
A collectionwise normal, hereditarily weakly θ-refinable Dowker space

This paper answers a question the author posed over three decades ago in an
article on “classic problems” in the first issue of Topology Proceedings [1].

Question 1. Is every collectionwise normal, weakly θ-refinable space paracompact?

The best result heretofore on the question was a space of Peter de Caux obtained
under an extra set-theoretic axiom:

Theorem 1. [2] The axiom ♣ implies the existence of a hereditarily weakly θ-
refinable, collectionwise normal space that is not countably metacompact (hence not
paracompact).

This appeared in the same first issue of Topology Proceedings, and its presence
there was noted in the “Classic Problems” paper [1], and so it was understood that
Question 1 was asking either for an independence result or an example that did not
use anything beyond the usual (ZFC) axioms. The following related question was
posed there:

Problem 1. Is every collectionwise normal, screenable space paracompact?

At the time, no consistency results were known at all on Problem 1. Subsequently,
Mary Ellen Rudin produced a counterexample [3] under the axiom ♦++, but we
still do not have a ZFC answer for it.

The main result of this paper is a ZFC answer to Question 1 that also satisfies a
number of properties that de Caux’s space did not satisfy:

Theorem 2. There is a collectionwise normal, hereditarily weakly θ-refinable, hered-
itarily meta-Lindelöf, hereditarily realcompact space that is not countably metacom-
pact (hence not paracompact).

The ♣ space of de Caux was not meta-Lindelöf and was not realcompact. In
fact, it is still essentially the only known example of a weakly θ-refinable normal
space that is known not to be realcompact, except for the well-known case of dis-
crete spaces of measurable cardinality (and, of course, spaces with closed discrete
subspaces of measurable cardinality). And so, the following related problem from
[1] is still not completely solved:

Problem 2. Is every normal θ-refinable space of non-measurable cardinality real-
compact?

[In this paper, “normal” is understood to include the T1 property, and so it implies
the space is Tychonoff.]

Back in 1978, general topologists were still using a definition of “measurable
cardinality” that included all cardinals greater than the first measurable cardinal.
No consistency results are known for the following problem:
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Problem 3. Is every normal screenable space of non-measurable cardinality real-
compact?

It is not known whether the screenable Dowker spaces in [4] and [5] are realcom-
pact, nor whether the ♦++ example [3] is realcompact.

The space used to prove Theorem 2 is a variation on a space by Balogh [6], who
used it to show:

Theorem 3. There is a hereditarily collectionwise normal, hereditarily meta-Lindelöf,
hereditarily realcompact space that is not countably metacompact (hence not para-
compact).

The hereditary realcompactness was built into Balogh’s space at the outset, and
it was done in order to answer a question posed in Mary Ellen Rudin’s 1971 paper
[7] where she first constructed a Dowker space in ZFC:

Question 2. Is there a realcompact Dowker space?

[ADowker space is a normal space whose product with [0, 1] is not normal. Equiv-
alently, it is a normal space which is not countably metacompact. Other topological
concepts used above are defined at the end of this section.]

Realcompactness was built into the main example of this paper because it was
easy to do so, and because the author was unable to tell whether the space resulting
from omitting the extra open sets used to establish realcompactness is realcompact
or not. This is also true of Balogh’s space that was used as a prototype.

In modifying Balogh’s space, it seemed necessary to sacrifice hereditary collec-
tionwise normality in order to answer Question 1. In many ways, it would have been
preferable to do it the other way around — remove “hereditarily” from in front of
“θ-refinable” while keeping it in front of “collectionwise normal.” This is due to the
fact that the resulting space would also have answered Problem 1, because:

Theorem 4. Every hereditarily collectionwise normal, weakly θ-refinable space is
screenable.

However, there are major reasons why this did not happen, some of which will
be pointed out in the course of proving that the construction here satisfies the
demanding conditions of Theorem 2. We close this section with some standard
definitions.

Definition 1. A weakly θ-refinable space is a space X in which every open cover
has an open refinement W =

⋃∞
n=0 Wn such that for each point x ∈ X there exists

n such that 1 ≤ ord(x,Wn < ℵ0.

Definition 2. A paracompact meta-Lindelöf ] space is one in which every open
cover has a locally finite [resp. point-countable] open refinement.
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Definition 3. A screenable [resp. σ-metacompact] space is one in which every open
cover has a σ-disjoint [resp. σ-point-finite] open refinement.

Here, as usual, the prefix σ- stands for being the union of countably many col-
lections satisfying the property that follows. Paracompactness is equivalent to each
open cover having a σ-discrete open refinement, giving the first implication below,
and the other one is obvious:

paracompact =⇒ screenable =⇒ σ-metacompact

It is also obvious that these concepts imply both “meta-Lindelöf” and “weakly
θ-refinable.” There are well-known counterexamples to any implication between
these concepts and the earlier ones that does not logically follow from these obvious
facts.

Definition 4. A collectionwise normal space X is one in which, for each discrete
collection {Dγ : γ ∈ Γ} of subsets of X, there is a disjoint collection of open sets
{Uγ : γ ∈ Γ} such that Dγ ⊂ Uδ iff Dγ = Dδ. A countably paracompact [resp.
countably metacompact space is one in which each countable open cover has a
locally finite [resp. point-finite] open refinement.

Definition 5. A space X is realcompact if it is Tychonoff and every ultrafilter in
the lattice of zero-sets that has the countable intersection property (c.i.p.) is fixed,
i.e., has nonempty intersection.

The word “realcompact” comes from other characterizations of these spaces; the
easiest is that they are the spaces that can be embedded as closed subspaces of
some R

κ.

1. The definition of the main example.

The exposition of the main example follows that of [6] very closely, though not
as closely as [5] follows that in [4]. In particular, the proofs of several results are the
same. They are repeated here with slight rewordings, it being a deplorable tendency
of university libraries to cart old issues of journals off to relatively inaccessible
annexes after a certain period of time.

There are, of course, significant differences between this paper and [6], and these
will be pointed out from time to time, along with some similarities. However,
there is no unified treatment treatment of the main example here and Balogh’s
main example, like there was in [5] of Balogh’s screenable Dowker space [4] and the
author’s modifications thereof.

The underlying set for the main example X of this paper is c × ω. As in [6],
we identify c with the Cantor set and let {qn : n ∈ ω} be a base for the usual
topology on the Cantor set. We adopt the following notation: Ln = c × {n} and
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Wn = c × n (=
⋃n−1

i=0 Li). In particular, W0 = ∅. In the base B for the topology
τw, we include X \ {x} in B for each x ∈ X and Dx = {x} ∪Wn for each x ∈ Ln.
The sets X \ {x} ensure that X is a T1 space, while the Dx ensure that each Wn

open in X and that each Ln discrete in its relative topology. The base B is defined
by induction, beginning with

B0 = {Dx : x ∈ X} ∪ {X \ {x} : x ∈ X} ∪ {π←(qn) : n ∈ ω}.

These sets are already enough to ensure that Ln is discrete in its relative topology
inherited from any topology finer than the one for which B0 forms a subbase. This
in turn is enough to show:

Proposition 1.0.0. 〈X, τw〉 is hereditarily weakly θ-refinable.

In [6], the base begins with

B0 = {Bx : x ∈ X} ∪ {Wn : n ∈ ω} ∪ {π←(qn) : n ∈ ω}.

[In both 〈X, τB〉 and 〈X, τw〉, B0 and many other Bα are just subbases for a topol-
ogy, but the final collection B2c = B is a base.]

There is no need to include the sets Wn in the description of the B0 that goes
with 〈X, τw〉, since they are already open in the topology for which this is a subbase.

Proposition 1.0.1. Every point in X is a Gδ.

Definition 1.0.2. Let 〈Sα〉α<2c be a listing of two kinds of c-sequences of subsets
of X, with each sequence that is indexed by an infinite ordinal listed 2c times. Both
kinds are sequences of subsets of X, with the ones indexed by n < ω particularly
simple:

Sn = 〈{〈Wn ∪ {〈ρ, n+ 1〉} : ρ ∈ c〉.

Clearly, Sn is one-to-one, and its range is {Dx : x ∈ Ln}.

The Sξ for infinite ξ are essentially Type I sequences in the terminology of [6].
They are sequences of disjoint subsets,

Sξ = 〈F ρ
ξ : ρ < c〉

where F ρ
ξ = ∅ is allowed, even for all but finitely many ρ.

For finite n, the sequences Sn correspond to the Type II sequences of [6]. They
will play the same role here as the Type II sequences did there, to ensure that X

is hereditarily meta-Lindeĺ’of. Although they come first in our listing for τw, they
will be referred to as Type II sequences to stay close to what one finds in [6].
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The base B for (X, τw) is built in a 2c-step induction, with an ascending sequence
of subbasesBα. We use the term α-open to denote “open in the topology generated
by Bα.” Each Sn (n ∈ ω) will be refined to a point-countable collection of subsets,
〈V ρ

n : ρ < c〉, of Wn+1, giving Bn+1 = Bn ∪ {V ρ
n : ρ < c}. This builds in the

hereditary meta-Lindelöf property for τw [1.1.1 below].

In [6], the Type I sequences were of the form

Sξ = 〈Oξ, 〈F
ρ
ξ 〉ρ<c〉

where Oξ is a subset of X and the F ρ
ξ are disjoint subsets of Oξ. In that notation,

our Sξ would be 〈X, 〈F ρ
ξ 〉ρ<c〉.

When ξ ≥ ω, Sξ will be ignored until the first (if any) η such that Sξ = Sη and
Sη is a discrete collection of η-closed subsets of X in the topology generated by
Bη. Then it will be expanded to a disjoint collection of open sets Bρ

η created for
that purpose, with the goal of ensuring collectionwise normality [2.1 below]. Then,
Bη+1 will be the union of Bη with this disjoint expansion.

To simplify the construction, this will be done even if it is already possible to
put the F ρ

ξ into η-open sets.

In [6], Balogh’s treatment of Type I sequences entailed waiting for a stage η (if
any) where Oξ was open in the topology generated by Bη, and the F ρ

ξ constituted
a discrete collection of closed sets in the relative topology of Oξ wrt Bη. Then
〈F ρ

ξ 〉ρ<c was expanded to a disjoint collection of subsets Bρ
η which were added to

Bη to produce Bη+1. This was done to ensure hereditary collectionwise normality of
(X, τB), using the well-known fact that a space is hereditarily [collectionwise] normal
iff every open subspace is [collectionwise] normal. For τw, it seemed necessary to
settle for just collectionwise normality. The reasons for this will be given in a series
of numbered remarks.

In [6], Balogh had 2c Type II sequences; these were sequences 〈Uρ
ξ 〉 of subsets

of X indexed by c, (ξ < 2c) and a similar waiting game was used for them as for
Type I sequences: one waited for a stage when all the members of the sequence
were open; when and if this occurred, the sequence was refined to a point-countable
collection of sets covering

⋃
ρ<c

V ρ
ξ in a way that generalizes our refinement of Sn

(n ∈ ω). [See below.]

For each A ∈ [X]ω and every α ∈ c, let Sα ↾ A be the sequence 〈Sρ
α ∩A : ρ < c〉.

Let S(A) be the collection of all sequences Sξ ↾ A as ξ ranges over the infinite
ordinals < c.
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Definition 1.1. A triple 〈A,D, u〉 is called a control triple if it satisfies:
(C1)) A is a countably infinite subset of X;
(C2) D is a countable subcollection of S(A).
(C3) u is a function with dom(u) ∈ [A]ω such that, for all x ∈ dom(u), u(x) is

a countable subcollection of S(A) that is disjoint from D;
(C4) x 6= x′ in dom(u) implies u(x) ∩ u(x′) = ∅.

Let 〈Aβ ,Dβ , uβ〉β<c be a listing of all control triples, listing each one c times in
every open subset of the Cantor set (equivalently, in each q(n) described above).
The first ω steps are simple. We refine Sn by replacing each member Wn ∪ {〈ρ, n〉}
of the range of Sn with a set V ρ

n such that 〈ρ, n〉 ∈ V ρ
n ⊂ Wn ∪ {〈ρ, n〉}. For the

points 〈β, i〉 of Wn, we let 〈β, i〉 ∈ V ρ
n if, and only if, ρ ∈ π(Aβ). Then for each

finite n we have

Bn+1 = B0 ∪
n⋃

k=1

{V ρ
k : ρ < c}

and we have Bω = B0 ∪
⋃∞

k=1{V
ρ
k : ρ < c}.

Proposition 1.1.1. (X, τw) is hereditarily meta-Lindelöf. That is, if Z is a sub-
space of (X, τw) then Z is meta-Lindelöf.

Proof. The following argument works for any (X, τ) finer than the topology gener-
ated by Bω.

Let U be an open cover of Z, and for each z = 〈β, n〉 ∈ Z, pick U ∈ U such that
z ∈ U and let Vz = V β

n ∩ U . Then {Vz : z ∈ Ln} is a point-countable collection of
(relatively) open subsets of Z, and so {Vz : z ∈ Z} is a point-countable refinement
of U . �

Remark 1. In any hereditarily collectionwise normal (X, τ) finer than the topology
generated by B0, the “horizontal line” Ln is closed discrete in the relative topology
of the 0-open set Wn+1, and so it would expand to a disjoint collection of τ -open
subsets of X. The proof of 1.1.1 would then give hereditary screenability of 〈X, τ〉
all by itself. However, the arguments used here and in [6] for showing that X is not
countably metacompact run into formidable obstacles in any such modification, as
will be pointed out at the appropriate times. Efforts to find alternative methods of
proving non-countable metacompactness, or of constructing a collectionwise normal,
screenable Dowker space in ZFC have thus far been unsuccessful.

The expansions of the Sξ for infinite ξ to disjoint open collections is done by
induction on ξ and also on the columns Cβ (β ∈ c) for a given ξ, where Cβ = {β}×ω.
In the process, we defineBξ for ξ ≥ ω by lettingBξ =

⋃
η<ξ Bη if ξ is a limit ordinal

and Bη+1 = Bη ∪ {Bρ
ξ : ρ < c} for all η.
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So, suppose we have defined Bξ. The definition of B and hence of τw will be
clear once we define 〈Bρ

ξ : ρ < c〉.

Case 1. Sξ = 〈F ρ
ξ 〉ρ<c is a discrete sequence of closed subsets of X in the topology

generated by Bξ, and ξ is minimal for this to be true. [For instance, it could be that
there is η < ξ such that Sη = Sξ and each F ρ

ξ is closed in the topology generated

by Bη, but the collection is not yet discrete in this coarser topology.]

Suppose β < c and it has been determined which Bρ
ξ the points of

⋃
α<β Cα are

to be distributed among.

Subcase 1.1. If Sξ ↾ Aβ ∈ Dβ ,, we distribute the points of Cβ as follows.

(a) If Fξ ∩Cβ = ∅, we make Bξ ∩Cβ = ∅. In other words, we leave all 〈β, k〉 out
of all the Bρ

ξ .

(b) If Fξ ∩ Cβ 6= ∅, and 〈β, i〉 ∈ F ρ
ξ for some ρ then we (have to) put 〈β, i〉 into

Bρ
ξ , and we define 〈β, i〉(ξ) = ρ = 〈β, i〉(ξ). As for the other points of Cβ , we let j

be the least integer for which 〈β, j〉 ∈ Fξ, let σ be defined by 〈β, j〉 ∈ Fσ
ξ , put the

points not in Fξ into Bσ
ξ , and let 〈β, i〉(ξ) = σ = 〈β, j〉(ξ) for these points.

[More formally, (b) says that:

(i) if 〈β, i〉 ∈ Fξ \ F
〈β,j〉(ξ)
ξ , then 〈β, i〉 ∈ B

〈β,i〉(ξ)
ξ and

(ii) if 〈β, i〉 ∈ (X \ Fξ) ∪ F
〈β,j〉(ξ)
ξ , then 〈β, i〉 ∈ B

〈β,j〉(ξ)
ξ ]

Subcase 1.2. There is an x = 〈α, n〉 ∈ dom(uβ) ⊂ A such that α < β, Sξ ↾ Aβ ∈
uβ(x), and x has been put into Bγ

ξ at the αth step in this induction. [Note that

Sξ ↾ A /∈ Dβ by (C3) and that there can be only one such x by (C4).]

(a) If 〈β, i〉 /∈ Fξ, then we put 〈β, i〉 into Bγ
ξ and thus let 〈β, i〉(ξ) = γ.

(b) If 〈β, i〉 ∈ F ρ
ξ for some ρ then we (have to) put 〈β, i〉 into Bρ

ξ , making

〈β, i〉(ξ) = ρ = 〈β, i〉(ξ) for these points.

Subcase 1.3. If neither Subcase 1.1 nor Subcase 1.2 holds, then if 〈β, i〉 /∈ Fξ, we
put 〈β, i〉 into B0

ξ ; while if 〈β, i〉 ∈ Fξ, we put 〈β, i〉 where we have to, just as in

Subcase 1.1(b) and Subcase 1.2(b).

[Note that Cβ ⊂ Bξ except in Subcase 1(a), where Cβ ∩Bξ = ∅.]

Case 2. If Case 1 does not hold, let Bξ+1 = Bξ.

2. X is hereditarily screenable, collectionwise normal and hereditarily

realcompact

We are now ready to finish showing all the advertised properties of (X, τw) except
for the failure of countable metacompactness.
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Proposition 2.1. X is collectionwise normal.

Proof. Let F be a discrete collection of closed sets. Let 〈F ρ〉ρ<c list each nonempty
member of F exactly once. [If necessary, ∅ gets listed c times.] The closedness
of each F ρ and discreteness of F is witnessed by ≤ c subbasic open sets, while
〈Sα : α < 2c〉 is of cofinality > c. Thus, there is a first ξ such that Sξ = 〈F ρ〉ρ<c

and such that F is a discrete collection of closed sets in the topology generated by
Bξ. Then 〈Bρ

ξ 〉ρ<c is an open expansion of F . �

Proposition 2.2. X is hereditarily realcompact.

Proof. Because every point of X is a Gδ, it is enough to show that X is realcompact
[8, Corollary 8.15].

Unlike the verification of these built-in properties, the proof that countable meta-
compactness fails is a long, arduous affair, as it is in all constructions of Dowker
spaces by the Balogh technique. We need two long and technical sections before we
can embark on that proof in earnest.

3. The failure of countable metacompactness, Part 1: Complete neigh-

borhoods

Let x ∈ X. We introduce a notation for the basic neighborhoods of x, each a
finite intersection of subbasic sets from B. Let H stand for the set of indices where
we add something to the earlier subbases. That is, H = {ξ > 0 : Bξ+1 6= Bξ}.
Then H ∪ {0} ⊃ ω. As in [6], we write H1 for the Type I sequences in H, so that
in our case H1 = H \ ω.

Definition 3.0. Let x ∈ X. A function t whose domain is a finite subset of H is
called compatible with x if (a) x ∈ B

t(ξ)
ξ (i.e., t(ξ) = x(ξ)) for all infinite ξ in the

domain of t.
(b) if n ∈ ω ∩ dom(t) then ∅ 6= t(n) ∈ [c]<ω and x ∈

⋂
{V ρ

ξ : ρ ∈ t(ξ)}

If t is compatible with x, we let Bt
α = B

t(α)
α = B

x(α)
α .

In the following section, we will choose a specific t for each x ∈ X and label it t(x).
In this way, we will also look upon t as a function from X to Fn(H1, c)∪Fn(ω, [c]

<ω.
[Recall that Fn(I, J) stands for the set of functions whose domain is a finite subset
of I, and whose range is a (finite) subset of J .] But by the end of that section, we
will have settled on a specific x and will sometimes revert to the interpretation of t
in Definition 3.0.

We next adopt a notation Balogh used in [B2], but with a slight difference in the
basic open set it designates.
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Notation 3.0.1. Let t be compatible with x. Let

Vt,K,n(x) =
⋂

α∈dom(t)

Bt
α ∩ π←(qn) ∩Dx \K.

where π(x) ∈ qn and K is a finite subset of X \ {x}.

The case V∅,K,n(x) = π←(qn)∩Dx \K will play an important role in the sequel.
Clearly, the sets in 3.0.1 form an open neighborhood base for x. In fact, if the
sets qn are taken from the standard base for the Cantor set (thought of as 2ω with
the product topology) then these are precisely the finite intersections of the sets
containing x in B.

[ASIDE: in [B2] there was an oversight here; Balogh left out Wk+1 where Dx(=
Wk ∪ {x}) appears in the formula for Vt,K,n(x) when x ∈ Lk, rendering a number
of subsequent statements incorrect. The corrections will be noted below.]

Notation 3.0.2. For every infinite ξ ∈ H let Oξ(x) = X \ Fξ if x /∈ Fξ; while if

x ∈ Fξ, let Oξ(x) = (X \ Fξ) ∪ F
x(ξ)
ξ . [Recall that x(ξ) is the unique ordinal ρ such

that x ∈ F ρ
ξ .] Given t as in 3.0.0, and α ∈ dom(t), let U t

ξ(x) = Oξ(x) if ξ is infinite,

and let U t
n(x) = Dt(n),n if n is finite. [In particular, if x ∈ Ln then U t

n(x) = Dx.]

Note that if t is compatible with x, then x ∈ Bt
α ⊂ U t

α(x). The sets Oξ(x) witness
the relative discreteness of 〈F ρ

ξ : ρ < c〉 in Fξ and at the same time are open in
X. The next concept entails witnessing the openness of the precursor of the next
ingredient of Vt,K,n(x), so to speak.

Definition 3.1. A basic open neighborhood Vt,K,n(x) of x is complete if for every
α ∈ dom(t), Vt↾α,K,n(x) ⊂ U t

α(x).

Completeness Lemma 3.2. Every point x ∈ X has a neighborhood base consist-
ing of complete neighborhoods.

Proof. For an incomplete neighborhood Vt,K,n(x), let αt,K,n denote the greatest
α ∈ dom(t) such that Vt↾α,K,n(x) is not a subset of U t

α(x). Our lemma follows from
the well-ordering of the class of ordinals and the following:

Claim. For an incomplete neighborhood Vt,K,n(x), there is a neighborhood Vt′,K′,n′(x)
such that either Vt′,K′,n′(x) is complete or αt′,K′,n′ < αt,K,n

Proof of claim.

[as in [B2]]
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4. The failure of countable metacompactness, Part 2: reflecting appro-

priate β

The proof of the main result uses the following characterization of countable
metacompactness, whose necessity follows very easily from the usual characteriza-
tion of every countable open cover having a point finite refinement: any ⊂-ascending
family 〈Gn〉

∞
m=0 of open sets covering X can be followed up by closed sets: there

exist closed sets Zm ⊂ Gm such that
⋃∞

m=0 Zm = X. We will apply this to the case
Gm =Wm and derive a contradiction at the end of Section 6.

Given a candidate sequence of Zm’s, we define ξm to be the unique ordinal in H
for which F 0

ξm
= Zm, F 1

ξm
= X \Wm, and F ρ

ξm
= ∅ for all ρ ≥ 2. In this way we

get disjoint open sets B0
ξm

⊃ Zm and B1
ξm

⊃ (X \Wm). For every x ∈ X \Wm, we
define

V (x) = Vt(x),K(x),n(x)(x) ⊂ B1
ξm

⊂ X \ Zm

to satisfy (T0), (T1), and (T2) below. The first ⊂ in the formula follows from the
fact that x ∈ X \Wm and:

(T0) {ξj : j ≤ m} ∈ dom(t(x))

[See 3.0.]

For the other two properties, we let t1(x) = {ξ ∈ dom(t) : ξ ≥ ω}. [Despite
the similarity in notation, t(x) is a function while t1(x) is a finite subset of H.]
Given C ⊂ X, we let t1(C) =

⋃
x∈C t1(x). By passing to smaller and smaller

neighborhoods if necessary, we ensure that the following hold:

(T1) If j < m < ω, ξ ∈ t1(β, j) and 〈β,m〉 ∈ Bξ, then ξ ∈ t1(β,m).

(T2) Each V (x) = Vt(x),K(x),n(x)(x) is a complete basic open neighborhood.

Now letM,N be countable elementary submodels of H((22
c

)+) (= the collection

of all sets whose transitive closure has cardinality ≤ 22
c

) such M ∈ N and the
following are members of M :

c, 〈Sα〉α<2c , Bα〉α<2c , H, t : X → Fn(H, c) ∪ Fn(H, [c]<ω,

t1 : X → [H1]
<ω, 〈ξm〉m∈ω, K : X → [X]ω, 〈x(ξ) : ξ ∈ H1, x ∈ X〉

For the rest of this paper, we let A = N ∩ X (= (N ∩ c) × ω) and D = {Sξ ↾ A :
ξ ∈ M ∩H1}. With A and D thus in hand, we next define the function u that we
will be using in our control triples. One of its features is that u(x) is finite for all
x ∈ dom(u), even though other functions satisfying (C3) and (C4) in Definition 1.1
can have infinite u(x).
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Proposition 4.1. There is a function u satisfying (C3) and (C4) in Definition
1.1, such that whenever v : X → [(H \M) ∪ ω]<ω is an infinite partial function,
v ∈ N and x 6= x′ in A implies v(x) ∩ v(x′) = ∅, then there are infinitely many
x ∈ dom(v) ∩ dom(u) such that

u(x) = {Sξ ↾ A : ξ ∈ v(x)}.

[Proof: as in [B2].]

For the rest of this section and the next two sections, we fix a β ∈ c such that
β > π(A), Aβ = A, Dβ = D, and uβ = u.

Reflection Lemma 4.2. Let θ ∈ M ∩ H1, k ∈ ω. Then there is a point x =
〈α, k〉 ∈ dom(u) ⊂ N with the following properties:

(R0) n(x) = n(β, k) [recall that this is the subscript on the Cantor set base
member];

(R1) t1(x) ∩M = t1(β, k) ∩M ;
(R2) 〈β, k〉(ξ) ∈M implies 〈β, k〉(ξ) = x(ξ) for all ξ ∈ t1(β, k) ∩M ;
(R3) x ∈ Bθ if and only if 〈β, k〉 ∈ Bθ; equivalently, if 〈β, k〉 is in one of the

columns Bθ misses on account of Subcase 1(a), x is in one of those columns also,
and vice versa;

(R4) If 〈β, k〉 ∈ Bθ, then either 〈β, k〉 ∈M or 〈β, k〉(θ) 6= x(θ);
(R5) x ∈ dom(u) and u(x) = {Sα ↾ A : α ∈ θ1(x) \M}.

Proof. We use the following notation: n = n(β, k), r = t1(β, k) ∩M, r1 = {ξ ∈ r :
〈β, k〉(ξ) ∈ M} and f(ξ) = 〈β, k〉(ξ) for every ξ ∈ r1. Let i = 1 if 〈β, k〉 ∈ Bθ and
i = 0 if 〈β, k〉 /∈ Bθ. Note that n, r, r1, f, and i are in M. [In particular, i is simply
either 0 or 1, depending on where 〈β, k〉 is situated.]

Let ϕ(α) denote the statement, “n(α, k) = n and t1(α, k) ⊃ r and, for every ξ ∈
r1, 〈α, k〉(ξ) = f(ξ) and 〈α, k〉 ∈ Bθ ⇐⇒ i = 1.” All parameters in ϕ are in M ,
and ϕ(β) is true. So, by elementarity ofM , there are uncountably many α for which
ϕ(α) is true. Elementarity of N then gives infinitely many α in N for which ϕ(α)
is true. We will be using this and analogous results for analyzing the following two
statements.

Let ψ(E) denote the statement, “E ⊂ c and ∀α ∈ E ϕ(α), and α 6= γ ∈ E implies
[t1(α, k) \ r] ∩ [t1(γ, k) \ r] = ∅.”

Let χ(E) denote the statement, “E ⊂ c, and α 6= γ ∈ E implies 〈α, k〉, 〈γ, k〉 ∈ Bθ

and 〈α, k〉(θ) 6= 〈γ, k〉(θ).”

Claim.
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(a) There is an uncountable E ∈M such that ψ(E) holds.
(b) Moreover, if 〈β, k〉 ∈ Bθ and 〈β, k〉(θ) /∈ M , there is an uncountable E ∈ M

such that ψ(E) and χ(E) both hold.

⊢ Proof of Claim. We prove (b) in detail; the proof of (a) is similar, and only
requires removing all mention of χ(E) and the extra conditions on 〈β, k〉 in what
follows.

By Zorn’s lemma, there is a maximal E for which ψ(E) and χ(E) both hold.
Since all parameters in these two formulas are in M , we can (and will) assume
that E ∈ M . Suppose that E is countable. Then, by elementarity, E ⊂ M . Let
E′ = D ∪ {β}. Then E is a proper subset of E′, but ψ(E′) holds, because ∀α ∈ E,

[t1(α, k) \ r] ∩ [t1(γ, k) \ r] ⊂ t1(α, k) ∩ [t1(β, k) \M ] ⊂ M ∩ [t1(β, k) \M ] = ∅.

Also, χ(E′) holds by the assumption in (b), due to (R4) and the supposition that
〈α, k〉 ∈M for every α ∈ E. But then E′ contradicts the maximality of E. ⊣

Fix an E satisfying (a), and also (b) if 〈β, k〉 ∈ Bθ and 〈β, k〉(θ) /∈M . Let

E1 = {α ∈ E : (t1(α, k) \ r) ∩M = ∅}.

Clearly, E1 ∈ N and E1 is a co-countable subset of E. Define a function v by
setting dom(v) = E1 × {k} and v(α, k) = t1(α, k)) \ r for every α ∈ E1. Then
v ∈ N is as required in the statement of Proposition 4.1, so there are infinitely
many x = 〈α, k〉 ∈ dom(u) ∩ dom(v) such that u(x) = {Sξ ↾ A : ξ ∈ v(x)}. If
〈β, k〉 ∈ Bθ and 〈β, k〉(θ) /∈M , then χ(E) ensures that the x(θ)’s for these x are all
distinct. So, we can pick x from among these so that 〈β, k〉(θ) 6= x(θ) in this case.

Such an x = 〈α, k〉 then satisfies (R4) and (R5) by definition, (R0), (R2), and
(R3) by ϕ(α), and (R1) by ϕ(α) and the fact that (t1(α, k)) \ r ∩M = ∅. The cases
where 〈β, k〉 ∈ Bθ and 〈β, k〉(θ) ∈ M , and where 〈β, k〉 /∈ Bθ are handled in the
same way except that now (R4) is satisfied automatically. �

5. The failure of countable metacompactness, Part 3: homogeneity

The concept of homogeneity was the key to the rest of the proof that the spaces
in [B1], [B2] and [Ny] are not countably metacompact. In our case it means the
following.

Definition 5.0. Let β ∈ c. We say β is ξ-homogeneous to mean

(H) either ξ /∈ t1(Cβ) or there is γ ∈M ∩ c such that Cβ ⊂ Bγ
ξ .

The β to which this will be applied are those in the last section: the ones such
that β > π(A) while Aβ = A,Dβ = D, and uβ = u.

If X were countably metacompact, we would have
⋃

m∈ω Zm = X, where the
sets Zm are as at the beginning of Section 4. Thus it follows from the next two
lemmas that X is not countably metacompact.
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Lemma 5.1. Let β < c. If
⋃

m∈ω Zm meets Cβ, then there is an m ∈ ω such that
β is not ξm-homogeneous.

Proof. Fix m so that Zm ∩ Cβ 6= ∅. Then by (T0), ξ ∈ t1(β,m) ⊂ t1(Cβ). On the
other hand, Cβ is not contained in either B0

ξm
(⊃ Zm) or B1

ξm
(⊃ X \Wm). �

Since ξm ∈M for all m ∈ ω, we will be done once we show:

Main Lemma 5.2. Let β > π(A) satisfy Aβ = A,Dβ = D, and uβ = u. Then β
is ξ-homogeneous for all ξ ∈M ∩H1.

To begin the proof of the Main Lemma, we assume that it is false and consider
the first θ ∈M ∩ [ω, c) ∩H for which β is not θ-homogeneous. That is, θ ∈ Cβ yet
there is no γ in M ∩ c for which Cβ ⊂ Bγ

θ .

In what follows, let y[k] = {〈β, j〉 : j < k}. [Balogh had “j ≤ k” instead of
“j < k”, because he was aiming for hereditary collectionwise normality; see Remark
2 below.]

Let k be big enough so that 〈β, k〉 ∈ Bθ and:
(1k) if Fθ ∩ Cβ 6= ∅, then Fθ ∩ y[k] 6= ∅;
(2k) if there are at least two ρ ∈ c such that F ρ

θ ∩Cβ 6= ∅, then there are at least
two ρ ∈ c such that F ρ

θ ∩ y[k] 6= ∅;
(3k) if there are at least two ρ ∈ c such that Bρ

θ ∩Cβ 6= ∅, then there are at least
two ρ ∈ c such that Bρ

θ ∩ y[k] 6= ∅;
(4k) θ ∈ t1(β, k).

By (T1) in Section 4, all large enough k satisfy (1k) through (4k).

Remark 2. Balogh’s technique for ensuring hereditary collectionwise normality
required going inside proper open subsets Oα as explained in Section 1. If there is a
“ceiling” like Ln when Oα =Wn+1, all of (1k), (2k), (3k) could fail with the choice
“j < k”. For example, if F ρ

n = {〈ρ, n} for all ρ ∈ c, then Fn = Ln and y[k]∩Fn = ∅.
But without all three of these ℓk, the proof that X is not countably metacompact
completely breaks down near the end.

For the rest of this section and the next, fix x = 〈α, k〉 as in the Reflection Lemma
for θ.

Lemma 5.2.1. y[k] ⊂ V∅,K(x),n(x)(x).

Proof. Since x ∈ N , we also have K(x) ∈ N , and then K(x) ⊂ N by finiteness of
K(x) and elementarity of N . Since β /∈ N , it follows that Cβ ∩ K(x) = ∅. From
(R0) it follows that y[k] ⊂ Cβ ⊂ π←(qn(x); also, y[k] ⊂Wk, and we are done. �

[ASIDE. Because [B2] omitted “∩Wk” from the formula that defines Vt,K,n(x),
there was a hole in the proof at this point, but adding “∩Wk” repairs it easily.]
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Our choice of j < k was dictated by the way x is all by itself in the top row of
Dx: Lemma 5.2.1 would have been impossible for τw had Balogh’s choice of j ≤ k
been adhered to. The same is true of:

Lemma 5.3. y[k] ⊂ Vt(x)↾θ,K(x),n(x)(x).

Proof. We will show that for every α ∈ dom(t(x)) ∩ θ,

(Iα) y[k] ⊂ Bt(α)
α

holds. [The notation B
t(α)
α reverts here to the original interpretation of t: it is what

we have been calling t(x) for some time.]

In the case of α = n ∈ ω, (Iα) is equivalent to

(In) y[k] ⊂ Bt
α(x) =

⋂

ρ∈t(n)

V ρ
n

and this is clear from the fact that t(n) ⊂ Aβ(= N) for all n, so that 〈β, i〉 ∈ V ρ
n for

all i < n and ρ ∈ t(n). [See the paragraph immediately following Definition 1.1.]
For infinite ξ, (Iξ) is shown by induction. Suppose we have shown (Iη) for all η

in dom(t(x)) ∩ α. Then, by completeness of Vt(x),K(x),n(x)(x),

(∗) y[k] ⊂ Vt(x)↾α,K(x),n(x)(x) ⊂ U t
α(x).

The first ⊂ is by the induction hypothesis, the second by definition of “complete”.
we consider two cases:

Case (a). ξ ∈ H1 ∩M. Then by ξ < θ and minimality of θ it follows that β is
ξ-homogeneous. Now ξ ∈ dom(t(x)) ∩H1 ∩M . By (R1) in the Reflection lemma,
ξ ∈ t1(β, k)∩M ⊂ t1(Cβ). Hence by definition of ξ-homogeneity, there is γ ∈M ∩ c

such that Cβ ⊂ Bγ
ξ . Making use of (∗), it follows that

y[k] ⊂ U t
ξ ∩ Cβ = Oξ ∩ Cβ ⊂ Cβ ⊂ Bγ

ξ .

In particular, γ = 〈β, k〉(ξ). By (R2), γ = x(ξ). Hence y[k] ⊂ Bγ
ξ = B

x(ξ)
ξ = Bt

ξ(x).

Case (b). ξ ∈ H1 \M . Since ξ ∈ dom(t(x)) ∩ θ, we get ξ ∈ t1(x) \M . So, by

(R5), Sξ ↾ Aβ ∈ uβ(x). By Subcase 2(b), to prove that y[k] ⊂ B
x(ξ)
ξ = Bt

ξ(x), we

need only show that y[k] ⊂ Oξ \Fξ)∪F
x(ξ)
ξ . This follows from the fact that by (∗),

y[k] ⊂ U t
ξ(x) = Oξ(x). [Recall that if x ∈ Oξ \ Fξ, then Oξ(x) = Oξ \ Fξ, whereas

Oξ(x) = Oξ \ Fξ ∪ F
x(ξ)
ξ if x ∈ Fξ, and that in the latter case, x(ξ) = x(ξ).]

6. The failure of countable metacompactness, Part 4: the end of the

proof of Main Lemma 5.2

To complete the proof that X is not countably metacompact, it remains to arrive
at the promised contradiction:
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Lemma 6.0. β is θ-homogeneous.

Proof. By (R1) and (4k), θ ∈ t1(β, k) ∩M = t1(x) ∩M . Thus by Lemma 5.3 and
completeness of Vt(x),K(x),n(x)(x), we conclude that y[k] ⊂ Vt(x)↾θ,K(x),n(x)(x) ⊂
Oθ(x).

Claim 1. Fθ ∩ Cβ 6= ∅.

⊢ Suppose that Fθ ∩ Cβ = ∅. Because θ ∈ M ∩ H1 \ ω, Sθ ↾ Aβ ∈ Dβ . Hence
by Subcase 1(a), it follows that Bθ ∩ Cβ = ∅. On the other hand, it follows from
θ ∈ t1(β, k) that 〈β, k〉 ∈ Bθ ∩ Cβ , a contradiction. ⊣

Claim 2. There is precisely one γ < c such that F γ
θ ∩ Cβ 6= ∅.

⊢ By Claim 1, there is at least one such γ. Suppose there are more. Then by (2k),
there are at elast two γ such that Fθ ∩ y[k] 6= ∅. On the other hand, y[k] ⊂ Oθ(x),

and Oθ(x) is either Oθ \ Fθ or (Oθ \ Fθ) ∪ F
x(θ)
θ , a contradiction. ⊣

Next, let j be minimal with 〈β, j〉 ∈ Fθ ∩Cβ = F γ
θ ∩Cβ . Then, by (1k), 〈β, j〉 ∈

y[k]. In particular, j < k, and thus y[k]∩Fθ 6= ∅, and so Oθ(x) = (Oθ \Fθ)∪F
x(θ)
θ .

Claim 3. x ∈ F γ
θ .

⊢ Since 〈β, j〉 ∈ Fθ ∩ y[k] ⊂ Fθ ∩ Oβ(x), it follows that 〈β, j〉 ∈ F
x(θ)
θ . Since

〈β, j〉 ∈ F γ
θ by the definition of 〈β, j〉, it follows that γ = x(θ), so x ∈ F γ

θ . ⊣

Claim 4. y[k] ⊂ Bγ
θ .

⊢ From 〈β, j〉 ∈ F γ
θ , we got 〈β, j〉 = γ = x(θ), and thus y[k] ⊂ Oθ(x) = (Oθ \ Fθ) ∪

F
〈β,j〉(θ)
θ . Hence, y[k] ⊂ Bγ

θ due to Subcase 1.1(b). ⊣

To complete the proof that β is θ-homogeneous, note that by (3k), γ is the only
ordinal ρ such that Bρ

θ ∩ Cβ 6= ∅. Furthermore, by the note just before Case 2 at
the end of Section 1, we have Bθ ∩ Cβ = Cβ , whence Cβ ⊂ Bγ

θ . Thus,

〈β, k〉(θ) = 〈β, j〉(θ) = γ = x(θ) = x(t).

Hence by (R4), 〈β, k〉(θ) ∈M , and so β is θ-homogeneous, contrary to our assump-
tion that θ is a counterexample. �
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