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Abstract. The first known examples of subsequential countably compact Hausdorff
(T2) spaces that are not sequential are given here, including one that is Tychonoff
under CH. The sequential extensions of such spaces cannot be T2, but the extensions

we construct are T1. The problem of whether it is consistent for there to be a compact
T2 subsequential, non-sequential space is discussed. It is shown that an affirmative
answer would also solve the old problem of whether it is consistent for there to be a

compact non-sequential T2 space in which every countably compact subset is closed.
We also give the first known example of an infinite subsequential, countably com-

pact T1 space with no nontrivial convergent sequences. The main tool in all the
constructions is a base matrix tree of subsets of ω; in other words, a collection of
subsets of ω whose Stone-Čech remainders form a tree π-base in βω \ ω.

1. Introduction

A major theme in many branches of mathematics is that of extensions of struc-
tures. Think of Galois field theory, analytic continuation in complex analysis, and
the concept of Ext in module theory, to name but a few examples. In general topol-
ogy the most extensively researched example is that of Hausdorff compactifications
of Tychonoff spaces. Another example is that of connectification: the study of how
“nice” a connected space containing a given space can be.

Another example is the study of sequential and pseudo-radial (a.k.a. chain-net)
extensions of spaces. The latter spaces are those in which the the closure of a
set A is found by iterating the process of adjoining limits of well-ordered nets. In
the sequential case there is an obvious restriction: the space must be countably

tight; that is, if a point p is in the closure of a subset A then there must be a
countable subset B of A such that p ∈ B. [As usual, overhead bars stand for
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closure.] This is because sequential spaces are characterized by the fact that the
closure of a set is found by iterating the process of adjoining limits of convergent
sequences, and because every subspace of a countably tight space is countably tight.
In contrast, Martin Sleziak [S] has shown that every topological [resp. T0, T1] space
can be embedded in a pseudo-radial [resp. T0, T1] space. Earlier, Jinyuan Zhou
[Zh] had given a different construction under p = c, embedding any T1 space of
countable tightness in a pseudo-radial space. But not every countably tight space
can be embedded in a sequential space: easy ZFC examples can be found in [FR].
The following related problem from [FR] is still unsolved.

Problem 1. Is every subsequential compact T2 space sequential?

A space is here called subsequential if it can be embedded in a sequential topo-
logical space. In [FR] an easy example is given of a compact T1 subsequential space
that is not sequential, but it is also noted that any counterexample to Problem 1
would require extra set-theoretic axioms, since the PFA implies that every compact
T2 countably tight space is sequential. Franklin and Rajagopalan go on to give ex-
amples of pseudocompact Tychonoff spaces which can be embedded in sequential T2

spaces, and explain why every countably compact subspace of a sequential T2 space
is itself sequential. Implicit in this is the question of whether every subsequential
countably compact T2 space is sequential. This question was made explicit in [Ny].
One of the aims of this article is to show that the answer is negative [Examples 2.2
and 2.3.], but as we have just said, the extension space cannot itself be T2.

Since most general topologists confine themselves to Tychonoff spaces, a few
comments may be in order as to why we bother to construct such examples. In the
first place, we are only dealing with extensions of countably compact spaces, and
countably compact (and especially compact) T1 spaces are much better behaved
than T1 spaces in general. Recall, for example, Gryzlov’s extension of Arhangel-
skii’s celebrated theorem to T1 spaces: every compact first countable T1 space is of
cardinality ≤ c. Less well known but still striking is Norman Levine’s theorem that
every compact space [no separation axioms assumed!] of cardinality ℵ1 is sequen-
tially compact. This is an obvious consequence of the second of the following recent
theorems, which again assume no separation axioms.

Theorem A. [AW] Every countably compact space of hereditarily Lindelöf degree
< t is sequentially compact.

Theorem B. [Ny2] If X is a compact space with a network N of cardinality ≤ t,
such that every point of X is in fewer than t members of N, then X is sequentially
compact.

Theorem C. [Ny2] Every countably compact space of cardinality < h is sequen-
tially compact.
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Theorem D. [Ny2] If every splitting tree has a chain of length h, then every com-
pact space of cardinality ≤ h is sequentially compact.

The cardinal t is, as in [vD] and [V], the least cardinality of a complete tower on
ω. Closely related is h, the least height of a splitting tree on ω. [These concepts are
defined in Section 2.] A good reference to h is [BPS].

The above theorems are relevant to Examples 2.4, 2.9, and 3.1, which are se-
quential T1 extensions of countably compact, Hausdorff spaces that are not sequen-
tially compact (hence not sequential). Examples 2.4 and 2.9 are constructed in a
unified fashion along with a T1 pseudo-radial extension of a countably compact 0-
dimensional space (Example 2.1) which has a nicer structure than the more general
constructions mentioned above.

Example 3.1 is quite different. It is a countably compact sequential scattered
(hence T1) space X with a countably compact subspace Y which has no nontrivial
convergent sequences at all. No subsequetial Y with this stronger property can be
Hausdorff. The whole space X is locally countable, weakly first countable, and of
scattered height and sequential order ω1. In fact, the Cantor-Bendixson level of
each point is the same as its sequential order.

Theorems A through D warn us not to expect the examples to be “very small.”
Even more to the point is the following theorem, a rephrasing of Theorem 1 of [A].

Theorem E. Let Y be a subsequential T2 space and let y be a nonisolated point
of Y . If X is a countably compact T2 space containing Y, then there is a nontrivial
sequence in X converging to y.

To prove this theorem, Elena Aniskovič used a penetrating analysis of the con-
vergence structure of a subsequential space. The sequential extension of Y , even
though it need not satisfy any of the usual separation axioms, still exerts a strong
influence on which filters on Y converge in Y and even in X. Franklin and Ra-
jagopalan [FR] showed this in a somewhat different way through the use of quotient
maps.

An immediate corollary of Theorem E is that every countably compact subse-
quential T2 space contains a nontrivial convergent sequence. This shows that none of
the usual (consistent) compact T2 countably tight non-sequential spaces are subse-
quential. Theorem E is also relevant to Example 3.1, in which a countably compact
subsequential T1 space is constructed in which every convergent sequence is trivial;
such an example could not be T2 by what we have just seen. This also follows from
another corollary of Theorem E:

Corollary. In a subsequential T2 space, every countably compact subset is closed.

This corollary is proven in Section 4, where it is also explained how it sheds light
on just how difficult Problem 1 is, unless there is somehow an easy positive answer
in ZFC.
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Section 2. A unified trio of constructions

Each of the three examples in this section features a pseudo-radial (a.k.a. chain-
net) T1 space X with a countably compact Hausdorff subspace Y that is not se-
quentially compact. In Example 2.1, X and Y are compact and Y is 0-dimensional.
Example 2.4 is a subspace of a special case of Example 2.1, and exists if CH is
assumed; in it, X is countably compact and sequential. In the natural ZFC gen-
eralization of Example 2.4, X is just pseudo-radial. To make X sequential in ZFC
(Example 2.9), I had to sacrifice regularity of Y while using the same underlying
set with a finer topology.

These three examples have ω as a dense subspace, and disjoint subspaces D
and T , each with underlying set the same (up to order isomorphism) c-ary tree.
In Example 2.4 this is the full c-ary tree of height ω1. In all three examples, the
relative topology on D is the interval topology. In Examples 2.1 and 2.4, the relative
topology on T is the coarse wedge topology, which has as a base the Boolean algebra
generated by all wedges t↑ = {s ∈ T : t ≤ s} such that t is not on a limit level of
T . In Example 2.9 we add the wedges t↑ where t is a limit ordinal of uncountable
cofinality to the set of generators. In all these examples, the topology on D ∪ T is
an example of what Steve Watson calls a resolution of T , a generalization of the
Alexandroff duplicate.

The subspace Y = ω ∪ T in Example 2.1 is a special case of a construction that
uses a splitting tree of subsets of ω. A set S is said to split a set A if both A ∩ S
and A \ S are infinite. A splitting family on ω is a family of subsets of ω such
that every infinite subset of ω is split by some member of the family. The family is
called a splitting tree if it is a tree by reverse almost inclusion. The least cardinality
of a splitting family is denoted s, while least height of a splitting tree is denoted h.
It is easy to show that ω1 ≤ t ≤ h ≤ s. Dordal [D] constructed models of ZFC in
which t = ω1 and h is an arbitrarily high aleph.

The construction of Y in Example 2.1 was independently discovered by Fremlin,
Bourgain, myself, probably Petr Simon, and perhaps others. There is some question
about who was the first to do it, Fremlin or Bourgain, with Haydon favoring the
former and Diestel the latter. Our construction works for any splitting tree, but the
proof is simpler if we use a base matrix tree, a particular kind of splitting tree such
that every infinite subset of ω almost contains some some member of the tree. The
existence of base matrix trees in ZFC is a deep result of Balcar, Pelant and Simon
[BPS].

In Example 2.1, we let T be the order completion of a tree that indexes the
members of a base matrix tree of minimal height. The order completion of a tree
is defined by giving every downwards closed chain a unique supremum if it does
not already have one. In the case of a splitting tree, every chain without a greatest
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element fails to have a unique supremum; if it is bounded above, the part of the
tree above it has a collection of uncountably many minimal members, which can
and will be taken to be c-many. Thus, if we let T (α) represent the αth level of T
and let Λ(T ) =

⋃
{T (α) : α is a limit ordinal}, then the splitting tree consists of

{At : t ∈ T \ Λ(T )}. In examples 2.4 and 2.9, all maximal members are removed
from the order completion to produce T .

2.1. Example. Let T be the order-completion of a base matrix tree in which each
non-minimal member has c-many immediate successors. To each t in T , associate
a new point dt = 〈t, 1〉 and let D = {dt : t ∈ T}. If t is not on a limit level, basic
neighborhoods of dt are the sets of the form {dt}∪At \F where F is a finite subset
of ω. Thus {dt} ∪ At is the one-point compactification of At. Of course, if s > t
then As ⊂∗ At and so the space ω ∪ D fails to be Hausdorff in a big way.

If t ∈ Λ(T ), then basic neighborhoods of dt are the sets of the form D(s, t] =
{dx : s < x ≤ t} ∪As \F . As before, F is a finite subset of ω. It is easy to see that
this makes the relative topology on D the interval topology it acquires as a tree.

Now we are ready to define the neighborhoods of t ∈ T in the whole space
X = ω∪D∪T . For each t ∈ T let V∅(t) = t↑∪{ds : s ∈ t↑}∪At. For each finite set

of (not necessarily immediate) successors s1, . . . , sn of t, let S = t↑ \ (s↑1 ∪ · · · ∪ s↑n)
and let

Vt(s1, . . . , sn) = S ∪ {ds : s ∈ S} ∪ [At \ (As1
∪ · · · ∪ Asn

)].

If t is not on a limit level of T, its basic neighborhoods are of the form Vt(s1, . . . , sn)\
F where F is a finite set that does not include t, and the si are immediate successors
of t.

If t is on a limit level then its basic neighborhooods are of the form

Vx(s1, . . . , sn) \ (F ∪ {ds : s ∈ t↓})

where x is on a successor level and x < t, and the si are immediate successors of t
(not of x). It is important to omit the members of D indexed by t↓ because these
are in the closure of any infinite subset of ω that is indexed by some s on a successor
level above t. Failure to omit them would mean that s and t do not have disjoint
open neighborhoods in Y = ω ∪ T .

It follows from this description that the relative topology on T is the coarse
wedge topology. It is also easy to see that Y = ω ∪ T is Hausdorff (indeed, 0-
dimensional). Because the As indexed by the immediate successors of t are a MAD
family of subsets mod finite of At, no sequence from ω converges to any point of T .
On the other hand, every infinite subset of ω has uncountably many points of T in
its closure: each S ∈ [ω]ω almost contains some At and with it every As, s > t, so
that the whole of Vt(∅) is in the closure of S except perhaps for a finite subset of ω.
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Compactness of T is part of the basic theory of the coarse wedge topology [Ny1,
Theorem 3.4], and compactness of ω ∪ T is an easy consequence given the above
description of the basic nbhds of points of T . The rest follows quickly from two
lemmas:

2.2. Lemma. D ∪ T is radial; that is, if x ∈ A then there is a well-ordered net in
A converging to x.

2.3. Lemma. If t ∈ T, S ⊂ ω and t ∈ S, then t ∈ (S ∩ D).

From these two lemmas it follows that X is pseudo-radial, of order 2. In fact, if
S ⊂ ω and t ∈ S then there is a well-ordered net from S ∩D converging to t, while
dt ∈ S ⇐⇒ S ∩At is infinite ⇐⇒ any sequence that lists S ∩At converges to dt.

Proof of Lemma 2.2. For D this is trivial: the neighborhood {ds : s ∈ t↓} is a
copy of an ordinal. In [Ny1] it is shown that every tree is radial in the split wedge
topology, which coincides with the coarse wedge topology for trees that are order-
complete. A minor adaptation of this proof shows that every point t ∈ T in the
closure of a subset S of D is the limit of a well-ordered net from D. Specifically,
if t is not on a limit level, then t is in the closure of S iff S meets infinitely many
basic Vs(∅) based on immediate successors of t; and then every choice function with
domain ω for infinitely many of these Vs(∅) converges to t. If t is on a limit level,
then either the same thing occurs, or else there is a well-ordered net 〈sξ : ξ < α〉 in
T converging up to t from below, such that S \ (t↑ ∪ t↓) meets Vxξ

for all ξ. But

every neighborhood of t contains Vxξ
\ t↑ for cofinally many ξ < α. So another

choice function gives a well-ordered net from S converging to t. �

Proof of Lemma 2.3. The preceding proof can be modified to characterize those
S ⊂ ω that have t in their closure. Simply replace “meets” with “hits,” i.e., “meets
in an infinite set.” Then we get a family of appropriately situated dx having t in
their closure, with each dx in the closure of S. The only part that needs special
attention is the last case, where S hits only sets of the form Vxξ

\ t↑. But in this

case, if Ax ⊂ S then x /∈ t↓. The sets Ax come from a base matrix tree and so there
are enough well situated dx in this case too. �

Examples 2.4 and 2.9 use a subset of Example 2.1 formed by removing the top-
most points (“leaves”) of T and D. In the relative topology, this gives us a countably
compact pseudo-radial space. If T was of height ω1 + 1 the resulting subspace of X
is sequential; this is our second example.

2.1. Example. Let T be the full c-ary tree of height ω1 + 1, and let Λ(T ) denote
the points of T on limit levels. We invoke CH to index a index a base matrix tree
by T \ Λ(T ). More generally, we could use the axiom h = ω1, because the least
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height of a base matrix tree is also the least height of a splitting tree [BPS]. The
individual levels of T \ Λ(T ) then index MAD families of subsets of ω.

In the particular case of Example 2.1 that results from T , we let X be the
subspace ω ∪ C ∪ S where S is the full binary tree of height ω1 and C is the
corresponding subset of D, and let Y be the subspace ω ∪ S. Removal of the
topmost points of D and T does not affect the argument that every point of ω has a
cluster point in Y , nor the argument that no sequence in ω can converge to a point
in Y .

2.5. Theorem. X is sequential of order 2 and countably compact, and Y is count-
ably compact.

This theorem is an easy consequence of the foregoing remarks and of the following
lemma.

2.6. Lemma. C ∪ S is countably compact and Fréchet-Urysohn.

This lemma in turn follows easily from the next two:

2.7. Lemma. A rooted tree is Hausdorff in the coarse wedge topology iff it is a
semilattice (equivalently, a complete lattice) with respect to greatest lower bound.

2.8. Lemma. A Hausdorff tree is countably compact in the coarse wedge topology
iff it has finitely many minimal elements, and every branch (i.e., maximal chain)
of countable cofinality has a greatest element.

Since S satisfies all the hypotheses in these two lemmas, it is countably compact.
Lemma 2.7 is trivial, while the second conclusion in Lemma 2.6 is clear from Lemma
2.2 and the fact that every point of S has only countably many predecessors.

Proof of Lemma 2.8. Necessity is clear. Conversely, let A be an infinite subset of
S. If A has an infinite chain, then its supremum is a limit point of A. If not, s be
the g.l.b. of A. There are two elements a0, b0 in A whose g.l.b. is s [Ny1, Theorem
3.2]. If there is an an infinite subset B of A such that all pairs in B have s as
their g.l.b., then any 1-1 sequence in B converges to s. If not, we can inductively
define elements sn+1 > sn beginning with s0 = s, and infinite subsets An+1 ⊂ An

with A0 = A and an ∈ An such that g.l.b.(an, am) = sn whenever n < m. Then
an → supnsn. This supremum exists since the sn are bounded above, and S is
Hausdorff. �

Lemma 2.6 now follows by applying the same argument to subsets of D, to get
every infinite subset A of D a limit point in T unless A has an infinite chain. In
this case, A has a limit point in D itself.

2.9. Example. If h > ω1 then something needs to be done about the points of
D and T on limit levels of uncountable cofinality. The ones in D can be omitted
without affecting the countable compactness argument, as can the leaves of T .
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However, the others cannot be removed without destroying countable compactness:
each t like this has uncountably many immediate successors, and these would no
longer have a limit point. What we do instead is to refine the topology by adding
sets defined like Vx(s1, . . . sn) \ ω to the topology as a weak base at t. That is, if
cf(ht(t)) > ω we let Z(t) be the collection of sets of the form:

Zt(s1, . . . sn;F ) = [t↑ \ (s↑1 ∪ · · · ∪ s↑n)](= S) ∪ {dt : s ∈ S} \ F (F finite, t /∈ F )

and declare a set U to be open iff it contains a member of Z(t) for each t in U at a
limit level of uncountable cofinality and is a neighborhood (in the original topology)
of every other point it contains.

Because X is T1, this is equivalent to t being in the closure of a H ⊂ X \ {t}
iff it is in the closure of the members of Zt(s1, . . . sn;F ) \ {t} that are themselves
in the closure of H. In Zt(s1, . . . sn;F ), all points except t have neighborhoods in
the original topology that meet X \ω in a subset of Zt(s1, . . . sn;F ) itself. Thus we
need only add points of ω to expand Zt(s1, . . . sn;F ) to make an open neighborhood
of t. Now Lemma 2.3 continues to hold in this finer topology (in fact, there are
fewer cases to consider) and so it follows as with Example 2.4 that X is sequential.
The proof that Y is countably compact in this topology is substantially the same
as with Example 2.4.

In the (very common!) models where t = h, the sets of the form Zt(s1, . . . sn;F )∪
Ax form a base for the neighborhoods of t. This is because, if a subset I of ω meets
Ax for all x < t, then I will also hit infinitely many sets of the form As where s
is an immediate successor of t: were it not so, we could subtract off finitely many
As from I, and then the sets Ax would trace a complete tower of cofinality ≥ t

on what is left of I, contradicting t = h = ht(T ). And now it follows that every
neighborhood of t meets I.

Similarly, if I ⊂ ω and t ∈ I, then t has infinitely many immediate successors
s such that I has a subsequence converging to ds′ for some s′ ≥ s. If t < h then
the neighborhoods of t are more complicated, but if t does not have infinitely many
successors as described just now, then some set of the form Zt(s1, . . . sn;F )∪ (ω \I)
is an open neighborhood of t missing I.

Section 3. An example with no nontrivial convergent sequences.

3.1. Example. This example is built by transfinite induction on the countable
ordinals, one level at a time, levels alternating in their basic description. Begin with
ω = Y−1 and let T index a base matrix tree on ω. Let D0 = {dt : t ∈ T} and let
a base of neighborhoods for each dt be defined as before: it consists of all sets of
the form {dt} ∪At \ F where F is a finite subset of At. Then Y0 is also indexed by
T , and for each yt we pick a set St of denumerably many δs indexed on the level
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of T immediately above t, and let a weak base at yt consist of all sets of the form
{yt} ∪ St \ F where F is a finite subset of St.

After this, if Yβ has been defined, and α = β + 1, we let Mα be a MAD family
of countable subsets of Yα, while if α is a limit ordinal and Dξ and Yξ have been
defined for all ξ < α, we let Mα be a MAD family of countable closed discrete
subspaces of

⋃
{Yξ : ξ < α}. In either case, for each M ∈ Mα, let TM index a

base matrix tree on M , and let TM be the union of all the TM (M ∈ Mα) with
the direct sum order. Let Dα = {dt : t ∈ TM} and let a weak base for each dt be
defined as the base was defined for dt ∈ M0. Yα and the weak bases of its points
are defined just as they were for α = 0, with TM replacing T .

Let Y =
⋃
{Yα : −1 ≤ α < ω1} and let Z = Y ∪

⋃
α<ω1

Dα. Since Z is weakly
first countable, it is sequential. It is T1 and scattered; in fact, it has ω as a dense
set of isolated points, and it is easy to see that Zα =

⋃
{Dξ ∪ Yξ : ξ < α} is open in

Z for all α ∈ ω1 and that each Yα and Dα is discrete in its relative topology, with
Yα closed in Zα+1 and Da closed in Zα ∪ Dα. As defined here, Z is not countably
compact, but it is easy to extend it to a weakly first countable (hence sequential),
countably compact T1 space.

Claim. Y is a countably compact subspace in which every convergent sequence is
eventually constant.

Proof of claim. Countable compactness is proven similarly to the previous ex-
amples, as follows. Let {yn : n ∈ ω} be an infinite subset of Y . We may assume
that either there exists α such that yn ∈ Yα for all n or else that yn+1 is in a later
Yα than is yn. In the latter case, {yn : n ∈ ω} is a closed discrete subspace in the
relative topology of Zγ where γ is the supremum of the α involved, and so there
exists M ∈ Mγ that meets {yn : n ∈ ω} in an infinite set. In the former case, there
trivially exists such an M in Mα.

In either case, there exists At, t ∈ TM , almost contained in the set of all yn ∈ M ;
so too As ⊂∗ {yn : n ∈ ω} ∩ M for every s immediately succeeding t in TM ; and so
yt is a limit point of {yn : n ∈ ω}.

Although it is not strictly needed for showing that Y has only trivial convergent
sequences, it is convenient to show that Z1 is locally countable and locally para-
compact. Each basic neighborhood of dt ∈ D0 is the one-point compactification of
a countable discrete space. This is also true of every weak basic neighborhood of
yt ∈ Y0. The points of St are all on the same level of T, so their basic neighborhoods
are almost disjoint. There thus exist basic nbhds, one for each point of St, that
form a disjoint collection. The union of this collection, together with yt, is an open
nbhd of yt that is homeomorphic to the well-known Arens space S2; this is a regular
space and, being countable, it is paracompact. No sequence of isolated points of U
can converge to yt: the corresponding fact about S2 is well known. Since U is open,
there is no sequence of distinct points of Y converging to yt.
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Let 1 < α < ω1 and suppose that, for all β < α, no sequence of points in Y
can converge to any point of Yβ . Each point of Yα has a weak neighborhood W
in Z homeomorphic to S2, constructed in the same way as an actual neighborhood
of a point of Y0. List the relatively isolated points of W as {yn : n ∈ ω}. If
α = β + 1 then yn ∈ Yb for all n, while if α is a limit ordinal, then yn ∈ βn for
some βn < α, and the βn converge to α. To make an actual neighborhood for y, we
attach neighborhoods to each yn. Let Vn be an open neighborhood of yn with all
other points taken from Zb [resp. Zβn

]. Let U = Y ∩
⋃

n∈ω Vn. Then U is a Y -open
neighborhood of y, and it is enough to show that no sequence from U \W converges
to y.

The rest of the proof is a faint echo of the proof of [Ny2, Theorem 1.1]. Let
〈pn : n ∈ ω〉 be a 1-1 sequence of points of U \ W with y in its closure. Since the
sequence does not converge to y0, there is an infinite C0 ⊂ ω such that {pn : n ∈ C0}
does not have y0 in its closure. Continue to inductively define Ck+1 ∈ [Ck]ω so that
{pn : n ∈ Ck+1} does not have yk+1 in its closure. Finally, let C be an infinite set
almost contained in Ck for all k. Then {pn : n ∈ C} does not have any yn in its
closure, so U \ {pn : n ∈ C} is a neighborhood of y witnessing that {pn : n ∈ ω}
does not converge to y. �

Section 4. More about subsequential T2 spaces

Now we will show the corollary of Theorem E mentioned in the introduction.
Here they are again.

Theorem E. Let Y be a subsequential T2 space and let y be a nonisolated point
of Y . If X is a countably compact T2 space containing Y, then there is a nontrivial
sequence in X converging to y.

Corollary. In a subsequential T2 space, every countably compact subset is closed.

Proof. Let S be T2 and let Z be a countably compact subset of S. If p ∈ Z \Z, then
Y = Z∪{p} is countably compact and p is nonisolated in Y but there is no sequence
in Y converging to y. By Theorem E, Y cannot be embedded in a sequential space,
and so neither can S. �

In the terminology of [IN], this corollary says every subsequential T2 space is
C-closed:

4.1. Definition. A topological space is called C-closed [resp. a KC-space] iff every
countably compact [resp. compact] subset is closed.

A well-known elementary fact is that every T2 space is a KC-space, while every
KC-space is clearly T1. The property of being C-closed is much more restrictive.
For instance, in [IN] it was shown that a sequentially compact T2 space is sequential
iff it is C-closed. The proof obviously extends to:
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Theorem F. A countably compact KC-space is sequential iff it is sequentially com-
pact and C-closed.

The following simple examples show that “KC-space” cannot be weakened to
“T1-space” nor even to “convergent sequences have unique limits.”

4.2. Example. Let S2 be the Arens space mentioned in the preceding section,
with underlying set {x} ∪ (ω × (ω + 1)), with the product topology on ω × (ω + 1)
and the cofinite subsets of {x} ∪ (ω × {ω}) containing x forming a weak base for
the neighborhoods of x.

Let Z be the one-point compactification of ω×(ω+1) with ∞ as the extra point.
Let X be the quotient space of S2 and Z formed by identifying the two copies of
ω × (ω + 1). Convergent sequences in X have unique limits, and X is sequential,
because sequentiality is preserved by quotient maps, and S2 is sequential. Any
infinite subset of X meets either the top row or ω × ω in an infinite set, and so
either x or ∞ is an accumulation point, so X is countably compact (and countable,
hence compact).

However, X is not a KC-space, and a fortiori not C-closed, because (ω×ω)∪{x}
is compact but not closed.

4.3. Example. This time, let Z be the one-point compactification of ω×ω with ∞
as the extra point. Let X be the quotient space of S2 and Z formed by identifying
the two copies of ω × ω. This space has all the properties listed for the preceding
one, except that each column is a sequence converging to two points, one of which
is ∞. However, X is T1.

Example 4.3 has a subspace relevant to the following rephrasing of Theorem F:

Theorem F′. A countably compact, KC-space is sequential ⇐⇒ it is sequentially
compact and every countably comact subset is compact.

Here too, weakening “KC-space” to “convergent sequences have unique limits”
results in a false statement, but in the opposite direction from Example 4.2, even
for subsequential spaces.

4.4. Example. Let Y be the subspace of Example 4.3 obtained by removing
ω × {ω}. Convergent sequences in Y have unique limits, and Y is sequentially
compact and countable, so every countably compact subset (including Y itself) is
compact. Also, Y is subsequential since it is a subspace of Example 4.3, but it is
not sequential because x is in the closure of ω × ω while every sequence in Y that
converges to x is eventually constant.

The following problem, first posed at the 1980 Spring Topology Conference, re-
mains unsolved:

Problem 2. Is every C-closed compact T2 space sequential?
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In any model where the answer to Problem 2 is Yes, so is the answer to Problem
1: see the Corollary. These models include those where MA or 2ω < 2ω1 [IN] holds.
More generally:

Theorem G. [vD, Corollary 6.4] If 2ω < 2t then every C-closed compact T2 space
is sequentially compact, hence sequential.
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