Diagonalizable and related spaces

In the first issue of the new journal *Applied General Topology*, Arhangel'skiĭ [1] called a space with a binary operation a *semitopoid* if the operation is separately continuous and a *topoid* if the operation is jointly continuous. Thus the [semi]topological semigroups are the associative [semi]topoids.

Arhangel'skiĭ also introduced the concept of a diagonalizable space:

Definition 1. A space X is diagonalizable at e [resp. continuously diagonalizable at e] if there is a binary operation on X with identity element e, such that the operation is separately [resp. jointly] continuous at e. X is diagonalizable [resp. continuously diagonalizable] if it is [continuously] diagonalizable at every point.

Separate continuity at e means that the maps $\ell_x : \{x\} \times X \to X$ and $r_x : X \times \{x\} \to X$ are both continuous at e for all $x \in X$, while "joint continuity at e" refers to continuity at each point on the X-cross at e, the set $\{e\} \times X \cup X \times \{e\}$.

Diagonalizability at some point thus generalizes the property of admitting a semitopoid with identity, while continuous diagonalizability at some point bears the same relation to being a topoid with identity.

Theorem 1. If X is a space with a singleton $\{e\}$ which is the intersection of a countable collection of clopen subsets of X, then X can be made into a topological monoid (i.e., a topological semigroup with identity).

Proof. Let $\{e\} = \bigcap_{n=0}^{\infty} U_n$ where each U_n is clopen and $U_{n+1} \subset U_n$ for all n. If $x \in X$ and $x \neq e$, then $x \in U_n \setminus U_{n+1}$ for some unique n. If then $y \in U_{n+1}$, let xy = yx = x. If $y \notin U_n$, then switching y with x and altering the subscript on U gives yx = xy = y. If $z \in U_n \setminus U_{n+1}$, let xz = x and zx = z. Finally ee = e. Intuitively, if x and y are at different "distances" from e, then the factor further out takes precedence, otherwise the first factor takes precedence. It is easy to see that this operation is associative: if one member of a threefold product is further out than the rest, it predominates; if one member is closer in than the rest, it is absorbed; and of three elements equally far away, the leftmost factor predominates.

To see that the operation is continuous, note that any net converging to $x \in U_n \setminus U_{n+1}$ is eventually in $U_n \setminus U_{n+1}$, while any net converging to e is eventually in every U_m . Hence if $\langle x_\alpha \rangle \to x$ and $\langle y_\alpha \rangle \to y$ then the products eventually mimic the behavior of the products of the points they are converging to. For example, if $y \in U_{n+1}$ (this includes the case y = e) then eventually y_α is in U_{n+1} while x_α is eventually in $U_n \setminus U_{n+1}$, so eventually $x_\alpha y_\alpha = x_\alpha \to x = xy$, etc. \Box

Theorem 2. If X is a space with a singleton $\{e\}$ which is the intersection of a chain of closed neighborhoods of e, then X is continuously diagonalizable at e.

Proof. Let $\{N_{\xi} : \xi < \kappa\}$ be a well-ordered family of closed neighborhoods of e and define the operation similarly to the above, with xy = yx = x whenever $y \in N_{\xi}$ and $x \notin N_{\xi}$ for some ξ , and xz = x, zx = z if x and z are in all the same N_{η} 's. Associativity is clear as before. The operation is jointly continuous at (x, e) and (e, x): if $x_{\alpha} \to x \neq e$ while $y_{\alpha} \to e$, then eventually x_{α} is in the complement of some N_{ξ} while y_{α} is eventually in N_{ξ} , so $x_{\alpha}y_{\alpha} = y_{\alpha}x_{\alpha} = x_{\alpha} \to x = xe = ex$; while if x_{α} also converges to e, then since the product $x_{\alpha}y_{\alpha}$ is always one or the other of x_{α}, y_{α} , it too will converge to e. \Box

Corollary. If X is a regular lob-space (meaning: every point has a linearly ordered local base) then X is continously diagonalizable. \Box

Remark. There is a problem with joint continuity, indeed separate continuity of the above operation if $x \in N_{\xi} \setminus intN_{\xi}$ and there exists $z \in N_{\xi} \setminus N_{\xi+1}$, because if $x_{\alpha} \to x$ and $x_{\alpha} \notin N_{\xi}$ for all α while $z_{\alpha} = z$ for all α , then $z_{\alpha}x_{\alpha} = x \to x \neq zx$. In fact, while the long ray can be given an operation making it a topological monoid, the long line cannot even be made into a semitopoid with identity.

Problem. Can S^2 be made into a topoid with identity?

As is well known, S^2 cannot be made into a topoid which is a loop—a set with a binary operation with identity, in which the equation xy = z has a unique solution y for each given x and z, and a unique solution x for each given y and z. On the other hand, S^2 can be made into a semitopological monoid in a natural way, by extending addition on \mathbb{R}^2 to the one-point compactification $\mathbb{R}^2 \cup \{\infty\}$, letting $x + \infty = \infty + x = \infty$ for all x. This operation is separately continuous at ∞ , but not jointly continuous since -n and n both converge to ∞ but their sum stays at 0.

In [2], Arhangelskiĭ defined an even weaker concept than diagonalizability, involving:

Definition 2. A partial product on a set X is a function from a subset Y of $X \times X$ to X. We use the notation ab for the image of $\langle a, b \rangle$ whenever $\langle a, b \rangle \in Y$, and call Y the domain of the partial product. The partial product has identity e if $\langle e, x \rangle$ and $\langle x, e \rangle$ are in Y and ex = xe = x for all $x \in X$.

Definition 3. A space X is *partially diagonalizable* if there is a partial product on X with identity e and domain Y, and an open set V whose closure is a neighborhood of e, such that:

(a) the product operation xb is left continuous on Y at b = e for all $x \in X$; that is, the restriction to Y of each map $\ell_x : \{x\} \times X \to X$ is continuous at e; and

(b) for every $x \in V$ there is a G_{δ} -subset Q_x of X containing e such that the product qx is defined for each $q \in Q_x$ and is (right) continuous on $Q_x \times \{x\}$ at q = e, with respect to the G_{δ} -topology on X and its subspaces.

If the partial product can be defined so that $e \in V$ then X is said to be *strictly* partially diagonalizable.

Partial diagonalizability is still strong enough to put significant restrictions on X. For example, the one-point compactification of an uncountable discrete space is not partially diagonalizable at the nonisolated point [2]. Also:

Example. Let X be the union of the right and top edges of $\omega_1 + 1 \times \omega + 1$. This product is diagonalizable, but X itself is not diagonalizable at $\langle \omega_1, \omega \rangle$.

The example illustrates:

Theorem 3. Let X be a suborderable space and let $e \in X$. The following are equivalent:

- (1) X is partially diagonalizable at e
- (2) e has a totally ordered local base
- (3) X is continuously diagonalizable at e.