
Constructive Approximation (2020) 51:73–122
https://doi.org/10.1007/s00365-019-09458-1

Gaussian Bounds for the Weighted Heat Kernels on the
Interval, Ball, and Simplex

Gerard Kerkyacharian1,2 · Pencho Petrushev3 · Yuan Xu4

Received: 6 May 2018 / Accepted: 17 January 2019 / Published online: 18 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The aim of this article is to establish two-sidedGaussian bounds for the heat kernels on
the unit ball and simplex inRn , and in particular on the interval, generated by classical
differential operators whose eigenfunctions are algebraic polynomials. To this end we
develop a general method that employs the natural relation of such operators with
weighted Laplace operators on suitable subsets of Riemannian manifolds and the
existing general results on heat kernels. Our general scheme allows us to consider heat
kernels in the weighted cases on the interval, ball, and simplex with parameters in the
full range.
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1 Introduction

We establish two-sided Gaussian bounds for the heat kernels generated by classical
differential operators in weighted cases on the unit ball and simplex in R

n , and in
particular on the interval, whose eigenfunctions are algebraic polynomials. One of our
principle examples is the operator

L :=
n∑

i=1

∂2i −
n∑

i=1

n∑

j=1

xi x j∂i∂ j − (n + 2γ )

n∑

i=1

xi∂i , γ > −1/2, (1.1)

on the unit ball Bn ⊂ R
n equipped with the measure dμ(x) := (1 − ‖x‖2)γ−1/2dx

and the distance

ρ(x, y) := arccos
(
x · y +

√
1 − ‖x‖2

√
1 − ‖y‖2),

where x · y is the inner product of x, y ∈ R
n and ‖x‖ is the Euclidean norm of x . As

will be seen, the operator L is symmetric and −L is positive.
Denote by Ṽk the set of all algebraic polynomials of degree k that are orthogonal

in L2(Bn, μ) to lower degree polynomials, and let Ṽ0 be the set of all constants. As is
well known (see, e.g., [5, §2.3.2]) Ṽk , k = 0, 1, . . . , are eigenspaces of the operator
L; namely,

L P̃ = −λk P̃, ∀P̃ ∈ Ṽk, where λk := k(k + n + 2γ − 1).

Let P̃k(x, y) be the kernel of the orthogonal projector onto Ṽk . Then the semigroup
etL , t > 0, generated by L has a (heat) kernel etL(x, y) of the form

etL(x, y) =
∞∑

k=0

e−λk t P̃k(x, y).

We establish two-sided Gaussian bounds on etL(x, y) of the form:

c1 exp{−ρ(x,y)2

c2t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 ≤ etL(x, y) ≤ c3 exp{−ρ(x,y)2

c4t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 . (1.2)

Here V (x, r) := μ(B(x, r)) is the volume of the ball B(x, r) centered at x of radius r .
It is important to point out that in the literature the parameter γ in (1.1) is invariably
restricted to γ ≥ 0. Our method allows us to operate in the full range γ > −1/2.

We obtain a similar result on the simplex T
n := {

x ∈ R
n : xi > 0, |x | < 1

}
,

|x | := ∑
i xi , with weight

∏n
i=1 x

κi−1/2
i (1 − |x |)κn+1−1/2, κi > −1/2, and as a

consequence for the Jacobi heat kernel on [−1, 1] with weight (1 − x)α(1 + x)β ,
α, β > −1.
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Note that two-sided Gaussian bounds for the Jacobi heat kernel are also established
in [2, Theorem 7.2]. In [21] Nowak and Sjögren obtained this result in the case when
α, β ≥ −1/2 via a direct method using special functions.

In [15] we derived two-sided Gaussian bounds for the heat kernels on the ball and
simplex as in (1.2) from the Jacobi case under the restrictions γ ≥ 0 for the ball and
κi ≥ 0 for the simplex.

To prove our results on the ball and simplex, we first develop a general method
that employs the natural relation between differential operators on open relatively
compact subsets of Rn whose eigenfunctions are algebraic polynomials and weighted
Laplace operators on respective subsets of Riemannian manifolds and then utilize
existing results on two-sided Gaussian bounds for heat kernels on manifolds. Our
development heavily relies on a general result of Gyrya and Saloff–Coste from [12] on
the heat kernel in Harnack-type Dirichlet spaces with Neumann boundary conditions
in inner uniform domains. We apply the result from [12] in the particular case of a
bilinearDirichlet form generated byweighted Laplacian on an open relatively compact
convex subset of a “good” Riemannian manifold. In the process, we establish some
basic properties of convex subsets of Riemannian manifods. In particular, we show
that any open relatively compact convex subset of a Riemannian manifold is an inner
uniform domain. As a result, we establish Gaussian bounds on the related heat kernels
just as in (1.2).

A crucial step in this undertaking is to show that the classical differential operators
of interest on the ball or simplex whose eigenfunctions are algebraic polynomials are
naturally related through charts to weighted Laplace operators on appropriate subsets
of the unit sphere inRn+1, considered as aRiemannianmanifold. This intimate relation
enables us to deploy our general result and show that an operator L like these is
essentially self-adjoint and −L is positive, and more importantly that the associated
semigroup etL has a (heat) kernel with two-sided Gaussian bounds as in (1.2).

It is an open problem to identify other particular settings where the utilization of
our method can produce Gaussian bounds for the respective heat kernels.

The two-sided Gaussian bounds on heat kernels have a great deal of applications
in harmonic analysis, PDEs, probability, and elsewhere. For example, as is shown
in [2,14], they allow the development of the theory of Besov and Triebel–Lizorkin
spaces with complete range of indices in the setting of Dirichlet spaces with doubling
measure and local Poincaré inequality. The Gaussian heat kernel estimates from this
article imply that the results from [2,14] generalize the ones on the interval, ball,
and simplex from [13,18,19,22,23]. Furthermore, these results break new ground in
allowing the extension of all results from [13,18,19,22,23] to the full range of the
parameters of the weights.

An interesting specific consequence of the upper Gaussian bound on heat kernels
is the finite speed propagation property, which plays an important role, e.g., in the
development of smooth functional calculus in [14]. This important property is not
well known for the interval, ball, or simplex. We state it on the ball in Sect. 3. This
property is essentially used in [17] for the construction of frames on the ball with small
shrinking supports.

The organization of the paper is as follows. In Sect. 2, we develop our general
method for establishing two-sided Gaussian bounds for heat kernels associated with
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differential operators that are realizations of weighted Laplace operators on suitable
charts of Riemannian manifolds. This includes the presentation of the need result by
Gyrya and Saloff–Coste [12] in the specific case of Riemannian manifolds, establish-
ment of basic properties of convex subsets of Riemannian manifolds, development of
our setting, and the proof of the main result. In Sect. 3, we apply our general result
from Sect. 2 to obtain two-sided Gaussian bounds for the weighted heat kernel on the
unit ball inRn . We also present some consequences of this result. In Sect. 4, we obtain
two-sided Gaussian bounds on the weighted heat kernel on the simplex inRn . Finally,
in Sect. 5, we derive Gaussian bounds for the Jacobi heat kernel from the case of the
simplex.
NotationThe following notationwill be useful:a∧b := min{a, b},a∨b := max{a, b}.
Positive constants will be denoted by c, c′, c0, c1, . . . , and they may vary at every
occurrence; a ∼ b will stand for c1 ≤ a/b ≤ c2. Most constants will depend on some
parameters that will be clear from the context.

In this article, all functions that we deal with are assumed to be real-valued.

2 General Result on Heat Kernels with Gaussian Bounds

In this section, we develop our idea for establishing two-sided Gaussian bounds on
heat kernels generated by operators that are realizations of weighted Laplace operators
in local coordinates on suitable charts of Riemannian manifolds.

2.1 Heat Kernel on RiemannianManifolds and Their Open Convex Subsets

As was explained in the introduction, it will be critical for our development that
the operator L of interest is a realization of a weighted Laplace operator in local
coordinates on a suitable chart of a Riemanian manifold. In this section, we collect all
facts that we need on Riemannian manifolds. We refer the reader to [11] for details.

2.1.1 Heat Kernel on Riemannian Manifolds

Assume that M is a complete n-dimensional Riemannian manifold, and let ν be the
Riemannian measure. As usual, the distance on M will be the geodesic distance d(·, ·)
onM.We denote by V (x, r) the volume of the ball of radius r > 0 centered at x ∈ M ;
that is,

V (x, r) := ν(B(x, r)), B(x, r) := {y ∈ M : d(y, x) < r}.
As usual, we denote by TxM the tangent space of M at x and by T ∗

x M its dual.
Set T M := ∪x TxM . We denote by g(x)(·, ·) the Riemannian metric tensor. This is a
symmetric positive definite bilinear form on TxM that depends smoothly on x ∈ M .
Then

〈ξ, η〉g := g(x)(ξ, η), ξ, η ∈ TxM,

is an inner product on TxM . Set |ξ |g := √〈ξ, ξ 〉g .
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Denote by C(M) be the space of continuous functions on M and by Cc(M) the
space of all functions f ∈ C(M) with compact support. Also, define

D(M) := C∞(M) ∩ Cc(M).

Further, we denote by
−→
C ∞(M) the space of smooth vector fields �v ∈ T M and by−→D (M) the space of all �v ∈ −→

C ∞(M) with compact support.
The gradient and divergence operators will be denoted by ∇ and div. As is well

known, ∇ : C∞(M) �→ −→
C ∞(M) and div : −→

C ∞(M) �→ C∞(M). The divergence
theorem [11, Theorem 3.14] asserts that for any vector field �v ∈ −→

C ∞(M) there exists
a unique function div �v ∈ C∞(M) such that

∫

M
u div �vdν = −

∫

M
〈�v,∇u〉gdν, ∀u ∈ D(M). (2.1)

This identity also holds if u ∈ C∞(M) and �v ∈ −→D (M) (see [11, Corollary 3.15]).
The Laplace (or Laplace–Beltrami) operator � on M is defined by

� f := div(∇ f ), f ∈ C∞(M).

Identity (2.1) yields the following Green’s formula: If f , h ∈ C∞(M) and f ∈ D(M)

or h ∈ D(M), then

∫

M
f �hdν = −

∫

M
〈∇ f ,∇h〉gdν =

∫

M
h� f dν. (2.2)

Self-adjoint extensions of the Laplace operator We next consider the Dirichlet and
Neumann extensions of the Laplace operator � on M .

We first introduce the adjoint operator�∗ of�. We consider the operator� defined
onD(M) that is dense in L2(M, ν). The domain D(�∗) of �∗ is defined as the set of
all f ∈ L2(M, ν) for which there exists h ∈ L2(M, ν) such that

∫

M
f �θdν =

∫

M
hθdν, ∀θ ∈ D(M).

For each f ∈ D(�∗), one defines �∗ f := h. By (2.2) it readily follow that �

is symmetric and −� is positive. Therefore, the adjoint operator �∗ is closed and
� ⊂ �∗.
Dirichlet Laplacian �D . We introduce the quadratic form

ED( f , h) :=
∫

M
〈∇ f ,∇h〉gdν with domain D(ED) := D(M)

and associated norm
‖ f ‖2ED := ‖ f ‖2L2 + ED( f , f ).
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It is not hard to see that ED is closable. We denote by ED the closure of ED and by
WD = D(ED) its domain.

Further, we define the domain of the Dirichlet Laplacian by

D(�D) := {
f ∈ WD : |ED( f , θ)| ≤ c‖θ‖L2 , ∀θ ∈ D(M)

}

and define �D f for f ∈ D(�D) from the identity

∫

M
(�D f )θdμ = −ED( f , θ), ∀θ ∈ D(M).

In other words,

D(�D) := D(ED) ∩ D(�∗) and �D f := �∗ f , ∀ f ∈ D(�D).

The point is that �D is a self-adjoint (Friedrichs) extension of �.
Neumann Laplacian �N . We now consider the quadratic form

EN ( f , h) :=
∫

M
〈∇ f ,∇h〉gdν

with domain D(EN ) :=
{
f ∈ L2(M)∩C∞(M) : ∫

M |∇ f |2gdν < ∞
}
and associated

norm
‖ f ‖2E := ‖ f ‖2L2 + EN ( f , f ).

It is easy to see that EN is closable. We denote by EN the closure of EN and by
WN = D(EN ) its domain.

Similarly as above, we define the domain of the Neumann Laplacian �N by

D(�N ) := {
f ∈ WN : |ED( f , θ)| ≤ c‖θ‖L2 , ∀θ ∈ D(M)

}

and define �N from the identity

∫

M
(�N f )θdμ = −EN ( f , θ), ∀D(�N ), ∀θ ∈ D(M).

It is important that �N is a self-adjoint extension of �. For more details, see [6].
From our assumption that the Riemannian manifold M is complete, it follows that

WD = WN and, therefore, �D = �N ,

see [11], Chapter 11.

Remark 2.1 Using the terminology from [12], we can claim that (EN ,WN ) is a strictly
local regular Dirichlet form. Hence, the associated semi-group et�

N
, t > 0, is a sub-

Markovian strongly continuous semi-group.
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Fundamental assumption We will stipulate two key conditions on the Riemannian
manifold (M, d, ν) we deal with:

(a) The volume doubling condition There exists a constant c0 > 0 such that

V (x, 2r) ≤ c0V (x, r), ∀x ∈ M, ∀r > 0. (2.3)

(b) Poincaré inequality There exists a constant P0 > 0 such that

∫

B(x,r)
| f − fB |2dν ≤ P0r

2
∫

B(x,r)
|∇ f |2gdν, ∀ f ∈ D(M), ∀x ∈ M,∀r > 0,

(2.4)

where fB := V (x, r)−1
∫
B(x,r) f dν.

As is well known (see [10,24] and also [25]), conditions (a), (b) are equivalent to
two-sided Gaussian bounds on the heat kernel: et�

N
, t > 0, is an integral operator

with kernel et�
N
(x, y) such that for any x, y ∈ M and t > 0,

c1 exp{− d(x,y)2

c2t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 ≤ et�
N
(x, y) ≤ c3 exp{− d(x,y)2

c4t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 . (2.5)

Here c1, c2, c3, c4 > 0 are constants.

2.1.2 Weighted Laplace Operator in Chart of Riemannian Manifold

Weadhere to the setting and notation introduced in the previous subsection. In addition,
we assume that M ⊂ R

m and the Riemannian metric on M is induced by the inner
product on R

m . It will be convenient to us to use the notation y = (y1, . . . , ym) for
points on M ⊂ R

m and v = (v1, . . . , vn) for vectors in the tangent space TyM .
Our goal is to show how two-sided Gaussian bounds can be obtained in the case

of a heat kernel generated by weighted Laplace operator �w on an open relatively
compact subset U of M .

Assume that (U , ϕ) is a chart onM , whereU is a connected open relatively compact
subset of M such that ϕ maps diffeomorphically U onto V , where V ⊂ R

n .
It will be convenient to work with the map φ := ϕ−1. Thus φ : V → U is a C∞

bijection and in “local coordinates”

φ(x) = (φ1(x), . . . , φm(x)) ∈ U ⊂ R
m, ∀x ∈ V ⊂ R

n .

The Riemannian tensor g(x) = (gi j (x)) can be represented by

g(x)i j = 〈
∂iφ(x), ∂ jφ(x)

〉
Rm =

m∑

k=1

∂iφk(x)∂ jφk(x), x ∈ V , 1 ≤ i, j ≤ n. (2.6)

As usual, we shall denote by g−1(x) = (gi j (x)) the inverse of g(x).
A particular case of a simple but useful map φ is considered in the following
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Proposition 2.2 In the setting from above, assume that the map φ : V → U, V ⊂ R
n,

U ⊂ R
n+1, is of the form

φ(x) = (x1, x2, . . . , xn, ψ(x)).

Then gi j (x) = δi j + ∂iψ(x)∂ jψ(x),

gi j (x) = δi j − ∂iψ(x)∂ jψ(x)

1 + ∑
� |∂�ψ(x)|2 , (2.7)

and
det g(x) = 1 +

∑

�

|∂�ψ(x)|2. (2.8)

Proof Let Fi := ∂iψ(x), and consider F := (F1, . . . , Fn)T as a vector inRn . Assume
F �= 0. By (2.6) it readily follows that gi j (x) = δi j + ∂iψ(x)∂ jψ(x) and hence
g(x) = Id + FFT . Put P := ‖F‖−2FFT . Clearly, P is the matrix of the orthogonal
projector onto the one-dimensional space spanned by F ; that is, PF = F and PV = 0
if V ⊥ F . Hence P2 = P . It is easy to see that for any α �= −1,

(Id + αP)
(
Id − α

1 + α
P

)
= Id and hence (Id + αP)−1 = Id − α

1 + α
P.

With α = ‖F‖2 this implies (2.7).
Clearly, (Id+αP)F = (1+α)F and (Id+αP)V = V for every V ⊥ F . Therefore,

det(Id + αP) = 1 + α the product of the eigenvalues, which yields (2.8). ��
The Riemannian measure on U ⊂ M is dν = √

det g(x)dx , and we have

∫

U
f (y)dν(y) =

∫

V
f (φ(x))

√
det g(x)dx .

In what follows, we shall use the abbreviated notation

f̃ (x) := f ◦ φ(x) = f (φ(x)). (2.9)

For any f ∈ C∞(U ), the gradient ∇ f (y) ∈ TyM at y = φ(x) is a vector in R
n

with components

(∇ f (y))i =
∑

j

gi j (x)∂ j f̃ (x), 1 ≤ i ≤ n, (2.10)

and
〈∇ f (y),∇h(y)〉g =

∑

i, j

gi j (x)∂i f̃ (x)∂ j h̃(x). (2.11)

Hence |∇ f (y)|2g := 〈∇ f (y),∇ f (y)〉g .
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In the chart (U , φ−1) from above, the divergence operator div (see [11, Theo-
rem 3.14]) takes the form

div �v = 1√
det g

∑

k

∂k(
√
det gvk), �v = (v1, . . . , vn).

As before, the Laplace operator is defined by

� f := div(∇ f ).

Weights We assume that w > 0 is a C∞(U ) weight function such that

∫

U
wdν =

∫

V
w(φ(x))

√
det g(x)dx < ∞. (2.12)

Define
w̆(x) := w(φ(x))

√
det g(x) = w̃(x)

√
det g(x), x ∈ V , (2.13)

where just as in (2.9), w̃(x) := w(φ(x)). Hence, changing the variables leads to

∫

U
f (y)w(y)dν(y) =

∫

V
f̃ (x)w̆(x)dx . (2.14)

We define the weighted measure dνw on U by

dνw := wdν. (2.15)

The weighted divergence and Laplacian are defined by (see [11], § 3.6)

divw �v := 1

w
div(w�v) (2.16)

and

�w f := divw(∇ f ) = 1

w
div(w∇ f ), f ∈ C∞(U ). (2.17)

In local coordinates, the weighted Laplacian takes the form

�w f (y) = 1

w̃(x)
√
det g(x)

n∑

i=1

∂i

[√
det g(x)w̃(x)

n∑

j=1

gi j (x)∂ j f̃ (x)
]

=
n∑

i=1

∂i log
[√

det g(x)w̃(x)
] n∑

j=1

gi j (x)∂ j f̃ (x) +
n∑

i=1

∂i

[ n∑

j=1

gi j (x)∂ j f̃ (x)
]

=
∑

i, j

gi j (x)∂i∂ j f̃ +
∑

j

( ∑

i

∂i g
i j (x)

)
∂ j f̃

+
∑

j

( ∑

i

gi j (x)∂i log
[√

det g(x)w̃(x)
])

∂ j f̃ , (2.18)
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where w̃(x) := w(φ(x)), y = φ(x), x ∈ V . We shall denote by �̃w f̃ (x) the operator
in the right-hand side of (2.18); i.e., we have

�w f (y) = �̃w f̃ (x), y = φ(x), x ∈ V . (2.19)

Denote by C(U ) the space of continuous functions on U and by Cc(U ) the space
of all functions f ∈ C(M) with compact support contained in U . Also, set

D(U ) := C∞(U ) ∩ Cc(U ). (2.20)

Further, we denote by
−→
C ∞(U ) the space of smooth vector fields �v(x) ∈ TxU and by−→D (U ) the space of all �v ∈ −→

C ∞(U ) with compact support, contained in U .
The weighted divergence theorem [11, (3.42)] takes the form: If u ∈ D(U ) and

�v ∈ −→
C ∞(U ) or u ∈ C∞(U ) and �v ∈ −→D (U ), then

∫

U
u divw �vdνw = −

∫

U
〈�v,∇u〉gdνw. (2.21)

Green’s formula remains valid [11, (3.43)]: If f , h ∈ C∞(U ) and f ∈ D(U ) or
h ∈ D(U ), then

∫

U
f �whdνw = −

∫

U
〈∇ f ,∇h〉gdνw =

∫

U
h�w f dνw. (2.22)

Neumann extension of the weighted Laplace operator We next describe the Neu-
mann self-adjoint extension �N

w of the weighted Laplace operator �w on U .
We consider the operator �w with domain D(U ) (see (2.19)–(2.20)) that is dense

in L2(U , νw). We denote by �∗
w the adjoint of the operator �w. By (2.22) it readily

follows that�w is symmetric and−�w is positive. Therefore,�∗
w is a closed operator

and �w ⊂ �∗
w.

It is readily seen that if f ∈ D(�∗
w) ∩ C∞(U ), then �∗

w f = �w f .
To define the Neumann extension �N

w of �w, we introduce a quadratic form EN
w

with domain

D(EN
w ) :=

{
f ∈ L2(U , νw) ∩ C∞(U ) :

∫

U
|∇ f |2gdνw < ∞

}
,

defined by

EN
w ( f , h) :=

∫

U
〈∇ f ,∇h〉gdνw, f , h ∈ D(EN

w ).

We also introduce the associated norm

‖ f ‖2EN
w

:= ‖ f ‖2L2 + EN
w ( f , f ), f ∈ D(EN

w ).
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We next show that the symmetric quadratic form EN
w is closable. Indeed, let { fk} ⊂

D(EN
w ) be such that ‖ fk‖2 → 0 and ∇ fk �→ �H in

−→
L 2(U , νw). Then by (2.21),

∫

U
〈∇ fk, �v〉gdνw = −

∫

U
fk divw �vdνw, ∀�v ∈ �D(U ).

From this and the above assumptions, it readily follows that
∫
U 〈 �H , �v〉gdνw = 0 for

all �v ∈ �D(U ), which implies �H = �0. Clearly, the above implies that every Cauchy
sequence in D(EN

w ) is convergent. Therefore, EN
w is closable.

We denote by EN
w the closure of EN

w and by WN
w := D(EN

w ) its domain. Also, let

Hw := {
f ∈ L2(U , νw) ∩ C∞(U ) ∩ L∞(U ) : |∇ f |g ∈ L2(U , νw)

}
.

Proposition 2.3 The setHw is a dense subspace of W N
w and an algebra.

Proof Let f ∈ D(EN
w ). Choose �k ∈ C∞(R) so that

0 ≤ �′
k ≤ 1, �k(x) = x, ∀x ∈ [−k, k], and ‖�k‖L∞ ≤ k + 1.

By the chain rule, ∇(�k( f )) = �′
k( f )∇ f and hence �k( f ) ∈ Hw. Furthermore, it

is readily seen that

∫

U
| f − �k( f )|2dνw +

∫

U
|∇ f − ∇�k( f )|2gdνw

=
∫

M
| f − �k( f )|2dνw +

∫

M
|∇ f − �′

k( f )∇( f )|2gdνw → 0.

Therefore, Hw is dense in D(EN
w ) and hence in WN

w .
To show thatHw is an algebra, assume f , g ∈ Hw. As f , g ∈ L2(U , νw)∩L∞(U ),

it follows that f g ∈ L2(U , νw) ∩ L∞(U ). On the other hand, by the product rule
∇( f g) = f ∇(g) + g∇( f ) and hence |∇( f g)|g ∈ L2(U , νw). Therefore, Hw is an
algebra. ��
Definition 2.4 We define the domain of the Neumann extension �N

w of the weighted
Laplacian �w by

D(�N
w) := {

f ∈ WN
w : ∣∣EN

w ( f , θ)
∣∣ ≤ c‖θ‖2, ∀θ ∈ D(U )

}
,

and for any f ∈ D(�N
w), we define �N

w f from

∫

U
θ�N

w f dνw = −EN
w ( f , θ), ∀θ ∈ D(U ). (2.23)

Proposition 2.5 The operator �N
w is self-adjoint and

�w ⊂ �N
w ⊂ �∗

w. (2.24)
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Moreover,
D(�N

w) := WN
w ∩ D(�∗

w). (2.25)

Proof From the general theory of positive symmetric quadratic forms (see, e.g., [6,
§1.3]), it follows that �N

w is self-adjoint; i.e., (�N
w)∗ = �N

w . Also it is easy to se that
�w ⊂ �N

w . Hence, �N
w = (�N

w)∗ ⊂ �∗
w. Thus (2.24) is valid.

We now prove (2.25). Clearly, (2.24) implies D(�N
w) ⊂ WN

w ∩ D(�∗
w). Let f ∈

WN
w ∩ D(�∗

w). Then there exits { fk} ⊂ D(EN
w ) such that fk → f in L2(U , νw) and

EN
w ( fk, θ) → EN

w ( fk, θ), ∀θ ∈ D(U ). From this it follows that for any θ ∈ D(U ),

EN
w ( f , θ) = lim

n→∞ EN
w ( fk, θ) = lim

n→∞

∫

U
〈∇ fk, θ〉gdνw

= − lim
n→∞

∫

U
fk�wθdνw = −

∫

U
f �wθdνw = −

∫

U
θ�∗

w f dνw,

where we used (2.22). From above and (2.23), we infer that �∗
w f = �N

w f , which
implies f ∈ D(�N

w). The proof of (2.25) is complete. ��

2.1.3 The Theory of Gyrya and Saloff–Coste

The proof of our main result in this section (Theorem 2.10) will rely on a result of
Gyrya and Saloff–Coste from [12]. To state this result, we need the definition of an
inner uniform domain, which we adapt to the case of Riemannian manifolds.

Definition 2.6 LetU be anopen connected subset of aRiemannianmanifold (M, d, ν).
The intrinsic distance dU (·, ·) is defined by

dU (y, y�) := inf
{
�(γ ) : γ : [0, 1] �→ U , γ (0) = y, γ (1) = y�

}
, (2.26)

where the curve γ is continuous and rectifiable and �(γ ) is its length.
We say that U is an inner uniform domain if there exist constants C, c > 0 such

that for any y, y� ∈ U there exists a rectifiable curve γ : [0, 1] → U connecting y
and y� of length ≤ CdU (y, y�) such that

dU (z, ∂U ) ≥ cdU (y, z) ∧ dU (z, y�), ∀z ∈ γ ([0, 1]).

Remark 2.7 Observe that if U is convex, then the intrinsic distance dU (·, ·) is simply
the geodesic distance inherited from M . One of the important points in this paper is
that every open convex relatively compact subset of M is an inner uniform domain in
the sense of Definition 2.6. This fact (and more) will be established in Theorem 2.11
below.

We are now prepared to state the result of Gyrya and Saloff–Coste [12, Theo-
rem 3.34].
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Theorem 2.8 Let (M, d, ν) be a complete Riemannian manifold, where the doubling
property of the measure (2.3) and the local Poincaré inequality (2.4) are verified. Let
U ⊂ M be an inner uniform domain in the sense of Definition 2.6. Let dU (·, ·) be the
intrinsic distance on U extended continuously to U (see (2.26)), define BU (y, r) :=
{y� ∈ U : dU (y, y�) < r}.

Further, assume that ω ∈ C∞(U ) is a weight function such that ω(y) > 0 on U,
and there exist constants c > 0 and N ≥ 1 such that

sup
y�∈BU (y,r)

w(y�) ≤ c inf
y�∈BU (y,r)

w(y�), ∀y ∈ U ,∀r > 0 so that dU (y, ∂U ) ≥ Nr .

Set dνw := wdν.
Assume also that there exists a constant c0 > 0 such that

VU ,w(y, 2r) ≤ c0VU ,w(y, r), ∀y ∈ U , ∀r > 0,

where VU ,w(y, r) := νw(BU (y, r)).
Let �N

w be the Neumann extension of the weighted Laplacian �w from Defini-

tion 2.4, and let et�
N
w , t > 0, be the semi-group generated by �N

w .

Then the respective local Poincaré inequality is verified, and as a consequence et�
N
w

is an integral operator with (heat) kernel et�
N
w (x, y) possessing two-sided Gaussian

bounds; i.e., there exist constants c1, c2, c3, c4 > 0 such that for x, y ∈ U and t > 0,

c1 exp{− dU (x,y)2

c2t
}

[
VU ,w(x,

√
t)VU ,w(y,

√
t)

]1/2 ≤ et�
N
w (x, y) ≤ c3 exp{− dU (x,y)2

c4t
}

[
VU ,w(x,

√
t)BU ,w(y,

√
t)

]1/2 .

(2.27)

2.2 Setting andMain Result

Our setting contains two distinctive but closely interconnected parts:

(i) It will be assumed that there exists a symmetric differential operator L acting on
functions defined on a relatively compact open subset V ⊂ R

n with polynomial
eigenfunctions.

(ii) It will also be assumed that the operator L is a realization in local coordinates
of a weighted Laplace operator �w, acting on functions defined on a relatively
compact open convex subsetU of a complete Riemannian manifold M for which
the doubling property and the Poincaré inequality are verified. The role of the
second, geometric part of our assumption will be critical.

We next present the details of our setting.
Differential operator preserving polynomials on open set in R

n Assume that V ⊂
R
n is a connected open set in Rn with the properties:

(1) X := V is compact,
(2) X̊ = V , and
(3) X \ V is of Lebesgue measure 0.

123



86 Constructive Approximation (2020) 51:73–122

Denote by P̃k := P̃k(V ) the set of all real algebraic polynomials of degree ≤ k in n
variables, restricted to V , and set P̃ = P̃(V ) := ∪k≥0P̃k .

Let L be a differential operator of the form

L =
n∑

i, j=1

ai j (x)∂i∂ j +
n∑

j=1

b j (x)∂ j , (2.28)

where ai j ∈ P̃2(V ) and b j ∈ P̃1(V ). We assume that the domain of the operator L is
D(L) := P̃(V ). Clearly,

L(P̃k) ⊂ P̃k, ∀k ≥ 0, and L1 = 0. (2.29)

In addition, we assume that

L(P̃k) = P̃k, ∀k ≥ 1. (2.30)

We also introduce an underlying weighted space L2(V , μ), where

dμ(x) := w̆(x)dx, where w̆ ∈ C∞(V ), w̆ > 0, and
∫

V
w̆(x)dx < ∞.

(2.31)
Laplace operator in chart of Riemannian manifold Assume (M, d, ν) is an n-
dimensional complete Riemannian manifold (without boundary) and M ⊂ R

m . We
also assume that the Riemannian metric on M is induced by the inner product on Rm .
We adhere to the notation from Sect. 2.1.

We stipulate two conditions on (M, d, ν):

(i) The volume doubling condition (2.3) is valid.
(ii) The Poincaré inequality (2.4) holds true.

As was alluded to in Sect. 2.1.1, as a consequence of these two conditions the (heat)
kernel et�

N
(x, y) of the semigroup et�

N
generated by the Neumann (or Dirichlet)

extension of the Laplacian � on M possesses two-sided Gaussian bounds (2.5).
Using the terminology from [12], (M, d, ν) equipped with the quadratic form EN

is a Harnack-type Dirichlet space.
Further, just as in Sect. 2.1.2, we assume that (U , ϕ) is a chart on M , where U is a

connected open relatively compact subset of M such that ϕ maps diffeomorphically
U onto V , where V ⊂ R

n is the set from above. We set φ := ϕ−1. As before, for any
function f on U , we write

f̃ (x) := f (φ(x)). (2.32)

As in Sect. 2.1.2, we denote by g(x) = (gi j (x)) the Riemannian tensor (see (2.6))
and by g−1(x) = (gi j (x)) its inverse.

Assume w > 0 is a C∞(U ) weight function obeying (2.12) and compatible with
w̆ from (2.31) in the following sense:
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w̆(x) := w(φ(x))
√
det g(x) = w̃(x)

√
det g(x), x ∈ V , (2.33)

where just as in (2.32), w̃(x) := w(φ(x)). We set νw := wdν.
The weighted divergence divw and Laplacian �w are defined as in (2.16)–(2.18).
We write Y := U .

Distances and ballsWeassume that the distanceρ(·, ·)onV is inducedby the geodesic
distance d(·, ·) on U ; that is,

ρ(x, x�) := d(y, y�), ∀x, x� ∈ V with y := φ(x), y� := φ(x�). (2.34)

We define BM (a, r) := {y ∈ M : d(a, y) < r}, and for any a ∈ Y , set

BY (a, r) := {y ∈ Y : d(a, y) < r} = Y ∩ BM (a, r).

We also set
BX (b, r) := {x ∈ X : ρ(b, x) < r}, b ∈ X .

We shall use the notation

Vw,Y (y, r) := νw(BY (y, r)) and VX (x, r) := μ(BX (x, r)). (2.35)

Polynomials As we have already alluded to above, P̃k := P̃k(V ) stands for the
set of real algebraic polynomials of degree ≤ k in n variables, restricted to V , and
P̃ = P̃(V ) := ∪k≥0P̃k . We now let

Pk(U ) := { f ∈ C∞(U ) : f̃ ∈ P̃k(V )} and set P(U ) := ∪k≥0Pk(U ). (2.36)

Basic conditions Our further assumptions are as follows:
C0 The operator L from (2.28) is the weighted Laplacian �w on U in local coor-

dinates (see (2.18)); i.e.,

Lh(x) =
∑

i, j

gi j (x)∂i∂ j h +
∑

j

( ∑

i

∂i g
i j (x)

)
∂ j h

+
∑

j

(∑

i

gi j (x)∂i log
[√

det g(x)w̃(x)
])

∂ j h, x ∈ V , (2.37)

or using the notation from (2.19), we have L f̃ (x) = �̃w f̃ (x), x ∈ V .
C1 The setU is a convex subset of M ; that is, for any points y, y� ∈ U , there exists

a minimizing geodesic line γ ⊂ U that connects y and y�.
C2 (Doubling property) There exists a constant c0 > 0 such that

VY ,w(y, 2r) ≤ c0VY ,w(y, r), ∀y ∈ Y , ∀r > 0,

or equivalently,
VX (x, 2r) ≤ c0VX (x, r), ∀x ∈ X , ∀r > 0.
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Here VY ,w(y, r) and VX (x, r) are the weighted volumes of balls, defined in (2.35).
C3 There exist constants c > 0 and N > 1 such that

sup
y′∈BY (y,r)

w(y′) ≤ c inf
y′∈BY (y,r)

w(y′), ∀y ∈ U ,∀r > 0 s.t. d(y, ∂U ) ≥ Nr

or equivalently,

sup
x ′∈BX (x,r)

w̆(x ′) ≤ c inf
x ′∈BX (x,r)

w̆(x ′), ∀x ∈ V ,∀r > 0 s.t. ρ(x, ∂V ) ≥ Nr .

C4 (Green’s theorem) For any f ∈ P(U ) and h ∈ L∞(U ) ∩ C∞(U ) such that∫
U |∇h|2gdνw < ∞, this identity holds:

∫

U
h�w f dνw = −

∫

U
〈∇ f ,∇h)〉gdνw (recall dνw := wdν). (2.38)

From (2.18) and (2.37), it follows that for any f ∈ P(U ), we have �w f (y) =
L f̃ (x) with y = φ(x), x ∈ V . This coupled with the change of variables identity
(2.14) leads to ∫

U
h�w f dνw =

∫

V
h̃L f̃ dμ, ∀ f , h ∈ P(U ).

In turn this and (2.38) yield that the operator L is symmetric and −L is positive; i.e.,

∫

V
hL f dμ =

∫

V
f Lhdμ and −

∫

V
f L f dμ ≥ 0, ∀ f , h ∈ P̃(V ).

Let Ṽk := Ṽk(X) be the orthogonal compliment in L2(X , μ) of P̃k−1 to P̃k . Thus
P̃k = P̃k−1

⊕ Ṽk . By (2.30) L(P̃k) = P̃k . Hence, due to the symmetry of L , we
have L(Ṽk) = Ṽk . Since Ṽk is finite dimensional by the classical theory of symmet-
ric operators on finite dimensional Hilbert spaces, there exists an orthonormal basis
{P̃k j : j = 1, . . . , dim Ṽk} of Ṽk consisting of real-valued eigenfunctions (hence
polynomials) of L .

C5 We assume that there exist eigenvalues 0 = λ0 < λ1 < · · · such that

L P̃k j = −λk P̃k j , j = 1, . . . , dim Ṽk, k = 0, 1, . . . . (2.39)

Heat kernel With the assumptions from above, it is clear that

P̃k(x, y) :=
∑

j

P̃k j (x)P̃k j (y), x, y ∈ V ,
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is the kernel of the orthogonal projector onto Ṽk . Then the semigroup etL , t > 0, is an
integral operator with (heat) kernel etL(x, y) of the form

etL(x, y) =
∞∑

k=0

e−λk t P̃k(x, y). (2.40)

Remark 2.9 (a) Observe that the assumption (2.29) is equivalent to requiring

gi j (x) ∈ P̃2(V ), ∀i, j, and
∑

i

gi j (x)∂i log
[√

det g(x)w̃(x)
] ∈ P̃1(V ), ∀ j .

(b) It is important to point out that unlike in Green’s formula (2.22), in (2.38) it is not
assumed that f or h is compactly supported.

(c) In the setting described above, we stipulate for convenience that the operator L
maps polynomials to polynomials; this is the case in the particular settings on
the ball and simplex. However, this restriction can be relaxed by replacing the
polynomials with other families of functions in new settings that we anticipate to
occur.

Main general result We now come to one of our principle results.

Theorem 2.10 In the setting described above, assume that conditions C0–C5 are sat-
isfied. Then the operator L from (2.28) is essentially self-adjoint and −L is positive.
Moreover, et L , t > 0, is an integral operator with kernel et L(x, y) with Gaussian
upper and lower bounds; that is, there exist constants c1, c2, c3, c4 > 0 such that for
any x, y ∈ X and t > 0,

c1 exp{−ρ(x,y)2

c2t
}

[
VX (x,

√
t)VX (y,

√
t)

]1/2 ≤ etL(x, y) ≤ c3 exp{−ρ(x,y)2

c4t
}

[
VX (x,

√
t)VX (y,

√
t)

]1/2 . (2.41)

Proof We shall carry out the proof of Theorem 2.10 in several steps.
We first observe that in our current setting, the hypotheses of Theorem 2.8 are

satisfied; in particular, the setU being convex, open, and relatively compact is an inner
uniform domain (by Theorem 2.11). Therefore, et�

N
w , t > 0, is an integral operator

with kernel et�
N
w (x, y) with Gaussian upper and lower bounds: For any x, y ∈ U and

t > 0,

c1 exp{− d(x,y)2

c2t
}

[
VY ,w(x,

√
t)VY ,w(y,

√
t)

]1/2 ≤ et�
N
w (x, y) ≤ c3 exp{− d(x,y)2

c4t
}

[
VY ,w(x,

√
t)VY ,w(y,

√
t)

]1/2 .

(2.42)
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Second, we claim that the operator L is essentially self-adjoint; that is, the closure
L of the symmetric operator L is self-adjoint. Indeed, clearly,

D(L) =
{
f =

∑

k, j

ak j P̃k j : akj ∈ R, {akj } compactly supported
}
, and

L f = −
∑

k, j

ak jλk P̃k j if f =
∑

j

ak j P̃k j ∈ D(L).

We define L and D(L) by

D(L) :=
{
f =

∞∑

k=0

dim Ṽk∑

j=1

akj P̃k j :
∑

k, j

|akj |2 < ∞,
∑

k, j

|akj |2λ2k < ∞
}

and

L f := −
∑

k, j

ak jλk P̃k j if f =
∑

k, j

ak j P̃k j ∈ D(L).

One easily shows that L is the closure of L and that L is self-adjoint.
Third, consider the weighted Laplace operator �w, defined in (2.17), with domain

D(�w) := P(U ). As already alluded to above, (2.18) and condition C0 imply that
for any f ∈ P(U ),

�w f (y) = L f̃ (x), where y = φ(x), f̃ (x) = f (φ(x)). (2.43)

Let Pkj (y) := P̃k j (φ−1(y)) and Pk(y, y′) := ∑
j Pk j (y)Pkj (y

′). Since {P̃k j } is an
orthonormal basis for L2(X , μ), then {Pkj } is an orthonormal basis for L2(Y , νw),
and hence Pk(y, y′) is the kernel of the orthogonal projector onto the orthogonal
compliment Vk of Pk−1 to Pk in L2(Y , νw). Now, (2.39) and (2.43) yield

�wPkj = −λk Pk j , j = 1, . . . , dim Vk, k = 0, 1, . . . .

Thus there is a complete analogy between the operators (L, P̃(X)) and (�w,P(Y )).
As a consequence, (�w,P(Y )) is positive and self-adjoint; that is, the closure �w

of (�w,P(Y )) in L2(Y , νw) is self-adjoint. Then the (heat) kernel et�w(y, y′) of the
semi-group et�w generated by �w takes the form

et�w(y, y′) =
∞∑

k=0

e−λk t Pk(y, y
′) and hence et�w(φ(x), φ(x ′)) = etL(x, x ′).

(2.44)
Clearly, P(U ) is dense inHw, which in turn is dense in WN

w (see Proposition 2.3),
and hence �w ⊂ �N

w . This coupled with the fact that �w and �N
w are self-adjoint

operators implies �w = �N
w and hence et�w = et�

N
w . Therefore, the two-sided

Gaussian bounds in (2.42) hold for et�w(x, y). This coupled with the right-hand side
identity in (2.44) and (2.34) implies (2.41). ��
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2.3 Open Relatively Compact Convex Subset of RiemannianManifold

Here we establish some basic properties of open relatively compact convex subsets of
Riemannian manifolds. In particular, we show that every such set is an inner uniform
domain, which was an important ingredient for the proof of Theorem 2.10.

Theorem 2.11 Let (M, d, ν) be an n-dimensional Riemannian manifold with distance
d(·, ·) andmeasure ν. LetU be an open relatively compact subset of M that is convex in
the following sense: For any a, b ∈ U, there exists a minimizing geodesic line γ ⊂ U
connecting a to b. Let Y := U be equipped with the induced metric dY (·, ·) := d(·, ·)
and measure νY := ν. As usual for any a ∈ Y and R > 0 the ball BY (a, R) in the
metric space (Y , dY ) is defined by BY (a, R) := BM (a, R) ∩ Y , BM (a, R) := {y ∈
M : d(y, a) < R}. Then:
(a) There exist constants 0 < c1 ≤ c2 < ∞ such that

c1R
n ≤ ν(BY (a, R)) ≤ c2R

n, ∀a ∈ Y , 0 < R ≤ diam(Y ). (2.45)

(b) If ∂U := Y \U is the boundary of U, then ν(∂U ) = νY (∂U ) = 0.
(c) Y̊ = U .

(d) There exist constants c,C > 0 such that for any a, b ∈ U, there exists a curve
γ ⊂ U connecting a and b such that �(γ ) ≤ CdY (a, b) and

d(z,Uc) ≥ cd(z, a) ∧ d(z, b), ∀z ∈ γ ; (2.46)

i.e., U is an inner uniform domain in the sense of Definition 2.6. Here �(γ ) stands
for the length of γ .

2.3.1 Facts from Riemannian Geometry

Here we collect some basic facts from the theory of Riemannian manifolds that will
be needed for the proof of Theorem 2.11. We refer the reader to [1,16,20] for more
details.
Normal neighborhood Let (M, d, ν) be an n-dimensional Riemannian manifold. We
shall denote by |�v|g the norm of �v ∈ T M and by ‖x̄‖ the Euclidean norm of x̄ ∈ R

n .
We denote byExp the exponentialmap onM . As iswell known, for any a ∈ M there

exists a constant Ra > 0 (the injectivity radius) such that Expa maps diffeomorphically
the Euclidian ball B(0, Ra) ⊂ R

n onto BM (a, Ra) and homeomorphically B(0, Ra)

onto BM (a, Ra). Furthermore,

Expa 0 = a, Expa(B(0, R)) = BM (a, R) for 0 < R ≤ Ra . (2.47)

We shall call BM (a, Ra) the normal neighborhood of a ∈ M . Recall the following
fundamental properties of Expa : For any ξ ∈ R

n with Euclidean norm ‖ξ‖ ≤ Ra , the
curve {

Expa(tξ) ∈ M : |t | ≤ Ra

‖ξ‖
}
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is geodesic, and if − Ra‖ξ‖ ≤ t < t ′ ≤ Ra‖ξ‖ , then {Expa(sξ) ∈ M : s ∈ [t, t ′]} is the
unique minimizing geodesic line connecting y := Expa(tξ) and y′ := Expa(t

′ξ), and
d(y, y′) = (t ′ − t)‖ξ‖.

We shall denote by ga(u) := (
gai j (u)

)
the metric tensor at u in the Expa chart

(BM (a, Ra),Exp−1
a ). Note that if ‖u‖ ≤ Ra , then

0 < λa(u) := inf‖ξ‖=1

∑

i, j

gai j (u)ξ iξ j ≤ sup
‖ξ‖=1

∑

i, j

gai j (u)ξ iξ j =: �a(u).

As u �→ λa(u) and u �→ �a(u) are continuous, by compactness, we have

0 < λa := inf‖u‖≤R
λa(u) ≤ sup

‖u‖≤R
�a(u) =: �a < ∞. (2.48)

As ga(0) = Id, we have 0 < λa ≤ 1 ≤ �a < ∞.

Lemma 2.12 Let a ∈ M, and assume Expa, Ra, λa, and �a are as above. Then:
(i)For anymeasurable function f : BM (a, Ra) �→ R+, we have, using the notation

f̃ (x̄) := f (Expa(x̄)),

(λa)
n
2

∫

B(0,Ra)
f̃ (x̄)dx̄ ≤

∫

BM (a,Ra)
f (x)dν(x) ≤ (�a)

n
2

∫

B(0,Ra)
f̃ (x̄)dx̄ . (2.49)

In particular, for any 0 < R ≤ Ra,

ωn−1

n
(λa)

n
2 Rn ≤ ν(BM (a, R)) ≤ ωn−1

n
(�a)

n
2 Rn, ωn−1 := 2πn/2

�(n/2)
.

(i i) If x̄, ȳ ∈ B(0, Ra) and x := Expa x̄ , y := Expa ȳ, then x, y ∈ BM (a, Ra) and

√
λa‖x̄ − ȳ‖ ≤ d(x, y) ≤ √

�a‖x̄ − ȳ‖. (2.50)

Proof Estimates (2.49) follow readily by the identity

∫

BM (a,Ra)
f (x)dν(x) =

∫

B(0,Ra)
f̃ (x̄)

√
det ga(x̄)dx̄

and the fact that

det ga(x̄) =
n∏

i=1

λi (x̄) ∈ [λna,�n
a],

where the λ j (x̄) are the eigenvalues of
(
gai j (x̄)

)
.
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We now prove part (ii). Let x̄, ȳ ∈ B(0, Ra) and x := Expa(x̄), y := Expa(ȳ). Set
γ̄ (t) := t x̄ + (1 − t)ȳ and γ (t) := Expa(γ̄ (t)). Then

d(x, y) ≤
∫ 1

0
|γ ′(t)|gdt =

∫ 1

0

√〈(x̄ − ȳ), ga(γ̄ (t))(x̄ − ȳ)〉dt

≤ √
�a

∫ 1

0
‖x̄ − ȳ‖dt = √

�a‖x̄ − ȳ‖.

For the estimate in the other direction, let γ be a minimizing curve connecting x and
y and γ̄ (t) = Exp−1

a (γ (t)), γ̄ (0) = x̄ , γ̄ (1) = ȳ. Then similarly as above,

d(x, y) =
∫ 1

0
|γ ′(t)|gdt ≥ √

λa

∫ 1

0
‖x̄ − ȳ‖dt = √

λa‖x̄ − ȳ‖.

The above estimates yield (2.50). ��
Lemma 2.13 Let BM (a, Ra) be the normal neighborhood of a ∈ M (see above) and
0 < R ≤ Ra. For x ∈ BM (a, Ra), we denote x̄ = Exp−1

a (x) and set xt := Expa(t x̄).
Let U be an open convex subset of M. Let a ∈ U, and assume that for some r > 0,
we have BM (x, r) ⊂ U ∩ BM (a, R). Then

BM
(
xt , trqa) ⊂ U ∩ BM (a, t R), 0 ≤ t ≤ 1, where qa :=

√
λa√
�a

, (2.51)

and
d(xt ,U

c) ≥ qard(xt , a)/R, 0 ≤ t ≤ 1. (2.52)

Above λa and �a are from (2.48).

Proof We begin with the following simple claims:

BM
(
x,

√
λaρ

) ⊂ Expa
(
B(x̄, ρ)

)
if B(x̄, ρ) ⊂ B(0, R), (2.53)

and

Expa
(
B(x̄, ρ/

√
�a)

) ⊂ BM (x, ρ) if BM (x, ρ) ⊂ Ba(a, R). (2.54)

These two statements follow readily by (2.50). Indeed, let y ∈ BM (x,
√

λaρ), i.e.
d(x, y) <

√
λaρ. Then using (2.50), we get ‖x̄ − ȳ‖ < ρ, implying ȳ ∈ B(0, ρ).

Hence, y ∈ Expa(B(x̄, ρ)), which implies (2.53). The proof of (2.54) is as simple.
We shall use the above to prove (2.51)–(2.52). From BM (x, r) ⊂ BM (a, R), apply-

ing (2.54) with ρ = r , it follows that Expa
(
B(x̄, r/

√
�a)

) ⊂ BM (a, R) and hence
B(x̄, r/

√
�a) ⊂ B(0, R). We now use the geometry of Rn to obtain

B
(
t x̄, tr/

√
�a

) ⊂ B(0, t R), 0 ≤ t ≤ 1,

and using (2.53), we get BM
(
xt , tr(

√
λa/

√
�a)

) ⊂ Expa(B(0, t R)) = BM (0, t R).
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On the other hand, using (2.54), we have B
(
x̄, r/

√
�a

) ⊂ Exp−1
a (BM (x, r)). We

now use again the Euclidean geometry of Rn to conclude that

B
(
t x̄, tr/

√
�a

) ⊂ {
t ȳ : 0 ≤ t ≤ 1, ȳ ∈ B

(
x̄, r/

√
�a

)}

⊂ {
t ȳ : 0 ≤ t ≤ 1, ȳ ∈ Exp−1

a (BM (x, r))
}
.

However, for each ȳ ∈ Exp−1
a (BM (x, r)), the curve {Expa(t ȳ) : 0 ≤ t ≤ 1} is a

geodesic line connecting a and y ∈ BM (x, r) ⊂ U , and since U is convex, this
geodesic line is contained in U . Hence, Expa

(
B

(
t x̄, tr/

√
�a

)) ⊂ U . We now apply
(2.53) to conclude that BM

(
xt , tr(

√
λa/

√
�a)

) ⊂ Expa
(
B

(
t x̄, tr/

√
�a

)) ⊂ U .
Therefore,

BM
(
xt , trqa) ⊂ U ∩ BM (a, t R), 0 ≤ t ≤ 1.

This confirms (2.51). Now, (2.51) implies d(xt ,Uc) ≥ trqa . But d(xt , a) = td(x, a),
and hence

d(xt ,U
c) ≥ d(xt , a)

d(x, a)
R
r

R
qa ≥ qard(xt , a)/R.

The proof of the lemma is complete. ��
Uniformization As is well known (see [1, Theorem 1.36]), Ra is continuous as a
function of a ∈ M , and the same is true for λa and �a from (2.48). Then taking into
account that the set Y := U is compact leads to the conclusion that the following
quantities are well defined:

RY := min
a∈Y Ra > 0, (2.55)

0 < λ := min
a∈Y λa ≤ 1 ≤ max

a∈Y �a =: � < ∞. (2.56)

Now, the following lemma is an immediate consequence of Lemmas 2.12 and 2.13.

Lemma 2.14 (a) If a ∈ M and 0 < R ≤ RY , then

ωn−1

n
λ

n
2 Rn ≤ ν(BM (a, R)) ≤ ωn−1

n
�

n
2 Rn, ωn−1 := 2πn/2

�(n/2)
. (2.57)

(b) If x̄, ȳ ∈ B(0, RY ) and x := Expa x̄ , y := Expa ȳ, then x, y ∈ BM (a, RY ) and

√
λ‖x̄ − ȳ‖ ≤ d(x, y) ≤ √

�‖x̄ − ȳ‖.
(c) Let U be an open convex subset of M and 0 < R ≤ RY . Let a ∈ U, and assume

that BM (x, r) ⊂ U∩BM (a, R) for some r > 0. As before, we write x̄ = Exp−1
a (x)

and set xt := Expa(t x̄). Then

BM
(
xt , trq) ⊂ U ∩ BM (a, t R), 0 ≤ t ≤ 1, where q :=

√
λ√
�

,

123



Constructive Approximation (2020) 51:73–122 95

and
d(xt ,U

c) ≥ qrd(xt , a)/R, 0 ≤ t ≤ 1. (2.58)

We next derive from Lemma 2.14 the following:

Lemma 2.15 Let U ⊂ M be an open convex set and a, b ∈ U. Let 0 < R ≤ RY .
Assume BM (a, r) ⊂ U ∩ BM (b, R) and BM (b, r) ⊂ U ∩ BM (a, R), and let γ (t),
0 ≤ t ≤ 1, be a minimizing geodesic line connecting a to b. Then

d(γ (t),Uc) ≥ qrd(a, b)/R, 0 ≤ t ≤ 1. (2.59)

Proof Under the assumptions of the lemma, let γ (t), 0 ≤ t ≤ 1, be a minimizing
geodesic line connecting a to b; i.e., a = γ (0), b = γ (1). By (2.58) we have

d(γ (t),Uc) ≥ qrd(γ (t), a)/R, 0 ≤ t ≤ 1. (2.60)

On the other hand, γ (1 − t), 0 ≤ t ≤ 1, is the geodesic line connecting b to a, and
again by (2.58) we get

d(γ (1 − t),Uc) ≥ qrd(γ (1 − t), b)/R, 0 ≤ t ≤ 1. (2.61)

Clearly, d(γ (t), a)+d(γ (t), b) = d(a, b). From this and (2.60)–(2.61), we infer that

d(γ (t),Uc) ≥ qr [d(γ (t), a) ∨ d(γ (t), b)]/R ≥ qrd(a, b)/2R, 0 ≤ t ≤ 1,

which confirms (2.59). ��
Lemma 2.16 Let (M, d) be a metric space. Assume that U ⊂ M, U �= ∅, is an open
set such that Y := U is compact. Then for any R > 0, there exists r > 0 such that for
every a ∈ Y , there exists a ball B(xa, r) ⊂ U ∩ B(a, R).

Proof Due to the compactness of Y , there exists a finite set of balls B(a j , R/2),
j = 1, . . . , J , such that Y ⊂ ∪ j B(a j , R/2) and a j ∈ Y . Clearly, for each 1 ≤ j ≤ J ,
there exists a ball B(x j , r j ) ⊂ U ∩ B(a j , R/2). Let r := min1≤ j≤J r j .

We claim that for eacha ∈ Y ,we have B(x j , r) ⊂ U∩B(a, R) for some1 ≤ j ≤ J .
Indeed, assuming a ∈ Y , we have a ∈ B(a j , R/2) for some 1 ≤ j ≤ J and hence
B(a j , R/2) ⊂ B(a, R). Therefore, B(x j , r) ⊂ U ∩ B(a j , R/2) ⊂ U ∩ B(a, R), and
this completes the proof. ��

The next lemma will be derived from Lemmas 2.14 and 2.16.

Lemma 2.17 Let U be a convex open subset of M such that Y = U is compact. Then
there exists a constant κY > 0 such that for any a ∈ Y and 0 < R ≤ RY , there exists
x ∈ BM (a, R) such that

BM (x, κY R) ⊂ U ∩ BM (a, R) (2.62)
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and
d(xt ,U

c) ≥ qκY d(xt , a), 0 ≤ t ≤ 1. (2.63)

Here as before, x̄ := Exp−1
a (x) and xt := Expa(t x̄); RY is the constant from (2.55).

Proof From Lemma 2.16, it follows that there exists rY > 0 such that for every a ∈ Y ,
there exists y such that B(y, rY ) ⊂ U ∩ B(a, RY ).

With a ∈ Y and y being fixed, define ȳ := Exp−1
a (y) and ys := Expa(sx̄). We

apply Lemma 2.14 to conclude that

BM (ys, srY q) ⊂ U ∩ B(a, sRY ), 0 ≤ s ≤ 1.

Choose s so that R = sRY , and set x := ys . Then from above,

BM

(
x, q

rY
RY

R
)

⊂ U ∩ B(a, R),

which implies (2.62) with κY := qrY /RY .
Finally, we apply Lemma 2.14 to obtain

d(xt ,U
c) ≥ q2

rY
RY

d(xt , a) = qκY d(xt , a) for 0 ≤ t ≤ 1,

which confirms (2.63). ��

2.3.2 Proof of Theorem 2.11

(a) From (2.57) it follows that there exist constants C1,C2 > 0 such that for any
a ∈ Y ,

C1R
n ≤ ν(BM (a, R)) ≤ C2R

n, 0 < R ≤ RY . (2.64)

Let a ∈ Y and 0 < R ≤ diam Y . Two cases present themselves here.
Case 1: R ≤ RY with RY from (2.55). By Lemma 2.17, there exists x ∈ BM (a, R)

such that BM (x, κY R) ⊂ U ∩ BM (a, R). This and (2.64) imply

C1κ
n
Y R

n ≤ ν(BM (x, κY R)) ≤ ν(BY (a, R)) ≤ ν(BM (R)) ≤ C2R
n . (2.65)

Case 2: RY < R ≤ diam(Y ). Clearly, ν(BY (a, R)) ≤ ν(Y ) ≤ ν(Y )
Rn
Y
Rn . On the

other hand, by Lemma 2.17 it follows that there exists x ∈ BM (a, RY ) such that
BM (x, κY RY ) ⊂ U ∩ BM (a, RY ). This coupled with (2.64) leads to

ν(BY (a, R)) ≥ ν(BY (a, RY )) ≥ ν(BM (x, κY RY )) ≥ C1κ
n
Y R

n
Y ≥ C1

κn
Y R

n
Y

diam(Y )n
Rn .

Therefore, C1
κnY R

n
Y

diam(Y )n
Rn ≤ ν(BY (a, R)) ≤ ν(Y )

Rn
Y
Rn . This and (2.65) yield (2.45).

(b) By (2.45) it follows that (Y , dY , νY ) obeys the doubling property of themeasure,
and hence it is a homogeneous space. Therefore, the Lebesgue differentiation theorem
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is valid. Then denoting by 1∂U the characteristic function of ∂U , we have for almost
all a ∈ Y :

1∂U (a) = lim
R→0

1

νY (BY (a, R))

∫

BY (a,R)

1∂UdνY = lim
R→0

νY (∂U ∩ BY (a, R))

νY (BY (a, R))
.

(2.66)
By Lemma 2.17 it follows that for any a ∈ Y and 0 < R ≤ RY there exists xa ∈
BY (a, R) such that BY (xa, κY R) ⊂ BY (a, R). Hence

νY (∂U ∩ BY (a, R)) ≤ νY (BY (a, R)) − νY (BY (xa, κY R)).

We use this and (2.45) to obtain

νY (∂U ∩ BY (a, R))

νY (BY (a, R))
≤ 1 − νY (BY (xa, κY R))

νY (BY (a, R))
≤ 1 − c1(κY R)n

c2Rn
= 1 − δ

for some δ > 0. From this and (2.66) it follows that 1∂U (a) ≤ 1 − δ < 1 for almost
all a ∈ Y . Therefore, 1∂U (a) = 0 for almost all a ∈ Y , implying νY (∂U ) = 0.

(c) Assume to the contrary that Y̊ �= U . Hence Y̊ \ U �= ∅. Let a ∈ Y̊ \ U . Then
there exists ε > 0 such that BM (a, ε) ⊂ Y̊ . Define E := Y̊ \ U ⊂ ∂U . We may
assume that BM (a, ε) ⊂ BM (a, Ra), the normal neighborhood of a (see (2.47)). Then
Expa(B(0, ε)) = BM (a, ε).

Let Ẽ := Exp−1
a (E ∩ BM (a, ε)). From part (b) of this theorem, it follows that

0 = ν(E ∩ BM (a, ε)) =
∫

BM (a,ε)

1Edν ≥ c
∫

B(0,ε)
1Ẽ (x̄)dx̄ . (2.67)

We claim that
1Ẽ (x̄) + 1Ẽ (−x̄) ≥ 1, ∀x̄ ∈ B(0, ε). (2.68)

Indeed, if inequality (2.68) is not true for some x̄ ∈ B(0, ε), then 1Ẽ (x̄) = 0 and
1Ẽ (−x̄) = 0. Hence, x := Expa x̄ ∈ U and−x ∈ U . ButU is convex and {Expa(t x̄) :
t ∈ [−1, 1]} is a geodesic line connecting x ∈ U and −x ∈ U . Therefore, it is
contained in U ; in particular, a = Expa 0 ∈ U , which is a contradiction.

Now, we use (2.67) and (2.68) to obtain

0 ≥ c
∫

B(0,ε)
1Ẽ (x̄)dx̄ = c

∫

B(0,ε)
1Ẽ (−x̄)dx̄

= c
∫

B(0,ε)

1

2
(1Ẽ (x̄)dx̄ + 1Ẽ (−x̄)

)
dx̄ ≥ c/2 > 0.

This is a contradiction, which shows that Y̊ = U .
(d) Let a, b ∈ U , a �= b. We consider two cases depending on whether the distance

dM (a, b) is “small” or “large”.
Case 1: dM (a, b) ≤ RY . Let γa,b ⊂ U be a minimizing geodesic line connecting

a and b. Choose z ∈ γa,b so that R := d(a, z) = d(z, b) = d(a, b)/2, R ≤ RY /2.
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Clearly, BM (z, R) ⊂ BM (a, 2R) ∩ BM (b, 2R). Then by Lemma 2.17 there exists
c ∈ BM (z, R) such that

BM (c, κY R) ⊂ U ∩ BM (z, R) ⊂ U ∩ BM (a, 2R) ∩ BM (b, 2R).

Note that d(a, c) + d(c, b) ≤ 4R = 2d(a, b).
Let γa,c and γc,b be minimizing geodesic lines connecting a to c and c to b, respec-

tively. Let γ be the curve γa,c ∪ γc,b connecting a and b. For the length �(γ ) of γ , we
have �(γ ) ≤ 2d(a, b).

We now apply Lemma 2.14 (c) using that BM (c, κY R) ⊂ U ∩ BM (z, 2R) to
conclude that

d(x,Uc) ≥ q
κY R

2R
d(x, a) = 2−1qκY d(x, a), ∀x ∈ γa,c,

and similarly, we get

d(x,Uc) ≥ 2−1qκY d(x, a), ∀x ∈ γc,b.

Therefore,

d(x,Uc) ≥ cd(x, a) ∧ d(x, b), ∀x ∈ γ, c := 2−1qκY ,

which confirms (2.46).
Case 2: dM (a, b) > RY . Choose k ∈ N, k ≥ 2, and RY /4 < R ≤ RY /2 so that

kR = d(a, b). Clearly, k ≤ 2 diam(Y )/R ≤ 4 diam(Y )/RY .
Let γa,b be a minimizing geodesic line connecting a to b. Since Y is convex,

then γa,b ∈ U . Choose points a0, a1, . . . , ak ∈ γa,b so that a0 = a, ak = b, and
d(a j , a j+1) = R for j = 1, . . . , k − 1. Further, let b j ∈ γa,b be the middle point
between a j−1 and a j , hence d(a j−1, b j ) = d(b j , a j ).

By Lemma 2.17 there exists c j ∈ BM (b j , R/2) such that

BM (c j , κY R/2) ⊂ U ∩ BM (b j , R/2). (2.69)

Let γ ⊂ U be the line connecting a and b, obtained as the union of minimizing
geodesic lines γa,c1 , γc j ,c j+1 , j = 1, . . . , k − 1, and γck ,b. We shall show that the
curve γ has the stated properties.

Clearly, from (2.69) it follows that BM (c1, κY R/2) ⊂ U ∩ BM (a, R). Applying
Lemma 2.14 (c), we obtain

d(x,Uc) ≥ q
κY R/2

R
d(x, a) = 2−1qκY d(x, a), ∀x ∈ γa,c1, (2.70)

and similarly,
d(x,Uc) ≥ 2−1qκY d(x, a), ∀x ∈ γck ,b. (2.71)
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From (2.69) it readily follows that

BM (c j , κY R/2) ⊂ U ∩ BM (c j+1, 2R) and BM (c j+1, κY R/2) ⊂ U ∩ BM (c j , 2R).

Also, BM (c j , κY R/2) ∩ BM (c j+1, κY R/2) = ∅, and hence d(c j , c j+1) ≥ κY R/2.
We now invoke Lemma 2.15 to conclude that

d(x,Uc) ≥ q
κY R/2

2R
d(c j , c j+1) ≥ 2−3qκ2

Y R, ∀x ∈ γc j ,c j+1 , j = 1, . . . , k − 1.

(2.72)
It is easy to see that �(γ ) ≤ 2(k+1)R and k ≤ 4 diam(Y )/R, implying R ≥ RY �(γ )

4 diam(Y )
.

From this and (2.72), we infer that

d(x,Uc) ≥ qκ2
Y

25 diam(Y )RY
�(γ ) ≥ cd(x, a) ∧ d(x, b), ∀x ∈ γc j ,c j+1 , j = 1, . . . , k − 1,

where c := qκ2Y
25 diam(Y )RY

. This along with (2.70) and (2.71) implies (2.46). ��

2.4 Green’s Theorem

We next establish a general claim that will enable us to verify identity (2.38) (Green’s
formula) in particular settings.

Theorem 2.18 Assume that in the setting described in Sect. 2.2, all conditions are
valid but condition C4. Also, assume that there exist sets Vε, 0 < ε ≤ 1, with the
following properties: Vε ⊂ Vε ⊂ V , Vε ⊂ Vε′ if 0 < ε′ < ε, and ∪εVε = V . Further,
assume that the boundary ∂Vε of Vε is regular in the sense that the classical divergence
theorem is valid on Vε: If u and �v are a C∞ function and vector field on Vε, then

∫

Vε

u div �vdx =
∫

∂Vε

u�v · �nεdτε −
∫

Vε

�v · ∇udx, (2.73)

where �nε is the unit outward normal to ∂Vε vector and dτε is the element of “area”
of ∂Vε. Then the identity

∫

U
h�w f dνw = −

∫

U
〈∇ f ,∇h)〉gdνw

holds for all f ∈ P(U ) and h ∈ C∞(U ) ∩ L∞(U ) such that
∫
U |∇h|2gdνw < ∞ if

and only if for all such functions,

lim
ε→0

∫

∂Vε

n∑

i=1

n∑

j=1

gi j (x)niε(x)∂ j f̃ (x)h̃(x)w̆(x)dτε(x) = 0.
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Proof Under the hypothesis of the theorem we have, using (2.15)–(2.18),

∫

U
h�w f dνw =

∫

U
h div(w� f )dν

=
∫

V

1√
det g(x)

n∑

i=1

∂i

[√
det g(x)w̃(x)

n∑

j=1

gi j (x)∂ j f̃ (x)
]
h(φ(x))

√
det g(x)dx

=
∫

V

n∑

i=1

∂i

[√
det g(x)w̃(x)

n∑

j=1

gi j (x)∂ j f̃ (x)
]
h(φ(x))dx

= lim
ε→0

∫

Vε

n∑

i=1

∂i

[
w̆(x)

n∑

j=1

gi j (x)∂ j f̃ (x)
]
h̃(x)dx .

Now, by the classical divergence theorem (2.73), we obtain

∫

Vε

n∑

i=1

∂i

[
w̆(x)

n∑

j=1

gi j (x)∂ j f̃ (x)
]
h̃(x)dx

= −
∫

Vε

n∑

i=1

w̆(x)
n∑

j=1

gi j (x)∂ j f̃ (x)∂i h̃(x)dx

+
∫

∂Vε

n∑

i=1

w̆(x)
n∑

j=1

gi j (x)∂ j f̃ (x)n
i
ε(x)h̃(x)dτε(x)

= −
∫

Vε

n∑

i=1

n∑

j=1

gi j (x)∂ j f̃ (x)∂i h̃(x)w̆(x)dx

+
∫

∂Vε

n∑

i=1

n∑

j=1

gi j (x)∂ j f̃ (x)n
i
ε(x)h̃(x)w̆(x)dτε(x)

= −
∫

Uε

〈∇ f ,∇h〉gdνw +
∫

∂Vε

n∑

i=1

n∑

j=1

gi j (x)∂ j f̃ (x)n
i
ε(x)h̃(x)w̆(x)dτε(x).

HereUε := φ(Vε), and we used (2.13) and (2.11). From the conditions on f and h, it
readily follows that

∫
Uε

〈∇ f ,∇h〉gdνw → ∫
U 〈∇ f ,∇h〉gdνw as ε → 0. Combining

this with the above identities, we get the result. ��

3 Heat Kernel on the Ball

In this section, we establish two-sided Gaussian bounds for the heat kernel generated
by the classical operator

L :=
n∑

i=1

∂2i −
n∑

i=1

n∑

j=1

xi x j∂i∂ j − (n + 2γ )

n∑

i=1

xi∂i (3.1)
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on the unit ball Bn in Rn , n ≥ 1, equipped with the weighted measure

dμ(x) := (1 − ‖x‖2)γ−1/2dx, γ > −1/2, (3.2)

and the distance

ρ(x, y) := arccos
(
x · y +

√
1 − ‖x‖2

√
1 − ‖y‖2). (3.3)

Here we use classical notation for the vectors x = (x1, . . . , xn) ∈ R
n , the inner

product x · y := ∑n
j=1 x j y j , and the Euclidean norm ‖x‖ := √

x · x .
We shall use standard notation for balls:

B(x, r) := {y ∈ B
n : ρ(x, y) < r} and set V (x, r) := μ(B(x, r)).

Denote by P̃k the set of all algebraic polynomials of degree ≤ k in n variables,
and let Ṽk be the orthogonal compliment of P̃k−1 to P̃k in L2(Bn, μ) when k ≥ 1.
Then P̃k = P̃k−1

⊕ Ṽk . Set Ṽ0 := P̃0. As is well known (see e.g. [5, §2.3.2]), Ṽk ,
k = 0, 1, . . . , are eigenspaces of the operator L; more precisely,

L P̃ = −λk P̃, ∀P̃ ∈ Ṽk, where λk := k(k + n + 2γ − 1), k = 0, 1, . . . .

Let P̃k j , j = 1, . . . , dim Ṽk , be a real orthonormal basis for Ṽk in L2(Bn, μ). Define
Nk := dim Ṽk = (k+n−1

k

)
. Then

P̃k(x, y) :=
Nk∑

j=1

P̃k j (x)P̃k j (y), x, y ∈ B
n, (3.4)

is the kernel of the orthogonal projector onto Ṽk . The heat kernel etL(x, y), t > 0,
takes the form

etL(x, y) =
∞∑

k=0

e−λk t P̃k(x, y). (3.5)

We consider the operator L defined on D(L) := P̃(Bn) the set of all algebraic poly-
nomials in n variables, restricted to Bn . Clearly, D(L) is a dense subset of L2(Bn, μ).

Here we come to our main result for the heat kernel on the ball:

Theorem 3.1 The operator L from (3.1) in the setting described above is essentially
self-adjoint and −L is positive. Moreover, et L , t > 0, is an integral operator whose
kernel et L(x, y) has Gaussian upper and lower bounds; that is, there exist constants
c1, c2, c3, c4 > 0 such that for all x, y ∈ B

d and t > 0,

c1 exp{−ρ(x,y)2

c2t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 ≤ etL(x, y) ≤ c3 exp{−ρ(x,y)2

c4t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 . (3.6)

Before proving this theorem, we shall discuss some of its important applications.
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3.1 Smooth Functional Calculus Based on the Heat Kernel on the Ball

As is shown in [14], smooth functional calculus can be developed in a general setting
of Dirichlet spaces based on the Gaussian bounds of the respective heat kernel.

In our current setting onBn , for any bounded function� onR, the operator�(−L)

is defined by

�(−L) f :=
∞∑

k=0

�(λk)P̃k f , f ∈ L2(Bn, μ),

where P̃k is the orthogonal projector on Ṽk with kernel P̃k(x, y), defined in (3.4).
The upper bound in (3.6) implies the finite speed propagation property (see [3,

Theorem 3.4]): There exists a constant c� > 0 such that

〈
cos(t

√−L) f1, f2
〉 = 0, 0 < c�t < r ,

for all open sets Uj ⊂ B
n , f j ∈ L2(Bn, μ), supp f j ⊂ Uj , j = 1, 2, where r :=

ρ(U1,U2).
As is shown in [14, Proposition 2.8], this property implies the following:

Proposition 3.2 Let � be even, supp �̂ ⊂ [−A, A] for some A > 0, and �̂ ∈ Wm
1

for some m > n, i.e., ‖�̂(m)‖L1 < ∞. Here �̂(ξ) := ∫
R

�(u)e−iuξdu. Then for all
x, y ∈ B

n and δ > 0,

�(δ
√−L)(x, y) = 0 if ρ(x, y) > c�δA.

Here �(δ
√−L)(x, y) := ∑∞

k=0 �(δ
√

λk)P̃k(x, y).

Theorem 3.1 also implies (see [2, Theorem 3.7]):

Proposition 3.3 If � is a bounded function on [0,∞) and supp� ⊂ [0, τ ], τ > 0,
then the kernel �(

√−L)(x, y) of the operator �(
√−L) satisfies

|�(
√−L)(x, y)| ≤ c‖�‖∞

[
V (x, τ−1)V (y, τ−1)

]1/2 , x, y ∈ B
n,

where c > 0 is a constant.

As is shown in [14, Theorem 3.1], Propositions 3.2–3.3 lead to the following local-
ization result:

Theorem 3.4 If � ∈ Cm(R), m ≥ n+ 1, is even and supp� ⊂ [−R, R], R > 0, then
the kernel �(δ

√−L)(x, y) of the operator �(δ
√−L) obeys

|�(δ
√−L)(x, y)| ≤ cm

(
1 + δ−1ρ(x, y)

)−m

[
V (x, δ)V (y, δ)

]1/2 , x, y ∈ B
n, δ > 0, (3.7)

where the constant cm > 0 depends only on ‖�‖∞, ‖�(m)‖∞, R and m.
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Furthermore, using [14, Theorem 3.6], the space localization in (3.7) can be
improved to sub-exponential by selecting � ∈ C∞(R) with “small derivatives”, just
as in [13, Theorem 6.1].

It should be pointed out in light of the development in [2,14], the Gaussian bounds
for the heat kernel on Bn are the basis for development of Besov and Triebel–Lizorkin
spaces onBn and their frame characterization (see [19]), in the spirit of the development
of Frazier and Jawerth [7–9] in the classical case on R

n .
An important point is that all these results are now valid in the full range of the

weight parameter γ > −1/2 (see (3.2)), while in [19,23] the parameter γ is restricted
to γ ≥ 0.

In what follows, we derive Theorem 3.1 as a consequence of Theorem 2.10.

3.2 Geometric Characteristics in a Natural Chart

In the current setting, the Riemannianmanifold isM := S
n := {y ∈ R

n+1 : ‖y‖ = 1},
the unit sphere in R

n+1, equipped with the Riemannian metric induced by the inner
product on R

n+1. Set

V := B
n and U := S

n+ = {y ∈ R
n+1 : ‖y‖ = 1, yn+1 > 0}.

Clearly, U = S
n+ as an open subset of the Riemannian manifold S

n . We consider the
natural chart (Sn+, φ−1) on S

n , where the map φ : Bn �→ S
n+ is defined by

φ(x1, . . . , xn) := (
x1, . . . , xn,

√
1 − ‖x‖2).

In other terms,

y1 = x1, . . . , yn = xn, yn+1 =
√
1 − ‖x‖2.

Then φ−1(y1, . . . , yn+1) = (y1, . . . , yn).
We equip S

n+ and B
n with the following weighted measures:

w(y)dν(y) := y2γn+1dν(y) and w̆(x)dx := (1 − ‖x‖2)γ−1/2dx, γ > −1/2,

where ν is the Lebesgue measure on S
n . Observe that dμ(x) = w̆(x)dx is just the

measure from (3.2).
We shall denote by d(·, ·) the geodesic distance on S

n and by ρ(·, ·) the induced
distance on B

n , that is, ρ(x, x�) = d(φ(x), φ(x�)). It is readily seen that ρ(·, ·) is
given by (3.3). The balls on S

n+ will be denoted by BY (y, r), namely,

BY (y, r) := {z ∈ S
n+ : d(y, z) < r}.

In what follows, just as in (2.9) we shall use the abbreviated notation

f̃ (x) := f ◦ φ(x) = f (φ(x)), x ∈ B
n, (3.8)

for a function f defined on Sn+.
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As in (2.6) the metric tensor (induced by the inner product in Rd+1) is given by the
matrix g(x) = (gi j (x)) = (〈

∂
∂xi

, ∂
∂x j

〉)
. Clearly,

∂

∂xi
=

(∂ y1
∂xi

, . . . ,
∂ yd+1

∂xi

)
=

(
0, . . . , 0, 1, 0, . . . ,

−xi√
1 − ‖x‖2

)
,

and hence
gi j (x) = δi j + xi x j

1 − ‖x‖2 , 1 ≤ i, j ≤ n.

From Proposition 2.2 it follows that the matrix (gi j (x)) with entries

gi j (x) := δi j − xi x j (3.9)

is the inverse of g(x), i.e., g−1(x) = (gi j (x)). Appealing again to Proposition 2.2, we
infer that

det g(x) = 1

1 − ‖x‖2 .

Integration Using the above, we have

∫

S
n+
f (y)dν(y) =

∫

Bn
f (φ(x))

√
det g(x)dx =

∫

Bn
f̃ (x)

1√
1 − ‖x‖2 dx,

and hence
∫

S
n+
f (y)w(y)dν(y) =

∫

Bn
f̃ (x)w̃(x)

1√
1 − ‖x‖2 dx =

∫

Bn
f̃ (x)(1 − ‖x‖2)γ−1/2dx .

In particular,

∫

S
n+

w(y)dν(y) =
∫

Bn
(1 − ‖x‖2)γ−1/2dx = |Sn−1|

∫ 1

0
(1 − r2)γ−1/2rn−1dr

= |Sd−1|
2

∫ 1

0
(1 − v)γ−1/2vn/2−1dv = 2−1B

(
γ + 1/2, n/2

)|Sn−1|.

Thus, ∫

S
n+

w(y)dν(y) =
∫

S
n+
y2γn+1dν(y) = 2−1B

(
γ + 1/2, n/2

)|Sn−1|,

where |Sn−1| = 2πn/2

�( n2 )
is the volume of the unit sphere Sn−1 in Rn .

Representation of ∇f and the weighted Laplacian �w on S
n+ As in (2.10)–(2.11),

we have using (3.9),

(∇ f (y))i =
n∑

j=1

gi j (x)∂i f̃ (x) = ∂i f̃ (x) −
n∑

j=1

xi x j∂ j f̃ (x)
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and

〈∇ f (y),∇h(y)〉g =
∑

i, j

gi j (x)∂i f̃ (x)∂ j h̃(x)

=
∑

i

∂i f̃ (x)∂i h̃(x) −
∑

i, j

xi x j∂i f̃ (x)∂ j h̃(x).

Also, just as in (2.17)–(2.18), the weighted Laplacian �w on S
n+ is defined by

�w f := 1
w
div(w∇ f ), and in local coordinates,

�w f (y) = 1

w̃(x)
√
det g(x)

n∑

i=1

∂i

[√
det g(x)w̃(x)

n∑

j=1

gi j (x)∂ j f̃ (x)
]

=
n∑

i=1

∂i log[
√
det g(x)w̃(x)]

n∑

j=1

gi j (x)∂ j f̃ (x) +
n∑

i=1

∂i

[ n∑

j=1

gi j (x)∂ j f̃ (x)
]

= −2(γ − 1/2)
n∑

i=1

xi
1 − ‖x‖2

n∑

j=1

(δi j − xi x j )∂ j f̃ (x)

+
n∑

i=1

n∑

j=1

∂i [gi j (x)∂ j f̃ (x)] =: Q1 + Q2,

where we used that
√
det g(x)w̃(x) = (1 − ‖x‖2)γ−1/2 = w̆(x) as w(y) := y2γn+1.

Straightforward manipulations show that

Q1 = −2(γ − 1/2)
n∑

j=1

x j∂ j f̃ (x)

and

Q2 =
n∑

i=1

∂2i f̃ (x) −
n∑

i=1

n∑

j=1

xi x j∂i∂ j f̃ (x) − (n + 1)
n∑

j=1

x j∂ j f̃ (x).

Therefore, with the notation �̃w( f̃ )(x) := (�w f )(φ(x)) and f̃ (x) := f (φ(x)) (see
(3.8)), we have for f ∈ C∞(Sn+) (which is the same as f̃ ∈ C∞(Bn))

�̃w f̃ (x) =
n∑

i=1

∂2i f̃ (x) −
n∑

i=1

n∑

j=1

xi x j∂i∂ j f̃ (x) − (2γ + n)

n∑

j=1

x j∂ j f̃ (x) = L f̃ (x).

(3.10)

3.3 Verification of Conditions C0–C5 from Sect. 2.2 and Completion of Proof

To apply Theorem 2.10, we have to verify conditions C0–C5 from Sect. 2.2 in the
current setting on B

n .
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By (3.10) it follows that condition C0 is obeyed.
Clearly, U = S

n+ is an open and convex subset of Sn due to the obvious fact that
the shortest geodesic line connecting any y, y� ∈ S

n+ lies in S
n+. Therefore, condition

C1 in Sect. 2.2 is also obeyed.
Condition C2 (the doubling property of the measure dμ on B

n or of wdν on S
n+)

follows readily from the following well-known result (see, e.g., [4, Lemma 11.3.6]):
For any z ∈ B

n and 0 < r ≤ π ,

∫

B(z,r)
(1 − ‖x‖2)γ−1/2dx ∼ rn(1 − ‖z‖2 + r2)γ

or equivalently, for any u ∈ S
n+ and 0 < r ≤ π ,

∫

BY (u,r)
y2γn+1dν(y) ∼ rn(un+1 + r)2γ .

We next verify condition C3. Observe that if en+1 = (0, . . . , 0, 1) ∈ S
n+ is the

north pole, then writing

θ(y) := d(y, ∂Sn+) = π/2 − d(y, en+1) for y ∈ S
n+,

we have yn+1 = sin θ(y). Assume y ∈ S
n+ and d(y, ∂Sn+) ≥ 2r , where 0 < r ≤ π/4.

Then, apparently θ(y) − r < θ(z) < θ(y) + r for z ∈ BY (y, r), and hence

1

π
θ(y) ≤ 2

π
(θ(y) − r) ≤ sin

(
θ(y) − r

) ≤ zn+1 = sin θ(z) ≤ θ(y) + r ≤ 2θ(y).

This readily implies

sup
z∈BY (y,r)

z2γn+1 ≤ (2π)2|γ | inf
z∈BY (y,r)

z2γn+1, (3.11)

which completes the verification of C3 on S
n+.

Similarly as in (2.36), we define

Pk(S
n+) = {

f : f (y1, . . . , yn+1) = P(y1, . . . , yn), P ∈ P̃k(B
n)

}

and set P(Sn+) := ∪k≥0Pk(S
n+).

A critical step in this development is to establish the following Green’s theorem,
that is the same as to verify condition C4 in Sect. 2.2.

Theorem 3.5 If f ∈ P(Sn+) and h ∈ C∞(Sn+) ∩ L∞(Sn+) with
∫
S
n+ |∇h|2gwdν < ∞,

then ∫

S
n+
h�w f wdν = −

∫

S
n+
〈∇ f ,∇h〉g wdν. (3.12)
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Proof We shall utilize Theorem 2.18 for this proof.
Set Vε := {x ∈ R

n : ‖x‖2 < 1 − ε}. Then ∂Vε = {x ∈ R
n : ‖x‖2 = 1 − ε}.

Clearly, �nε(x) = x
‖x‖ is the unit outward normal to ∂Vε. We denote by τε the Lebesgue

measure on the sphere ∂Vε. We assume 0 < ε < 1/2. Appealing to Theorem 2.18, we
know that to prove Theorem 3.5 we only have to show that for any f ∈ P(Sn+) and
h ∈ C∞(Sn+) ∩ L∞(Sn+) with

∫
S
n+ |∇h|2gwdν < ∞, we have

Jε :=
∫

∂Vε

∑

i

∑

j

gi j (x)niε(x)∂ j f̃ (x)h̃(x)w̆(x)dτε(x) → 0 as ε → 0.

We use (3.9) and �nε(x) = x‖x‖−1 to obtain

∑

i

∑

j

gi j (x)niε(x)∂ j f̃ (x) = ‖x‖−1
∑

i

∑

j

xi (δi j − xi x j )∂ j f̃ (x)

= ‖x‖−1
∑

i

(
xi∂i f̃ (x) − x2i

∑

j

x j∂ j f̃ (x)
)

= ‖x‖−1(1 − ‖x‖2)
∑

j

x j∂ j f̃ (x).

Hence,

Jε =
∫

∂Vε

‖x‖−1(x · ∇ f̃ (x))h̃(x)(1 − ‖x‖2)γ+1/2dτε(x),

where ∇ is the standard gradient on Rn . Note that dτε = (1− ε)n/2dν. Evidently, for
any x ∈ ∂Vε, 0 < ε < 1/2,

‖x‖−1|x · ∇ f̃ (x)||h̃(x)|(1 − ‖x‖2)γ+1/2 ≤ εγ+1/2‖h‖∞ sup
x∈Bn

‖∇ f̃ (x)‖∞. (3.13)

However, γ > −1/2 and supx∈Bn ‖∇ f̃ (x)‖∞ < ∞ because f̃ is a polynomial. From
these and (3.13), it follows that Jε → 0 as ε → 0. ��

Remark 3.6 As one can expect, Theorem 3.5 and [15, Theorem 2.1] are equivalent; it
can be shown that identity (3.12) can be derived from (2.3) in [15] and vice versa.

Completion of the proof of Theorem 3.1. Observe that the current setting on the ball
is covered by the setting described in Sect. 2.2 and conditions C0–C5 in Sect. 2.2 are
verified. Therefore, Theorem 3.1 follows by Theorem 2.10.
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4 Heat Kernel on the Simplex

In this section, we establish two-sided Gaussian bounds for the heat kernel generated
by the operator

L :=
n∑

i=1

xi∂
2
i −

n∑

i=1

n∑

j=1

xi x j∂i∂ j +
n∑

i=1

(
κi + 1

2 − (|κ| + n+1
2 )xi

)
∂i (4.1)

with |κ| := κ1 + · · · + κn+1 on the simplex

T
n :=

{
x ∈ R

n : x1 > 0, . . . , xn > 0, |x | < 1
}
, |x | := x1 + · · · + xn,

in Rn , n ≥ 1, equipped with the measure

dμ(x) =
n∏

i=1

xκi−1/2
i (1 − |x |)κn+1−1/2dx, κi > −1/2, (4.2)

and the distance

ρ(x, y) = arccos
( n∑

i=1

√
xi yi + √

1 − |x |√1 − |y|
)
. (4.3)

Similarly as before, we shall use the notation:

B(x, r) := {y ∈ T
n : ρ(x, y) < r} and V (x, r) := μ(B(x, r)).

Denote by P̃k = P̃k(T
n) the set of all algebraic polynomials of degree ≤ k in n

variables restricted to Tn , and let Ṽk = Ṽk(T
n) be the orthogonal compliment of P̃k−1

to P̃k in L2(Tn, μ), k ≥ 1. Set Ṽ0 := P̃0. As is well known (e.g., [5, §2.3.3]), Ṽk ,
k = 0, 1, . . . , are eigenspaces of the operator L; namely,

L P̃ = −λk P̃, ∀P̃ ∈ Ṽk, where λk := k
(
k+|κ|+(n−1)/2

)
, k = 0, 1, . . . . (4.4)

Let P̃k j , j = 1, . . . , dim Ṽk , be a real orthonormal basis for Ṽk in L2(Tn, μ). Let
Nk := dim Ṽk = (k+n−1

k

)
. Then

P̃k(x, y) :=
Nk∑

j=1

P̃k j (x)P̃k j (y), x, y ∈ T
n,

is the kernel of the orthogonal projector onto Ṽk . The heat kernel etL(x, y), t > 0,
takes the form

etL(x, y) =
∞∑

k=0

e−λk t P̃k(x, y). (4.5)
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We consider the operator L with domain D(L) := P̃(Tn) := ∪k≥0P̃k(T
n) the set

of all algebraic polynomials in n variables, restricted to T
n . Clearly, D(L) is a dense

subset of L2(Tn, μ).

Theorem 4.1 The operator L from (4.1) in the setting described above is essentially
self-adjoint, and −L is positive in L2(Tn, μ). Moreover, et L , t > 0, is an integral
operator with kernel et L(x, y) with Gaussian upper and lower bounds; that is, there
exist constants c1, c2, c3, c4 > 0 such that for any x, y ∈ T

n and t > 0,

c1 exp{−ρ(x,y)2

c2t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 ≤ etL(x, y) ≤ c3 exp{−ρ(x,y)2

c4t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 . (4.6)

Remark 4.2 It would be useful to note that smooth functional calculus on the simplex
can be developed using the two-sided Gaussian bounds on the heat kernel from (4.6)
and the general results from [2,14]. All comments and results from Sect. 3.1 have their
analogues for the simplex. In particular, the finite speed propagation property and
Proposition 3.2 are valid on the simplex as well as the analogues of the localization
estimates from Theorem 3.4 and [13, Theorems 7.1–7.2] hold true. We shall not
elaborate on applications of estimates (4.6) any further.

We shall obtain Theorem 4.1 as a consequence of Theorem 2.10. We begin by
introducing the relevant setting on the simplex.

4.1 Geometric Characteristics in a Natural Chart

In this setting, the Riemannian manifold is again M := S
n := {y ∈ R

n+1 : ‖y‖ = 1},
the unit sphere in Rn+1, equipped with the induced Riemannian metric.

There is a natural relationship between Tn and the part SnT of the unit sphere Sn in
R
n+1 lying in the first octant; that is,

S
n
T := {y ∈ S

n : yi > 0, i = 1, . . . , n + 1}.

We shall use the natural chart (SnT , φ−1) on Sn , where the map φ : Tn �→ S
n
T is defined

by

φ(x1, . . . , xn) := (√
x1, . . . ,

√
xn,

√
1 − |x |), |x | :=

n∑

i=1

xi ,

or in other terms, yi = √
xi , i = 1, . . . , n, yn+1 = √

1 − |x |.
Then φ−1(y1, . . . , yn+1) = (y21 , . . . , y

2
n ).

We equip S
n
T with the weighted measure

w(y)dν(y) := 2n
n+1∏

i=1

y2κii dν(y), κi > −1/2,
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where dν is the Lebesgue measure on Sn , and T
n with

dμ(x) = w̆(x)dx := (1 − |x |)κn+1− 1
2

n∏

i=1

x
κi− 1

2
i dx, κi > −1/2.

We shall denote by d(·, ·) the geodesic distance on S
n and by ρ(·, ·) the induced

distance on T
n , i.e., ρ(x, x�) = d(φ(x), φ(x�)). It is readily seen that ρ(·, ·) is given

by (4.3).
As before, for a function f defined on SnT , we shall use the abbreviated notation

f̃ (x) := f ◦ φ(x) = f (φ(x)), x ∈ T
n .

As in (2.6), the metric tensor g(x) = (gi j (x)) is given by gi j (x) = 〈
∂

∂xi
, ∂

∂x j

〉
.

Evidently,

∂

∂xi
=

(∂ y1
∂xi

, . . . ,
∂ yn+1

∂xi

)
=

(
0, . . . , 0,

1

2
√
xi

, 0, . . . , 0,
1

2
√
1 − |x |

)
,

and hence

gi j (x) = δi j

4xi
+ 1

4(1 − |x |) = 1

4(1 − |x |)
(δi j (1 − |x |)

xi
+ 1

)
.

A direct verification shows that the matrix with entries

gi j (x) := 4(δi j xi − xi x j ) (4.7)

is the inverse to g(x), i.e., g−1(x) = (gi j (x)). We claim that

det g(x) = 4−n

1 − |x |
n∏

i=1

1

xi
. (4.8)

This identity follows readily by the following lemma.

Lemma 4.3 Given (a) = (a1, . . . , an) ∈ R
n, n ≥ 2, let

A :=

⎛

⎜⎜⎜⎝

a1 + 1 1 · · · 1
1 a2 + 1 · · · 1
...

... · · · ...

1 1 · · · an + 1

⎞

⎟⎟⎟⎠ .

Then

det A =
n∏

i=1

ai +
n∑

j=1

n∏

k=1,k �= j

ak . (4.9)
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Proof Let e j be the j th coordinate vector (column) in R
n , 1 ≤ j ≤ n, and set

1T := (1, 1, . . . , 1), 1 ∈ R
n . Then we have A = (a1e1 +1, a2e2 +1, . . . , anen +1).

By splitting the first column of A into two, we can write

det A = det(a1e1, a2e2 + 1, . . . , anen + 1) + det(1, a2e2 + 1, . . . , anen + 1).

In the second determinant, we subtract the first column from all other columns to
obtain

det(1, a2e2 + 1, . . . , anen + 1) = det(1, a2e2, . . . , anen).

Precisely in the same way, we get

det(a1e1, a2e2 + 1, . . . , anen + 1) = det(a1e1, a2e2, a3e3 + 1, . . . , anen + 1)

+ det(a1e1,1, a3e3, . . . , anen).

Inductively we obtain

det A = det(a1e1, . . . , anen) +
n∑

j=1

det(a1e1, . . . , a j−1e j−1,1, a j+1e j+1, . . . , anen).

Obviously det(a1e1, . . . , anen) = a1 . . . an , and it is easy to see that

(a1e1, . . . , a j−1e j−1,1, a j+1e j+1, . . . , anen) =
n∏

k=1,k �= j

ak .

Putting the above together, we arrive at (4.9). ��
The gradient ∇ and weighted Laplacian �w on S

n
T Using the chart (SnT , φ−1) and

(4.7), we obtain for y = φ(x), x ∈ T
n ,

(∇ f (y))i =
∑

j

gi j (x)∂ j f (φ(x)) = 4xi
[
∂i f̃ (x) −

n∑

j=1

x j∂ j f̃ (x)
]
.

Also, we have

〈∇ f (y),∇h(y)〉g =
∑

i, j

gi j (x)∂i f̃ (x)∂ j h̃(x)

= 4
∑

i, j

(δi j xi − xi x j )∂i f̃ (x)∂ j h̃(x)

= 4
[ ∑

i

xi∂i f̃ (x)∂i h̃(x) −
∑

i, j

xi x j∂i f̃ (x)∂ j h̃(x)
]
.
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As in (2.17), the weighted Laplacian �w is defined by �w f := 1
w
div(w∇ f ), and we

set �̃w f̃ := �w f (φ(x)). Just as in (2.18), we get

�̃w f̃ (x) = 1

w̃(x)
√
det g(x)

n∑

i=1

∂i (
√
det g(x)w̃(x)

n∑

j=1

gi j (x)∂ j f̃ (x)

=
n∑

i=1

∂i log
[
w̃(x)

√
det g(x)

] n∑

j=1

gi j (x)∂ j f̃ (x) +
n∑

i=1

∂i

[ n∑

j=1

gi j (x)∂ j f̃ (x)
]

=
n∑

i=1

[κi − 1/2

xi
− κn+1 − 1/2

1 − |x |
] n∑

j=1

gi j (x)∂ j f̃ (x)

+
n∑

i=1

n∑

j=1

∂i [gi j (x)]∂ j f̃ (x) +
n∑

i=1

n∑

j=1

gi j (x)∂i∂ j f̃ (x) =: Q1 + Q2 + Q3.

Now, using (4.7) we get

n∑

j=1

gi j (x)∂ j f̃ (x) = 4
n∑

j=1

[δi j xi − xi x j ]∂ j f̃ (x) = 4xi
[
∂i f̃ (x) −

n∑

j=1

x j∂ j f̃ (x)
]
,

and hence

1

4
Q1 =

n∑

i=1

(κi − 1/2

xi
− κn+1 − 1/2

1 − |x |
)
xi

[
∂i f̃ (x) −

n∑

j=1

x j∂ j f̃ (x)
]

=
n∑

i=1

(κi − 1/2)∂i f̃ (x) −
n∑

j=1

x j∂ j f̃ (x)
( n∑

i=1

κi − n/2
)

− (κn+1 − 1/2)
n∑

j=1

x j∂ j f̃ (x)

=
n∑

i=1

(κi − 1/2)∂i f̃ (x) − [|κ| − (n + 1)/2
] n∑

j=1

x j∂ j f̃ (x).

Recall that |κ| := κ1 + · · · + κn+1. By (4.7) we have

1

4
Q2 = −

n∑

i=1

n∑

j=1, j �=i

x j∂ j f̃ (x) +
n∑

i=1

(1 − 2xi )∂i f̃ (x)

=
n∑

i=1

∂i f̃ (x) − (n + 1)
n∑

j=1

x j∂ j f̃ (x)
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and

1

4
Q3 =

n∑

i=1

n∑

j=1

(δi j xi − xi x j )∂i∂ j f̃ (x) =
n∑

i=1

xi∂
2
i f̃ (x) −

n∑

i=1

n∑

j=1

xi x j∂i∂ j f̃ (x).

Combining the above expressions forQ1,Q2, andQ3, we obtain that for any function
f ∈ C∞(SnT ),

1

4
�̃w f̃ (x) =

n∑

i=1

xi∂
2
i f̃ (x) −

n∑

i=1

n∑

j=1

xi x j∂i∂ j f̃ (x)

+
n∑

i=1

(κi + 1/2)∂i f̃ (x) − [|κ| + (n + 1)/2
] n∑

j=1

x j∂ j f̃ (x).

Hence,
�̃w f̃ (x) = 4L f̃ (x), ∀x ∈ T

n . (4.10)

Integration Using the chart (SnT , φ−1) and (4.8), we obtain

∫

S
n
T

f (y)dν(y) =
∫

Tn

f (φ(x))
√
det g(x)dx = 2−n

∫

Tn
f̃ (x)

n∏

i=1

x−1/2
i (1 − |x |)−1/2dx,

and hence

∫

S
n
T

f (y)w(y)dν(y) =
∫

Tn
f̃ (x)

n∏

i=1

xκi−1/2
i (1−|x |)κn+1−1/2dx =

∫

Tn
f̃ (x)w̆(x)dx .

(4.11)
For κi > −1/2, j = 1, . . . , n + 1, a little calculus gives

∫

Tn

n∏

i=1

xκi−1/2
i (1 − |x |)κn+1−1/2dx =

n∏

i=1

B
(
κi + 1

2
,

n+1∑

j=i+1

(
κ j + 1

2

))
, (4.12)

and using (4.11), we get

2n
∫

S
n
T

n+1∏

i=1

y2κii dν(y) =
n∏

i=1

B
(
κi + 1

2
,

n+1∑

j=i+1

(
κ j + 1

2

))
< ∞. (4.13)

Above B(·, ·) stands for the standard beta function.

4.2 Verification of Conditions C0–C5 from Sect. 2.2 and Completion of Proof

The proof of Theorem 4.1 relies on Theorem 2.10, which requires the verification of
conditions C0–C5 from Sect. 2.2.
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From (4.10) it follows that the condition C0 from Sect. 2.2 is satisfied for the
operator 4L . Here the factor 4 is insignificant because apparently et4L = e4t L , and if
Theorem 4.1 holds for the operator 4L , it holds for L .

Clearly, SnT is an open and convex subset of Sn as the shortest geodesic connecting
any y, y′ ∈ S

n
T lies in SnT . Hence condition C1 is obeyed.

The doubling property of the measure wdν is well known; i.e., condition C2 is
obeyed. In fact, this is an immediate consequence of the following claim (see, e.g., [4,
(5.1.10)]): For any u ∈ S

n
T and 0 < r ≤ π/2,

∫

BY (u,r)
w(y)dν(y) =

∫

BY (u,r)
2n

n+1∏

i=1

y2κii dν(y) ∼ rn
n+1∏

i=1

(ui + r)2κi

or equivalently, for any z ∈ T
n and 0 < r ≤ 1,

∫

B(z,r)

n∏

i=1

xκi−1/2
i (1−|x |)κn+1−1/2dx ∼ rn(1−|z|+ r2)κn+1

n∏

i=1

(zi + r2)κi . (4.14)

To verify C3, we need to introduce some notation. The boundary ∂SnT of SnT can be
represented as ∂SnT = ∪n+1

i=1 �i , where

�i := {y ∈ S
n
T : yi = 0}.

Further, for y ∈ S
n
T , let

θi (y) := π/2 − d(y, ei ), i = 1, . . . , n + 1,

where ei is the i th coordinate vector in Rn+1. Clearly, θi (y) = d(y, �i ), and hence

inf
1≤i≤n+1

θi (y) = d(y, ∂SnT ). (4.15)

Note that yi = sin θi (y), which implies yi ∼ θi (y).
Assume y ∈ S

n
T and d(y, ∂SnT ) > 2r with 0 < r ≤ π/4. Then from (4.15), it

follows that θi (y) ≥ 2r for i = 1, . . . , n + 1. Now, just as in the proof of (3.11), we
obtain

sup
z∈BY (y,r)

z2κi ≤ (2π)4|κi | inf
z∈BY (y,r)

z2κi ,

and hence

sup
z∈BY (y,r)

n+1∏

i=1

z2κii ≤ c inf
z∈BY (y,r)

n+1∏

i=1

z2κii ,

which confirms condition C3 on S
n
T .
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Recall that P̃k(T
n) is the set of all polynomials of degree ≤ k, on Rn, restricted to

T
n , and P̃(Tn) = ∪k≥0P̃k(T

n). Let Pk(S
n
T ) and P(SnT ) be the respective spaces on

S
n
T , i.e.,

Pk(S
n
T ) := {

f : f (y1, . . . , yn+1) = P(y21 , . . . , y
2
n ), P ∈ P̃k(Tn)

}

and P(SnT ) := ∪k≥0Pk(S
n
T ).

The following Green’s theorem plays a critical role here.

Theorem 4.4 If f ∈ P(SnT ) and h ∈ C∞(SnT ) ∩ L∞(SnT ) with
∫
S
n
T

|∇h|2gwdν < ∞,

then ∫

S
n
T

h�w f wdν = −
∫

S
n
T

〈∇ f ,∇h〉gwdν. (4.16)

Proof This proof will rely on Theorem 2.18. Define V := T
n , and let ∂V be its

boundary. We introduce the sets

Vε :=
{
x ∈ R

n : x1 > ε, . . . , xn > ε,

n∑

i=1

xi < 1 − ε
}
, ε > 0.

The following properties of the sets Vε follow immediately from the definition: Vε ⊂
V , Vε ⊂ Vε′ if 0 < ε′ < ε, and ∪ε>0Vε = V . Also, ∂Vε = ∪n

i=1F
i
ε ∪ H ε, where

Fi
ε :=

{
x ∈ R

n : xi = ε, x j > ε if j �= i,
∑

j �=i

x j < 1 − 2ε
}

and

Hε :=
{
x ∈ R

n : x1 > ε, . . . , xn > ε,

n∑

j=1

x j = 1 − ε
}
.

The boundary of ∂Vε is a polyhedron inRn , and hence it is regular; that is, the classical
divergence formula (2.73) is valid on Vε (see, e.g., Theorem 1, §5, Chapter I in [26]).
Therefore, we can use Theorem 2.18.

We shall also need the scaled simplex T
n
b , defined by

T
n
b :=

{
x ∈ R

n : x1 > 0, . . . , xn > 0,
n∑

i=1

xi < b
}
, b > 0.

By changing the variables, it follows from (4.12) that

∫

T
n
b

n∏

i=1

xκi−1/2
i (b − |x |)κn+1−1/2dx = b|κ|+(n+1)/2

n∏

i=1

B
(
κi + 1

2
,

n+1∑

j=i+1

(
κ j + 1

2

))
< ∞.

(4.17)
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Let f and h be the functions from the hypothesis of the theorem, and let �nε =
(n1ε, . . . , n

n
ε ) be the unit outward normal vector to ∂Vε. Define

Gε(x) :=
n∑

i=1

n∑

j=1

gi j (x)niε(x)∂ j f̃ (x)h̃(x)w̆(x), x ∈ ∂Vε.

In light of Theorem 2.18, to prove Theorem 4.4 it suffices to show that

lim
ε→0

∫

∂Vε

Gεdτε = 0,

where dτε is the element of “area” of ∂Vε. Henceforth, we shall assume that ε > 0 is
sufficiently small, e.g., ε < 1/(n + 1).

Let

Xi (x) :=
n∑

j=1

gi j (x)∂ j f̃ (x) = 4xi
[
∂i f̃ (x)−

n∑

j=1

x j∂ j f̃ (x)
]
, i = 1, . . . , n, (4.18)

where we used (4.7). Then using the notation �X(x) := (X1(x), . . . , Xn(x)), we have

Gε(x) = h̃(x)w̆(x) �X(x) · �nε(x). (4.19)

To estimate
∫
∂Vε

|Gε|dτε, we have to estimate each of the integrals
∫
Fi

ε
|Gε|dτε and∫

Hε
|Gε|dτε.
We next estimate

∫
Fn

ε
|Gε|dτε. Observe that Fn

ε − εen ⊂ {x ∈ R
n : xn = 0}.

Hence, �nε(x) = −en . In turn, this and (4.19) yield

Gε(x) = −h̃(x)w̆(x)Xn(x)

= 4
n−1∏

�=1

xκ�−1/2
� (1 − |x |)κn+1−1/2xκi+1/2

n
[
∂n f̃ (x) −

n∑

j=1

x j∂ j f̃ (x)
]
,

and using the fact that f is a polynomial and h ∈ L∞, we get

|Gε(x)| ≤ cεκn+1/2
n−1∏

�=1

xκ�−1/2
� (1 − |x |)κn+1−1/2, x ∈ Fn

ε .

Define

F̃n−1
ε :=

{
x ∈ R

n−1 : x1 > ε, . . . , xn−1 > ε,

n−1∑

j=1

x j < 1 − 2ε
}
,
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which is the projection of Fn
ε onto R

n−1 = {x ∈ R
n : xn = 0}. With the notation

x ′ := (x1, . . . , xn−1) and |x ′| := x1 + · · · + xn−1, we have

∫

Fn
ε

|Gε|dτε =
∫

F̃n−1
ε

|Gε(x1, . . . , xn−1, ε)|dx ′

≤ cεκn+1/2
∫

F̃n−1
ε

n−1∏

�=1

xκ�−1/2
� (1 − ε − |x ′|)κn+1−1/2dx ′

≤ cεκn+1/2
∫

T
n−1
1−ε

n−1∏

�=1

xκ�−1/2
� (1 − ε − |x ′|)κn+1−1/2dx ′ ≤ c′εκn+1/2.

(4.20)

Here for the former inequality we used that F̃n−1
ε ⊂ T

n−1
1−ε , and for the latter we used

(4.17). We similarly obtain

∫

Fi
ε

|Gε|dτε ≤ cεκi+1/2 for i �= n. (4.21)

We now estimate
∫
Hε

|Gε|dτε. Clearly, �nε(x) = 1√
n
(1, . . . , 1) is the unit outward

normal vector to ∂Vε at each x ∈ Hε. This and (4.18)–(4.19) imply that for x ∈ Hε,

Gε(x) = 1√
n
h̃(x)w̆(x)

n∑

i=1

Xi (x)

= 4√
n
h̃(x)

n∏

�=1

xκ�−1/2
� (1 − |x |)κn+1−1/2

n∑

i=1

xi
[
∂i f̃ (x) −

n∑

j=1

x j∂ j f̃ (x)
]

= 4√
n
h̃(x)

n∏

�=1

xκ�−1/2
� (1 − |x |)κn+1+1/2

n∑

j=1

x j∂ j f̃ (x),

and hence |Gε(x)| ≤ cεκn+1+1/2 ∏n
�=1 x

κ�−1/2
� , x ∈ Hε. The surface Hε can be

described by the equation

xn = 1 − ε − x ′ for x ′ := (x1, . . . , xn−1) ∈ F̂n−1
ε ,

where F̂n−1
ε := {

x ∈ R
n−1 : x1 > ε, . . . , xn−1 > ε,

∑n−1
j=1 x j < 1 − ε

}
. Therefore,

∫

Hε

|Gε|dτε = √
n

∫

F̂n−1
ε

|Gε(x1, . . . , xn−1, 1 − ε − |x ′|)|dx ′

≤ cεκn+1+1/2
∫

F̂n−1
ε

n−1∏

�=1

xκ�−1/2
� (1 − ε − |x ′|)κn−1/2dx ′
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≤ cεκn+1+1/2
∫

T
n−1
1−ε

n−1∏

�=1

xκ�−1/2
� (1 − ε − |x ′|)κn−1/2dx ′,

where we used that F̂n−1
ε ⊂ T

n−1
1−ε . We use again (4.17) to obtain

∫

Hε

|Gε|dτε ≤ cεκn+1+1/2. (4.22)

Combining estimates (4.20), (4.21), and (4.22), we arrive at

∫

∂Vε

|Gε|dτε ≤ c
n+1∑

i=1

εκi+1/2.

From this, taking into account that κi > −1/2, i = 1, . . . , n + 1, we conclude that
limε→0

∫
∂Vε

|Gε|dτε = 0. The proof of Theorem 4.4 is complete. ��
Remark 4.5 Observe that Theorem 4.4 and [15, Proposition 3.1] are equivalent.
Namely, it can be shown that identity (4.16) can be derived from (3.2) in [15] and vice
versa.

Completion of the proof of Theorem 4.1. As was shown above, the current setting on
the simplex is covered by the general setting described in Sect. 2.2, and above we
verified conditions C0–C5. Therefore, Theorem 4.1 follows by Theorem 2.10.

5 Jacobi Heat Kernel on [− 1, 1]
The classical Jacobi operator is defined by

L f (x) :=
[
w(x)(1 − x2) f ′(x)

]′

w(x)
, (5.1)

where
w(x) := (1 − x)α(1 + x)β, α, β > −1.

We consider L with domain D(L) := P̃[−1, 1] the set of all algebraic polynomials
restricted to [−1, 1]. We also consider [−1, 1] equipped with the weighted measure

dμ(x) := w(x)dx = (1 − x)α(1 + x)βdx

and the distance
ρ(x, y) := | arccos x − arccos y|.

We shall use the notation

B(x, r) := {y ∈ [−1, 1] : ρ(x, y) < r} and V (x, r) := μ(B(x, r)).
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As is well known [27], the Jacobi polynomials Pk , k ≥ 0, are eigenfunctions of L;
that is,

LPk = −λk Pk with λk = k(k + α + β + 1), k = 0, 1, . . . . (5.2)

We consider the Jacobi polynomials {Pk} normalized in L2([−1, 1], μ). Then the
Jacobi heat kernel etL(x, y), t > 0, takes the form

etL(x, y) =
∞∑

k=0

e−λk t Pk(x)Pk(y).

Theorem 5.1 The Jacobi operator L in the setting described above is essentially self-
adjoint, and −L is positive. Moreover, et L , t > 0, is an integral operator whose
kernel et L(x, y) has Gaussian upper and lower bounds; that is, there exist constants
c1, c2, c3, c4 > 0 such that for any x, y ∈ [−1, 1] and t > 0,

c1 exp{−ρ(x,y)2

c2t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 ≤ etL(x, y) ≤ c3 exp{−ρ(x,y)2

c4t
}

[
V (x,

√
t)V (y,

√
t)

]1/2 . (5.3)

Proof We shall derive estimate (5.3) from the two-sided estimate for the heat kernel
on the simplex (Theorem 4.1) in dimension n = 1 by changing the variables. Assume
α, β > −1, and let β =: κ1 − 1/2 and α =: κ2 − 1/2. Clearly, κ1, κ2 > −1/2.

We assume that x1 ∈ [0, 1]. We shall apply the change of variables

x1 = 1

2
(x + 1), x ∈ [−1, 1] or x = 2x1 − 1.

The differential operator LT := L from (4.1) in the case n = 1 takes the form

LT = x1∂
2
1 − x21∂

2
1 + (κ1 + 1/2)∂1 − (κ1 + κ2 + 1)x1∂1,

and hence for any g ∈ C2[0, 1],

LT g(x1) = (x1 − x21 )g
′′(x1) + (β + 1)g′(x1) − (α + β + 2)x1g

′(x1).

Let f (x) := g((x + 1)/2) or g(x1) = f (2x1 − 1). A little calculus shows that

LT g(x1) = (1 − x2) f ′′(x) + (β − α) f ′(x) − (α + β + 2)x f ′(x) = L f (x), (5.4)

where L is the Jacobi operator from (5.1).
Let dμT (x1) := xκ1−1/2

1 (1−x1)κ2−1/2dx1. Let P̃k , k = 0, 1, . . . , be the orthogonal
and normalized polynomials in L2([0, 1], μT ). From (4.4) we have

LT P̃k = −λk P̃k, where λk := k(k + κ1 + κ2) = k(k + α + β + 1). (5.5)
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Now, by (5.4), (5.2), and (5.5), we obtain

Pk(x) = 2−(α+β+1)/2 P̃k((x + 1)/2). (5.6)

Let ρT (x1, y1) := arccos
(√

x1y1 + √
1 − x1

√
1 − y1

)
be the distance on [0, 1]

from (4.3) when n = 1. We claim that

ρT (x1, y1) = ρ(x, y)/2, where x1 = (x + 1)/2, y1 = (y + 1)/2. (5.7)

Indeed, by applying cosine to both sides, it is easy to see that

| arccos u − arccos v| = arccos
(
uv +

√
(1 − u2)(1 − v2)

)
, ∀u, v ∈ [−1, 1].

Therefore,

ρT (x1, y1) = | arccos√
x1 − arccos

√
y1| = ∣∣ arccos

√
(x + 1)/2 − arccos

√
(y + 1)/2

∣∣

=
∣∣∣
∫ √

(y+1)/2

√
(x+1)/2

1√
1 − s2

ds
∣∣∣ = 1

2

∣∣∣
∫ y

x

1√
1 − v2

dv

∣∣∣ = 1

2
| arccos x − arccos y|,

which implies (5.7). For the former equality above, we applied the substitution s =√
(v + 1)/2.
From (4.14) it follows that for any x1 ∈ [0, 1] and 0 < r ≤ 1, we have

μT (BT (x1, r)) ∼ r(1 − x1 + r2)κ2(x1 + r2)κ1

∼ r(1 − x + r2)α+1/2(1 + x + r2)β+1/2, x1 = (x + 1)/2.

On the other hand, it is easy to see that for any x ∈ [−1, 1] (see [2, (7.1)]),

μ(B(x, r)) ∼ r(1 − x + r2)α+1/2(1 + x + r2)β+1/2.

Combining the above, we arrive at

μT (B(x1, r)) ∼ μ(B(x, r)), where x1 = (x + 1)/2, x ∈ [−1, 1]. (5.8)

We are now prepared to complete the proof of Theorem 5.1. From (5.6) it follows
that

etL(x, y) = 2−(α+β+1)etLT (x1, y1), where x1 = (x + 1)/2, y1 = (y + 1)/2.

Therefore, using the two-sided Gaussian bounds on the heat kernel etLT (x1, y1) from
Theorem 4.1, (5.7), and (5.8), we conclude that the Gaussian estimates (5.3) are valid.

��
Remark 5.2 Theorem5.1 is also proved in [2, Theorem7.2] using a different but related
approach. A totaly different proof of Theorem 5.1 in the case α, β > −1/2 is given
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in [21] using special functions. It should also be pointed out that in the case when
α = β > −1, estimates (5.3) follow readily by the two-sided bounds for the heat
kernel on the ball in dimension n = 1 (Theorem 3.1).
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