x2|)M dx2 ≤ c

∫

U3

2ν2n2/2

(1 + |x2|)M (1 + 2ν2 |x2 − xI2 |)M
dx2

+ c
∫

U3

c(|x2|2ν2)K 2ν2n2/2

(1 + |x2|)M (1 + 2ν2 |xI2 |)M
dx2.

If x2 ∈ U3, then |x2 − xI2 | ≥ |xI2 |/2 and 1 + |x2| > 2−ν2 . We use these inequalities
and the fact that M − K > n2 to obtain

∫

U3

≤ c2ν2n2/2

(1 + 2ν2 |xI2 |)M
∫

R
n2

1

(1 + |x2|)M dx2 + c2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M
∫

R
n2

|x2|K
(1 + |x2|)M dx2

≤ c2ν2n2/2

(1 + 2ν2 |xI2 |)M
∫

R
n2

2ν2K

(1 + |x2|)M−K
dx2 + c2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M

≤ c2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M
.

This along with (8.9) and (8.10) yields

J3 ≤ c2ν2(K+n2/2)

(1 + 2ν2 |xI2 |)M
.

In turn, this and (8.5)–(8.6) lead to

|〈 f , ψe
I 〉| ≤ c2−ν1(K−n1/2)+ν2(K+n2/2)

(1 + |xI1 |)M (1 + 2ν2 |xI2 |)M
.

Since M, K > 0 with M ≥ K + n1 + n2 + 1 can be arbitrarily large, the above
estimate implies (6.8). The proof is complete. ��

8.3 Proof of Proposition 6.5

We will use ideas from [13, Remerk B.4]. To prove part (a) we first use the product
version of the standard Plancherel–Polya–Nikolskii inequality (see, e.g., [24, Theo-
rem 1.6.2]) to obtain

‖ϕν ∗ f ‖∞ ≤ c2(ν1n1+ν2n2)/p‖ϕν ∗ f ‖p ≤ c2(ν1n1+ν2n2)/p‖ f ‖Ḟ0
p2

. (8.11)
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Set b1 := n1/2n2 and b2 := n2/2n1. Define

X1 := {ν ∈ Z
2: ν1 ≤ 0, ν2 ≤ −b1ν1

}
, X2 := {ν ∈ Z

2: ν2 ≤ 0, ν1 ≤ −b2ν2
}
,

Y1 := {ν ∈ Z
2: ν1 > 0, ν2 ≥ −b−1

2 ν1
}
, Y2 := {ν ∈ Z

2: ν2 > 0, ν1 ≥ −b−1
1 ν2

}
.

Evidently, Z
2 = X1 ∪ X2 ∪ Y1 ∪ Y2. From (8.11) it follows that

∑

ν∈X1

‖ϕν ∗ f ‖∞ ≤ c‖ f ‖Ḟ0
p2

∑

ν1≤0

2ν1n1/p
∑

ν2≤−b1ν1

2ν2n2/p

≤ c‖ f ‖Ḟ0
p2

∑

ν1≤0

2ν1(n1−b1n2)/p = c‖ f ‖Ḟ0
p2

∑

ν1≤0

2ν1n1/2p ≤ c‖ f ‖Ḟ0
p2

and similarly
∑

ν∈X2
‖ϕν ∗ f ‖∞ ≤ c‖ f ‖Ḟ0

p2
. Therefore,

∑
ν∈X1∪X2

ϕν ∗ f converges

in S′.
We will next prove that

∑
ν∈Y1∪Y2

ϕν ∗ f converges in S′ by only using that
f ∈ S′. Since the Fourier transform is an isomorphism of S′, it suffices to show
that

∑
ν∈Y1∪Y2

ϕ̂ν f̂ converges in S′. From f̂ ∈ S′ it follows that there exist �,m ≥ 1
such that for any φ ∈ S,

|〈 f̂ , φ〉| ≤ c max|α|≤�,|β|≤m
‖φ‖α,β, ‖φ‖α,β := sup

ξ∈Rn1+n2

|ξα||∂βφ(ξ)|.

Hence,
|〈ϕ̂ν f̂ , φ〉| = |〈 f̂ , ϕ̂νφ〉| ≤ c max|α|≤�,|β|≤m

‖ϕ̂νφ‖α,β .

Clearly, ϕ̂ν(ξ) = ϕ̂1(2−ν1ξ1)ϕ̂2(2−ν2ξ2) and for any γ = (γ1, γ2),

∂γ ϕ̂ν(ξ) = 2−ν1|γ1|−ν2|γ2|(∂γ1 ϕ̂1
)
(2−ν1ξ1)

(
∂γ2 ϕ̂2

)
(2−ν2ξ2).

From (2.5), ϕ̂i is supported on {ξi : 2−1 ≤ |ξi | ≤ 2}, i = 1, 2, and hence ϕ̂ν is supported
on the rectangle Rν := {ξ : 2ν1−1 ≤ |ξ1| ≤ 2ν1+1, 2ν2−1 ≤ |ξ2| ≤ 2ν2+1}. From all of
the above, it follows that

|〈ϕ̂ν f̂ , φ〉| ≤ c2(−ν1m)+2(−ν2m)+ sup
ξ∈Rν

(1 + |ξ |)� max|β|≤m
|∂βφ(ξ)|. (8.12)

Here y+ := max{y, 0}. Choose r1 ≥ (b−1
2 + 1)m, r2 ≥ (b−1

1 + 1)m, r1, r2 ∈ N.
Clearly, (8.12) implies

|〈ϕ̂ν f̂ , φ〉| ≤ c2−ν1r1−ν2m max|α|≤�+r1,|β|≤m
‖φ‖α,β, ν1 ≥ 0, ν2 ≤ 0, (8.13)

|〈ϕ̂ν f̂ , φ〉| ≤ c2−ν1m−ν2r2 max|α|≤�+r2,|β|≤m
‖φ‖α,β, ν1 ≤ 0, ν2 ≥ 0, (8.14)

|〈ϕ̂ν f̂ , φ〉| ≤ c2−ν1r1−ν2r2 max|α|≤�+r1+r2,|β|≤m
‖φ‖α,β, ν1 ≥ 0, ν2 ≥ 0. (8.15)
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From (8.13) and (8.15) it follows that

∑

ν∈Y1

|〈ϕ̂ν f̂ , φ〉| ≤ c max|α|≤�+r1+r2,|β|≤m
‖φ‖α,β

∑

ν1>0

2−ν1r1
∑

ν2≥−b−1
2 ν1

2−ν2m

≤ c max|α|≤�+r1+r2,|β|≤m
‖φ‖α,β

∑

ν1>0

2−ν1(r1−b−1
2 m)

≤ c max|α|≤�+r1+r2,|β|≤m
‖φ‖α,β .

Similarly,
∑

ν∈Y2
|〈ϕ̂ν f̂ , φ〉| ≤ cmax|α|≤�+r1+r2,|β|≤m ‖φ‖α,β . These estimates yield

that
∑

ν∈Y1∪Y2
ϕ̂ν f̂ converges in S′. Therefore,

∑
ν∈Z2 ϕν ∗ f convergence in S′.

We now show that the limit f0 in (6.16) is independent of the specific selection
of ϕ. Assume that ϕ̃ = ϕ̃1 ⊗ ϕ̃2, where ϕ̃1, ϕ̃2 is another pair of functions satisfying
(2.3), (2.5) with n = n1, n2, respectively. Let f̃0 := ∑

ν∈Z2 ϕ̃ν ∗ f . From above it
follows that this series convergences in S′. Then for any φ ∈ S, we have

〈 f0 − f̃0, φ〉 = lim
N→∞

∑

ν1≥−N

∑

ν2≥−N

〈
(ϕν − ϕ̃ν) ∗ f , φ

〉
,

where the series converges absolutely. Further, by (2.3) and (2.5) it follows that

supp
( ∑

ν1≥−N

∑

ν2≥−N

(
(ϕν − ϕ̃ν) ∗ f

)∧) ⊂ {ξ : |ξ | ≤ 2−N }.

Let ω ∈ S(Rn1 × R
n2) be such that ω̂(ξ) = 1 if |ξ | ≤ 1 and ω̂(ξ) = 0 if |ξ | ≥ 2.

Then

∑

ν1≥−N

∑

ν2≥−N

(ϕν − ϕ̃ν) ∗ f = ω−N ∗
∑

ν1≥−N

∑

ν2≥−N

(ϕν − ϕ̃ν) ∗ f

=
−N+1∑

ν1=−N

−N+1∑

ν2=−N

(
ω−N ∗ ϕν ∗ f − ω−N ∗ ϕ̃ν ∗ f

)
,

and hence

|〈 f0 − f̃0, φ〉| =
∣
∣
∣ lim
N→∞

−N+1∑

ν1=−N

−N+1∑

ν2=−N

〈
ω−N ∗ (ϕν ∗ f − ϕ̃ν ∗ f ), φ

〉∣∣
∣

≤ lim
N→∞

−N+1∑

ν1=−N

−N+1∑

ν2=−N

‖ω−N‖L1
(‖ϕν ∗ f ‖L∞ + ‖ϕ̃ν ∗ f ‖L∞

)‖φ‖L1 = 0.

Here for the last equality we used (8.11) and the fact that (8.11) holds with ϕν replaced
by ϕ̃ν . This completes the proof of part (a) of Proposition 6.5. The proofs of parts (b)
and (c) are carried out in a similar manner. We omit them. ��
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8.4 Proof of Proposition 7.7

For simplicity we assume that n1 = n2 = 1.
Fix N ∈ 2N and denote by Y j , j = 1, . . . , N , the set of all dyadic rectangles

I = I1 × I2 ⊂ [0, 1]2 such that |I1| = 2− j and |I2| = 2−N+ j ; hence |I| = 2−N . Set
Y := ∪N

j=1Y j . Clearly, #Y j = 2N and hence #Y = #
( ∪N

j=0 Y j
) = N2N .

For any I ∈ Y, we write ψI(x) := ψI1(x1)ψI2(x2). Consider the function

F(x) :=
∑

I∈Y
ψI(x), ∪{I: I ∈ Y} ⊂ [0, 1]2. (8.16)

By the wavelet characterization of Ḃs
ττ in (4.1) along with (6.6), it follows that

‖F‖Ḃs
ττ

∼
(∑

I∈Y
‖ψI‖τ

p

)1/τ ∼
(∑

I∈Y
|I|(1/p−1/2)τ

)1/τ

∼ 2−N (1/p−1/2)(#Y)1/τ ∼ 2N (1/2−1/p)(N2N )1/τ . (8.17)

(a) We next prove estimate (7.11) (the sharpness of (7.7)). Assume 2 < p < ∞. Let
m := #Y/2 = N2N/2. We claim that

σm(F) ≥ c�m−α(lnm)1/2−1/p‖F‖Ḃs
ττ

, (8.18)

where c� > 0 is a constant independent of m. Indeed, clearly

σm(F)p = inf
g∈�m

‖F − g‖p ≥ c inf
g∈�m

‖F − g‖Ḟ0
p2

≥ c
∥
∥∥
( ∑

I∈Y\Xm

[|I|−1/21I(·)]2
)1/2∥∥∥

L p
= c2N/2

∥
∥∥
( ∑

I∈Y\Xm

1I(·)
)1/2∥∥∥

L p

(8.19)

for some set Xm ⊂ Y with #Xm = m.

Set h(x) := ∑
I∈Y\Xm

1I(x) and let � := {
x: h(x) > N/4

}
. We claim that

|�| ≥ 1/5. Indeed, assume |�| < 1/5. Then

N/2 =
∫

[0,1]2
h(x)dx =

∫

�

h(x)dx +
∫

[0,1]2\�
h(x)dx ≤ N/5 + N/4 < N/2,

where we used that ‖h‖∞ ≤ N . We got a contradiction that proves that |�| ≥ 1/5.
This coupled with (8.19) leads to

σm(F)p ≥ c2N/2‖h1/2‖L p ≥ c2N/2‖h1/2‖L p(�) ≥ c′2N/2N 1/2.

A little algebra shows that this and (8.17) yield (8.18). Estimate (7.11) follows at once
from (8.18).
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To prove (7.10) (assuming 0 < p ≤ 2) is easier. One simply takes F :=∑I∈Y ψI,
where Y consists of 2m disjoint rectangles of the same area. Then it is easy to verify
that σm(F) ≥ cm−α‖F‖Ḃs

ττ
, which implies (7.10).

(b) We now prove estimate (7.12). Let 0 < p ≤ 2. We will use again the function
F from (8.16). This time we choose m := N2N and let g := F . Observe that
g ∈ �m . We have

‖g‖p ∼ ‖g‖Ḟ0
p2

∼
∥∥
∥
(∑

I∈Y
[|I−1/21I(·)]2

)1/2∥∥
∥
L p

∼ 2N/2
∥∥
∥
(∑

I∈Y
1I(·)

)1/2∥∥
∥
L p

∼ 2N/2
(∥∥∥
∑

I∈Y
1I(·)

∥∥∥
L p/2

)1/2 ∼ 2N/2N 1/2.

On the other hand, from (8.17) we know that ‖g‖Ḃs
ττ

∼ 2N (1/2−1/p)(N2N )1/τ .
Now again a straightforward calculation shows that

‖g‖Ḃs
ττ

∼ mα(lnm)1/p−1/2‖g‖p,

which readily implies (7.12).

To prove (7.13) we take g := ∑
I∈Y ψI, where Y consists of m disjoint rectangles

of the same area. Then it is easy to see that ‖g‖Ḃs
ττ

≥ cmα‖g‖p, which yields (7.13).
The proof is complete. ��
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