
Diagonalizable and related spaces

In the first issue of the new journal Applied General Topology, Arhangel’skĭı
[1] called a space with a binary operation a semitopoid if the operation is sepa-
rately continuous and a topoid if the operation is jointly continuous. Thus the
[semi]topological semigroups are the associative [semi]topoids.

Arhangel’skĭı also introduced the concept of a diagonalizable space:

Definition 1. A space X is diagonalizable at e [resp. continuously diagonalizable
at e] if there is a binary operation on X with identity element e, such that the
operation is separately [resp. jointly] continuous at e. X is diagonalizable [resp.
continuously diagonalizable] if it is [continously] diagonalizable at every point.

Separate continuity at e means that the maps `x : {x} × X → X and rx :
X × {x} → X are both continous at e for all x ∈ X, while “joint continuity at e”
refers to continuity at each point on the X-cross at e, the set {e} ×X ∪X × {e}.

Diagonalizability at some point thus generalizes the property of admitting a
semitopoid with identity, while continuous diagonalizability at some point bears
the same relation to being a topoid with identity.

Theorem 1. If X is a space with a singleton {e} which is the intersection of a
countable collection of clopen subsets of X, then X can be made into a topological
monoid (i.e., a topological semigroup with identity).

Proof. Let {e} =
⋂
∞

n=0
Un where each Un is clopen and Un+1 ⊂ Un for all n. If

x ∈ X and x 6= e, then x ∈ Un \ Un+1 for some unique n. If then y ∈ Un+1, let
xy = yx = x.. If y /∈ Un, then switching y with x and altering the subscript on
U gives yx = xy = y. If z ∈ Un \ Un+1, let xz = x and zx = z. Finally ee = e.
Intuitively, if x and y are at different “distances” from e, then the factor further
out takes precedence, otherwise the first factor takes precedence. It is easy to see
that this operation is associative: if one member of a threefold product is further
out than the rest, it predominates; if one member is closer in than the rest, it is
absorbed; and of three elements equally far away, the leftmost factor predominates.

To see that the operation is continuous, note that any net converging to x ∈
Un \ Un+1 is eventually in Un \ Un+1, while any net converging to e is eventually
in every Um. Hence if 〈xα〉 → x and 〈yα〉 → y then the products eventually mimic
the behavior of the products of the points they are converging to. For example, if
y ∈ Un+1 (this includes the case y = e) then eventually yα is in Un+1 while xα is
eventually in Un \ Un+1, so eventually xαyα = xα → x = xy, etc. ¤

Theorem 2. If X is a space with a singleton {e} which is the intersection of a
chain of closed neighborhoods of e, then X is continuously diagonalizable at e.

Proof. Let {Nξ : ξ < κ} be a well-ordered family of closed neighborhoods of e and
define the operation similarly to the above, with xy = yx = x whenever y ∈ Nξ

and x /∈ Nξ for some ξ, and xz = x, zx = z if x and z are in all the same Nη’s.
Associativity is clear as before. The operation is jointly continuous at (x, e) and
(e, x): if xα → x 6= e while yα → e, then eventually xα is in the complement of
some Nξ while yα is eventually in Nξ, so xαyα = yαxα = xα → x = xe = ex; while
if xα also converges to e, then since the product xαyα is always one or the other of
xα, yα, it too will converge to e. ¤
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Corollary. If X is a regular lob-space (meaning: every point has a linearly ordered
local base) then X is continously diagonalizable. ¤

Remark. There is a problem with joint continuity, indeed separate continuity of
the above operation if x ∈ Nξ \ intNξ and there exists z ∈ Nξ \ Nξ+1, because if
xα → x and xα /∈ Nξ for all α while zα = z for all α, then zαxα = x→ x 6= zx. In
fact, while the long ray can be given an operation making it a topological monoid,
the long line cannot even be made into a semitopoid with identity.

Problem. Can S2 be made into a topoid with identity?

As is well known, S2 cannot be made into a topoid which is a loop—a set with a
binary operation with identity, in which the equation xy = z has a unique solution
y for each given x and z, and a unique solution x for each given y and z. On
the other hand, S2 can be made into a semitopological monoid in a natural way,
by extending addition on R

2 to the one-point compactification R
2 ∪ {∞}, letting

x +∞ = ∞ + x = ∞ for all x. This operation is separately continuous at ∞, but
not jointly continuous since −n and n both converge to ∞ but their sum stays at
0.

In [2], Arhangelskĭı defined an even weaker concept than diagonalizability, in-
volving:

Definition 2. A partial product on a set X is a function from a subset Y of X ×X
to X. We use the notation ab for the image of 〈a, b〉 whenever 〈a, b〉 ∈ Y , and call
Y the domain of the partial product. The partial product has identity e if 〈e, x〉
and 〈x, e〉 are in Y and ex = xe = x for all x ∈ X.

Definition 3. A space X is partially diagonalizable if there is a partial product on
X with identity e and domain Y , and an open set V whose closure is a neighborhood
of e, such that:

(a) the product operation xb is left continuous on Y at b = e for all x ∈ X; that
is, the restriction to Y of each map `x : {x} ×X → X is continuous at e; and

(b) for every x ∈ V there is a Gδ-subset Qx of X containing e such that the
product qx is defined for each q ∈ Qx and is (right) continuous on Qx × {x} at
q = e, with respect to the Gδ-topology on X and its subspaces.

If the partial product can be defined so that e ∈ V then X is said to be strictly
partially diagonalizable.

Partial diagonalizability is still strong enough to put significant restrictions on
X. For example, the one-point compactification of an uncountable discrete space is
not partially diagonalizable at the nonisolated point [2]. Also:

Example. Let X be the union of the right and top edges of ω1 + 1× ω + 1. This
product is diagonalizable, but X itself is not diagonalizable at 〈ω1, ω〉.

The example illustrates:
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Theorem 3. Let X be a suborderable space and let e ∈ X. The following are
equivalent:

(1) X is partially diagonalizable at e
(2) e has a totally ordered local base
(3) X is continuously diagonalizable at e.


