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One of the central results of this paper is an elementary yet striking interplay

between the norm topology and the natural product topology on Hilbert space, `2.

The natural product topology is associated with the classical definition of Hilbert

space as the space of square-summable sequences with the norm ‖ · ‖2 which we will

simply write as ‖ · ‖. This gives an embedding (in the algebraic, not the topological

sense) of `2 into the product space Rω. [For notational convenience, we make

the set ω of non-negative integers the domain for all our sequences.] The natural

product topology is strictly coarser than the weak topology, but is well known to

be equivalent to it on norm-bounded sets.

Since `2 is paracompact, every locally finite collection of subsets expands to a

locally finite collection of open sets [E]. The other topologies are also paracompact,

since they are coarser than the norm topology and hence Lindelöf. There are locally

finite collections in the norm and weak topologies that are not locally finite in the

coarser topologies; however, within each topology one can expand any locally finite

collection to a locally finite collection of open sets. Our first theorem extends this

fact by expanding any collection S of sets that is locally finite in the norm topology

to a family of sets that is open in the product topology and hence in the weak

topology, yet is locally finite in the norm topology. This result is apparently new

even where the weak topology is concerned. Yet it is a corollary of an even more

general result [Lemma 1] which states that any countable family of subsets of `2 can

be expanded to a family of product-open sets that is norm-locally finite at every

point where the original family was norm-locally finite.

The proofs easily extend to any separable Banach space with a Schauder basis,

provided that the product topology is defined with respect to the Schauder basis

in the natural way. In Sections 3 and 4 we also extend the first theorem to the

Hilbert spaces `2(Γ) and some other classes of non-separable Banach spaces, via a

more complicated proof.

Our applications of the theorem for `2 involve Erdős space, the subgroup E of

`2 consisting of those points whose coordinates are all rational. Already back in

1940 [ő], Erdős showed that E does not have a base of clopen sets in the norm

topology, even though any two points can be separated by a clopen set—that is, if

x 6= y then there is a clopen subset C of E with the norm topology such that x ∈ C

and y /∈ C. Beyond this, nothing seems to have been done until now to improve

our understanding of the clopen subsets of E. The results in Section 5 represent
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a big jump in our understanding, but our knowledge of the clopen subsets of E is

still fragmentary. Section 6 uses that knowledge to produce new TVS topologies on

Hilbert space that are between the norm topology and the product topology. With

few exceptions, the topologies are not locally convex.

1. The basic theorem and some generalizations.

We will employ the following notation. Given x = 〈xn : n ∈ ω〉 ∈ `2, we define

spt(x), the support of x, to be its set of nonzero coordinates. Given a subset A of

ω, we define x � A to be the point in `2 which agrees with x on A and is 0 elsewhere.

We use the von Neumann convention that every natural number equals the set of

its predecessors in ω, so that x � n means x � [0, n) ∩ ω.

Given a set A, we denote the set of all functions from A to R as RX . A base for

the product topology on RX , also known as the topology of pointwise convergence,

is the collection of all sets of the form

V (f ;x1, . . . xn; δ) = {g ∈ RX : |f(xi) − g(xi)| < δ for all i}

with δ > 0, as f ranges over RX and {x1, . . . xn} over all finite subsets of X. We

extend the expression “product topology” any subspace of RX .

1.1. Definition. Let X be a topological space, let x ∈ X and let A be an indexing

set. A family of sets {Sa : a ∈ A} is locally finite at x if x has a neighborhood

meeting Sa for only finitely many a ∈ A. A family is locally finite if it is locally

finite at every point of X. An expansion of {Sa : a ∈ A} is a family {Ra : a ∈ A}

such that Sa ⊂ Ra for all a ∈ A.

One feature of Definition 1.1 is that a set cannot be repeated infinitely many

times in the indexing of a locally finite family. Some papers require that distinct Sa

expand to distinct Ra in the definition of an expansion. In the interests of simplicity,

we do not require this here; however, if {Ra : a ∈ A} is locally finite, then each Ra

extends at most finitely many members of {Sa : a ∈ A}.

1.2. Lemma. Let {Sn : n ∈ ω} be a family of subsets of `2. There is a choice of

product-open sets Un ⊃ Sn such that if x is a point of `2 at which {Sn : n ∈ ω} is

locally finite in the norm, then {Un : n ∈ ω} is also norm-locally-finite at x.

Proof. Let Vn = {x ∈ `2 : ∃s ∈ Sn(‖s − x‖ < 1/2n)}. It is easy to see that Vn

is norm-open and that {Vn : n ∈ ω} is norm-locally finite at every point at which

{Sn : n ∈ ω} is locally finite in the norm. Let Pn = {p ∈ Vn : spt(p) is finite }. For

each p ∈ Pn let kn(p) = max{n,max(spt(p)) + 1}. Let Un be the set of all points
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in `2 which agree with some point p of Pn in the first kn(p) coordinates. Clearly,

Vn ⊂ Un.

Un is open in the product topology. If x ∈ Un, let p ∈ Pn satisfy p = x � kn(p).

Let m = kn(p). There exists ε > 0 such that the ε-ball centered on p is a subset

of Vn. Then y ∈ Pn whenever spt(y) ⊂ m and |p(i) − y(i)| < ε
m

for all i ∈ m.

Therefore, the basic product-open set V (p; 0, . . .m − 1; ε
m

) ∩ `2 is a subset of Un

containing x.

Finally, suppose that {Un : n ∈ ω} is not locally finite at x. Let zj → x in the

norm, where zj ∈ Un(j) for some n(j) ≥ j. Letm(j) ≥ n(j) satisfy zj � m(j) ∈ Vn(j).

Then

‖x � m(j) − zj � m(j)‖ = ‖(x− zj) � m(j)‖ ≤ ‖x− zj‖ → 0

and x � m(j) → x and so zj � m(j) → x all in the norm. But zj � m(j) ∈ Vn(j),

hence {Vn : n ∈ ω} is not norm-locally finite at x. �

The following is immediate from Lemma 1.2.

1.3. Corollary. Let V be a denumerable family of norm-open subsets of `2. There

is an expansion U = {UV : V ∈ V} of V to a family of product-open sets, such that

if x is in the closure of
⋃

U without being in the closure of any UV , then x is already

in the closure of
⋃

V. �

1.4. Theorem. Each locally finite collection of subsets of 〈`2, ‖ · ‖〉 expands to a

family of product-open sets that is locally finite in 〈`2, ‖ · ‖〉.

Proof. Since `2 is separable, every locally finite collection of subsets is countable.

Now apply Lemma 1. �

With one tiny change in the proof, we can extend Lemma 1 to all separable

Banach spaces with Schauder bases, and then both Corollary 1 and Theorem 1 then

extend immediately. To define the product topology in this setting, one uses the

natural isomorphism between a Banach space E with Schauder basis {en : n ∈ ω}

and the set X of all sequences s from ω to R for which there is ys ∈ E such that

s(n) is the coordinate of ys with respect to en. The norm is simply transferred from

E to X and the product topology is even coarser than the weak topology on X: the

coordinate map taking each s to s(n) is obviously both linear and continuous.

Of course, X and the isomorphism depend very much on the basis chosen. But

whatever the basis, we can extend the proof of Lemma 1 by multiplying ‖x−zj‖ by

a constant factor L in the displayed formula. This is because every Schauder basis

can be associated with a constant L such that for every vector x and every positive
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integer n we have ‖x � n‖ ≤ L‖x‖ [S, ] [Of course, we can take L = 1 in the case of

`p spaces.] And so we have:

1.5 Corollary. Let E be a Banach space with a denumerable Schauder basis B

and let x ∈ E. Each countable family of subsets of E which is locally finite at x

with respect to the norm has an expansion to a family of sets which are open in the

relative product topology associated with B and norm-locally-finite at x. �

Without a Schauder basis there is usually no natural definition for a product

topology, but we can use the fact that every separable Banach space isometrically

and isomorphically embeds into C[0, 1] with the supremum norm [M] to show that

every locally finite collection of sets in a separable Banach space (or even just a

separable normed vector space) expands to a family of weakly open sets that is

locally finite in the norm. Lemma 1.2 also extends:

1.6. Theorem. Let X be a separable normed vector space and let {Sn : n ∈ ω} be

a (countable) family of subsets of X. There is a choice of weakly open sets Un ⊃ Sn

such that if x is a point of X at which {Sn : n ∈ ω} is locally finite in the norm,

then {Un : n ∈ ω} is also norm-locally-finite at x.

Proof. Let X be identified with a subspace of C[0, 1], via the embedding of X in

its completion and [M, ]. Let T be the product topology that is defined on C[0, 1]

with respect to some Schauder basis and let T � X be the relative topology on X.

Extend Lemma 1 to produce T -open sets U ′

n that are locally finite (in the norm) at

any point of C[0, 1] at which the family of Sn’s is locally finite. Each U ′

n is weakly

open in C[0, 1], so Un = X ∩ U ′

n is weakly open in X. �

2. Other product topologies

Of course, the product topology used in the foregoing proof has very little to

do with the product topology most naturally associated with C[0, 1], which is not

even metrizable: the topology of pointwise convergence. It is therefore perhaps

surprising that there is a similar proof of a similar theorem with respect to this

product topology as well. The proof uses much the same ideas of squeezing the

points of the norm-open sets progressively more strongly as n increases.

2.1. Theorem. Let Cp[0, 1] denote C[0, 1] with the topology of pointwise conver-

gence. Let {Sn : n ∈ ω} be a (countable) family of subsets of Cp[0, 1]. There is a

choice of Cp-open sets Un ⊃ Sn such that if {Sn : n ∈ ω} is locally finite in the

norm at g ∈ C[0, 1], then {Un : n ∈ ω} is also locally finite at g in the norm.

Proof. Let Q ∩ [0, 1] = {qn : n ∈ ω}, with q0 = 0, q1 = 1. Each f ∈ C[0, 1] is

uniformly continuous, so that if f ∈ Vn, there exists m = m(f, n) ≥ n such that
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|f(r)−f(qi) < 1/2n for all r between qi and the adjacent member(s) of {q0, . . . , qm}.

Let

Un = {h ∈ C[0, 1] : ∃f ∈ Sn such that |f(qi) − h(qi)| <
1

2n
for all i ≤ m(f, n)}

=
⋃

{V (f ; q1, . . . qm(f,n);
1

2n
) : f ∈ Sn}

Now let g have points from infinitely many Un in every norm neighborhood. For

each j ∈ ω let k(j) ≥ j be so large that |g(r) − g(qi)| < 1/2j for all r between qi

and the adjacent member(s) of {q0, . . . , qk(j)}. Choose n(j) ≥ k(j) so that there is

hj ∈ Un(j) such that ‖g − h‖∞ < 1/2j . Let fj ∈ Vn(j) satisfy

|fj(qi) − hj(qi)| <
1

2nj)
for all i ≤ m}.

where m = m(fj , n(j)). Since j ≤ n(j) ≤ m we have |g(qi) − fj(qi)| < 1/(2j−1) for

all i ≤ n(j). Now if r ∈ [0, 1] let r ∈ [qi, qj) where qi and qj are adjacent members

of {q0, . . . qm; then

|g(r) − fj(r)| ≤ |g(r) − g(qi)| + |g(qi) − fj(qi) + |fj(qi) − fj(r)| ≤
1

2j−2
.

Hence ‖g − fj‖ ≤ 1/(2j−2) and fj → g as j → ∞. �

The proof of Theorem 1.6 established something a little stronger than its state-

ment: it showed that there is a single metrizable linear topology on X that is coarser

than the weak topology, from which the sets Un can always be taken. While the

product topology in Theorem 2.1 is not metrizable, we really only used the basic

product neighborhoods associated with rational numbers. Indeed, there is a nat-

ural algebraic embedding of C[0, 1] into the metrizable space RQ∩[0,1] due to the

fact that every continuous real-valued function on [0, 1] is determined by its values

on Q. Hence our proof of Theorem 2.1 gives an alternative way of proving the

strengthened version of Theorem 1.6.

In some spaces, there is a natural product topology to which Theorem 1.4 does

not extend. For example, C[0, 1] has a natural product topology in which every

nonempty open set is dense in the Lp norm [1 ≤ p < ∞]. Thus it is impossible to

even have an infinite collection of product-open sets that is locally finite in the Lp

norm. Of course, 〈Lp[0, 1], ‖ · ‖p〉 does have a Schauder basis and it is possible to

define a product topology with respect to that.
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Theorem 1.4 also does not extend to many non-separable spaces, not even if they

are complete. The space `∞ is an example. Even if one takes advantage of the fact

that `∞ is essentially C(βω) with the uniform metric, thereby gaining 2c new basic

product open sets, it still cannot be done. In fact, as will be shown in Section 4,

`∞ even has a countable closed discrete subspace D which cannot be expanded to

a point-finite collection of weakly open sets, even though the weak topology on `∞
is strictly finer than the product topology. Moreover, D is a subset of c0, where it

can be expanded to a countable locally finite family of product-open sets.

3. Extensions to some non-separable spaces

In contrast to the case of `∞, there are some nonseparable Banach spaces to

which Theorem 1.4 does extend. This includes `p(Γ) for every set Γ and every p

such that 1 ≤ p <∞.

3.1. Theorem. Let {Va : a ∈ A} be a family of subsets of `p(Γ) that is locally

finite with respect to the norm. There is an expansion to a family {Ua : a ∈ A} of

product-open sets that is locally finite with respect to the norm.

Proof. Since `p(Γ) is metrizable, it is paracompact, and so every locally finite col-

lection of subsets expands to a locally finite collection of open sets. So we may

assume without loss of generality that each Va is open. For each a ∈ A let

Pa = {p ∈ Va : spt(p) is finite}. Let Ua be the set of all points which agree with

some point of Pa on its support. Since each point x of `p(Γ) can be approximated

arbitrarily closely by x � F for some finite subset F of A, Va is a subset of Ua, and

the proof that Ua is open is like the proof that Un is open in Lemma 1.2, with spt(p)

replacing kn(p).

To see that {Ua : a ∈ A} is locally finite, suppose on the contrary that every

neighborhood of xmeets Ua for infinitely many a. Pick distinct an ∈ A and zn ∈ Uan

such that zn → x. Pick z∗n ∈ Fan
agreeing with zn on spt(z∗n). Let Sn = spt(z∗n) and

let {γn : n ∈ ω} = spt(x) ∪
⋃

n∈ω Sn. Our goal is to define a Cauchy subsequence

of 〈z∗n : n ∈ ω〉, contradicting local finiteness of {Va : a ∈ A}.

For each positive integer m, define Am ⊂ {γi : i < m} by induction so that

Sn ∩ {γi : i < m} = Am for infinitely many n, and so that An ∩ {γi : i < m} = Am

whenever n ≥ m. Fix δ > 0. Pick m so that ‖x − x � {γi : i < m}‖ < δ and

‖x− zn‖ < δ for all n ≥ m.

Claim. If M,N ≥ m and SM ∩ {γi : i < m} = SN ∩ {γi : i < m} = Am, then

‖z∗M − z∗N‖ < 6δ.
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Assuming the claim, define km ≥ m for all m ≥ 1 so that Skm
∩ {γi : i < m} =

Am. Then 〈z∗km
: m ≥ 1〉 is the desired Cauchy subsequence.

Proof of Claim. We have

(∗) ‖x � Am − zN � Am‖ < δ and

(∗∗) ‖x � (SN \Am) − zN � (SN \Am) ‖ < δ

because N ≥ m implies ‖x− zN‖ < δ.

Moreover, ‖x � {γi : i ≥ m}‖ < δ and so

‖x � (SN \Am) ‖ = ‖x � (SN ∩ {γi : i ≥ m})‖ < δ

also. It follows from (∗∗) that ‖zN � (SN \Am) ‖ < 2δ.

We have the same facts with M in place of N . So we have

‖zN � Am − zM � Am‖ < 2δ

and

‖zN � (SN \Am) − zM � (SM \Am) ‖ < 4δ.

But z∗N = (zN � Am) + (zN � [SN \Ak+1]), and similarly for z∗M . So these last two

displayed formulas give ‖z∗M − z∗N‖ < 6δ, as desired. �

The foregoing proof works verbatim for c0(Γ) with the supremum norm. There

is also a natural generalization of an unconditional basis to arbitrary index sets

Γ which gives a further generalization of Theorem 3.1. The generalization is to a

linearly independent set {eγ : γ ∈ Γ} such that for each vector x there is a family

of vectors {xγ = rγeg : γ ∈ G} is summable to x.

This is easily seen to be equivalent to having rγ = 0 for all but countably many

γ and having
∑

n xγn
= x no matter how one lists the nonzero coordinates as

γ0, γ1, . . . . Calling such a Γ an unconditional basis even if it is uncountable, and

defining the product topology with respect to it in the natural way, we arrive at:

3.2. Theorem. Let X be a Banach space with an unconditional basis. Every

locally finite collection of subsets of X can be expanded to a locally finite collection

of product-open sets.
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Problem 1. Can Theorem 5 be extended to all Banach spaces in which the norm

locally depends on finitely many coordinates?

4. Examples and counterexamples of the form C(K).

We will now prove the result about `∞ promised at the end of Section 2. Let

Z = {χa : a is a finite subset of ω}. Then Z is a countable closed discrete subspace

of (c0, ‖ · ‖∞) and hence of `∞. Then by Theorem 1.6 it can be expanded to a

locally finite collection of sets open in the weak topology of c0. [Indeed, the sets

can be open in the natural product topology of c0 as indicated after Theorem 1.4.]

However, this is no longer possible in the larger space `∞. This will follow from

some general theorems applied to the following example.

Example. Let T be the full ω-ary tree of height ω + 1. That is, elements of T are

finite sequences (with domain some n ∈ ω) and ω-sequences of natural numbers,

ordered by end extension. Let S stand for the set of finite sequences. Let T be

given the interval topology. This has as a base all {s} ⊂ S and all sets of the form

(s, t] = {x ∈ T : s < x ≤ t}.

With this topology, T is locally compact and Hausdorff, and S is its set of isolated

points. Let K be the one-point compactification of T . In C(K), let

D = {χŝ : s ∈ S}, where ŝ = {x ∈ S : x ≤ s}.

Claim. If V = {Vs : s ∈ S} is a family of product-open sets in C(K) such that

χŝ ∈ Vs, then there is a clopen subset A of K such that χA ∈ Vs for infinitely many

s ∈ S.

Proof of claim: It is enough to show the claim in the case where Vs is of the form

V (χŝ; b1, . . . bn; δ). Let bs ⊂ K be the set of coordinates on which Vs is restricted.

The set A is built by induction. Let s0 ∈ S. If sn has been defined, let sn+1 be

an immediate successor of sn in T which does not have any points of bsn
above it.

When the induction is finished, let t be the supremum of the sn in T and let

A = t̂ = ŝ0 ∪ {sn : n ∈ ω} ∪ {t}.

Then A is clearly clopen in K, and χA ∈ Vsn
for all n. Indeed, χA agrees with

each χŝn
on the domain of the latter, and no point of bsn

outside ŝn is in A, so

χA ∈ Vsn
. �
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A similar claim holds for C(βω), which is naturally isomorphic to `∞, and the

set Z defined before this example can be regarded as being a subset of either space.

Let φ : ω → K be a 1-1 function with range S. Using the universal property

of the Stone-Čech compactification, φ extends uniquely to a continuous function

φβ : βω → K. Since φβ is surjective, the induced map ψ : C(K) → C(βω) (defined

by ψ(f) = f ◦ φβ) is an isometry and an isomorphism with its range. Thus if

Ws is open in the weak topology of C(βω) and contains ψ(χŝ), the preimage of

Ws under ψ is open in the weak topology of C(K) and contains χŝ. But since

K is scattered, the weak topology of C(K) coincides with the product topology [R].

Letting Vs = ψ−1(Ws), we let A be as in the claim above, and then ψ(χA) is in Ws

for infinitely many s ∈ S.

5. The clopen subsets of Erdős space.

A corollary of Erdős’s results mentioned in the introduction is that the topology

τ on E whose base is the set of all clopen subsets of 〈E, ‖ ·‖〉 is a strictly coarser Ty-

chonoff topology. We will now prove that the two topologies have the same countable

closed subsets, and derive some interesting consequences.

5.1. Lemma. Let D be a countable norm-closed subset of E, not containing
−→
0 .

There is a product-open subset of `2 containing D whose trace on E is a norm-clopen

set missing
−→
0 .

Proof. Let D = {dn : n ∈ ω}. In Lemma 1.2, let Sn = {dn} and follow the proof,

choosing Vn so that its closure misses
−→
0 . For each n let Wn ⊂ Un be a basic

product-open set containing dn whose trace on E is clopen. This can simply be

arranged by having the coordinates in which Wn is restricted use intervals with

irrational endpoints for doing the restricting. Now by Lemma 1.2, the only points

of `2 which have each neighborhood meeting infinitely many Wn are in the norm-

closure of D, hence are either in D or else have at least one irrational coordinate.

So
⋃

{Wn : n ∈ ω} traces a clopen set on E containing D and missing
−→
0 . �

5.2. Theorem. A countable subset of E is τ -closed iff it is norm-closed.

Proof. By translation-invariance, Lemma 5.1 implies every norm-closed countable

subset of E is an intersection of norm-clopen sets, and is therefore τ -closed. �

If one follows the proof of Lemma 1.2, one may wind up shrinking the sets Wn

more than necessary. For example, if D is closed discrete in `2, then one can let

each Vn be of diameter r times the distace from dn to its nearest neighbor(s) where

r is any positive number < 1/2. Then any basic open set of the following form

can be chosen for Wn. Let A be a finite subset of ω such that there are irrational
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numbers pn(i) and qn(i) satisfying pn(i) < dn(i) < qn(i) for each i ∈ A, and such

that the following set is a subset of Vn:

Y (pn, qn) = {y ∈ L : spt(y) ⊂ A and pn(i) < y(i) < qn(i) for all i ∈ A.}

Let Wn = {z ∈ `2 : z � A ∈ Y (pn, qn)}.

Alan Dow observed the following corollary of Theorem 5.2.

Theorem 5.3.. Every τ -convergent sequence in E is norm-convergent. Thus 〈E, τ〉

is not a sequential space.

Proof. Suppose there were a τ -convergent sequence σ that is not norm-convergent.

Since τ is coarser than the norm topology, this would imply that the range of some

one-to-one subsequence of σ is closed discrete in the norm topology. But then by

Theorem 5.2, this range is also τ -closed-discrete, contradicting τ -convergence to
−→
0 .

�

Theorem 5.2 leads even more directly to the negation of a generalization of

sequentiality, introduced by Moore and Mrówka in [MM].

5.4. Definition. A topology is determined by countable closed sets [resp. countably

tight] if a set A is closed if (and only if) c`(B) is a subset of A whenever B ⊂ A and

c`(B) is countable [resp. and B is countable].

In what came to be called “the Moore-Mrówka problem,” they asked whether

every compact Hausdorff countably tight space is determined by countable closed

sets. This has been shown to be independent of the usual (ZFC) axioms of set theory

[BDFN] [B]. They also remarked that the problem was open for arbitrary Hausdorff

spaces. A ZFC counterexample was provided by I. Juhász and Weiss [JW] [N]. Just

from the name, one might infer that 〈E, τ〉 is another counterexample, inasmuch as

it has the same countable closed sets as the norm topology does. This is indeed

the case: one can let A be any set which is norm-closed but not τ -closed, and any

subset of A with countable τ -closure has the same norm-closure which is thus a

subset of A.

It is interesting to compare and contrast the counterexample in [JW] with this

one. The one in [JW] is constructed by transfinite induction and is neither heredi-

tarily separable nor hereditarily Lindelöf. 〈E, τ〉 has both properties and is defined

in an elementary way using only ZF; only the countable axiom of choice is needed

to verify that τ is not determined by countable closed sets. On the other hand, the

Juhász-Weiss space is pseudo-radial [JW] while 〈E, τ〉 is not.
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5.5. Definition. A space is pseudo-radial if its topology is determined by well-

ordered nets. In other words, if a set A is not closed, there is a point x outside A

and a well-ordered net in A converging to x.

5.6. Theorem. The space 〈E, τ〉 is hereditarily separable (hence countably tight)

and hereditarily Lindelöf, but not pseudo-radial.

Proof. Erdős space is separable metrizable and hence both hereditarily separable

and hereditarily Lindelöf. Since τ is a coarser topology, it has both of the latter

properties.

To show that 〈E, τ〉 is not pseudo-radial, we use the fact that every point is a Gδ.

So, if ξ is a net of uncountable cofinality that is not eventually constant and p is

any point of E, then p has a neighborhood missing a cofinal subnet of ξ. Thus the

only convergent well-ordered subnets that are not eventually constant have cofinal

convergent subsequences. But Theorem 5.3 shows that these are not enough to

determine the topology. For instance, the complement of the open unit ball in E is

norm-closed and hence sequentially closed (but is also dense!) in 〈E, τ〉. �

The following generalization of pseudo-radiality has been studied in connection

with a famous unsolved problem of general topology, the M1-M3 problem [MSK]:

5.7. Definition. A space X is said to be WAP if for every non-closed subset A

there is a point x ∈ c`(A) \A and a subset B of A such that x ∈ c`(B) and x is the

only point of c`(B) that is not also in A.

Problem 3. Is 〈E, τ〉 a WAP space?

But the most basic unsolved problem about this space is the following.

Problem 4. Is 〈E, τ〉 a topological group (equivalently, a topological vector space

over Q)?

Because translation and scalar multiplication are separately continuous in `2,

〈E,+〉 is a semitopological group with continuous inverse in the topology τ . So

Problem 4 boils down to asking whether addition is jointly τ -continuous. This is a

problem even where the clopen sets of Theorem 6 are concerned:

Problem 5. Let E be Erdős space and let C be a clopen nbhd of
−→
0 in E defined

by C = E \
⋃

{Wn : n ∈ ω}, where Wn is as in the proof of Lemma 2. Is there a

clopen nbhd of
−→
0 whose sum with itself is a subset of C?

If D is finite there is a simple solution: follow the remark preceding Theorem 5.3

and let K be the set of all points of E that are between 1
2pn and 1

2qn for some n,

in every coordinate where 1
2pn (equivalently, 1

2qn) is nonzero. But this idea is not
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feasible for infinite D, not even in the following example where the members of D

are all a distance of 1 from their nearest neighbors.

5.8. Example. Let D = {dn : n ∈ ω} be the following closed discrete subspace of

`2: dn is the point which is 1/2n in the first 22n terms, and 0 in all other terms. The

points of D are on the unit sphere of `2, any pair of successive points is one unit

apart, and other pairs are even further from each other. In defining Wn as in the

remark following the proof of Theorem 4, we can let pn be the point all of whose

nonzero coordinates are 1/(2nπ) below the nonzero coordinates of dn. Given dn,

one might try replacing Wn with the set Gn of all points which are of absolute value

greater than 1
2pn(i) in at least one coordinate i ∈ spt(pn). This is a set that is open

in the product topology and whose trace on E is clopen in E. Also, Hn = E \ Gn

is symmetrical with respect to the origin, and Hn +Hn ⊂ E \Gn. It is easy to see

that the set of Gn’s does not have clopen union. The following point x is in the

closure of the Gn without being in any Gn: let x(k) = 1/2n+2 when k = 22n and

x(j) = 0 whenever j is not a number of this form. If we let zn be the point of Gn

which satisfies zn(22n) = 1/2n and agrees with x elsewhere, it is easy to see that

the sequence of zn’s converges to x in norm.

However, the following set K is clopen and does solve the problem in the affir-

mative where this particular choice of Wn is concerned.

5.9. Example. Let f : ω → R be defined as follows. f(0) = 1/4π, f(i) = 1/8π for

i ∈ {1, 2, 3}, and in general f(n) = 1/(2n+2π) for i ∈ [2n−1, 2n − 1] ∩ ω. Let K be

the set of all sequences in E such that the absolute value of the kth coordinate is

greater than f(k) in less than half of the coordinates k in the interval [2n−1, 2n−1],

no matter what n is.

Now if x and y are in K, then for each n there exists k ∈ [2n−1, 2n − 1] such

that x(k) and y(k) are both less than f(k), which in turn is less than half of

1/2n − 1/(2nπ). Thus if Wn is as in Example 1, then x + y /∈ Wn for any n.

Therefore K + K is contained in the set C = E \
⋃

{Wn : n ∈ ω}. Moreover, K

is clopen. The proof of this is very similar to that of the following lemma, which

extends the notation x � A to any function from ω to R in the obvious way for

all finite A: f � A is the element of `2 which agrees with f � A on A and is zero

elsewhere.

5.10. Lemma. Let f be any positive real sequence which is not in `2; in other

words, the sequence of `2 norms ‖f � [0, n]‖ increases without bound. For x ∈ `2
and any interval I = [m,n] ⊂ ω, let

(1) AI(x) = {k : k ∈ I and |x(k)| ≥ f(k)}.
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For positive real numbers r ≤ 1 and ε ≤ 1, let G(f, r, ε) be the set of all sequences σ

in `2 such that, for each I satisfying ‖f � I‖ ≥ r, we have ‖f � AI(σ)‖ < ε‖f � I‖.

If f(i) is irrational for all i ∈ ω, then K = E ∩G(f, r, ε) is clopen in E.

Proof. If p /∈ K, then for some I satisfying ‖f � I‖ ≥ r, we have ‖f � AI(p)‖ ≥

ε‖f � I‖. Then clearly the set of all points x such that |p(i) − x(i)| < |p(i)| − f(i)

for all i ∈ I is a product-open set in `2 that contains p and misses K. Hence K is

closed even in the product topology of E.

To show G = G(f, r, ε) is norm-open, let y ∈ G. Let j ∈ ω be so large that

‖y � [j,∞)‖ < rε and ‖f � [0, j − 1]‖ > r. Let k ≥ j be such that ‖f � [j, k]‖ > r.

Let δ = min{ε, ν} where ε = min{f(i) − |y(i)| : i ∈ [0, k] \ A[0,k](y)} and

ν = rε − ‖y � [j,∞)‖. Then B(y, δ) = {x ∈ E : ‖y − x‖ < δ} is an open subset of

G containing y. Indeed, let I = [m,n] and suppose first that n ≤ k. In this case,

AI(x) ⊂ AI(y) and so ‖f � AI(x)‖ < ε‖f � I‖ for all x ∈ B(y, δ). So now suppose

n > k. Then by the first case, ‖f � A[m,j−1](x)‖ < ε‖f � [m, j − 1]‖, while

‖x � [j,∞)‖ ≤ ‖y � [j,∞)‖ + ‖x− y � [j,∞)‖ < rε, and

‖f � A[j,n](x)‖ < rε < ε‖f � [j, n]‖.

Now ‖f � A[m,n](x)‖ =
√

‖f � A[m,j−1](x)‖2 + ‖f � A[j,n](x)‖2

< ε
√

‖f � [m, j − 1]‖2 + ‖f � [j, n]‖2 = ε‖f � [m,n]. �


