
THE TUKEY ORDER FOR GRAPHS

1. Introduction

Given a graph G, we let VG stand for the vertex set of G. For graphs G without
isolated vertices, the Tukey order can be characterized thus:

(∗) G ≤ H iff there exist functions f : VG → VH and g : VH → VG such that
there is an edge from x to g(y) every time there is an edge from f(x) to y.

Any pair of functions (f, g) like this is called a GT-connection from G to H. If
both G ≤ H and H ≤ G, we write G ≈ H. If G ≤ H but not H ≤ G we write
G < H

The foregoing definition is worded so that it can be applied also to directed
graphs in which each vertex has at least one edge going to it, and at least one edge
emanating from it. [A more usual way of putting things is to say “. . .x is adjacent to
g(y) every time f(x) is adjacent to y.”] For more general directed graphs, including
ordinary graphs with isolated vertices, the wording of the definition is different, and
is usually given in terms of relations:

A binary relation R is a set (or also a proper class) of ordered pairs. The domain
of R, denoted domR, is the set {x : (∃y)((x, y) ∈ R)} and the range of R, denoted
ranR, is {y : (∃x)((x, y) ∈ R)}. The fact (x, y) ∈ R is often written as xRy.

Let R and S be nonempty set relations. An ordered pair of functions (f, g) is
called a (generalized) Galois-Tukey connection (abbreviated GT-connection) from
R to S if the following holds:
(a) f : domR −→ domS
(b) g : ranS −→ ranR
(c) (∀x ∈ domR)(∀v ∈ ranS)(f(x), v) ∈ S implies (x, g(v)) ∈ R. We write

R ≤ S if there is a GT-connection from R to S.

The canonical relation associated with a directed graph D has it that if x and y
are in VD then (x, y) ∈ R(D) iff there is an edge from x to y. Ordinary graphs are
thus associated with symmetrical relations.

This paper is concerned (except in this introduction and the final section) with
ordinary graphs, and for these it is convenient in various statements to adhere
to the modified definition (∗) above. It is for graphs with isolated vertices that
the two definitions give different results. In the Tukey order, isolated vertices are
simply ignored in deciding whether G ≤ H since they are in neither domR(G) nor
ranR(G). In the modified order, any graph with an isolated vertex is ≥ every other
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graph. The directed graphs we consider in the last section will be ones for which
the modified definition coincides with the Tukey definition.

2. Some basics

Even where graphs are concerned, the question of whether G ≤ H promises in
general to be NP-hard. For one thing, if |G| = j and |H| = k then there are
jk · kj pairs of functions to investigate, while it only takes checking (j2 · k2)/4
pairs of vertices to tell whether a given candidate is a GT-connection. For another,
the existence of a GT-connection is often tied up with maximum and/or minimum
sizes of certain kinds of subsets of graphs, as will be seen below, and finding these
numbers is in some cases already known to be NP-hard. One of the few situations
in which G ≤ H is immediately obvious is the following:

Lemma 2.1. Let G be a graph and let H be a subgraph of G such that VH = VG.
Then G ≤ H.

Indeed, the identity map on VG works for both f and g in (∗). As will be seen
later, this inequality need not be strict even if H is a proper subgraph of G with
the same vertex set.

Definition 2.2. A set A of vertices of a graph G is said to be bounded if there
exists a vertex z ∈ G such that there are edges from each a ∈ A to z; otherwise A
is unbounded. We say distinct vertices x, y of G are compatible if there exists
z ∈ G such that there are edges from both x and y to z. Otherwise x and y are
incompatible. A subset A of VG is pairwise [in]compatible if every pair of
elements of A is [in]compatible. The incompatibility degree of G is the greatest
size of a pairwise incompatible set of vertices.

This use of the word “bounded” is taken from the theory of partially ordered sets,
while our use of the word “compatible” is taken from set-theoretic forcing, where it
is in turn inspired by logical properties of compatible elements in the forcing poset.
The following definition is standard in graph theory.

Definition 2.3. Let G be a graph without isolated vertices. A set C of vertices of
G is open (or: total) dominating (in G) if for all vertices x ∈ G there exists
c ∈ C such that there is an edge from x to c. The open (or: total) domination
number of G is the least cardinality of an open dominating subset.

For graphs without isolated vertices, it is easy to see that the incompatibility
degree is never greater than the open domination number (which is undefined for
graphs with one or more isolated vertices). The following is also easy to show:

Lemma 2.4. The function f takes unbounded sets to unbounded sets and pairwise
incompatible sets to pairwise incompatible sets; the function g takes open dominating
subsets to open dominating subsets.

We use the logicians’ convention that n = {0, . . . n − 1} when n is a natural
number. Let (n,=) denote the graph with n vertices, each of which has a “loop on
it” and no edges between different vertices. Clearly (1,=) ≤ G for all graphs G.
These graphs help analyze the GT-connections between graphs in general.
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Theorem 2.5. Let n be a positive integer and let G be a graph. Then G ≤ (n,=)
iff the open domination number of G exists and is ≤ n.

Proof. ( =⇒ ) Apply Lemma 2.4 to g.
(⇐= ) Let {x0, . . . xm} be open dominating in G, m < n. For each vertex x ∈ G

let f(x) = k iff there is an edge from x to xk but not to xj for j < k. Let g(k) = xk

if k < m; otherwise any vertex of G will do for g(k).

I suspect it is already known that finding the least cardinality of an open dom-
inating set is NP-hard, and this would imply that just the problem of finding the
least n such that G ≤ (n,=) is already NP-hard. Finding the greatest n such that
(n,=) ≤ G also promises to be NP-hard, because of the next theorem.

Theorem 2.6. Let n be a positive integer and let G be a graph. Then (n,=) ≤ G
iff the incompatibility degree of G is at least n.

Proof. ( =⇒ ) Apply Lemma 2.4 to f .
(⇐= ) Let f take n one-to-one onto the members of an incompatible subset W

of G. If y ∈ G is a vertex then there is an edge from y to w for at most one w ∈W .
If there is such a w, let w = f(k) and let g(y) = k; otherwise any member of n will
do for g(y).

Definition 2.7. Let G be a graph without isolated vertices. The ≤– index of a
graph G is the pair 〈m,n〉 where m is the incompatibility degree of G and n is its
open domination number.

Corollary 2.8. If G has index 〈m,n〉 and H has index 〈m′, n′〉 then:
(1) If n ≤ m′ then G ≤ H.
(2) If G ≤ H then m ≤ m′ and n ≤ n′.

Corollary 2.9. G ≈ (n,=) iff G has index 〈n, n〉.

In contrast, if 1 ≤ m < n, there are infinitely many nonequivalent graphs with
index 〈m,n〉, as we will see in later sections.

Despite the very different behavior (see 2.8) of graphs whose two indices are
equal, there is a huge variety of graphs that are GT-equivalent to (n,=) for any
n ≥ 2 because it is so easy to construct graphs with incompatible open dominating
subsets. There are also many families of graphs in which the open domination
number and incompatibility degree are the same, but are witnessed by different
subsets.

Example 2.10. For each n ≥ 1 let Pn be a simple path of length n. That is, P is
a graph with vertices v0, v1, . . . vn and edges joining adjacent pairs vi, vi+1. Then
P4 has index 〈3, 3〉; however, to get an open dominating family one must use the
three middle vertices, while to get a pairwise incompatible family one must use two
vertices on one end and one on the opposite end.

The indices for the Pn follow a regular pattern:
P1, P2 and P3 all have index 〈2, 2〉;
P4 has index 〈3, 3〉;
P5, P6 and P7 all have index 〈4, 4〉;
P8 has index 〈5, 5〉 . . . . In general,
if k = 4n, then the index of Pk is 〈2n+ 1, 2n+ 1〉
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if k ∈ {4n+1, 4n+2, 4n+3} then the index of Pk is 〈2n+2, 2n+2〉. In particular,
each Pk is GT-equivalent to some (n,=).

Problem 1. Is every tree GT-equivalent to (n,=) for some n?

It is a challenge even for small graphs to find an efficient algorithm for determin-
ing whether two graphs are related by < or ≈. For instance, it is relatively easy to
show that a pentagon and a hexagon are incomparable in the order ≤, but it was
tedious for me to show that a hexagon and a heptagon are also incomparable. On
the other hand, it is an easy application of Theorems 2.8 and 2.9 that the hexagon
(which has index 〈2, 4〉) and the heptagon (which has index 〈3, 4〉) are both strictly
below the octagon (which has index 〈4, 4〉). Another easy application is that the
pentagon (which has index 〈2, 3〉) is strictly below the heptagon.

Problem 2. Is the 4n + 2-gon incomparable to both the 4n + 1-gon and the
4n+ 3-gon for all positive integers n?

In other words, does the foregoing four-polygon pattern repeat endlessly? (It is
easy to show that the 4n+ 1-gon has index 〈2n, 2n+ 1〉, the 4n+ 2-gon has index
〈2n, 2n+2〉, the 4n+3-gon has index 〈2n+1, 2n+2〉, and the 4n+4-gon has index
〈2n+ 2, 2n+ 2〉. Then, arguing as for 5, 6, 7, and 8, we can confirm the remaining
details of the pattern.)

3. Associated graphs and some of their applications

In this section we associate several different graphs with a given graph G. The
following construction is especially useful if we define G by removing relatively few
edges from Kn, the complete graph on n vertices, while keeping the vertices the
same.

Construction 3.1. Let G be a graph. The dual graph D(G) is defined as follows.
VD(G)=VG

, and vertices x, y of G (we allow x = y) are adjacent in D(G) iff they are
not adjacent in G.

Obviously, each graph is the dual of its dual: D(D(G)) = G. An easy proof by
contrapositive shows:

Lemma 3.2. G ≤ H iff D(H) ≤ D(G).

In fact, (f, g) is a GT-connection from G to H iff (g, f) is a GT-connection from
D(H) to D(G). In the language of category theory, we have a contravariant functor
D from the category of graphs and GT-connections to itself, with D(G) = D(G)
and D(f, g) = (g, f). Obviously, the composition of D with itself is the identity
functor.

Example 3.3. Let Kn stand for the complete graph on the vertex set n. Then
D(Kn) = (n,=). If m < n then it follows from Theorem 2.5 that (m,=) < (n,=)
and so Lemma 3.2 implies that Kn < Km. Note also that K1 (the trivial graph) is
≥ G for every graph G, that K2 ≈ (2,=), and that for n > 2, the index of (Kn) is
〈1, 2〉.

An interesting consequence of Lemma 3.2 and Theorems 2.5 and 2.6 is that the
class of graphs that are not equivalent to either (1,=) orK1 has an infinite ascending
cofinal sequence —the graphs (n,=)—and an infinite descending coinitial sequence,
the graphs Kn. Putting these two sequences together, we have:
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(n > 3)

(1,=) < · · · < Kn < · · · < K3 < K2 ≈ (2,=) < (3,=) < · · · < (n,=) < · · · < K1

The following corollary is an easy consequence of Lemma 3.2 and Theorems 2.5
and 2.6.

Corollary 3.4. Let G be a graph. Then G ≤ Kn iff D(G) has a pairwise incom-
patible subset of cardinality ≥ n, and Kn ≤ G iff D(G) has an open dominating
subset of cardinality ≤ n.

When G is a simple graph, every vertex of D(G) has a loop on it. To better
analyze such graphs, we introduce two more constructions.

Definition 3.5. Let G be a graph. The augmented graph of G, denoted A(G), is
formed by adding a loop to every vertex in G that doesn’t already have one. The
simple graph associated with G, denoted S(G), is G with all loops omitted.

The index of a graph of the form A(G) can be characterized in familiar terms,
using the following well-known concepts of graph theory:

Definition 3.6. A set S of vertices of a graph G is said to be dominating if every
vertex of G is either in S or adjacent to some vertex in S, and to be a packing if
all its members are at a distance of ≥ 3 from each other.

Lemma 3.7. A set S of vertices of the graph G is pairwise incompatible in A(G)
iff it is a packing in A(G) iff it is a packing in G iff it is a packing in S(G).

Proof. The first “iff” is true because in A(G), vertices at a distance ≤ 2 are
compatible, and the others are true because packings are unaffected by the presence
or absence of loops.

Lemma 3.8. A set S of vertices of the graph G is open dominating in A(G) iff it
is dominating in A(G) iff it is dominating in G iff it is dominating in S(G).

The first “iff” is true because each vertex is adjacent to itself in A(G) while the
second is true because domination is unaffected by loops.

For simple graphs, A(D(G)) = D(G), and thus the indices of the dual graphs can
be found by finding their packing number and their dominating number. Then (see
Corollary 2.8 and Lemma 3.2) if the index of D(G) is not the index of D(H), G is
not equivalent to H. Also, if D(G) and D(H) have dominating number coinciding
with packing number, and these numbers are the same for D(G) and D(H), then
we know that G is GT-equivalent to H by Corollary 4.5.

Example 3.9. Every star has a dominating packing of size 1, consisting of the one
vertex which is adjacent to all the others. If we remove the edges of a star X with
k edges from Kn to get G, then D(G) is the direct sum of n− k− 1 copies of (1,=)
and one copy of A(X). Hence D(G) is equivalent to (n− k,=) and so is D(Kn−k),
so G is equivalent to Kn−k.

If we also remove from Kn any number of edges connecting the vertices of X,
and let H be the resulting graph, then D(H) is still equivalent to (n−k,=) because
adding edges to X does not affect its dominant packing. So H is also equivalent to
Kn−k.
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Example 3.10. As is well known, every path has a packing which is also domi-
nating. Hence if G is obtained from Kn by removing the edges of a path, then G is
GT-equivalent to a complete graph. To determine which one it is, say the path is
Pk(0 < k ≤ n). Let k = 3j + i, where i ∈ {0, 1, 2}; then D(G) is the direct sum of
n− k − 1 copies of (1,=) and one copy of A(Pk), which has a dominating packing
of size j + 1. Hence G ≈ Kn−k+j .

Example 3.11. Let G, H and K be hexagons with vertices numbered cyclically
in order 1, 2, 3, 4, 5, 6. Besides the usual edges, let G include the edges of the
internal triangle with vertices 1, 3, and 5; let H have edges connecting 1 with every
other vertex; and let K have edges connecting 1 with 3 and 5, and 4 with 2 and 6.
It is easy to see that all three graphs are of index 〈1, 2〉. Their duals are simpler
than the graphs themselves, and (see below) D(H) and K have indices 〈2, 3〉, while
D(G) has index 〈3, 3〉 (see below), so G < H and G < K.

Also, H ≈ K as the following analysis of the dual graphs shows. Besides the
ubiquitous loops, D(H) has a pentagon with one diagonal added, plus one isolated
point; while S(D(K)) is the direct sum of a graph with vertices {1, 4} connected by
an edge and a rectangle with vertices {2, 5, 3, 6} arranged cyclically in that order.
The pentagon of D(G) has vertices {2, 5, 3, 6, 4} arranged cyclically in that order,
and a diagonal connecting 2 and 6. Now let f : VH → VK satisfy f(4) = 6 and
be the identity on the other vertices, while g : VK → VH satisfies g(4) = 1 and is
otherwise the identity. This shows D(H) ≤ D(K) and so K ≤ H. Now (g, f) is a
GT-connection from D(K) to D(H) and so H ≤ K also.

As for G, its dual has a triangle with edges attached to each corner. This has
a dominant packing consisting of the far ends of the edges. So D(G) has index
〈3, 3, 〉, making it equivalent to K3. If we add diagonals to G, the effect on D(G) is
to erase the edges that come out of the vertices of the triangle. Erasing one edge
leaves a connected graph in which there is a packing of size 2 and a dominating set
of size 2; they cannot coincide, but the resulting dual graph still has index 〈3, 3, 〉.
For similar reasons, we can also add two or all three diagonals to G and still have
the resulting graph equivalent to K3.

4. More associated graphs and a dual index

The associated graphs in the preceding section shared the same vertex set as the
original graph. The ones in this section may have a different vertex set.

Construction 4.1. Let G be a graph of incompatiblity degree ≥ 2. The incom-
patibility graph of G, denoted I(G), is the graph whose edges are incompatible
pairs {x, y} of vertices of G and whose vertices are the union of the edges.

The following is immediate from Lemma 2.4.

Lemma 4.2. If (f, g) is a GT-connection from G to H then f ¹ VI(G) is an edge-
preserving map from I(G) to I(H).

Example 4.3. Let K be a pentagon and let H and G be hexagons with vertices
numbered cyclically in order 1, 2, 3, 4, 5, 6, and with one diagonal [resp. two
diagonals] connecting vertices 6 and 4 [resp. and 5 and 3]. All three graphs are
of index 〈2, 3〉 and their duals all are of index 〈, 1, 2〉 so the dual graphs are not
immediately helpful. Clearly (see Lemma 2.1) G ≤ H, and G ≤ K because G is
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formed by replacing one vertex of K by a copy of K2 whose vertices are adjacent
to exactly the same vertices as is the one vertex they replace.
These inequalities are strict, and the incompatibility graphs give an easy avenue

to provingG < K and K £ H. The incompatibility graph of the pentagon K is
simply K again; I(G) is a path of length 3 connecting the vertices 6, 1, 2, and 3 in
that order; and I(H) adds 4 and 5 to its vertex set, with 4 at the end of the path
and an edge joining 2 to 5. A simple parity argument shows that a polygon with an
odd number of sides does not admit of an edge-preserving map to a path, hence not
to a tree like I(H) either. So G < K and K £ H. We will show H £ K, thereby
also establishing G < H.

All three graphs share the following property: any two compatible vertices have
only one adjacent vertex in common. Now for any GT-connection (f, g) from H
to K, there must be a pair of vertices {v1, v2} of H sent to the same vertex of K
by f . In K, there are two vertices, w1, w2 adjacent to f(v1), and {f(v1), w1, w2} is
open dominating in K, but g would have to take w1 and w2 to the (at most!) one
vertex that is adjacent to both v1 and v2, but this contradicts Lemma 2.4 and the
fact that the index of H is 〈2, 3〉.

Corollary 3.4 and examples like 3.11 make it natural to define a dual index for
graphs. To help avoid confusion, we make the numbers negative; this is partly
motivated by the fact that the sequence displayed in the preceding section is of
order type Z+ ∪ {−∞,+∞} with the complete graphs of cardinality greater than 2
playing the role of the negative numbers.

Definition 4.4. The dual index of a graph G is 〈−m,−n〉 where 〈m,n〉 is the
index of D(G).

The following is almost immediate from Corollary 2.8.

Corollary 4.5. If G has dual index 〈−m,−n〉 and H has dual index 〈−m′,−n′〉
then:
(1) If n ≤ m′ then H ≤ G.
(2) If H ≤ G then m ≤ m′ and n ≤ n′.

The second coordinate of the dual index has a direct characterization in terms
of G: its absolute value is the least cardinality of an unbounded set of vertices of
G. This is immediate from the following easy lemma:

Lemma 4.6. Let G be a graph and let B ⊂ VG. Then B is unbounded in G iff it
is dominating in D(G).

Theorem 4.7. Let G be a graph with index 〈m,n〉 and dual index 〈−j,−k〉. Exactly
one of the following is true:

(1) m = 1 and k > 2
(2a) m = n = j = k = 2
(2b) m = 2, n > 2, j = 1, and k = 2
(3) m > 2, j = 1 and k = 2

Proof. If m = 1, then the smallest unbounded subset of G has more than two
elements, so k > 2. Ifm ≥ 2 then k ≤ 2 since every incompatible pair is unbounded;
but then k = 2, because otherwise D(G) ≈ (1,=) and G has an isolated vertex and
its index is undefined. Similarly if j = 2 then n = 2. This and the inequalities
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j ≤ k and m ≤ n account for both (2a) and (2b). If m > 2 then G ≥ (3,=) so
D(G) ≤ K3, and K3 has index 〈1, 2〉. Since G has an index, the index of D(G)
cannot be 〈1, 1〉 so it must be 〈1, 2〉.

Construction 4.8. Let G be a graph with index 〈1, 2〉 or 〈2, 2〉. The open dom-
ination graph of G, denoted O(G), is the graph whose edges are open dominating
subsets of G and whose vertices are the union of the edges of G.

Example 4.9. Let (n,¤) be the n-gon with vertex set n arranged cyclically. Let
Gn be a graph obtained by removing the edges of an n-gon from Km, m ≥ n.
Then D(G) is naturally isomorphic to A(n,¤), whose index can be characterized
as follows: A(3n,¤) has index 〈n, n〉; and A(3n+1,¤) and A(3n+2,¤) both have
index 〈n, n + 1〉. It is easy to see that A(n,¤) ≤ A(m,¤) whenever n ≤ m, and
that the inequality is strict if m or n is 3k for some integer k: the latter fact follows
from the former and Corollary 2.9, while the former can be established by having
f be the inclusion map while g takes {n − 1, . . . m} to n − 1 and is otherwise the
identity.
We also have that A(4,¤) < A(5,¤) as a glance at the open domination graphs

shows. Any two distinct vertices of A(4,¤) give an edge of O(A(4,¤)), which is
thus a copy of K4 while O(A(5,¤)) is a pentagon. There can be no edge-preserving
map from K4 (or indeed from any graph containing a triangle) to a pentagon, so the
demands placed on g by Lemma 2.4 on any GT-connection from A(5,¤) to A(4,¤)
cannot be met.

5. Simple graphs of index 〈1, 2〉


