
The new theorem in this paper (Theorem 2) negatively answers the following
question of Gary Gruenhage:

Problem. Is Ck(Q) stratifiable?

Here Ck(X) stands for the set of continuous real-valued functions with domain
X, with the compact-open topology. The question was motivated by the following
theorem and conjecture of Gartside and Reznichenko:

Theorem 1. Ck(R \ Q) is stratifiable.

Conjecture. Let X be a 0-dimensional separable metrizable space. Then Ck(X)
is stratifiable if, and only if, X is completely metrizable.

The following theorem not only answers Problem 1 negatively, it also lends sup-
port to this conjecture.

Theorem 2. Let X be a 0-dimensional separable metrizable space which is not

scattered, and has the property that every compact subset is countable. Then Ck(X)
is not stratifiable.

The proof of this theorem rests on the following theorem of Gartside and Reznichenko,
which dispenses with the need to define either the compact-open topology or strat-
ifiability.

Theorem 3. Let X be a 0-dimensional separable metrizable space. Then Ck(X)
is stratifiable if, and only if, it is possible to assign to each clopen subset W of X a

compact F (W ) ⊂ W , and to each compact K ⊂ X a compact φ(K) ⊃ K in such a

way that, whenever W ∩ K 6= ∅, it follows that F (W ) ∩ φ(K) 6= ∅ also.

For convenience, we say X has the Gartside-Reznichenko property if it has as-
signments φ(·) and F (·) as above. We will show that if X satisfies the hypotheses
of Theorem 2, then no pair of assignments {φ(·), F (·)} can witness the Gartside-
Reznichenko property. Our strategy will be to define clopen sets Wn in X and a
descending sequence of collections of compact sets Kn such that Wn ∩φ(K) = ∅ for
all K ∈ Kn but Wn ∩ K 6= ∅ whenever K ∈ Ki for i < n, and such that

⋃∞

n=0
Wn

is clopen.

Once this is done, we need only set W =
⋃∞

n=0
Wn: since F (W ) is compact,

F (W ) ⊂
⋃n

i=0
Wi for some n; then Wn+1∩K 6= ∅ for some K ∈ Kn, but Wi∩φ(K) =

∅ for i ≤ n, so W∩K 6= ∅ but F (W )∩φ(K) = ∅, and so X fails to have the Gartside-
Reznichenko property.

To carry out this strategy, we introduce the following concept. Call a collection
of countable (hence scattered) compact subsets of a metrizable space M large if
it has members of arbitrarily high countable scattered height. Clearly every large
collection. is uncountable, and if every countable subset of M is compact, the
union of every large collection of compact sets has noncompact closure, since every
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countable compact space is scattered, and height does not increase in going to
subspaces. The following is also obvious:

Lemma 1. If a large collection is expressed as a union of countably many subcol-

lections, at least one of the subcollections must also be large. �

Similarly, we have:

Lemma 2. If K is large and {Vn : n ∈ ω} is a descending sequence of clopen sets

whose intersection is finite, then there exists n such that {K \Vn : K ∈ K} is large.

Proof. If Vn is as above and K is compact and αn ∈ ω1 is an upper bound for the
heights of the points in K \ Vn then supnαn + 1 is an upper bound for the heights
of the points in K. A proof by contrapositive is now immediate. �

Lemma 3. If M is a nowhere locally compact metric space, K is a large collection

of countable compact subsets of M , φ(K) is a compact set for each K ∈ K, and C

is a nonempty clopen subset of M , then there is a nonempty clopen subset B of C

such that {K ∈ K : B ∩ φ(K) = ∅} is large.

Proof. Let {Cn : n ∈ ω} be a descending sequence of nonempty clopen subsets of
C whose intersection is empty. By Lemma 1, all but finitely many Cn will do for
B. �

Proof of Theorem 2. By a well-known classical result, we may assume X ⊂ C where
C stands for ω2, a.k.a. the Cantor set. For each finite sequence σ of 0’s and 1’s,
let B[σ] be the basic clopen subset of C consisting of all points that extend σ. Let
B = {B[σ] : σ ∈ <ω2}. As is well known, B is a base for C, each member of which
is homeomorphic to C itself, with B[∅] = C.

Lemma 4. If K is large, and
⋃
K ⊂ B[σ], then there exists n such that there are

at least two sequences σ0, σ1 of the same length extending σ such that K � B[σi] =
{K ∩ B[σi] : K ∈ K} is large for i = 0, 1.

` Proof of Lemma 4: Let σ ∈ n2 and let m > n. For each K ∈ K, some point of
maximal height in K is in one of the B[τ ](τ ∈ m2), so there is at least one τ ∈ m2 for
which K � B[τ ] is large. Suppose there is only one for each m. Then the associated
clopen sets close down on a single point of C, and this contradicts Lemma 2. a

For each compact K ⊂ X let φ(K) be a compact subset of X. Define finite
sequences σ and associated points yσ ∈ B[σ]\X, sets Bσ ∈ B such that Bσ ⊂ B[σ],
and large collections Kσ of compact sets by repeated application of Lemmas 1
through 4, in the following way. Begin with σ = ∅ and let y∅ be any point of C \X.
By Lemma 3, let B∅ be a neighborhood of y∅ such that {K ∈ K : φ(K) ∩ B∅ = ∅}
(= K∅) is large.

Suppose yσ, etc. have been defined, in such a way that Kσ � B[σ] is large, and
Bσ ∩φ(K) = ∅ for each K ∈ Kσ, and Bσ is a neighborhood of yσ in B[σ]. Applying
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Lemma 4 to B[σ], let σ1 and σ2 be distinct sequences of the same length, extending

σ, for which Kσ � B[σi] is large. Let yσi
be a point of

⋃
Kσ ∩ B[σi] \ X [overhead

bars denote closure in C] and let Bσi
be a neighborhood of yσi

in B[σi] for which
K = {K ∈ Kσ : K ∩ Bσi

= ∅} is large. Let Kσi
= K.

Once this induction is complete, the set of all σ for which yσ, etc. have been
defined is a copy of the full binary tree of height ω, and each branch defines a
unique point of C. Moreover, each such point is in the closure of X, but not all of
these points are in X, because the branches together define a copy of C.

Let y be one of these points in C \ X. The branch that runs to y defines a
sequence of clopen subsets Bσ ∩X of X. The union W of these sets is clopen since
they converge on y. Re-index the Bσ and the Kσ by the natural numbers in order
of the length of σ, and let Wn = Bn ∩X. These sets are exactly as required by the
strategy explained above. �

Title: Recent research on the compact-open topology and modifications

Let Ck(X) stand for the space of continuous functions from X to R with the
compact-open topology. For compact K, Ck(K) is simply the Banach space given
by the sup norm, but when X is not locally compact, Ck(X) is very complicated.
Gartside and Reznichenko [1] showed that Ck(X) is stratifiable whenever X is a
Polish space; as a result, Ck(P) has emerged as a prime candidate for a negative
solution to the 43-year-old problem of whether every stratifiable space is M1. The
following problem is also of interest:

Problem 1. Let X be separable metrizable. If Ck(X) is stratifiable, must X be

completely metrizable?

The converse is true [1]. Problem 1 easily reduces to the 0-dimensional case.
Since every scattered metrizable space is completely metrizable, the only restriction
on the following partial solution to Problem 1 is in the last clause in the hypothesis.

Theorem 1. [2] Let X be a 0-dimensional separable metrizable space which is not

scattered, and has the property that every compact subset is countable. Then Ck(X)
is not stratifiable.

This result is new even in the special case X = Q, answering a question posed
by Gary Gruenhage at the 2003 Lubbock conference. Theorem 1 made use of the
following elegant criterion in [1].

Theorem. Let X be a 0-dimensional separable metrizable space. Then Ck(X) is

stratifiable if, and only if, it is possible to assign to each clopen subset W of X a

compact F (W ) ⊂ W , and to each compact K ⊂ X a compact φ(K) ⊃ K in such a

way that, whenever W ∩ K 6= ∅, it follows that F (W ) ∩ φ(K) 6= ∅ also.

This theorem also figures in the proof of Theorem 2 below, which represents the
first progress towards the solution of the following problem.
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Problem 2. Let Cs(P, ω) stand for the set of continuous natural-number-valued

functions on P with the sequential modification of the compact-open topology. Is

Cs(P, ω) 0-dimensional?

The modification in question is the one in which a set is open iff it is sequentially
open in Ck(P, ω). Sequential convergence in Ck(P, ω) has the following appealing
characterization:

fn → f ⇐⇒ fn(xn) → f(x) whenever xi → x.

Problem 2 may seem specialized, but a positive solution would be enough to
solve a problem in theoretical computer science. This problem is whether two
competing approaches to higher-type real-number computability actually coincide
on level 3. References [3], [4] and [5] explain these concepts, and [5] shows how
analogues of Problem 2, obtained by iterating the functor Cs(·, ω), would establish
the coincidence at all levels.

Definition. A space X is semiregular if it has a base of regular open sets, and

countably 0-dimensional if whenever x ∈ X and F is a countable closed subset of

X, then there is a clopen set containing x and missing F .

Theorem 2. Cs(P, ω) is semiregular and countably 0-dimensional. In fact, if x ∈
Cs(P, ω) \ F and F is a countable closed subset of Cs(P, ω), then there is a set U

that is open in Cp(P, ω) and closed in Cs(P, ω), contains F , and misses x.

Here Cp refers to the product topology, which is much coarser than the compact-
open topology in this context.
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