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Abstract. An anti-ponderous space is a space in which every infinite countably compact
subspace has a one-to-one convergent sequence. It is shown that a countable family of anti-

ponderous spaces has an anti-ponderous product, with only a modest separation axiom as-
sumed. This still leaves a wide range of uncertainty if the Continuum Hypothesis is not as-

sumed. Questions about this and about sequentially compact spaces are discussed.

This paper continues the theme begun in [1] and [2] of the effects of cardinal functions on
the convergent sequences in countably compact spaces without necessarily assuming that the
spaces in question are Hausdorff or better. Often, as in the case of the main new result of this
paper, weaker axioms are adequate for various theorems, and stronger axioms do not seem
to lead to stronger results. Our new theorem is a natural variation on the classical result
that the product of countably many sequentially compact spaces is sequentially compact.
It involves a natural weakening of sequential compactness, given in Definition 4.

Definition 1. A space is countably compact if every countable open cover has a finite
subcover. Equivalently, every infinite sequence has a cluster point.

Definition 2. A space is sequentially compact if every infinite sequence has a convergent
subsequence.

The following property was introduced in [2], and some cardinal invariants associated
with it were discussed there.

Definition 3. A ponderous space is an infinite, countably compact space in which every
convergent sequence is eventually constant.

Definition 4. An anti-ponderous space is one that has no ponderous subspaces.
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Definition 5. A space has Property S if every convergent sequence has a unique cluster
point.

Clearly, every ponderous space is T1, as is every space with Property S. As is well known,
every KC space (that is, a space in which every compact subset is closed) has Property S,
and every Hausdorff space is KC. From the T1 property of ponderous spaces it easily follows
that a countably compact space is anti-ponderous if, and only if, every infinite, countably
compact subspace contains a one-to-one convergent sequence. This is because, in a T1 space,
a convergent sequence cannot repeat more than one point infinitely many times.

Well known examples of ponderous spaces include βN and its countably compact sub-
spaces, including the Novak-Teresaka example of a countably compact Tychonoff space
whose square is not countably compact (nor even pseudocompact). The famous Efimov
Conjecture, still not completely disproven, is equivalent to the conjecture that every pon-
derous compact Hausdorff space contains a copy of βN.

The following is a strengthening, in some models of set theory, of the classical theorem
mentioned above. The proof of that theorem goes through with only minor changes.

Theorem 0. [3, Theorem 6.9(a)] The product of fewer than t-many sequentially compact
spaces is sequentially compact.

The cardinal t is, as in [3] and [4], the least cardinality of a complete tower on ω. Closely
related is h, the least height of a splitting tree on ω [5]. In [2] it was shown that h is the least
cardinality (also the least net weight) of a countably compact space that is not sequentially
compact, and a KC example was given of a space that witnesses this.

On the other hand, new ideas are needed for any strengthening of the following result
along these lines:

Theorem 1. Let {Xn : n ∈ ω} be a countable family of spaces with Property S. If none of
the Xn contains a ponderous subspace, then neither does their product.

This is as far as we are able to go at present:

Problem 1. Is there a model of set theory in which the product of ℵ1 anti-ponderous
spaces is anti-ponderous?

This is in marked contrast to Theorem 0 and the definitive result for KC spaces involving
h. For example, Martin’s Axiom implies t = h = c, and Martin’s axiom is compatible with
c being “arbitrarily large”. We are somewhat better off in the opposite direction.

Problem 2. Is it consistent that there is a product of < s anti-ponderous spaces that
contains a ponderous subspace?

Here s is the splitting number, which satisfies h ≤ s ≤ c [3], [5]. Ponderous compact
subsets of 2s have been constructed in models of ℵ1 = s < c, [6], [7]. The latter was shown
to exist in any model obtained by adding random reals to a model of CH in the usual way,
hence c could be arbitrarily large. This also provides an upper bound for strengthenings of
Theorem 0, but the window of uncertainty is wide open between the two:
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Problem 3. Is it consistent that there is a family of < s sequentially compact spaces whose
product is not sequentially compact?

Problem 4. Is it consistent that any product of t sequentially compact spaces is sequentially
compact?

These last two problems were already implicit in [3, Question 6.10] and there does not
seem to have been any progress on them since then. All four problems ask only for consis-
tency, because otherwise the CH would imply negative answers for all of them.

The proof of Theorem 1 involves the following lemmas, the first two of which are elemen-
tary and well known.

Lemma 1. Every countable, countably compact space is compact and sequentially compact.
�

Lemma 2. A continuous image of a [countably] compact space is [countably] compact. �

Lemma 3. In any space X with Property S, the range of a convergent sequence with infinite
range, together with its (unique) limit point, is a closed copy of ω + 1.

Proof. Since X is T1, the sequence σ minus its limit point p is closed discrete in its relative
topology. Therefore, any one-to-one map from ω to ran(σ) \ {p} is a homeomorphism,
and its obvious extension to ω + 1 is also a homeomorphism since every neighborhood of p
contains all but finitely many points in the range of σ, but is not in the closure of any finite
subset of ran(σ) \ {p}. �

By the way, Property S should not be confused with the weaker property [to which
Lemma 3 does not extend] that no sequence can converge to more than one point.

Proof of Theorem 1. Let X = Π∞n=1Xn and suppose no Xn has a ponderous subspace. Let
πn denote the projection of X to Xn and let ρn denote its projection to Πn

i=1Xn. Let Y be
an infinite, countably compact subspace of X.

We will show that Y has a one-to-one convergent sequence. Our strategy will be to find
countable, compact Hausdorff subspaces Zn ⊂ Xn such that Π∞n=1Zn =: Z contains an
infinite subset of Y . This subset Yω in turn will be the intersection of a descending chain of
infinite closed subsets Yn of Y such that ρnYn+1 ⊂ Z1 × . . . Zn. Thus, Yω is a subset of the
compact metrizable space Z = ΠnZn. Let σ be a one-to-one sequence whose range is in Yω,
and let τ be a subsequence that converges in Z. Since Y is countably compact, the unique
limit of this sequence is in Y , and so we will be done.
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To ensure that Yω =
⋂
∞

n=1
Yn is infinite, we will choose points {pn : n ∈ N} by induction

in Y , making sure pn is in Ym for all m. We will also define Zn ⊂ Xn, Yn ⊂ Yn−1 by
induction. Let Y1 = Y . If π1Y is finite, let Z1 = π1Y . Otherwise, let Z1 be a copy of ω1 in
π1Y . In either case, let z1 ∈ Z1 and choose p1 ∈ Y1 such that π1(p1) = z1.

Let Y2 = ρ←1 Z1 = π←1 Z1. Clearly, Y2 is an infinite closed subspace of Y containing p1.
Let Z2 = π2Y2 if π→2 Y2 is finite. Otherwise, let Z2 be a copy of ω+1 in π→2 Y2 that includes
π2(p1). [In spaces satisfying Property S, adding finitely many points to a copy of ω1 still
produces a copy of ω1.] In either case, let p2 be a point in Y2 other than p1.

In general, suppose that we have defined infinite closed, hence countably compact sub-
spaces Yi ⊂ Y and Zi ⊂ πiYi such that Yj ⊃ Yi for j ≤ i ≤ n and such that Zn is either
infinite or all of π→n Yn. Also suppose that pi ∈ Yn for i ≤ n. Let Yn+1 = π←n Zn. Then either
Yn+1 = Yn or Yn+1 is the preimage of a copy of ω + 1.

Let Zn+1 = π→n+1Yn+1 if this image is finite; otherwise, let Zn+1 be a copy of ω + 1 in
π→n+1Yn+1 that includes π2(pi) for i = 1, . . . , n. In either case, let pn+1 ∈ Yn+1, pn+1 6= pi
for i = 1, . . . , n. It is routine to show that the induction hypotheses are satisfied. When the
induction is complete, we will have ensured that Yω is infinite, since it contains all the pi.
�

In the trivial case where all but finitely many of the Zn are one-point spaces, their product
is a countable, compact space, and the chain will stabilize at a Yn where the |Zm| = 1 for
all m > n and we will be done by Theorem 0: Yn is infinite and sequentially compact and
so Y is not ponderous.

Problem 1 asked whether we can improve on “countable” in Theorem 1. The proof does
not seem to lend itself to continuation beyond ω; even going to ω + 1 seems to involve
sacrificing an essential part of Yω and practically starting over. The following problem is
also open:

Problem 5. Can we weaken the topological conditions on the spaces Xn in Theorem 1?

The condition on uniqueness of limit points of convergent sequences was used in showing
that Yω is closed in Y and hence countably compact; that Yω is sequentially closed in Z;
and in getting Z to be metrizable by making sure that a one-to-one sequence and its limit
point form a copy of ω + 1. The third use is not really essential since we could also show Z

to be sequentially compact using Lemma 1 and Theorem 0.

On the other hand, the first two uses do seem to be essential. We need to avoid a situation
where any bijective sequence in Yω that is convergent in Z also has so many cluster points
outside Z that it has no convergent subsequences in Y . As long as Yω is countably compact
this is not a problem, but in the absence of strong enough separation axioms this is not easy
to achieve.

The T1 property was used in getting the chain of Yn’s to have nonempty intersection, due
to the fact that singletons of Xn are closed and hence so are their preimages in Yn.

We close with two problems which may be easier to answer than the previous ones. The
second is reminiscent both of Problem 2 and of Efimov’s conjecture.
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Problem 6. Is there a countable family of anti-ponderous, countably compact spaces whose
product is not countably compact?

Problem 7. Is it consistent that the product of fewer than c spaces can contain a copy of
βN without any of the factors containing one?
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