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Abstract. [To be decided later]

1. Introduction

This paper was a long time in the writing. Sections 7 and 8 go all the way back
to 1980, with them essentially completed at the SETOP conference in Missisagua,
Ontario. Most of Section 3 was completed in 1986 with Fremlin’s PFA breakthrough
[4]; the remainder came in 2003, along with Theorems 6.1 and 6.2 in Section 6.
Sections 2 and 9 go back to 1997, shortly after seeing [1] and Eisworth’s proof [3]
of the consistency of CC22 [see section 9 for the statement].

Conventions: “space” means “Hausdorff space,” and “closed,” when applied
to functions, includes continuity. The symbol Λ will stand for the set of countable
limit ordinals, and these are not taken to include 0. We let Λ2 stand for the derived
set of Λ; in other words, Λ2 is the set of limits of limit ordinals in ω1. Thus Λ\Λ2 is
the set of all countable ordinals of the form β+ω. We use T5 to mean “hereditarily
normal.”

For ordered pairs of ordinals we use the notation 〈, 〉 and reserve parentheses for
intervals of ω1 and for ordered pairs in sets where there is no linear order. When f
is a function whose domain consists of ordered pairs we follow the custom of writing
f(a, b) for f(〈a, b〉) and f((a, b)).

2. Coherent 2-coloring systems: the basics

Given a set X, a subset S of X, and a collection A of subsets of X, we let
A ¹ S = {A ∩ S : A ∈ A} and call it the restriction of A to S.

Definition 2.1. Let X be a subset of ω1 and let A be a collection of subsets of X.
A coherent 2-coloring system on A is a collection C = {CA : A ∈ A} such that CA

is a 2-coloring of A such that if B ∈ A then CA agrees with CB on all but finitely
many x ∈ A ∩B.

We will use the words “black” and “white” in referring to the two colors, and
let WA and BA be the set of points colored white and black, respectively, by CA.
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The usual convention is that each ordinal is the set of all smaller ordinals. So a 2-
coloring system on ω1 is a collection C = {Cα : α ∈ ω1} where each Cα is a 2-coloring
of α = [0, α). More generally, if X is a subset of ω1 and A = {α∩X : α ∈ X} then
we we will also call C a 2-coloring system on X.

Definition 2.2. Given a subset Z of X, a coherent 2-coloring system on X is
said to be uniformizable on Z if there is a 2-coloring of Z which agrees with each
2-coloring Cα in the system on all but finitely many ξ ∈ Z ∩ α.

If we know any of CA, WA or BA, we can immediately reconstruct the other two
if we know A. So the theory of coherent 2-coloring systems on ω1 is equivalent to
that of what is called coherent sequences on ω1 in [1]:

Definition 2.3. A coherent sequence on ω1 is a transfinite sequence W = {Wα :
α ∈ ω1} such that Aα ∩ β =∗ Aβ for all α, β in ω1, where X =∗ Y means that the
symmetric difference X∆Y is finite.

Uniformizable 2-colorings correspond to what are called trivial sequences in [1]:

Definition 2.4. A coherent sequence is trivial if there is a set A ⊂ ω1 such that
Aα =∗ A ∩ α for all α < ω1.

The existence of nontrivial coherent sequences (hence of non-uniformizable co-
herent 2-coloring systems) is deducible from the ZFC axioms: see [8] or Example
8.1. On the other hand, it is ZFC-independent whether there is a coherent 2-
coloring system on ω1 which is not uniformizable on any uncountable subset of ω1:
See Theorem 2.7 and Theorem 9.6 or [1].

The following concept will be used in constructing the nontrivial examples in
this paper.

Definition 2.5. Let S be a subset of ω1. A ladder system on S is a family L =
{Lα : α ∈ S ∩ Λ} of subsets of ω1, of order type ω, such that each Lα, called the
ladder at α, has supremum α.

Where there is no danger of confusion, we let each Lα be listed in its natural
order as {αn : n ∈ ω}, as in the following construction:

Construction 2.6. Let L be a ladder system on ω1. Since the intersection of
any two ladders is finite, every 2-coloring system on L is coherent. Moreover,
it can be extended recursively to a coherent 2-coloring system C on ω1 in the
following way. With each Lα listed as {αn : n ∈ ω}, let α−1 = 0. If n is a finite
ordinal, let Wn = ∅, Bn = n. If ξ is an infinite successor ordinal, ξ = η + 1, let
λ be the greatest limit ordinal < ξ, and let Wξ = Wλ. Finally, if α ∈ Λ, let
Wα ∩ (αn, αn+1) = Wαn+1

∩ (αn, αn+1) for all n ∈ ω ∪ {−1}, and let αn ∈ Wα iff
it is colored white by the 2-coloring of Lα ∈ L. It is easy to show by transfinite
induction that this is a coherent 2-coloring.

Here is a simple but striking application of this construction. The axiom ♣ states
that there is a ladder system L = {Lα : α ∈ Λ} such that for every uncountable
subset E of ω1, there exists α such that Lα ⊂ E.

Theorem 2.7. If ♣, there is a coherent 2-coloring on ω1 that is not uniformizable
on any uncountable set.
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Proof. Let L be a ladder system witnessing ♣. With notation as in the foregoing
construction, let α2n ∈ Wα and α2n+1 ∈ Bα for all n ∈ ω and all α ∈ ω1, and
extend this 2-coloring on L to one on ω1 as above. If E is an uncountable subset of
ω1, let CE be any 2-coloring of E and let Lα ⊂ WE . Then CE disagrees with Cα

on infinitely many elements of α, and so it does not uniformize this 2-coloring on
E. ¤

3. Closed 2-1 preimages of ω1: general facts

Two-to-one closed preimages of ω1 have a pleasingly simple structure that makes
many nice pictures possible, but they also have played a big role in research. The
1986 proof by D. H. Fremlin that it is consistent that they all contain copies of ω1

opened the gates to a flood of research that culminated in Balogh’s solution of the
Moore-Mrówka problem, and Balogh’s theorem that it is consistent that every first
countable countably compact space is either compact or contains a copy of ω1.

I refer to 2-1 closed preimages of ω1 as “sprats” after the nursery rhyme about
Jack Sprat and his wife [which, like many nursery rhymes, had an origin in political
protest]. This is because at each limit ordinal, whatever one point’s neighborhoods
don’t gobble up beyond some earlier stage, the other point’s neighborhoods will.

To put that last bit more formally . . . every 2-1 preimage of ω1, closed or other-
wise, can be given ω1× 2 as an underlying set, where as usual 2 = {0, 1}. The map
to ω1 is thought of as a projection and labeled π even if (as is usually the case) the
topology on ω1 × 2 is not the product topology.

Now, if α is a limit ordinal and we pick disjoint open nbhds U0 and U1 respectively
of 〈α, 0〉 and 〈α, 1〉, then closedness of π implies that there is no sequence from the
complement of U0 ∪U1 whose projection converges up to α; otherwise the sequence
would be closed in the domain; but its projection is not closed in ω1. Thus there is
ξ < α such that π←(ξ, α] ⊂ U0 ∪U1. By chopping off U0 and U1 at ξ we thus get a
pair of disjoint basic clopen nbhds of 〈α, 0〉 and 〈α, 1〉. Extending these back and
using induction and the fact that ω1 is well-ordered, we can define a partition of
π←[0, α] into two disjoint clopen sets B(α, 0) and B(α, 1). Of course it is enough
to define B(α, i) for one i.

The above argument also shows π←[0, α] is countably compact. Since it is
also countable, it is compact and hence first countable. In fact sets of the form
B(α, i) \ π←[0, β] give a base of compact clopen nbhds at B(α, i) as β ranges over
the countably many ordinals less than α.

By the conventions, the two points above 0 and the two points above any suc-
cessor ordinal are isolated. Thus every sprat is locally compact and countably
compact.

Example 3.1. The product space ω1× 2 is a sprat. We have B(α, i) = [0, α]×{i}
for all limit α.

Example 3.2. If we let B(α, 1) = {〈α, 1〉} for all α ∈ ω1, then we have the
Alexandroff duplicate of ω1 in which all the points of ω1 × {1} are isolated.

It is not hard to show that this sprat is homeomorphic to ω1. In fact the following
will be useful here and later:
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Classical Theorem. Every countable, compact space is homeomorphic to a count-
able ordinal.

Folklore Theorem.A space is homeomorphic to ω1 iff it is the union of a strictly
ascending sequence of countable compact open sets 〈Kξ : ξ < ω1〉 such that Kβ \⋃
{Kξ : ξ < β} is a singleton for a club set of β’s.

Example 3.3. For each limit ordinal α let 〈αn : n ∈ ω〉 be an increasing sequence
of successor ordinals converging up to α. Let

B(α, 1) = {〈α, 1〉} ∪ {〈αn, 0〉 : n ∈ ω}.

Unlike the first two examples, this sprat is not hereditarily collectionwise Hausdorff:
Λ× {0} is a closed copy of ω1 and if we remove it, the points of Λ× {1} comprise
a closed discrete subset of what remains, which cannot be expanded to a disjoint
collection of open sets because of the Pressing Down Lemma.

Despite its seeming simplicity, Example 3.3 is sufficiently complicated that it is
ZFC-independent whether it is hereditarily normal (T5); see Section 6.

Since π is a closed map, every uncountable closed subset of a sprat has a club
subset of ω1 as an image. The pigeonhole principle then gives:

Lemma 3.4. If a sprat has two disjoint uncountable closed sets, then there is a
club C ⊂ ω1 such that both sets meet each fiber over C exactly once.

If F0 and F1 are a pair as in Lemma 3.4, and Ωi = π←C ∩ Fi then Ω0 and Ω1

are disjoint closed copies of ω1. This is because the restrictions of π to Ω0 and Ω1

are one-to-one, continuous, and closed, and because every club subset of ω1 is a
homeomorphic copy of ω1. This gives us:

Corollary 3.5. If a sprat does not have two disjoint closed copies of ω1, then it is
normal.

Thus Examples 3.2 and 3.3 are normal, and Example 1 is obviously normal also.
But it is unusual in one way:

Theorem 3.6. If a sprat does have two disjoint copies of ω1, then it is normal
⇐⇒ the copies can be put into disjoint open sets ⇐⇒ it is homeomorphic to
ω1 × 2.

Only the last =⇒ requires work, and the Folklore Theorem does most of it for
us.

4. More connections

In this section we study some connections between 2-colorings, ladders, sprats,
and two other important concepts: Aronszajn trees and the Stone-Čech remainder
of the discrete space of cardinality ℵ1.

We begin with a simple construction which produces a sprat with two disjoint
copies of ω1 from a given coherent 2-coloring system, and which is non-normal iff
the system is non-uniformizable.
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Construction 4.1. Let C be a coherent 2-coloring system on ω1. List A = (ω1 \
Λ)× {0, 1} in lexicographical order, A = {aξ : ξ ∈ ω1}. For each α ∈ Λ let

B(α, 0) = {〈β, 0〉 : β ∈ Λ, β ≤ α} ∪ {aξ : ξ ∈Wα}.

This gives a sprat XC in which F0 = {〈α, 0〉 : α ∈ Λ} and F1 = {〈α, 1〉 : α ∈ Λ} are
disjoint copies of ω1. If C is uniformizable by Cω1

, then F0 ∪ {aξ : ξ ∈ Wω1
} and

F1 ∪ {aξ : ξ ∈ Wω1
} are complementary clopen sets. Conversely, if V0 and V1 are

complementary clopen sets containing F0 and F1 respectively, and W = {ξ : aξ ∈
V0}, B = {ξ : aξ ∈ V1}, then (W,B) is a uniformization of C.

This construction of XC has an inverse. Given any sprat Y in which Λ×{0} and
Λ× {1} are disjoint copies of ω1, and an assignment of 0th neighborhoods B(η, i),
we can define CY by letting (WY )η = {ξ : aξ ∈ B(η, 0)} for all η ∈ ω1. It is routine
to verify that XCY

= Y and CXD = D for all coherent 2-coloring systems D and all
sprats Y described in this paragraph.

5. Special classes of sprats

Definition 2. A sprat is banded if B(α, i) can be defined to contain every fiber
π←{ξ} that it meets whenever ξ < α.

Definition 3. A sprat is symmetrical if B(α, i) can be defined to meet every fiber
π←{ξ} (ξ ≤ α) in exactly one point.

Clearly Example 3.1 is symmetrical while Example 3.2 is banded. Example 3.3
is neither but can easily be shown homeomorphic to a banded sprat with the help
of the Classical Theorem.

Lemma 5.1. No banded sprat contains two disjoint copies of ω1 but if a symmet-
rical sprat contains a copy of ω1 it contains two disjoint copies.

Corollary 5.2. Every banded sprat is normal, while a symmetrical sprat with a
copy of ω1 is normal iff it is homeomorphic to ω1 × 2.

In Section 8 there is a ZFC example of a non-normal symmetrical sprat with two
disjoint copies of ω1. [Note that by Theorem 3.6, the last clause is redundant!] D.
H. Fremlin [4] showed that the PFA implies every sprat contains a copy of ω1. This
has the consequence:

Theorem 5.3. The PFA implies that for every sprat X there exists a club C
such that X ¹ C is either banded or symmetrical. In the former case, X ¹ C is
homeomorphic to (the Alexandroff duplicate of) ω1.

Problem 2. Does the PFA imply that every sprat is homeomorphic to either a
banded sprat or a symmetrical sprat?

Under ♦ there is a wealth of sprat spaces that have no copies of ω1 and are
not homeomorphic to either a banded sprat or a symmetrical sprat, nor are their
restrictions to any club.

In [4], Fremlin published an example (due to the author) of a banded sprat
without a copy of ω1 that exists in any model of ZFC obtained from a model of ♣
by ccc forcing. The original Solovay-Tenenbaum model of MA(ω1) is such a model.

Definition 4. A continuous preimage X of ω1 is monolithic if every closed un-
bounded subset of X contains a preimage of a club.
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Lemma 5.4. Every monolithic perfect preimage of ω1 is hereditarily collectionwise
normal and hereditarily countably paracompact.

Theorem 5.5. A symmetrical sprat is monolithic iff it does not contain a copy of
ω1.

There are easy examples under ♣ of monolithic symmetrical sprat spaces, and I
recently showed they also exist under an axiom compatible with MA +¬CH; see
Section 8. In Section 7 we will show that monolithic banded sprats exist under
the following axiom, recently shown by Hernandez and Ishiu to be compatible with
MA(ω1):

Axiom 1. There is a ladder system {Lα : α ∈ Λ∩ω1} such that for every club set
C there is a club subset K(C) such that Lα ⊂

∗ C whenever α ∈ K(C). [A ⊂∗ B
means that A \B is finite.]

6. Martin’s axiom and T5 vs. hereditarily strongly cwH

Theorem 6.1. If 2ℵ0 < 2ℵ1 , then Example 3.3 is never T5.

Theorem 6.2. If MA(ω1), then Example 3.3 is always T5.

Proof of Theorem 6.1: Recall a theorem of Devlin and Shelah [2]: if L is a ladder
system on a club subset of ω1, then there is a piecewise monochromatic 2-coloring
of L which cannot be uniformized if 2ℵ0 < 2ℵ1 . ¤

Part of the key to Theorem 6.2 is the theorem [2] that MA(ω1) implies every
2-coloring of a ladder system on ω1 is uniformizable. Another part is that the
following axiom is a consequence of MA(ω1):

Axiom 2. If L = {Lα : α ∈ ω1∩Λ} is a ladder system on ω1 and C is a club subset
of Λ, there is a choice of a cofinite Kα ⊂ Lα for each α ∈ C ′ so that

⋃
{Kα : α ∈ C ′}

meets each interval between successive members of C in a finite set.

Here C ′ denotes the derived set of C.

Theorem 6.3. MA(ω1) implies Axiom 2.

Proof. Let (P,≤) be the following poset. Elements of P are pairs (A,B) such that:

(1) A is a finite collection Kα1
, . . . Kαn

where the αi are distinct members of C ′

and each Kαi
is a cofinite subset of Lαi

and

(2) B is a finite collection of intervals (c0, c1) where c0 and c1 are successive
elements of C.

The order on P is given by:

(3) (A0,B0) ≤ (A1,B1) ⇐⇒ A0 ⊂ A1, B0 ⊂ B1, and (
⋃
A1) ∩ (

⋃
B0) =

(
⋃
A0) ∩ (

⋃
B0).

The proof that P is ↑-c.c.c. uses classical techniques except perhaps in the last
step. Given an uncountable subset of P, we can cut it down to an uncountable
subset in which the first and second coordinates are all of size n0 and n1, respec-
tively, and form ∆-systems with roots Ar and Br respectively. We can further cut
it down to an uncountable subset C in which all the “leaves” A \Ar are ladders to
ordinals greater than those to which the ladders in Ar converge, and similarly each
B \ Br consists of intervals beginning further up than the intervals in Br.
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Cut C down to an uncountable D so that for each (c, c′) ∈ Br there is a finite
subset Fc such that if (A,B) ∈ D then [

⋃
A ∩ (c, c′)] = Fc, and such that either

(1) B = Br for all (A,B) ∈ D or (2) A = Ar for all (A,B) ∈ D or (3) distinct
members of D have both distinct first coordinates and distinct second coordinates,
and if (A,B) and (A′,B′) are distinct members of D then the ordinals on which the
members of A \ Ar are ladders are all different from each of the ordinals on which
the members of A′ \ Ar are ladders.

If (1) holds then any two members of D are ↑-compatible. If (2) holds then all
(Ar,B) ∈ D such that c > sup(

⋃
Ar) for all (c, c

′) ∈ B\Br are pairwise compatible.

Finally, if (3) holds, cut D down further to a family {(Aα, Bα) : α < ω1}
such that whenever α < β then every element of

⋃
(Aα ∪Bα) is < every element of⋃

(Bβ \Br). Then (Aα,Bα) can only be ↑-incompatibile with (Aβ ,Bβ) if
⋃
(Aβ \Ar)

meets
⋃
(Bα \ Br). But

⋃
Aβ is of order type ω and hence Aω+1 must miss some⋃

(Bα \ Br) (α < ω + 1). This completes the proof that P has the ↑-c.c.c.

Using MA(ω1), we obtain a subset G of P generic for the following dense sets:

DB = {(A,B) : B ∈ B} (B = (c, c′) for successive c, c′ ∈ C)

Dα = {(A,B) : K ∈ A,Kis a cofinite subset of Lα} (α ∈ Λ2 ∩ C
′)

Let G be generic for these sets, and for each α ∈ Λ pick any (A(α),B(α)) ∈ G

such that some cofinite subset Mα of Lα is in A. Since any two members of G are
↑-compatible, Mα is uniquely determined. Next, given a pair (c, c′) of successive
members of C, pick any (A,B) ∈ G such that (c, c′) ∈ B. Then any (A′,B′)
compatible with (A,B) must have [

⋃
A′ ∩ (c, c′)] ⊂ [

⋃
A ∩ (c, c′)], with equality if

(c, c′) ∈ B′. And [
⋃
A ∩ (c, c′)] is finite because there is no member of C ′ in (c, c′]

and A is a finite collection of ladders based on points of C ′. ¤

Proof of Theorem 6.2

7. Constructions of banded sprat spaces

Given a ladder system L on S, we define the banded sprat space XL by induction
on α ∈ ω1. For finite α, we let B(α, 1) = {〈α, 1〉} and, as standard, let B(α, 0) be
the complement of B(α, 1) in [0, α] × {0, 1}. If α is not a limit point of S, we do
the same. If α is a limit point of S, then we define:

B(α, 1) = {〈α, 1〉} ∪
∞⋃

n=0

(σα(2n), σα(2n+ 1)]× {0, 1}.

Hence we also have:

B(α, 0) = {〈α, 0〉} ∪ ([0, σ0]× {0, 1}) ∪
∞⋃

n=1

(σα(2n− 1), σα(2n)]× {0, 1}.

This construction is universal for banded sprats: it is possible, given a banded
sprat space X, to find a ladder system on a subset of ω1 such that XL is homeo-
morphic to X. In fact, every sprat space is homeomorphic to one in which 〈α, 0〉 is
never isolated for any limit ordinal α. In a banded sprat space like this, a ladder
system for XL arises naturally for any given choice of {B(α, 0) : α ∈ ω1 ∩ Λ}.
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To simplify the description, we put the fiber over 0 in B(α, 0) for all α; this
obviously does not affect the topology. Each B(α, 0) consists, except for its last
point 〈α, 0〉, of complete fibers {ξ} × {0, 1}. If all fibers over ordinals < α are
represented, or more generally if there is some ξ < α such that all fibers strictly
between ξ and α are in B(α, 0), then we leave α out of S altogether.

Otherwise, we let σα(0) be the supremum of the ordinals ξ such that all fibers
over ordinals ≤ ξ are in B(α, 0). This supremum σα(0) is less than α because we are
in the “Otherwise” case. Moreover, this supremum is actually a maximum, because
B(α, 0) is closed and compact: at least one 〈σα(0), i〉 has to be in the closure of
B(α, 0) and since σα(0) < α the whole fiber is in B(α, 0).

With σα(n) < α defined, and the fiber over it in B(α, i), let σα(n + 1) be the
greatest ξ > σα(n) such that π←{η} ∈ B(α, 1 − i) whenever σα(n) < η ≤ ξ. As
with σα(0), a greatest such ξ exists and is less than α.

In this way, the fibers over successive σα(n) keep alternating between B(α, 0) and
B(α, 1). Both B(α, 0) and B(α, 1) are compact, so the fiber over sup{σα(n) : n ∈ ω}
contains points of both sets. But this is possible only if sup{σα(n) : n ∈ ω} is α.
Thus σα is a ladder at α, and if we define it for all limit α, the resulting ladder
system L on ω1 gives us back our space X with XL.

Example 7.1. If L witnesses Axiom 1, then the resulting banded sprat is mono-
lithic.

8. Constructions of symmetrical sprat spaces

For symmetrical sprat spaces there is no ladder system as intimately connected
with the topology as the one for banded sprats. As partial compensation, we have
the following property for symmetrical sprats, due to the fact that B(α, 0) and
B(α, 1) split every fiber over [0, α] between them: if β < α and 〈β, i〉 is in B(α, 0)
then there exists γ < β such that

B(α, 0) ∩ π←(γ, β] = B(β, i) ∩ π←(γ, β].

Of course this is equivalent to B(α, 1) ∩ π←(γ, β] = B(β, 1 − i) ∩ π←(γ, β]. We
express this by saying that “α respects β on (γ, β].”

It is easy to construct a ladder σα at any limit ordinal with the property that α
respects σα(0) on [0, σα(0)] and also respects σα(n+1) on (σα(n), σα(n+1)]. One
can also use ladders in the opposite way, as in the following example.

Example 8.1. This is the promised ZFC example of a non-normal symmetrical
sprat space. The key idea is (1) to define B(α, 0) so that it contains all 〈β, 0〉
whenever β is a limit ordinal ≤ α and (2) to define B(α, 0) at limits of limit
ordinals in such a way that if 〈βn〉n∈ω is a sequence of limit ordinals converging to
α, and α respects βn on (ξn, βn] then the sequence of ξn converges to α.

To see that this strategy works, we first note that (1) implies that the relative
topology on π←Λ is the product topology and so Λ× {0} and Λ× {1} are disjoint
closed copies of ω1. Because of this, the inverse of Construction 4.1 gives us a
coherent 2-coloring system on ω1 which is not uniformizable.
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Next, (2) implies that if U is an open set containing Λ × {0}, and γ(α) < α is
chosen for each limit ordinal so that B(α, 0)∩ π←(γ(α), α] ⊂ U , the pressing-down
lemma gives γ such that γ = γ(α) for uncountably many α. However, due to insuf-
ficient respect between the various α’s, U must contain the fiber over uncountably
many ordinals, and so the closure of U meets Λ× {1}, contradicting normality.

To implement this strategy, we let 〈σα : α ∈ Λ〉 be a ladder system such that
σα(0) = 0 for all α ∈ Λ and we define each B(α, 0) by induction to satisfy the
stronger condition:

(2+) If β ∈ Λ, α ∈ Λ2, σα(k) < β ≤ σα(k + 1),
then α does not respect β on (σα(k), β).

In a forthcoming paper, we will show that the following axiom is enough to
produce a monolithic symmetrical sprat space.

Axiom 3. There is a base B for the club filter on ω1 such that B ¹ α(= {B ∩ α :
B ∈ B}) is countable for all α ∈ ω1.

This axiom has been tentatively designated KH+ because it obviously implies
the existence of Kurepa families (and hence of Kurepa trees) as defined in [6], and
because it is easily shown to be satisfied by any ccc forcing extension of a model of
♦+. Hence it is compatible with MA(ω1).

The construction of the monolithic example is a refinement of the technique
in Example 8.1. At each limit stage α, we list the countably many sets in B ¹

α that are unbounded in α, and in the nth step in the construction at stage α
we make sure that the first n members of B ¹ α get both points over α in the
closure. The reason we do not do the construction here in detail is that it is
a prototype for a more sophisticated construction of a hereditarily collectionwise
normal, countably compact 2-manifold compatible with MA(ω1), and the two are
best presented together. The manifold construction is in contrast to the main
theorem of [7], which is that the PFA (which implies MA(ω1)) implies that every
normal, hereditarily strongly cwH manifold of dimension > 1 is metrizable.

9. Partial uniformization of coherent 2-coloring systems on ω1.

Coherent 2-coloring systems closely correspond to P-ideals on ω1 whose ω-ortho-
complements are also P-ideals:

Definition 9.1. A collection I of countable subsets of a set X is a P-ideal if it is
downward closed with respect to ⊂, closed under finite union, and has the property
that, if {In : n ∈ ω} is a countable subset of I, then there exists J ∈ I such that
In ⊂

∗ J for all n. [Here, A ⊂∗ B means A \B is finite.]

Definition 9.2. Given an ideal I of subsets of a set S, a subset A of S is orthogonal
to I if A ∩ I is finite for each I ∈ I. The ω-orthocomplement of I is the ideal
{J : |J | ≤ ω, J is orthogonal to I} and will be denoted I⊥.

When restricted to ideals whose members are countable, ω-orthocomplementation
is a Galois correspondence, which means that it is order-reversing and each ideal
is a subideal of its double dual. That is, if I ⊂ J then J ⊥ ⊂ I⊥ and we have
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I ⊂ I⊥⊥. As in all Galois correspondences, this has the easy consequence that
I⊥ = I⊥⊥⊥.

If A = {Aα : α ∈ ω1} is a coherent sequence on ω1, it generates a P-ideal on ω1,
and its ω-orthocomplement on ω1 is generated by A∗ = {α \Aα : α ∈ ω1} together
the singleton subsets of ω1. This ω-orthocomplement is also a P-ideal.

To show the correspondence mentioned in the opening sentence of this section,
we use the fact that A∗ is itself a coherent sequence, and that both ideals are
countable-covering:

Definition 9.3. An ideal J of subsets of a set X is countable-covering if for each
Q ∈ [X]ω, the ideal J ¹ Q is countably generated.

In other words, for each countable subset Q of X, there is a countable subcol-
lection {JQ

n : n ∈ ω} of J such that every member J of J that is a subset of Q
satisfies J ⊂ JQ

n for some n.
The P-ideals in all but the last section of [1], as well as the P-ideals in this paper,

are all ω-orthocomplements of countable-covering ideals. There are no exceptions
in the opposite direction:

Theorem 9.4. The ω-orthocomplement of a countable-covering ideal is a P-ideal.

Proof. Let J be a countable-covering ideal on the set S and let I = J ⊥. If
{In : n ∈ ω} ⊂ I, let Q = ∪{In : n ∈ ω}, and let {Jn : n ∈ ω} be as in Definition
9.3. Then by the Dubois-Reymond property of P(ω)/fin, there is a subset H of Q
such that In ⊂

∗ H for all n ∈ ω while Jn ∩ H is finite for all n. It is easy to see
that H ∈ J ⊥, as required. ¤

It follows that if J is a countable-covering ideal on ω1 that is also a P-ideal, then
its ω-orthocomplement also enjoys both properties. Moreover, for each α there is
a single member Jα of J such that every member of J ¹ α is almost contained
in Jα (that is, J ⊆ J for each J ∈ J ¹ α). Thus J is generated by the coherent
sequence {Jα : α ∈ ω1} together with the singleton subsets of ω1. Now to produce
a coherent 2-coloring, we have Cα color the elements of Jα white and all the other
elements of α black.

To get a better handle on the uniformizability of coherent 2-colorings, we recall
the following axioms from [3]:

Definition 9.5. The following axiom is denoted Axiom P11:

For every P-ideal I on a stationary subset S of ω1, either

(i) there is an uncountable A ⊂ S such that every countable subset of A is in
I, or

(ii) there is an uncountable B ⊂ S such that every countable subset of B is
in I⊥.

Axiom P12 [resp. Axiom P21] substitutes “stationary” for “uncountable” in (ii)
[resp. (i)], while Axiom P22 makes the same substitution in both (i) and (ii).

The following theorem is immediate from the definitions:

Theorem 9.6. If P11, then every coherent 2-coloring on ω1 is uniformizable on
some uncountable subset of ω1.

Clearly, we could have put CC11 in place of P11:
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Definition 9.7. Axiom CC11 is the axiom that for each countable-covering ideal
J on a stationary subset S of ω1, either:

(i) there is an uncountable A ⊂ S such that [A]ω ⊂ J ; or

(ii) there is an uncountable B ⊂ S such that [B]ω ⊂ J⊥.

Similarly, Axioms CC12, CC21 and CC22 are defined analogously to the corre-
sponding Pmn axioms. It is not hard to show that Pij implies Cji for {i, j} ⊂ {1, 2}.
We can add 3 to the latter set once we define:

Definition 9.8. Axiom P31 [resp. Axiom CC13] is the following axiom.

For every P-ideal I [resp. for every countably covering ideal J ] on ω1, either

(i) there is a closed unbounded A ⊂ ω1 such that every countable subset of A is in
I [resp. in J ⊥], or
(ii) there is an uncountable B ⊂ ω1 such that every countable subset of B is in I⊥

[resp. in J ].

Axiom P32 [resp. Axiom CC23] is obtained from Axiom P31 [resp. Axiom CC13]
by substituting “stationary” for “uncountable” in (ii).

We do not yet know whether any or all of the axioms in 9.8 are compatible with
CH. This was claimed in an early version of [5], where it is designated “(∗c) for
θ = ω1,” but the proof was faulty. This proof was, however, adequate to show that
these axioms follow from the PFA [5]. Also, substituting a stationary set for ω1 in
each case gives an axiom which is compatible with CH.

The following strengthening of P21 was the main axiom in [1]:

(∗) For every P-ideal I on ω1, either
(i) there is an uncountable subset A of ω1 such that every countable subset of A

is in I, or
(ii) ω1 is the union of countably many sets {Bn : n ∈ ω} such that Bn ∩ I is

finite for all n and for all I ∈ I.

Of course, any set X of cardinality ω1 can be substituted for ω1 here, while if X
is countable, (ii) is trivially satisfied. The axiom (∗) follows from the PFA and is
compatible with CH.

Now suppose CC23 holds. If W is any nontrivial coherent sequence on ω1, then
we can apply CC23 to both W and W∗, and get one of the following to hold:

Case I. There is a club subset C of ω1 on which the coherent 2-coloring associated
with W is uniformizable, with all of C colored either white or black.

Case II. There is a stationary set S on which the coherent 2-coloring associ-
ated with A is uniformizable, with the white points of S forming a stationary,
co-stationary subset of S.

Either case can be broken down further. Suppose we are in Case I with the club C
almost all white. Applying (∗) to the still nontrivial sequences W ¹ (ω1 \ C) and
W∗ ¹ (ω1 \ C), we either have:

Case IA: ω1 \C can be partitioned into countably many sets, all of which can be
colored white, or all of which can be colored black, and cohere with the 2-coloring
associated with W.



12 PETER NYIKOS

Case IB: There is an uncountable subset Z of ω1 \ C with a 2-coloring cohering
with that associated with W, in which uncountably many points of Z are white
and uncountably many are black.

Case IA is definitive, but IB still leaves the restriction of W to ω1 \ (C ∪ Z)
nontrivial. To streamline the subsequent analysis, it is helpful to note that H =
{H ∈ ω1 : W ¹ H is trivial } is an ideal to which every set that is almost included
in some member of W or of W∗ belongs.

Definition 9.9. A coherent sequence A is tame [resp. almost tame] if ω1 [resp.
some club subset C of ω1] is the union of countably many sets Zn such that A ¹ Zn

is trivial.

Problem 3. Is it consistent that every coherent sequence is tame, or at least
almost tame? Does either conclusion follow from (∗) or from a combination of (∗)
with CC23?

Problem 4. Does ZFC imply the existence of a coherent sequence A such that
A ¹ C is nontrivial for each club C ⊂ ω1?

If the answer is negative, then a model that witnesses this would satisfy the
restriction of CC23 to countable-covering ideals that are also P-ideals.
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