
Fréchet uniform box products

The uniform box product was introduced by Scott Williams in 2001, but very little
was done with it until the recent (2010 and 2012) [B1], [H1] dissertations of Jocelyn
Bell and Jeffrey Hankins. Their results had to do with two questions that Williams
posed a decade earlier: whether the uniform box product of compact spaces is normal,
and whether it is paracompact. Hankins answered the latter question in the negative
and there are several fragmentary results on the first question due mostly to Bell [B1]
[B2].

The purpose of this paper is to explore the general theme of when a countable
uniform box product of Fréchet spaces is Fréchet. On finite products, the uniformity
is the same as the usual product uniformity, so it is only denumerable products that
are of special interest here. The topology on these depends not only on the topology
of X but also the uniformity that is used, as Example 1.3 shows.

Definition 0.1. A Fréchet space (or: a Fréchet-Urysohn space) is a space X
such that if a point x is in the closure of a subset A, then there is a sequence from
A converging to x. A countably tight space is one such that if a point x is in the
closure of a subset A, then there is a countable B ⊂ A such that x is in the closure of
B.

Clearly, a space is Fréchet iff it is countably tight and every separable subspace is
Fréchet.

The conditions forXω to be Fréchet in the uniform box topology are quite restrictive,
and much is still not known about them. We let Xω

u stand for Xω with the uniform
box topology. Uniform spaces are taken to be separated [Definition 1.1 below].

1. Basic definitions and results

Definition 1.1. A diagonal uniformity on a set X is a filter E of relations on X,
called entourages or surroundings or vicinities satisfying the following conditions:

(1) ∆ ⊂ E for all E ∈ E, where ∆ is the diagonal {(x, x) : x ∈ X}
(2) If E ∈ E, then E−1 ∈ E, where E−1 is the inverse of E, that is, E−1 = {(y, x) :

(x, y) ∈ E};
(3) If E ∈ E, then there exists D ∈ E such that D ◦D ⊂ E, where

D ◦ F = {(x, z) : ∃y ∈ X such that (x, y) ∈ F, (y, z) ∈ D}

A uniform space (X,E) is separated if
⋂
E = ∆.

As usual, D(x) means {y : 〈x, y〉 ∈ D}. Given any uniform space 〈X,E〉, the
associated topological space has the sets {E(x) : E ∈ E} as a base for the neighborhoods
of x.

The following concept was introduced by Scott Williams at the 2001 Prague Toposym:
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Definition 1.2. Let D be a diagonal uniformity on the space X, and let κ be a cardinal
number. For each D ∈ D let

D = {〈x, y〉 ∈ Xκ ×Xκ : 〈x(α), y(α)〉 ∈ D for all α ∈ κ}.

The uniformity on Xκ whose base is the collection of all D is called the uniform box
product.

In particular, {D(x) : D ∈ D} is a base for the neighborhoods of x ∈ Xκ, and
D(x) = {y : y(α) ∈ D(x(α)) for all α < κ}.

Applying Definition 1.2 to the usual uniformity U on R, we have that U is an ex-

tension of ℓ∞(κ) to all of Rκ; and ℓ∞(κ) itself is the component of
−→
0 in Rκ with the

uniform box product.

More generally, Xκ
u is metrizable if the uniformity on X has a countable base (and

thus X has a metrizable topology). The following example shows how much this
depends on the uniformity used.

Example 1.3. Take the simple metrizable space X = ω× (ω+1) with the uniformity
consisting of all partitions into clopen sets. Take the point x in the product that
satisfies x(n) = (n, ω) for all n. For each function f : ω → ω, take the partition into
the parts of each column of all points above the graph of f together with the singletons
that are on or below the graph of f . This partition canonically defines a basic open
neighborhood of x in Xω

u .

Thus x has a base of neighborhoods in Xω
u that is identical with the ones in the

usual box product, and if we take the point xf which is identical with f : ω → ω in
the usual ordered pair definition of a function, then the set of all these xf has x in its
closure, but no set of fewer than d of them does.

So Xω
u fails to be countably tight. The following simple result gives another way

Xω
u can fail to be countably tight.

Theorem 1.4. If Xω
u is countably tight, then every countable subset of X is first

countable.

Proof. Let N be a countable subspace of X. If N is not first countable, let x ∈ N
have an uncountable neighborhood base B in N of minimum cardinality κ. For each
B ∈ B let xB ∈ Nω have range exactly B. Then no set of fewer than κ points xB has
the point −→x that is constantly x in Nω in its uniform box closure, but the whole set
{xB : B ∈ B} does. �

We now give a more definitive result for which the foregoing proof was a warm-up.
It uses the following notation:
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Definition 1.5. Let (X,D be a uniform space. Then

u(X,D) = min {|B| : B is a base for D}.

We will use simply u(X) if the uniformity is clear from the context.

Theorem 1.6. Let (X,D be a uniform space and let t(X) stand for the tightness of
X as a topolgical space. Then

t(Xω
u ) ≥ u(Q,D ↾ Q) for all countable Q ⊂ X.

Proof. Let Q be a countable subset of X. Make x : ω → Q have infinite preimage for
all q ∈ Q. Let {Dα : α < κ} be a base for the relative uniformity on Q, of minimal
size.

For each α < κ and each i ∈ ω, define xα(i) in such a way that, for each q ∈ Q, we
have:

Dα(q) = {xα(i) : i ∈ ω, and x(i) = q}.

In other words, we sprinkle the xα(i) for each α in such a way that, whenever x(i) = q,
we put xα(i) into Dα(q), and we vary the choice from one of the infinitely many such
i such that x(i) = q to the next, so as to fill out all of Dα(q).

Claim 1. x ∈ cℓ{xα : α < κ}.

Claim 2. If Γ ⊂ κ, |Γ| < κ, then x /∈ cℓ{xα : α ∈ Γ}.

Corollary 1.7. If Xω
u is Fréchet, then u(Q) = ω for all countable Q ⊂ X and hence

for all countable subsets of Xω
u . In particular, every countable subset of Xω

u is second
countable.

This is a very strong restriction on when Xω
u is Fréchet. Its second sentence is

reminiscent of Corollary 3.4 in Gruenhage’s paper [G] where he introduced a topological
game between two players, subsequently dubbed “the hero” and “the villain” in [Ny1].

The game utilizes a point j (“the jail”) in a space X, and consists of moves indexed
by the natural numbers. On each move, the hero picks a neighborhood of p. The
villain plays a point within the neighborhood the hero has just chosen. When all ω
moves have been played, the hero wins if the points picked by the villain converge to
j, otherwise the villain wins.

Gruenhage [G] referred to spaces in which the first player has a winning strategy no
matter how j is chosen as “W-spaces,” and showed:
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Theorem. [G, Corollary 3.4]: Every W-space is a Fréchet space space in which every
countable subset is second countable.

This necessary condition is not sufficient for a space X to be a W-space, nor for Xω
u

to be Fréchet. The following example shows this.

Example 1.8. If X is the one point compactification of an Aronszajn tree with the
interval topology, then every countable subset ofXω

u is first countable, andX is Fréchet,
but X is not a W-space, and Xω

u is not countably tight.

Note that there is no need to specify the uniformity on X since there is only one
uniformity on any compact space. Fred Galvin was the first to show (unpublished)
that Example 1.8 is not a W-space. Theorem 1.12 below generalizes this.

The following two examples show that neither one of “X is a W-space” and “Xω
u

is Fréchet” implies the other, not even for compact spaces (where the uniformity is
unique).

Example 1.9. The Alexandroff double arrow space A is [0, 1]×{0, 1} with the lexico-
graphical order inducing the interval topology. This makes A into a compact, perfectly
normal space whose (unique) uniformity UA has a base B consisting of partitions of A
into clopen intervals.

It is easy to see that B has cardinality c and that, more generally, u(UA) = c. This
is also true of any dense subspace in the relative uniformity, because the completion is
(A,UA) itself. In particular, this is true of the countable subspace Q×{0, 1}. It follows
from Theorem 1.6 that the tightness of Aω

u is c; in particular, Aω
u is not Fréchet.

On the other hand, A is a W-space, as is any first countable space.

The next example involves the following concepts.

Definition 1.10. Given a limit ordinal α of countable cofinality, a ladder at α is a
strictly ascending sequence of ordinals less than α whose supremum is α. A ladder
system on ω1 is a family L = {Lα : α ∈ γ∩Λ}, where Λ stands for the set of countable
limit ordinals, and each Lα is a ladder at α.

The following example was shown by Arhange’skii (who attributed it to Michael
Wage) to be a compact space whose space of continuous real-valued functions is Lindelöf
in the topology of pointwise convergence [A1]:

Example 1.11. Given a ladder system L on ω1, the spaceXL has (ω1×{0})∪(Λ×{1})
as underlying set. Points of ω1 × {0} are isolated, while a set containing 〈α, 1〉 is a
neighborhood of 〈α, 1〉 iff it contains a cofinite subset of Lα × {0}.

Let XL+1 denote the one point compactification of XL. Then (XL+1)ωu is Fréchet,
but XL + 1 is not a W-space.
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The proof that the one-point compactification of XL is not a W-space is very similar
to the usual proof for that of an Aronszajn tree. In fact, both fall under a rather general
theorem.

Theorem 1.12. Let X be a locally compact space which is the union of a strictly
ascending ω1-sequence of open subspaces {Xα : α < ω1} for which the following is a
stationary subset of ω1: the set E of all α ∈ ω1 such that Xα has nonempty boundary
and

⋃
{Xξ : ξ < α} = Xα.

Then if each Xα has a countable dense subset, the one-point compactification of X
is not a W-space.

Proof. We may assume without loss of generality that X is Fréchet. Let σ be a strategy
for the hero, and let M be a countable elementary submodel of a large enough Hθ, such
that 〈Xα : α < ω1〉, σ, and the topology on X are all members of M , and such that
ω1 ∩M = δ ∈ E.

The extra point ∞ is the jail that the villain can avoid if the hero’s strategy σ is
known. Before the game begins, the villain picks a point p ∈ Xδ \Xδ, and a sequence
〈xn : n ∈ ω〉 converging to p, such that xn ∈ M for all n. This can be done as follows.
Let αn ր δ. Since Xαn

∈ M , there is a countable dense subset Dn of Xαn
such that

Dn ∈ M . Let D =
⋃

∞

n=0
Dn. Then p is in the closure of D, and D ⊂ M , so we can

use the Fr’echet property to get 〈xn : n ∈ ω〉 with range a subset of D.

The hero’s first move picks out an open neighborhood σ(∅) of ∞ whose complement
K(∅) is a compact subset of X. Since σ ∈ M, K(∅) ∈ M , and so there exists β1 < δ
such that K(∅) ⊂ Xβ1

. Indeed, M “thinks” δ is ω1, so no compact subset of M ∩X in
M can be “cofinal” in Xδ. So the villain some xn1

in this sequence that is in Xδ \Xβ1
.

On his kth move, after the hero has played a neighborhood V which his strategy
calls for, the villain picks nk ≥ k such that xnk

∈ Xδ \ Xβk
for some βk such that

X \ V ⊂ Xβk
.

In the end, the villain’s chosen points converge to p and so they cannot converge to
∞. �

There are many kinds of spaces satisfying the hypothesis in the first sentence of
Theorem 1.12. One kind consists of locally compact spaces in which the set of noniso-
lated points is uncountable and closed discrete: just let X0 be the union of the isolated
points with all but ω1 of the nonisolated ones, then add the remaining nonisolated
points one at a time. Another example is that of scattered locally compact spaces of
Cantor-Bendixson height ω1, with Xα the complement of the αth Cantor-Bendixson
derivative of X. Clearly, if X is separable then all the hypotheses are satisfied in either
case. Of course, neither Example 1.8 nor Example 1.11 is separable.

In the case where each Xα is compact metrizable, as in 1.8 and 1.11, all the hypothe-
ses of Theorem 1.12 are satisfied, and the spaces described are what Arhangel’skii called
“bambou” spaces in [A2].
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2. More examples and some questions about the Fréchet property

Example 2.1. Let 2C denote the Alexandroff duplicate of the Cantor set. This is the
Cartesian product of the Cantor set C with {0, 1}, with the following topology. Points
of C × {1} are isolated, and a base for the neighborhoods of 〈r, 0〉 is given by sets of
the form V × {0, 1} \ {〈r, 1〉} where V is an open interval of C containing 〈r, 0〉.

As is well known, 2C is compact and first countable (and therefore a W-space), but
it is not perfectly normal, and so is generally thought of as being “not as nice” as
the double arrow space A. However, it does have the property that every countable
subspace is metrizable, which A lacks; more strongly, 2Cω

u is Fréchet; in fact, it is a
W -space.

Problem. If X is a W-space such that Xω
u is Fréchet, must Xω

u be a W-space?

Gruenhage [G] showed that the denumerable Tychonoff product of W-spaces is a
W-space, but we are dealing with a different topology on the product.

The following topology was introduced in [Ny2] and some of its basic properties are
shown there.

Definition 2.2. Let T be a tree. The coarse wedge topology on T is the one whose
subbase consists of all sets of the form Vt = {s ∈ T : s ≥ t} and their complements.

Definition 2.3. A tree T is chain-complete if every chain has a supremum. The
chain-completion of a tree T is the tree T̂ that adds to T a supremum tC for each
downwards-closed chain C in T that lacks a supremum in T , so that c < tC in T̂ iff
c ∈ C, while tC is below every upper bound (if any exist) of C in T .

Example 2.4. If X is a chain-completion of an Aronszajn tree, then X is not metriz-
able in the coarse wedge topology, but Xω

u is first countable.

Trees in general are well behaved in the coarse wedge topology. Our next theorem is
about them and involves a game invented by Jocelyn Bell [B3]. It is called the proximal
game, and is a game of ω moves played on a uniform space (X,D) between two players,
A and B. The game is easiest to describe if the uniformity has a base of equivalence
relations; this will always be the case when X is compact and totally disconnected —
equivalently, the Stone space of a Boolean algebra — as are all compact examples in
this paper. An equivalence relation partitions a uniform space into clopen sets.

In the proximal game, Players A and B alternate, with Player A picking a partition
in D and Player B picking a point of X on each move according to the following rules.
On the first move, there are no restrictions. On move n + 1, Player A must pick a
partition that is a refinement of the one he picked on the nth move; Player B must
pick xn+1 from the member of the nth partition from which xn was picked. And so, by
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induction, all later xm have to be taken from the member of the nth partition where
xn is situated, for all n ≥ 1.

On the uniform spaces with bases of equivalence relations, Player A wins iff either
(I) there exists z ∈ X such that x1, x2 . . . converges to z or
(II)

⋂
∞

n=1
Dn[xn] = ∅. Otherwise Player B wins.

The game for general uniform spaces is a bit more complicated and is described in
[B3]. We do not need it in this paper.

Theorem. A tree is proximal in the coarse wedge uniformity if, and only if, it is of
height ≤ ω1.

Proof. One implication is easy: if T is of height > ω1 then it has a copy of ω1 + 1 and
the following is a winning strategy for Player B that only requires a memory of the last
moves played by the two players.

Let W be a branch of T containing a point on level ω1 and let w be this point. If n
is even, Player B lets xn = w; if n > 1 is odd, Player B lets xn be a point strictly below
w inside Dn[xn−1] and not just inside Dn−1[xn−1]. Of course, Dn[xn−1] = Dn[w].
Then on the next move, Player B is free to pick w again because w ∈ Dn[xn]. Then
〈xn : n ∈ ω〉 has at least two cluster points, w itself and at least one inside the countably
compact subspace (in fact, a copy of ω1) of all points strictly below w.

The proof of the converse is complicated enough to be interesting, yet simple enough
to be grasped by anyone with a basic understanding of trees.

3. A Corson compact L-space

In this section we use some of the machinery of the coarse wedge topology to give an
example that may be the first consistent example of a Corson compact L-space. They
cannot be constructed in ZFC because MAω1

implies there are no compact L-spaces
at all.

Definition 3.1. A tree is complete if it is rooted and chain-complete.

The term is partly motivated by the fact that a tree is a complete semilattice wrt
infima iff it is rooted and Dedekind complete.

A corollary of the following theorem is that every complete tree is compact Hausdorff
in the coarse wedge topology.

Theorem 3.2. [Ny2, Corollary 3.5] A tree is compact Hausdorff in the coarse wedge
topology iff it is chain-complete and has only finitely many minimal elements.
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Theorem 3.3. A complete tree is Corson compact in the coarse wedge topology iff
every chain is countable.

Proof. A necessary and sufficient condition for a compact space being Corson compact
is that it have a point-countable T0 separating cover by cozero sets—equivalently, open
Fσ-sets [MR]. If the complete tree has an uncountable chain, then it has a copy of
ω1 + 1, does not have such a cover, thanks in part to the Pressing-Down Lemma
(Fodor’s Lemma).

Conversely, if every chain is countable, then the clopen sets of the form Vt clearly
form a T0-separating, point-countable cover. �

Let us call a tree uniformly ω-ary if every nonmaximal point has denumerably
many immediate successors. Then we have:

Theorem 3.4. If there is a Souslin tree, there is a Corson compact L-space.

Proof. As is well known, every Souslin tree has a subtree T in which every point has
more than one successor at every level above it. Thus every point of T has denumerably
many successors on the next limit level above it. And so, a uniformly ω-ary Souslin
tree results when we take the subtree S of all points on limit levels of T .

Claim. The chain completion Ŝ of S is an L-space in the coarse wedge topology.

Once the claim is proved, Corson compactness follows from Theorem 3.3.

Proof of Claim. Since initial segments of Ŝ are closed, Ŝ is not separable. In the proof
that Ŝ is hereditarily Lindelöf, uniform ω-aity plays a key role: if the tree were finitary,
every point on a successor level would be isolated.

We make use of the elementary fact that a space is hereditarily Lindelöf if (and only

if) every open subspace is Lindelöf. Let W be an open subspace of Ŝ, and let W0 be
the set of points t ∈ W such that Vt ⊂ W . Let A = {a ∈ W0 : a is minimal in W0}.
Then W0 is the disjoint union of the clopen wedges Vα (a ∈ A), and A is countable by
the Souslin property.

If x ∈ W \ W0, then there is a basic clopen subset of W based on x, of the form
Vx \ (Vx1

, . . . , Vxn
) where n ≥ 1. There are no more than n immediate successors of

x below one of the xi, and if s is one of the other immediate successors of x, then
Vs ⊂ Vx \ (Vx1

, . . . , Vxn
), so s ∈ W0. But then s ∈ A also, since any Vt containing Vs

properly must also contain x, contradicting x ∈ W \W0. So W \W0 is countable, and
we have countably many basic clopen sets whose union is W . �
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